
Computational Intelligence, Volume 000, Number 000, 0000

KEMNAD: A Knowledge Engineering Methodology for Negotiating

Agent Development

Xudong Luo, Chunyan Miao

School of Computer Engineering

Nanyang Technological University

Singapore

Nicholas R. Jennings

School of Electronics and Computer Science

University of Southampton

Southampton, UK

Minghua He

School of Engineering and Applied Science

Aston University

Birmingham, UK

Zhiqi Shen

School of Electronical and Electronic Engineering

Nanyang Technological University

Singapore

Minjie Zhang

School of Computer Science and Software Engineering

University of Wollongong

Wollongong, Australia

Automated negotiation is widely applied in various domains. However, the development of
such systems is a complex knowledge and software engineering task. So, a methodology there will
be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for
such system development. To remove this limitation, this paper develops a new methodology made
up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular
and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating
agent by assembling these standardised components rather than reinventing the wheel each time.
Moreover, since these patterns are identified from a wide variety of existing negotiating agents
(especially high impact ones), they can also improve the quality of the final systems developed.
In addition, our methodology reveals what types of domain knowledge need to be input into the
negotiating agents. This in turn provides a basis for developing techniques to acquire the domain
knowledge from human users. This is important because negotiation agents act faithfully on the
behalf of their human users and thus the relevant domain knowledge must be acquired from the
human users. Finally, our methodology is validated with one high impact system.

Key words: automated negotiation, agents, knowledge engineering, software engineering,
e-business.

1. INTRODUCTION

Negotiation is a communication process by which a group of entities try to reach an agreement on
some matter according to the Oxford English Dictionary and the Business Dictionary (Collin, 2001).
It is a subject that has been extensively discussed in game-theoretic, economic, and management
science literature for decades (e.g. Nash, 1950; Raiffa, 1982; Rubinstein, 1982; Fisher et al., 1991;

iC 0000 The Authors. Journal Compilation
iC 0000 Wiley Periodicals, Inc.

2 Computational Intelligence

Hoffman et al., 1994; Egels-Zandèn, 2009). Recently, there has been a surge of interest in automated
negotiation systems that are populated with artificial agents (He et al., 2003b; Lomuscio et al.,
2003; Rahwan et al., 2004; Kersten and Lai, 2007; Wellman et al., 2007). This is because automated
negotiation can be applied into a wide range of complex computational systems such as service-
oriented computing (Cappiello et al., 2007; Koumoutsos and Thramboulidis, 2009), the Grid (Chao
et al., 2006; Guan et al., 2008), peer-to-peer systems (Koulouris et al., 2007; Ragone et al., 2008),
pervasive computing (Bagüés et al., 2008; Park and Yang, 2008) and e-business (He et al., 2003b;
Loutaa et al., 2008). Actually, it has been argued that such a negotiation is the standard mode
of interaction in all systems composed of autonomous agents (Jennings, 2001). Thus, a wide range
of automated negotiation systems have been developed; these include systems for auctions, direct
one-to-one negotiations, and argumentation-based encounters.

However, existing negotiating agent systems are typically hand-crafted from scratch and it is a
complex task. This clearly limits the potential of automated negotiation in practical applications.
So, we need a practical methodology that can facilitate such developments. Unfortunately, although
many agent-oriented software engineering methodologies are developed (e.g. Iglesias et al., 1996;
Wooldridge et al., 2000; Caire et al., 2001; Bresciani et al., 2004; Zambonelli et al., 2003; Bauer and
Odell, 2005; Shen et al., 2006; Oluyomi et al., 2008; Beydoun et al., 2009), none of them can offer
sufficient, specific support for the development of negotiating agents (see Section 6 for a detailed
discussion).

Against this background, in this paper we propose a novel development methodology that is able
to aid the designers to model and specify automated negotiation systems. More specifically, it reduces
the complex task of building an automated negotiation system to three relatively simple subtasks:
situation analysis, decision making and decision executing, which the developer of a negotiating
agent can focus on more easily. It then uses a generic main task model (architectural pattern) to
assemble these subtasks together. After the three subtask components are substituted to the generic
main task model, a relatively simple and clear task model for a negotiating agent is built up. Besides,
the methodology also includes a number of design patterns (templates) for such subtasks. This can
further aid the designer in the process of specifying a negotiating agent by reusing these templates.

Our methodology also identifies what types of domain knowledge are required for effective
negotiation and solves the problem of how to specify these types of domain knowledge. In most cases,
agents negotiate on behalf of their owner (which might be an individual or an organisation). For this
to be effective, agents must be able to adequately represent their owners’ interests, preferences and
prejudices (i.e., various types of domain knowledge) in the given domain such that they can negotiate
faithfully on their behalf (Preist, 2001; Luo et al., 2003b, 2004, 2006; Ludwig, 2008). However,
little attention has been given to the problems of what types of domain knowledge the owner of a
negotiating agent needs to impart to the agent to achieve high fidelity negotiation behaviour, nor the
problems of how such types of domain knowledge are to be specified, nor how such domain knowledge
can be effectively acquired from the owner. These are serious shortcomings that need to be addressed
if negotiating agents are to be widely used. The methodology proposed in this paper partially solves
the first two problems. As to the third problem, on the basis of the proposed methodology, we aim
to further develop tools and techniques to facilitate the process of domain knowledge acquisition.

The development of the proposed methodology is based on analysing the knowledge requirements
of a wide range of existing negotiating agent models, especially high impact ones (e.g. Parsons
et al., 1998; Kowalczyk and Bui, 2000; Barbuceanu and Lo, 2001; Faratin et al., 2002; He and
Jennings, 2002; Luo et al., 2003a; He et al., 2003a, 2006; Cheng et al., 2006; Skylogiannis et al.,
2007). The negotiation models we selected for analysis are typical ones which cover several main
classes of negotiation models, including the three basic classes of bargaining (one-to-one), auctions,
and argumentation. Moreover, the models we selected are well-defined and can manifest the main
characteristics of negotiation models in these three basic classes. We have also analysed the knowledge
requirements used in human manual negotiation that is discussed in classic work (Pruitt, 1981; Raiffa,
1982; Fisher et al., 1991; Unt, 1999). We mainly study manual negotiation subjects in the business
domain, because we believe the largest class of potential users of automated negotiation systems
come from this community. Therefore, in order to match our automated negotiation with manual
negotiation (i.e., automated negotiation can act as a manual negotiation according to humans’

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 3

... ...

domain

model

generic task

template

communication

model

Generic Framework

1−1 principled
negotiation

modelmodel

double

model

BDI−logic based

knowledge

auction argumentation

subtask

Figure 1. The overview of the presented methodology.

preference and knowledge), besides the analysis at the dimension of existing automated negotiation
models, it is also necessary to analyse manual negotiations.

The aim of the analysis is to identify the knowledge components that are common to all (or
at least many) negotiation models and those that are specific to particular types of negotiation
model. In order to capture these knowledge requirements we employ the CommonKADS methodology
(Schreiber et al., 2000). This methodology has a long history of being exploited in knowledge intensive
systems and a negotiating agent is certainly within those realms. It is possible that some extensions
and variations of CommonKADS like MAS-CommonKADS (Iglesias et al., 1996) can be employed
here. However, CommonKADS is validated by many more applications, and the other extensions
and variations have little special ingredients that we need here. So, we choose to build our work on
the much more solid foundation, that is, CommonKADS.

The overview of the presented methodology is shown in Figure 1. According to the principles of
knowledge engineering (Schreiber et al., 2000), when building a knowledge model, one first needs to
describe the generic structure of knowledge, then instantiate this and finally validate the knowledge
model. Following this approach, this paper first introduces a generic knowledge model for automated
negotiation systems in Section 2. Next, Sections 3 and 4 give a number of templates of the generic
model’s components, which can be used to instantiate the generic model. Section 5 uses an existing
agent negotiation system to show the validity of our methodology. Section 6 discusses how our
work advances the state-of-art in the area of agent-oriented software engineering. Finally, Section 7
summarises the paper and points out directions for further study.

2. GENERIC FRAMEWORK FOR AUTOMATED NEGOTIATIONS

A generic main task model for various automated negotiation models is presented in this section.
The main task model mainly consists of two subtasks. We identify a number of templates for these
subtasks. The details of these templates will be given in the following two sections, but in this section
we justify why these templates are necessary for automated negotiation systems. This section also
discusses various domain knowledge types that can be used in negotiations. In addition, we describe
various possible types of communication between agents in negotiations. This is also one component
that constitutes the main task model of automated negotiation systems.

4 Computational Intelligence

analyse

prejudge

analyse

make

analysis knowledge

decision

message

sending

continue

present

unnecessary

negotiation

receive
message
received

receivereceived
message

analysis knowledge

make

decision

sending

message
present

continue

halt

action knowledge

action knowledge

halt

result

result

execute

execute

decision knowledge decision knowledge

(a) Initiator agent’s main task. (b) Respondent agent’s main task.

Figure 2. The graphical specification of the main task knowledge model of negotiation agents.

2.1. Main Task

Since negotiation can be regarded as a process by which a group of entities communicate with
one another in order to reach mutually acceptable agreement on some matter (Peasall, 2001), after a
negotiation is initiated, each participant always repeats the cycle that starts with receiving the other
party’s message, then generates a response to the received message, and finally ends with sending
the response back to the other party. Generally, when generating a response to a received message,
the recipient agent must consider that the generated response should advance the process towards
an agreement with which he can be satisfied as much as possible. Therefore, during each cycle of the
negotiation procedure, a negotiation agent faces a decision problem: given a received message, how to
generate a response that moves towards an agreement which can maximise his interest? The general
procedure to solve a decision problem can be divided roughly into three phases: firstly analyse the
information obtained, then make a decision according to the analysis result, and finally execute the
decision.

Accordingly, the main task model of a negotiation procedure can be regarded as a continual
and interactive decision making procedure, each cycle of which consists of subtask analyse, make and
execute (as shown in Figure 2). Subtask analyse is used to analyse the other party’s message; then
subtask make is used to make a decision according to the result of the analysis; and finally subtask
execute is mainly used to compose an appreciate response according to the decision.

The initiator agent’s main task model (as shown in Figure 2(a)) is different from that of its
negotiation other party (as shown in Figure 2(b)) in the following aspect: the initiator agent starts
with determining whether the negotiation is needed at all, while the respondent agent starts with the
received message from the initiator agent. In particular, when a respondent agent first time receives
the message from an initiator agent, the respondent agent may need to decide whether it wishes to

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 5

Deduction

Conjecture

Classification

subtask

subtask
Situation analysis Decision making

subtask

Diagnosis Utility

Constraint

Experience

Figure 3. The overview of the templates of subtask knowledge model.

enter into the negotiation or not. However, this process can still be captured by subtasks analyse,
make and execute. In fact, subtask analyse can identify the received message as an one unnecessary to
be negotiated, then subtask make makes decision that it needs to go no further, and finally subtask
execute composes a message to tell its negotiation partner this fact and terminates its negotiation
procedure. So, it is unnecessary to put a prejudge subtask there. The graphical specifications of their
task models are shown in Figure 2.

2.2. Templates of Subtask Knowledge Model

From the previous subsection, we know that the generic model of main task is made up of a
number of subtasks (see Figure 2). Many different negotiating agents can be cast in the generic
model of this main task, but they may have different subtask models. In this paper, we identify
a number of templates for subtask analyse (called situation analysis) and a number of templates
for subtask make (called decision making) (see Figure 3). The templates for the situation analysis
subtask include the classification method and the diagnosis method; the templates for the decision
making subtask include the deduction method, the conjecture method, the experience method, the
constraint method and the utility method. These templates are the computational realisations of
some common methods used in manual negotiations.

The classification method is one way to analyse the other party’s message. In real life, when
preparing a negotiation, the human negotiator often needs to identify some rules that specify what
class of actions he should take given various responses of the other party (Unt, 1999). In other words,
he needs classify the other party’s response into different decision categories first, then make decision
and respond accordingly. For example, these rules can specify when the negotiators should argue,
or make a counter offer, or explain (that is responsibility of decision making subtask to further
decide what the argument, or the counter offer, or the explanation is). Since automated negotiation
systems simulate human negotiations to some extent, we employ the classification method in our
methodology for automated negotiation.

The diagnosis method is a common method to explore the interest and motivation behind the
position the other party stands on. If the interest is known then it is possible to find win-win solutions
in negotiations. During the course of a negotiation, what negotiating parties often present to each
other are the conflicting positions regarding the negotiation issues. However, one party is going to
negotiate with another party because it needs the other to satisfy its need (Raiffa, 1982) or its interest
(Fisher et al., 1991) behind the position. Often there are several ways to satisfy the need/interest.
Moreover, among these ways there often exists one that can satisfy both parties’ needs/interests
(that is, a win-win solution). The problem is how to find the win-win solution. An obvious method

6 Computational Intelligence

is to locate the one another’s need/interest behind theirs positions. The diagnosis method is one
such. For example, a Chinese couple in the UK negotiate for their holiday. Their initial positions
are that the wife wants to go back to China for the holiday but the husband wants to travel in
Europe. Clearly, their positions are in conflict. Then, they ask each other: “why do you stand on
that position?” The wife says she wants to enjoy the Chinese food and buy some Chinese stuff, and
the husband says he wants to enjoy the European culture. Then they find a win-win solution: they
can travel in Europe but go the cities that have China town and they will have dinner and shopping
there. What the diagnosis method can do is to diagnose the interests behind conflicting positions.
Clearly, the diagnosis method is different from the classification method. In fact, the classification
method just directly classifies the other party’s offer into a category, while the diagnosis method
starts with the other party’s offer to explore the interest or needs behind the offer.

We will now consider the general characteristics of the templates of the decision making subtask.
In the case of the deduction method, an agent must perform two functions: perceive changes in the
environment (including other agents) where it is situated, and perform actions that affect changes
in the environment. Here the problem is how to choose a proper action given the changes in the
environment. Hayes-Roth argues that agents reason during the course of action selection (see Murch
and Johson, 1999, page 10). McCauley-Bell (1999) also holds the similar view that agents deduce their
further moves from the knowledge about prior scenarios and resulting action. Moreover, Wooldridge
and Parsons (2000) believe that an agent can be built as a particular type of knowledge-based system
that contains a symbolic model of the environment, and that decides what actions to perform in a
given situation through symbolic reasoning. Further, they illustrate this kind of agent as comprising
of four components: (1) ρ: the knowledge base (typically a set of rules), (2) ∆: the logical database
representing the current situation of the environment, (3) AC: the set of actions the agent can take,
and (4) d: the decision algorithm, for example:

for each action a in AC do
if Do(a) can be proved from ∆ using ρ then return a end-if

end-for

A typical example of reasoning employed for action selection is the BDI-logic based negotiation
system developed by Parsons et al. (1998). In fact, during the course of a negotiation, the reasoning
is used to decide how a negotiating agent should respond to its other party agent.

Let us turn to a general description of the conjecture method. During the course of a negotiation,
according to the other party’s offer (and the relevant information acquired from the other party),
the conjecture method is often used to estimate various factors (e.g., a product’s reserve price (Zeng
and Sycara, 1997) that determines the other party’s behaviours, or the final result of a negotiation
(see Ai, 2002, pages 413–502). Further, the result of the estimate can be used to decide which action
should be taken in order to reach a better agreement (Zeng and Sycara, 1997; Ai, 2002). For example,
according to the other party’s offer price, the conjecture method proposed by Zeng and Sycara (1997)
can estimate the other party’s reserved price for the product to be traded, and thus determine the
suitable counter offer price. Another example is the conjecture method presented in (Ai, 2002). The
method can estimate the deal price according to the opening prices of both sides in a business
negotiation, and thus determine suitable counter offer prices such that the estimated deal price can
be agreed by the other party. Generally, the conjecture method can work well in negotiations based
on two assumptions: (1) the other party’s future behaviours are determined by the history of his
behaviour and his current behaviour (e.g., his current offer/counter-offer), and (2) the other party’s
behaviours will change if some other factors change.

A third template for decision making is experiential. This is based on the premise that previous
negotiation experiences are useful in new negotiation (Wong et al., 2000a). This assumption is
reasonable. In fact, the general negotiation theory can only be used as guidelines by negotiators
in different negotiation scenarios (Ai, 2002). Different negotiation parties behave differently during
the course of negotiation (Unt, 1999). What the general negotiation theory reveals are common laws
in different negotiations but cannot cover all specific details in various negotiations. So, in order to
negotiate efficiently, negotiators must accumulate negotiation experiences and apply the experiences
in practice. That is important. For example, the general business negotiation theory reveals that
in a business negotiation the opening price of a buyer should be low and that of a seller should be

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 7

high. However, the general theory cannot tell how low or how high the opening price should be in
individual negotiations. In this case, negotiation experience is needed. Take shopping in a market of
small stores in Shanzhen city in China as an example. Actually, all prices labelled on products there
are negotiable. If you just know that the opening price of buyers should be low but have no necessary
experience there, you may think that using 50% of the labelled price as you opening price should
be regarded as low. Nevertheless, after accumulating experiences especially through comparing your
deal prices with those of local people, you will find that usually sellers’ reserve prices are 30% of
their labelled prices (their opening prices). Hence if your opening price is 20% of a labelled price, it
is more appreciate opening “low” price for you.

A fourth method is constraint based. This is an important method for a number of reasons. First,
in many cases negotiating parties do not know the precise details of the desired solution to the issues,
and so their requirements are naturally expressed by constraints over multiple issues. For example,
consider the case of an international student who just arrives in the UK for the first time and who
has to rent accommodation. Since he is totally new to the country, he cannot tell a Real Estate
agent exactly what he wants, but he can naturally express his requirements as constraints (e.g., the
accommodation should be within walking distance of the university, the rent should not be too high,
and it would be better if there was an Internet connection). Second, negotiating parties’ preferences
about tradeoffs between different attributes of the desired solution can easily be modelled by fuzzy
constraints. For example, although the student wants to rent accommodation near to the university,
if the accommodation is really cheap, even though it is not within walking distance, he can also accept
the accommodation to some extent (depending on how far and how cheap). This can be encoded as
a fuzzy constraint over the combination of distance and rental, and for each combination the student
can assign a satisfaction degree. Third, for a single solution attribute, a negotiating party might
prefer certain values over others (e.g., for accommodation type, the student prefers “single room in
a flat” over “shared room in a house”). Such a preference can be expressed as a fuzzy constraint
over a single attribute, and the preference level at a certain value of the attribute is the constraint’s
satisfaction degree for that value. Similarly, for multiple attributes, a buyer might prefer certain
combinations of values over others (e.g., for rental and period, the student prefers “cheap and short
contracted period” over “expensive and long contracted period”). Such a preference can be expressed
as a fuzzy constraint over multiple attributes, and the preference level at a certain combination value
of these attributes is the constraint’s satisfaction degree for the combination value.

Finally, we present a template for the utility based method because utility theory (Neumann and
Morgenstern, 1944; Keeney and Raiffa, 1976) is a useful decision making approach in negotiations. In
fact, the theory can be used to make a choice between alternative courses of action under uncertainty
and risk.1 More precisely, a utility function measures a decision maker’s preference on decisions under
uncertainty. Different decision makers may have different preferences and so their utility functions
are different. A rational decision under uncertainty should be the action which maximises expected
utility. Moreover, since uncertainty exists, the consequence of a decision may be bad, and therefore
the decision maker must face a degree of risk regarding his decision. In utility theory, different utility
functions can capture different decision makers’ attitudes to risk, such as risk-seeking, risk-neutral
and risk-aversion. In other words, the theory is suitable to deal with decision problems where risk
and uncertainty are central to a decision maker’s concerns. In addition, decision problems that also
involve multiple issues/attributes are also suitable to be handled by utility theory. Thus, to make a
proposal or a counter proposal during the course of a negotiation is a decision problem suitable to
be handled by utility theory. There are three reasons for this:

(i) Often the agent has to make a counter offer under uncertainty. This is because an agent’s
knowledge about the other party’s strategies is usually incomplete. In fact, as mentioned above,
negotiating agents usually act in a self-interested fashion and so usually attempt to minimise
the amount of their own private information they reveal during the encounter since any such

1Prospect theory (Kahneman and Tversky, 1979) and the fuzzy aggregation method (Luo and Jennings,
2007) removed some limitations of classic utility theory and can also be used in decision making under
uncertainty and risk. So, we can understand them as modern utility theory. However, their delicate differences
are beyond the scope of this paper and so will not be reflected in the template.

8 Computational Intelligence

revelation will weaken their bargaining positions (Pruitt, 1981; Raiffa, 1982; Luo et al., 2003a)
in competitive situation.

(ii) The risk attitude of the user, whom a negotiating agent acts on behalf of, needs to be taken
into account when choosing a counter proposal during the course of automated negotiation. In
fact, if the user’s attitude to risk is used in manual negotiations, it must be used in automated
negotiation because agents must faithfully and appropriately represent their owners such that
the agents will be able to negotiate competently on their behalf. Moreover, attitudes to risk
often take effect in negotiations. For example, during a round of an auction, the higher a bidder
agent bids, the higher the chance that the agent wins is. However, the problem is: biding too
high may lead to unnecessary expense, but biding too low risks losing the chance to win. In
this case, the user’s risk attitude should be used to make a choice. If the user does not care
about paying over the odds but cares about losing, his agent should bid high; otherwise the
agent should bid low.

(iii) The problems of making proposals or counter proposals are often multi-attribute decision
making problems. In fact, negotiations often need to find solutions over multiple attributes
(e.g., price, quality, model, volume, delivery options, expiry date, after-sale service, extended
warranty options, return policy, and so on). This is because in most real negotiations what is
acceptable cannot be described in terms a single parameter (Barbuceanu and Lo, 2001; Fisher
et al., 1991). Negotiating agents need to trade off interests where one party’s gain was not
necessarily the other party’s loss since they have different preferences on attributes.

Having outlined the general characteristics of these methods for situation analysis and decision
making, we are going to detail each in Sections 3 and 4.

2.3. Domain Knowledge

From the graphical specification of the main task knowledge model of negotiating agents (as
shown in Figure 2), it can been seen that domain knowledge is used in the situation analysis subtask
and the decision making subtask. In this subsection, we give an integrative picture of the various
types of domain knowledge needed for the negotiation models (the detailed structure of various
types of domain knowledge will be discussed together with detailed subtasks templates). For human
negotiation, the following types of knowledge are often exploited by a negotiator:

(i) Objective and outcome. For example, in business negotiations, the knowledge about differences
between the traded product and similar products, as well as their advantages and disadvantages
are often used in bargaining. The preferences with regard to the possible outcomes of a
negotiation can be used to decide a counter offer or whether an offer should be accepted.

(ii) Participant (including his experience). This type of knowledge can be used in evaluating
whether the other party’s offer can be acceptable. For example, in a negotiation of a student’s
accommodation renting scenario, sometimes although the price is quite high, if the landlord
can offer an Internet connection then the student can accept because he knows he needs it for
study and entertainment.

(iii) Knowledge about the other party. This type of knowledge can be used in choosing a proper
negotiating strategy so that the negotiation can be carried out more efficiently. For example,
in an English auction, if a bidder knows his other parties are risk averse, he needs not bid too
high, and so he might win with less money.

(iv) Knowledge/preference for forming proposal or counter-proposal. The simplest form of this
type of knowledge is stereotyped: if the other party’s offer is like this, then the counter offer is
this. The most important part of many textbooks of business negotiation is the description of
knowledge about how to make (counter-)proposals.

(v) Environment. This type of knowledge includes, for example, law for business negotiations, the
relationship between supply and demand in the market, and so on. This type of knowledge can
be used to guarantee that (counter-)proposals (including the final agreement) are valid.

All these various types of domain knowledge need to be presented in the automated models.
Take BDI-based argumentation agent (Parsons et al., 1998) as an example. The agent clearly needs
to know its preference for outcomes. It needs to know about its other party since it may take past

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 9

history into account in determining what arguments should be used.2 The strategy about which
argument should be used (out of the many potential alternatives) is given in type (iv) above. Other
examples of this type is the knowledge that the agent uses to decide whether it should submit its
strongest argument first or its weakest one. Type (v) above includes knowledge about the social
context. For example, you should not, in general, send threats to your boss; if you are peers from
different organisations then different types of argument may be appropriate.

These knowledge requirements can be found in most of the existing models that we have
analysed. So, the generic model needs to include them. However, when a specific user employs
the generic model for a specific purpose, he will tailor and customise the generic model to include
the particular specification of domain knowledge types (i)–(v).

In a word, all knowledge types are used for analysing the situation of each encounter and
generating the response according to the current situation.

2.4. Communication Model

Negotiating agents communicate to one another by the means of messages. In communication
among humans, the intention of a message’s sender is not always easily recognised. For example,
“I am hot”, can be regarded as an assertion, a request for a cup of cold drink, or a demand for
a decrease in room temperature. However, in order to simplify the design of software agents, the
message’s receiver agent should have no doubt about the intention of the message’s sender agent.
Speech action theory (Searle, 1969) describes how humans use language to achieve everyday tasks,
such as requests, orders, promises, and so on. This is employed to help define the intention of the
message’s sender. More precisely, the illocutionary force of this special class of utterance is used to
indicate the intention of the message’s sender. The performative in KQML (Finin et al., 1994; Finin
and Labrou, 1997) is used to present the intended meaning of the utterance by the sender agent.3

Through the performative, the recipient agent can understand the intention of why the sender tells
him the content of the message.

In speech action theory, illocutionary forces are classified as assertives (statements of facts),
directives (commands in master-slave structure), commissives (commitments), declaratives (state-
ments of fact), and expressive (expressions of emotion) (Huhns and Stephens, 1999). According to
this classification (see Table 1) and through the analysis of human negotiation (Ai, 2002; Pruitt,
1981; Raiffa, 1982; Fisher et al., 1991; Unt, 1999) as well as lots of existing automated negotiation
agent systems, we identify the following performatives of messages between negotiating agents:

• clarify: By this performative term, the recipient agent understands that the message’s content
is information that the sender agent initially reveals to it. For example, in business negotiations a
seller often actively provides a buyer with the product’s configuration information.

• enquire: By this performative term, the recipient agent understands that the sender agent wants
the recipient agent to provide with it some information. For example, in a business negotiation
the buyer inquires the interest behind the position that the other party stands on.

• reply: By this performative term, the recipient agent understands that the message’s content is
a reply to the recipient agent’s enquiry. For example, in a business negotiation the seller replies
the buyer’s enquiry about the interest behind the position that the other party stands on.

• offer/counter-offer: By this performative term, the recipient agent understands that the
message’s content is an offer of the sender agent. For example, in a business negotiation the
seller is willing to offer the buyer the product at certain trade conditions (e.g., model, quantity,
delivery date, warranty, and so on).

• request: By this performative term, the recipient agent understands that the sender agent wants
the recipient agent to do some action. For example, the seller agent asks the buyer agent to relax

2Such arguments can take the form of: last time I bought this product from you and we agreed that it
would cost x pounds.

3FIPA ACL (O’Brien and Nicol, 1998) is similar to KQML in basic conception but different in some of the
performatives. So, it is not important which one we choose here since we have our own performatives that
are different from theirs.

10 Computational Intelligence

Table 1. Performatives used in negotiation.

Illocutionary Force Performative

Assertive clarify, reply

Directive enquire, request

Commissive
accept, reject, accept conditionally,

hold firmly with argumentation, concede

Declarative clarify, reply

Expressive

constraints on the desired products. Actually, in different systems, the performative request can
be instantiated as a different performative such as relax.

• accept: By this performative term, the recipient agent understands that the sender agent accepts
the recipient agent’s offer.

• reject: By this performative term, the recipient agent understands that the sender agent rejects
the recipient agent’s offer.

• accept conditionally: By this performative term, the recipient agent understands that the
message’s content is some condition under which the sender agent accepts the recipient agent’s
offer. For example, we can accept the price if you can pay fully the fee caused by something wrong
with these computers during their warranty period.

• hold firmly with argumentation: By this performative term, the recipient agent understands
that the message’s content is an argumentation with which the sender agent holds its position
firmly. For example, we cannot further reduce the price; otherwise we make no profit.

• concede: The sender agent makes a concession.

2.5. Development Processes

Basically, the development of a negotiating agent system follows the standard software engineer-
ing procedure: requirement analysis, design, coding, and test. However, as shown in Figure 4, in our
methodology, the requirement analysis is carried out according to the generic main task knowledge
model (standardised overall architecture pattern), then the design process becomes firstly to select
the subtask knowledge models (the design patterns of negotiation situation analysis subtask and the
decision making task) from the subtask knowledge template library, and to determine communication
model according to the requirement analysis and the standardised communication template. These
two can be viewed as architecture design of a negotiating agent. Followed is the detail design:
acquire/determine the preferences on the negotiation outcomes, negotiation strategies, and even
more general knowledge that is required during the course of negotiation. After the process of design
is completed, all the pieces are put together to form a specification of a complete system. Since it
is difficult to cover, in one paper, the details of all aspects, in this paper we focus mainly on (1)
identifying the overall architecture pattern of various negotiating agents and (2) establishing the
library of design pattern of components in the overall architecture.4

3. TEMPLATES FOR SITUATION ANALYSING SUBTASK

In the previous section, we present a generic framework for automated negotiation systems
comprising of the situation analysis and decision making subtasks. We also identified a number of
templates for these two subtasks, but did not give the detail of these templates. In this section we
shall give the details of the situation analysis subtask templates: classification and diagnosis. These

4Certainly, in future work it is worth working out some guidelines and techniques to help negotiating agent
developers go through the whole procedure from requirement analysis to coding and test.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 11

analyse

select

subtask models

acquire

knowledge
domain

specification

code

communication model

negotiation agent system

requirements

negotiation
examples

test

communication
knowledge model

template library
subtask knowledge

knowledge model
generic main task

integrate

Figure 4. The lifecycle of negotiating agent development.

two templates are adapted from CommonKADS methodology (Schreiber et al., 1999), but here we
have tailored them suitable for use in the negotiation domain (i.e., we have added and removed some
components, and we also changed the terminology).

3.1. Classification

This subsection presents a template of the classification method.

3.1.1. General Characterisation.

Goal. Find a decision category for a piece of the other party’s message based on a set of domain-
specific rules.

Typical example. Find a category for a piece of the other party’s message. For example, the received
message is a counter offer, or a signal to terminate the negotiation, or an explanation for the
previous offer.

Terminology. Received message: the message received from the other party, which needs to be
classified. Rules: domain knowledge that is used in classifying the received message.

Input. The received message.
Output. A decision category.
Applicability. The method is suitable to the situation in which the information relevant to the other

party’s offer is sufficient to find a decision category, or the situation where the other party does
not offer the relevant information.

3.1.2. Default Method. The basic idea of the method is: first abstract the data in the received
message, then select the applicable rules, and finally judge which rule’s condition is satisfied with
the received message. If the condition part of a rule holds, then its conclusion part becomes a class

12 Computational Intelligence

that the received message belongs to.5 The textual and graphical specifications of this method are
shown in Figure 5 and 6(a), respectively.

SUBTASK classification;
ROLES:
INPUT: received-message: "the message received from the other party";
OUTPUT: situation-class: "the result of analysis";

END SUBTASK classification;

SUBTASK-METHOD classification-with-abstraction;
REALIZES: classification;
DECOMPOSITION:
ROLES:
INTERMEDIATE:

abstracted-message: "the raw data plus the abstractions";
rules: "a set of classification rules";
rule: "a single classification rule";
rule-value: "the conclusion of a rule which condition part holds";
evaluation-results: "list of evaluated rules";

CONTROL-STRUCTURE:
WHILE

HAS-SOLUTION abstract(received-message -> abstracted-message)
DO

received-message:=abstracted-message;
END WHILE
specify(abstracted-message -> rules);
REPEAT

select(rules -> rule);
rules:=rules SUBTRACT rule;
evaluate(abstracted-message + rule -> rule-value);
situation-class:=rule-value ADD evaluation-results;

UNTIL rules==empty END REPEAT;
END SUBTASK-METHOD classification-with-abstraction;

Figure 5. Textual specification of the rule method for classification.

The method is built upon the following inferences:

• abstract: This inference function abstracts some of the received message. For example, in the wine
selling scenario the age of the buyer might need to be abstracted, e.g., any individual over 18
years old is abstracted to adult. The abstractions required are determined by the data used in the
rules (see further). Abstraction is modelled here as an inference that is repeated until no more
abstractions can be made. The abstracted features are added to the case description.

• specify: This inference finds the rules that can be applied to the abstracted message. In most
classification task, the rules used are at least partially dependent on the received message, i.e., the
message thus plays an input role for this inference. An example of a rule in a situation classification
of a continual double auction would be “if the outstanding bid is smaller than outstanding ask,
and the outstanding ask is not greater than the reference price, then it is situation 1”.

• select: This inference function selects one rule, from the set of rules, for evaluation.
• evaluate: This inference function checks whether the condition part of a selected rule is true or not,

e.g., the result of checking the above rule is “it is false that the outstanding bid is smaller than
outstanding ask, and the outstanding ask is not greater than the reference price”. This function
is usually quite a straightforward computation.

3.1.3. Method Variations. In some negotiation scenarios, abstraction might not be needed, and
therefore can be omitted (see Section 5 for an example). However, sometimes the data contained in
the received message needs to be processed in some other way.

Sometimes, the task of a negotiation could be very simple, only a price needs to be negotiated.
In this case, the specify inference always selects all the rules in the knowledge base. In other words,
the specify inference is not really necessary and thus can be removed. In this case, the classification
method degenerates into a simple application of a rule set.

5Different conclusions correspond different classes.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 13

abstracted

evaluate

abstract specify

select

received
message

abstraction knowledge

classification rule set

rules

rule

situation

class

message

(a) Inference structure

rule
abstractreceived

1+

message datu
value: universal

abstract
datu message

implies

value: universal

proposition

message

1+

implies

proposition
value: universal

abstraction
has

requirement

1+

(b) Typical domain schema

Figure 6. Graphical specification of the method for classification.

3.1.4. Typical Domain Schema. An overview of this classification domain schema is given in
Figure 6(b). There are three main information and knowledge types used in the default method:

(i) Specification of received message: this is a combination of the message’s performative and
content.

(ii) Message abstraction knowledge: it specifies dependencies between message’s data (see the
has-abstract rule type in Figure 6(b)).

(iii) Classification knowledge: it is represented as dependencies between the received/abstracted
message and positions which combination defines different situation-class. It means that if the
received/abstracted message is like this, then the rules are selected.

3.2. Diagnosis

This subsection presents a template of the diagnosis method.

3.2.1. General Characterisation.

Goal. Find the interest that results in the other party’s position.
Typical example. The negotiation of some issues in a computer wholesale scenario.
Terminology. Position: the position is the solution that the other party proposes to a certain issue

being negotiated. Interest: the cause which results in the negotiation other party’s position for
a certain negotiation issue. Interest-candidates: the set of possible interests that results in the
same position. Evidence: acquired information that supports interest candidates.

Input. Position.
Output. Interest(s) plus the evidence acquired for supporting the hypothesis about interest(s).
Applicability. This method is suitable for a user who needs to explore the interests and goals behind

the other party’s position, and thus may find a solution which can satisfy both sides of the
negotiation.

3.2.2. Default Method. The method assumes a causal network which consists of causal links
between positions and interests. The network also contains causal links that indicate typical evidence
for some node (see the domain schema in Figure 10).

14 Computational Intelligence

SUBTASK diagnosis;
ROLES:
INPUT:

position: "the negotiation other party’s offer to a certain issue";
OUTPUT:

interest: "the interest that results in the position";
evidence: "the evidence acquired during diagnosis";

END SUBTASK diagnosis;

SUBTASK-METHOD causal-covering;
REALIZES: diagnosis;
DECOMPOSITIONS:
INFERENCE: cover, select, specify, verify;
TRANSFER-FUNCTIONS: present, receive;

ROLES:
INTERMEDIATE:

differential: "active interest candidate";
interest-candidates: "a set of interests that could result in the position";
result: "Boolean indicating result of the test";
expected-evidence: "the answer acquired from negotiation other party";

CONTROL-STRUCTURE:
specify(position -> question);
present(question);
receive(interest);
IF interest==NIL THEN

WHILE NEW-SOLUTION cover(position -> interest-candidates) DO
differential:=interest-candidates ADD differential;

END WHILE
REPEAT

select(differential -> interest-candidates);
specify(interest-candidates -> question);
present(question);
received(answer);
evidence:=answer ADD evidence;
FOR-EACH interest-candidates IN differential DO
verify(interest-candidates + evidence -> result);
IF result==false THEN differential:=differential SUBTRACT hypothesis;
END IF;

UNTIL
SIZE differential =< 1 OR "no more questions left";

END REPEAT
interest:=differential;

END IF;
END SUBTASK-METHOD causal-covering;

Figure 7. Textual specification of default causal-covering method for diagnosis.

The basic idea behind the method is: after knowing the other party’s position with regard to a
negotiation issue, firstly ask the other party directly what its interest behind the position. If the other
party answers the question, the diagnosis procedure stops. In the case that the other party does not
answer the question (or equivalently the answer is null), the agent uses its own knowledge to find all
possible interests and objectives behind the position, and then asks the other party for information
to determine the real interest behind the position. The textual and graphical specifications of this
method are shown in Figures 7 and 8(a), respectively.

The method is built upon the following inferences and two transfer functions:

• cover: This inference searches backwards through a causal network to find all possible causes
(interest candidates) behind a position. The set of interest candidates is stored in differential.

• select: This inference selects one interest candidate from differential.
• specify: This inference specifies the question of whether some evidence (related to the selected

interest candidate) exists, or the question of what is the other party’s interest behind his position.
• present: This transfer function presents the question to the other party.
• receive: This transfer function reads in the answer to the question.
• verify: This inference checks, according to the answer, whether an interest candidate is likely to

be a real interest behind a position. If the candidate does not conflict with the answer, it is be
kept in differential; otherwise, it is removed from differential.

The last four functions are executed in a loop in which the interest candidates are examined in

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 15

����

evidence

����

about evidence

interest

Null

about position

specify

interest verify

more than one
candidates

candidates

position

receive

cover

cadidate

interest

select

question

question
specify

present

opponent

causal network

(a) Inference structure

internal state

internal state

can cause causal
dependency

can cause

causal
dependency

position

can cause

dependency
causal

interest

support

proposition
evidence-1: universal

:
.

evidence-n: universal

support
dependency

(b) Typical domain schema

Figure 8. Graphical specification of default causal-covering for diagnosis.

the order dictated by the select inference. The loop terminates either when the differential contains
at most one interest candidate or when no more questions can be specified. Thus, the method can
lead to three situations:

(i) In the case that differential is empty, no interests are identified. This implies that the evidence
acquired from the other party is inconsistent with all the possible interests behind the position
upon the negotiation issue. Or, of course, that the causal network is incomplete or in some
other way different.

(ii) In the case that differential contains only one Candidate, the candidate is viewed as the real
interest behind the position.

(iii) In the case that there are a number of candidates left in the differential. This implies that
there are multiple interests behind the position at the negotiation issue.

3.2.3. Method Variations. The CommonKADS framework has identified a variety of diagnostic
methods. Benjamins (1993) provided a particularly complete set of such methods. The default
method presented here is a variation of one of the methods developed by Benjamins. In the following,
we give a few common and relatively simple extensions and variations to the diagnostic method, which
could be used in diagnostic-style situation analysis in negotiation applications.

• Verification through explanation or consistency. The verify inference requires either that
all answers need to fully support the interest candidates, or that the answers only need to be
consistent with the interest candidates. The latter option is the commonest, because in many
negotiation scenarios it is difficult to acquire, from the other party, the sufficient information to
explain the other party’s offer. Mixed forms are also possible, e.g., by stating that only a subset
of the evidence needs to be explained. One usually requires that at least the initial position is
explained.

• Abstraction of answer. It is necessary to add an inference to find an abstraction of the acquired
answers when the knowledge about interests is expressed in abstract terminology that does not
relate directly to the answers.

• Multiple interests and interest selection. The default method assumes that there is only one
interest behind a position. This assumption can be removed by inserting the select inference after

16 Computational Intelligence

the verify step. The select inference function picks up the most plausible one from the remaining
interest candidates. A number of preference techniques have been developed for this.

3.2.4. Typical Domain Schema. A typical domain schema for simple diagnosis is shown in Figure
8(b). It assumes that each position is caused by some internal state, the internal state is caused by
other internal state, and finally the other internal state is caused by some interest. Further, the
interest is supported by the evidence that could be acquired from the negotiation with the other
party.

4. TEMPLATES FOR DECISION MAKING SUBTASK

In the previous section, we gave the details of the templates of the situation analysis subtask of
the generic negotiating agent. Now in this section we shall give the details of the decision making
subtask templates: deduction, conjecture, experience, constraint, and utility. Notice that since the
decision executing subtasks (see Figure 2) corresponding to these templates are as simple as single
inference functions, we integrate them into these decision making templates’ description.

Before presenting the decision making templates, we explain some terms that are shared by these
templates. Offer/counter-offer: a negotiating agent’s offer to the negotiation issue(s), for which
the agent needs to determine the counter-offer and decide whether the negotiation needs to continue.
Sending-message: the message that the agent is going to send to the other party. The message
could contain the counter-offer. Received-message: the message that the agent has received from
the other party. The message could contain the offer. Halting-condition: the indicator of whether
the negotiation should continue or not.

4.1. Deduction

This subsection presents a template for the deduction method. This method uses strategic
knowledge to deduce a counter-offer from an other party’s offer and the result of its analysis subtask.
The effect of this method depends mainly on the strategic knowledge.

4.1.1. General Characterisation.

Goal. Given a result from the situation analysis subtask and an other party’s offer (stored in the
received message), the method generates a counter-offer (stored in the sending message) and
decides whether the negotiation should stop.

Typical example. A negotiation through reasoning and arguing (e.g. Parsons et al., 1998; He et al.,
2003a; Skylogiannis et al., 2007).

Terminology. Analysis-result: the decision category plus the relevant information. Strategic Knowl-
edge: the domain knowledge that is used for deducing the counter-offer candidates. Preference
and preference ordering knowledge: the domain knowledge that is used for choosing a counter-
offer from a set of counter-offer candidates.

Input. It is the situation class and the other party’s offer.
Output. It is the decision about which counter-offer should be presented to the other party and

whether the negotiation should continue or not.
Applicability. The method is particularly suitable to handle the situation where the negotiating agent

can obtain not only the other party’s offer but also the information relevant to the offer.

4.1.2. Default Method. The basic idea behind the method is: firstly the negotiating agent selects
applicable strategic knowledge according to the situation analysis and the other party’s offer, then
deduces all possible counter-offers by using the strategic knowledge, and finally picks up the most
plausible one from the counter-offer candidates. The textual and graphical specifications of the
method are shown in Figures 9 and 10(a), respectively.

The method is built upon the following inferences:

• select: According to the situation analysis result and the other party’s offer (stored in the received

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 17

SUBTASK deduction;
ROLES:
INPUT:

received-message: "the other party’s offer to the negotiation issues";
situation-class: "the analysis result of the other party’s offer";

OUTPUT:
sending-message: "the message being sent to the other party";
halting-condition: "the halting indicator of the negotiation";

END SUBTASK predication;

SUBTASK-METHOD strategically-deduce-counter-offer;
REALIZES: deduction;
DECOMPOSITION:
INFERENCES: select, deduce, choose, set;

ROLES:
INTERMEDIATE:

knowledge: "the knowledge selected for deducing counter-offers";
counter-offer-candidates: "the set of possible counter-offers";
decision: "the agent’s counter-offer to the other party’s offer";

CONTROL-STRUCTURE:
select(received-message + situation-class -> knowledge);
deduce(knowledge + received-message + situation-class

-> counter-offer-candidates);
choose(counter-offer-candidates -> decision);
set(counter-offer -> sending-message + halting-condition);

END SUBTASK-METHOD strategically-deduce-counter-offer;

Figure 9. Textual specification of the deduction method.

message), this inference function selects the applicable knowledge from the strategic knowledge
base.

• deduce: By using the selected knowledge, this inference function deduces the counter-offer candi-
dates from the other party’s offer and its analysis result. There exit a large number of methods for
implementing this inference function. A simple way that is often employed in negotiations is the
forward reasoning method. For example, when the other party’s interest behind its negotiation
position is identified, the forward reasoning can be employed to find all alternative counter-offers
(positions) which can guarantee the interest.

• choose: According to the user’s preference and preference ordering knowledge, this inference
function picks up a counter-offer from the set of counter-offer candidates.

• set: According to the user’s action rules, this inference function executes the decision to compose
the message to be sent and assign a Boolean value to the halting condition. For example, if the
content of the decision is ‘null’ and the content of the other party’s offer is also null, then the
content of the sending message contains nothing, its performative is ‘terminate’, and the halting
condition is set to ‘true’. Actually, the inference function is the decision-executing subtask in the
generic model of main task in Figure 2.

4.1.3. Typical Domain Schema. A typical domain schema for simple deduction is shown in Figure
10(b). It assumes that each interest can be satisfied with a number of alternative positions. Positions
and interests are linked through internal states. In the simplest case, an interest can be linked directly
with a position. These links constitute a causal model where the starting points and the ending points
in the causal networks represent interests and positions, respectively. The causal model is used by
the deduce inference function.

It assumes that a user’s action knowledge is in the form of rules. In Figure 10(b), the antecedent
part of such a rule is the decision made and the received message. The consequent part of such a
rule is the sending message and the halting condition.

Some examples of such action rules are shown in Figure 11. The first rule says that if the decision
is not null then the agent should let the other party know the decision (offer) and wait for the other
party’s response. The second rule says that if the decision is null and the other party cannot present
any alternative offer then the agent should tell the other party that it cannot make any alternative
offer, and so halt the negotiation. The third rule states that if the decision is null but the other party
can make an alternative offer then the agent should ask the other party to do so.

18 Computational Intelligence

knowledge

selectmessage
received

choose

knowledge

preference

sending message

halt−condition
set

deduce counter offer candidates

counter offeraction rules

strategic knowledge

analysis−result

preference ordering

(a) Inference structure

can cause

can causeinternal state

causal
dependency

internal state position

causal

can cause

dependency

interest

correspond
sending message

halt-condition

causal
dependency

action rule

received-message
decision

(b) Typical domain schema

Figure 10. Graphical specification of the deduction method.

decision!=‘NIL’
CORRESPOND

sending-message.offer:=decision AND
sending-message.performative:=‘counter-offer’ AND
halting-condition:=‘false’

decision==‘NIL’ AND
received-message.performative==‘no-alternative-position’

CORRESPOND
sending-message.performative:=‘no-alternative-position’ AND
halting-condition:=‘true’

decision==‘NIL’ AND
received-message.performative!=‘no-alternative-position’

CORRESPOND
sending-message.performative:=‘no-alternative-position’ AND
halting-condition:=‘false’

Figure 11. Specification of the user’s action knowledge base.

4.2. Conjecture

This subsection presents a template for the conjecture method.

4.2.1. General Characterisation.

Goal. Given an offer of the other party, the method is used to make the counter-offer by estimating
the other party’s behaviour or factors that determine its behaviour.

Typical example. According to the other party’s offer, estimate its reservation price, and then make
a counter-offer for the price (Zeng and Sycara, 1997). Another example is the trading agents (He
and Jennings, 2002; He et al., 2006) in which a trade agent makes a bid according to its prediction
about the price tendency.

Terminology. Situation-class: a group of offers that share similar characteristics (e.g., a group of
acceptable offers). Conjecture knowledge: the domain knowledge that is used for building up
uncertain belief on its other party’s behaviours or some parameters that the other party has used
to determine its offer. Preference: the domain knowledge about the user’s preference on uncertain
situations given an action.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 19

SUBTASK conjecture;
ROLES:
INPUT:

received-message: "the other party’s offer";
OUTPUT:

sending-message: "the message being sent to the other party";
halting-condition: "the halting indicator of the negotiation";

END SUBTASK conjecture;

SUBTASK-METHOD estimate-and-countermeasure;
REALIZES: conjecture;
DECOMPOSITION:
INFERENCES: derive, calculate, generate;

ROLES:
INTERMEDIATE:

uncertain-belief: "the belief about the factors, depending
on which the other party agent determines its offer";

action-expected-utility: "the expected utility of taking
each action under all possible beliefs";

CONTROL-STRUCTURE:
derive(other party-offer -> uncertain-belief);
calculate(uncertain-belief -> action-utility);
generate(action-utility -> sending-message + halting-condition);

END SUBTASK-METHOD estimate-and-countermeasure;

Figure 12. Textual specification of the estimate-and-countermeasure method for conjecture.

knowledge

belief

opponent’s
offer

calculate

derive

preference

analysis
 result

utility/
payoff

conjecture

action rules generate
sending−message

halt−condition

uncertain

(a) Inference structure

[0,1]

membership
feature: universal;

1+

fuzzy−proposition indicate fuzzy−proposition

predicate−rule

fuzzy−proposition

universalaction:

preference
belief: univeral;

1+
utility

truth−value: [0,1]
degree: [0,1]

strength: [0,1]

utility−value:

(b) Typical domain schema

Figure 13. Graphical specification of the uncertain reasoning method for conjecture.

Input. It is the other party’s offer for which the counter-offer needs to be decided.
output. It is the counter-offer (sending-message) or halting-condition.
Applicability. This method is suitable to generate a counter-offer through estimating the factors that

the other party uses to determine its offer.

4.2.2. Default Method. The basic idea of the method is: according to the other party’s offer the
agent uses its knowledge about the other party to estimate the parameters that the other party has
used to determine its offer, and then according to the estimate the agent determines its counter-
offer. The method first builds up or updates (in the light of the new offer of the other party) its
beliefs regarding the parameters that the other party has used to determine its offer, and then under
the condition of such an uncertainty the agent exploits the user’s preference knowledge to choose
an action to produce a counter-offer which maximises the expected utility/payoff for the user. The
textual and graphical specifications are shown in Figures 12 and 13(a), respectively.

20 Computational Intelligence

The method is built upon the following inferences:

• derive: From the result of the situation analysis subtask and the other party’s offer, this inference
function derives the uncertain belief concerning the parameters of the other party by using
conjecture knowledge. Usually, this function is realised using the uncertain reasoning models such
as Bayesian networks (Pearl, 1988).

• calculate: According to the user’s preference, this inference function calculates the expected util-
ity/payoff of action candidates with respect to the belief estimated.

• generate: According to the expected utility of available action candidates, this inference function
uses the action knowledge to produce a counter-offer (sending-message) and assign the halting
condition to be false.

4.2.3. Typical Domain Schema. A typical domain schema for the estimate-and-countermeasure
method is shown in Figure 13(b). It assumes that the beliefs concerning the factors that the other
party uses to determine its offer can be represented by fuzzy propositions. A fuzzy proposition
consists of the following components: (1) a fuzzy truth value assigned to the proposition, and (2) a
membership function representing its possibility of each possible value of the factor that the other
party agent uses to determine its offers. A possible link between an offer of the other party and a
belief is represented as a rule with a strength meaning how strong the link is. Notice that the crisp
propositions are special cases of fuzzy propositions, and accordingly although other party’s offers are
usually represented crisp propositions we do not specially give the schema of crisp propositions in
Figure 13(b).

Given an action, the user’s preference to the uncertain belief is represented as a utility function
that associates a value in [0, 1] to each uncertain situation.

4.3. Experience

This subsection presents a template of the experience based method.

4.3.1. General Characterisation.

Goal. Given an offer of the other party, the method is mainly used to decide, according to the user’s
previous negotiation experience, which counter-offer the negotiation agent should provide the other
party with.

Typical example. Price negotiation according to previous experience (e.g. Wong et al., 2000b; Lee and
Kwon, 2006).

Terminology. Negotiation experience cases: Previous negotiation experiences that are stored in
a case base. A case contains, for example, information about other party agent, trading agent
and item being traded; series of concessions used by both agents in previous negotiation; and
information about negotiation performance. Contextual hierarchy is used as an organisational
structure for storing cases, which enables an efficient searching through cases. Adaptation guide-
line: the agent uses the guideline to adapt concessions from previous matching experience for use
in generating the current counter-offer.

Input. The other party’s offer for which the counter-offer needs to be determined.
Output. The sending message and the halting condition.
Applicability. The method is suitable for the situation where a lot of successful negotiation cases are

available.

4.3.2. Default Method. The basic idea of the method is: in the situation similar to the previous
successful negotiation case, the strategy implied in the previous case is reused to determine the
counter-offer.6 The textual and graphical specifications of the method are shown in Figures 14 and
15(a), respectively.

The method is built upon the following inferences:

6This sounds like: last time we did this and then we got success; since this time the situation is similar, we
will do the same thing hoping we will get success again.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 21

SUBTASK experience;
ROLES:
INPUT:

received-message: "the other party’s offer";
OUTPUT:

sending-message: "the message being sent to the other party";
halting-condition: "the halting indicator of the negotiation";

END SUBTASK experience;

SUBTASK-METHOD case-based-reasoning;
REALIZES: experience;
DECOMPOSITION:
INFERENCES: retrieve, select, reuse;

ROLES:
INTERMEDIATE:

relevant-cases: "the cases that are similar to the current situation";
current-best-match: "the case that is the most similar to the current situation";

CONTROL-STRUCTURE:
retrieve(receiving-message -> relevant-cases);
select(relevant-cases -> current-best-matched);
reuse(most-matched-case -> sending-message + halting-condition);

END SUBTASK-METHOD case-based-reasoning;

Figure 14. Textual specification of the case based method for experience.

contextual hierarchy

experience case base

offer
counter

most
matched

case

retrieve

heuristics

guidelines
adaption reuse

offer

cases
relevant select

measurement

(a) Inference structure

negotiation outcome: {fail, agreement reached}

expected negotiation duration

name

age

expected negotiation duration

negotiation issue

name

negotiation focus

age

negotiation issue

user’s profile opponent’s profile

case ID

case

negotiators

negotiated object preference and requirement

opponent’s constraint and preference
user’s constraint and preference

negotiation object’s profile

...

attribute−n

attribute−1

negotiation procedure

business law

relationship between supply and demand

offer
episode

offers

concessions counter offer
episode

offers

concessions

negotiation environment

negotiation focus

performance

(b) Typical domain schema

Figure 15. Graphical specification of the case-based method for experience.

22 Computational Intelligence

• retrieve: This inference function retrieves the relevant previous negotiation experience from the
repository by using the organisational structure. In the field of case based reasoning, many methods
exist to realise inference function retrieve.

• select: This inference function selects a most matched case.
• reuse: This inference function proposes a suitable counter-offer from the selected negotiation

experience case according to the adaptation guideline. This inference function also decides whether
the negotiation needs to be continued.

4.3.3. Typical Domain Schema. A typical domain schema for reusing previous negotiation ex-
periences is shown in Figure 15(b). It assumes that the user’s experience is represented as cases. A
case may contain the following items:

(i) Negotiators.

• The user’s profile that could include the user’s name, age, occupation, and so on.
• The other party’s profile (its content is similar to the user’s profile).

(ii) Negotiated object.

• The profile of the negotiated object. For example, the profile of a second-hand car includes:
engine size, mileage, year of manufacture, and so on.

• The user’s requirement and preference with respect to the negotiated object, which may
include negotiation focus, expected negotiation duration, negotiated issue (e.g., price,
warranty, trade-in, and so on), constraint (e.g., budget, rental period, and so on), and
preferences.

(iii) Negotiation procedure.

• Offers made by the other party and concessions used in episodic strategies.
• Counter-offers made by the negotiation participant and concessions used in episodic strate-

gies.
• Performance information about the feedback of the negotiation result. It may include the

outcome of negotiation: success or failure in reaching the final mutually agreed solution to
the negotiation issues (e.g., price).

(iv) Negotiation environment. It may include, for example, law in respect to business negotiation,
or else the relationship between supply and demand in the market.

4.4. Constraint

This subsection presents a template for the constraint-based method.

4.4.1. General Characterisation.

Goal. Given an offer of the other party, the method decides the response that the negotiating agent
should make.

Typical example. An accommodation renting problem in which the buyer’s requirements and prefer-
ences with respect to the desired accommodation are represented as fuzzy constraints (Luo et al.,
2003a). Other examples include the scenarios of car trading (Kowalczyk and Bui, 2000) and supply
chain (Wang et al., 2009).

Terminology. Checking message and relaxing message: two kinds of received messages from the
other party, for which a response message needs to be decided. Constraint set: Constraints
express the user’s requirement/preferences on the negotiated object. User’s profile: the user’s
background information that might be useful for evaluating the other party’s offer. Decision: the
result of the agent’s decision actions and the type of the result. According to the decision, the
agent may carry out some further action, for example, ask the other party for a new proposal
according to the relaxed constraint.

Input. It is the other party message with the identity.
Output. It is the response decided.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 23

SUBTASK constraint;
ROLES:
INPUT:

received-message: "the other party’s message plus its type";
OUTPUT:

sending-message: "the message being sent to the other party";
halting-condition: "the halting indicator of the negotiation";

END SUBTASK constraint;

SUBTASK-METHOD critique-or-relax;
REALIZES: constraint;
DECOMPOSITION:
INFERENCES: verify, evaluate, critique, relax, generate;

ROLES:
GLOBAL INTERMEDIATE:

submitted-constraints: "the constrains submitted to the other party";
LOCAL INTERMEDIATE:

decision: "the decision made against the other party’s offer";
CONTROL-STRUCTURE:
IF received-message.performative == ‘check’ THEN

IF verify(received-message) == ‘true’ THEN
evaluate(received-message -> decision.content);
decision.flag:=‘evaluation’;

ELSE
critique(received-message -> decision.content);
submitted-constraints=submitted-constraints ADD decision.content;
decision.flag:=‘criticism’;

END IF;
END IF;
IF received-message.type == ‘relax’ THEN

IF HAS-SOLUTION relax(submitted-constraints -> decision.content)
THEN decision.flag:=‘relaxation’;
ELSE decision.flag:=‘no-more’;

END IF;
END IF;
generate(decision -> sending-message + halting-condition);

END SUBTASK-METHOD critique-or-relax;

Figure 16. Textual specification of the critique-or-relax method for constraint.

Applicability. This method is suitable to the situation where users cannot describe exactly what they
want, but they can use constraints to represent their requirements and preferences on single issues
as well as on the trade-off between multiple issues.

4.4.2. Default Method. There exist a number of methods for constraint based negotiation. Here
we present the generalisation of the fuzzy constraint based method developed by Luo et al. (2003a).
The basic idea is as follows:

(i) After receiving a checking message that contains the other party’s offer, firstly the agent checks
whether any of its user’s constraints is violated by the other party’s offer. If one constraint is
violated, the agent will send the constraint to the other party and ask the other party for a new
offer. Otherwise, the agent will evaluate the other party’s offer under the further consideration
of the user’s profile.

(ii) After receiving a relaxing message, the agent will relax one submitted constraint; and if there
exits one submitted constraint that can be relaxed, send back to the other party the relaxed
constraint as a replacement, otherwise it will tell the other party that it cannot relax any
constraint.

The textual and graphical specifications of the method are shown in Figures 16 and 17(a), respec-
tively. The method is built upon the following inferences:

• verify: This inference function checks whether an other party’s offer is consistent with the user’s
constraint set. If they are consistent, the inference function returns ‘true’; otherwise, it returns
‘false’.

• evaluate: This inference function calculates the user’s acceptability for an other party’s offer and
checks whether the acceptability is greater than the acceptability threshold.

24 Computational Intelligence

relaxing

constraint set

evaluate

verify

message

Not Ok

critiqueOk

user’s profile

message

relax

generate action rules

decision

sending−message

halt−condition

checking

(a) Inference structure

rule

object−attribute−1

object−attribute−n

relaxation−threshold: [0,1];
priority:[0,1];

statifaction−degree: [0,1];

constraint−attribtes

n−ary−constraint

fact: { fact ,...fact }n

user−profile−fact

1
truth: [0,1];

correspond
sending−message

halt−condition

...

decision

action

(b) Typical domain schema

Figure 17. Graphical specification of the critique-or-relax method for constraint.

• critique: This inference function specifies a constraint, from the constraint set, which is violated
by the other party’s offer.

• relax: This inference function relaxes one constraint that the agent has already submitted to the
other party agent. If no submitted constraints can be relaxed, the inference function returns null
(denoted as NIL); otherwise it returns the relaxed constraint.

• generate: This inference function executes the decision made to compose the sending message and
assign a Boolean value to the halting condition according to the user’s action knowledge base,
which is usually represented by rules. For example, if the flag of its parameter is ‘relaxation’,
that is, the content of its parameter is obtained from inference function relax, then this inference
function composes the sending message and assigns a Boolean value to the halting condition
according to the following rule: if the relaxation fails, tell the other party that the negotiation
has broken down and the negotiation terminates; and if the relaxation is successful, then send the
other party the relaxed constraint and ask for a new offer.

4.4.3. Typical Domain Schema. A typical domain schema for the constraint-based method is
shown in Figure 17(b). It assumes that the user’s requirements and preferences concerning the
object of negotiation are represented by fuzzy constraints on the object’s attributes (each ranging
over a finite domain). A fuzzy constraint consists of a number of the (combination of) values that
the object’s attributes can take. A degree is associated to each value (or the value combination) of
attributes of a constraint. It represents the user’s satisfaction degree with the attribute’s value (or
the combination of the attributes’ values). Each constraint is associated with a priority indicating the
importance level of the constraint among these constraints. Besides, a constraint is also associated
with a relaxation threshold, meaning that the constraint can be regarded as being broken if the
satisfaction degree is lower than the relaxation threshold. An example of the instance of such a
constraint is shown in Figure 18.

Sometimes, the user’s profile is also useful when considering whether an offer of the other party
is acceptable or not. In Figure 17(b), fuzzy truth propositions introduced by Zadeh (1965, 1975)
are employed to represent the facts in the user profile model because these facts are often partially
true, i.e., they have truth values between “completely true” and “completely false”. For example,
a student who wants to rent accommodation might like to be allowed to keep a pet with a truth

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 25

KNOWLEDGE-BASE student-requirements;
USE: buyer-schema;

INSTANCE distance constraint;
INSTANCE-OF: n-ary-constraint;
ATTRIBUTES:

distance: distance<15-minute-walk;
priority: 0.37;

END INSTANCE distance constraint;

INSTANCE period constraint;
INSTANCE-OF: n-ary-constraint;
ATTRIBUTES:

rental-period: rental-period<12-months;
priority: 0.33;

END INSTANCE period constraint;

INSTANCE rent-and-period-constraint;
INSTANCE-OF: n-ary-constraint;

ATTRIBUTES:
priority: 0.3;
threshold: 0.6;

TUPLE
ARGUMENT-1: cost<=250;
ARGUMENT-2: NIL;
ATTRIBUTES:
Satisfaction-degree: 100%;

END TUPLE

TUPLE
ARGUMENT-1: 250<cost<=260;
ARGUMENT-2: NIL;
ATTRIBUTES:
satisfaction-degree: 90%;

END TUPLE

TUPLE
ARGUMENT-1: 260<cost<=270;
ARGUMENT-2: NIL;
ATTRIBUTES:
satisfaction-degree: 80%;

END TUPLE
TUPLE

ARGUMENT-1: 270<cost<=280;
ARGUMENT-2: NIL;
ATTRIBUTES:
satisfaction-degree: 70%;

END TUPLE

TUPLE
ARGUMENT-1: 280<cost<=290;
ARGUMENT-2: NIL;
ATTRIBUTES:

satisfaction-degree: 60%;
END TUPLE

TUPLE
ARGUMENT-1: 290<cost<=300;
ARGUMENT-2: NIL;
ATTRIBUTES:

satisfaction-degree: 40%;
END TUPLE

TUPLE
ARGUMENT-1: 300<cost<=310;
ARGUMENT-2: NIL;
ATTRIBUTES:

satisfaction-degree: 30%;
END TUPLE

TUPLE
ARGUMENT-1: 3100<cost<=3200;
ARGUMENT-2: NIL;
ATTRIBUTES:

satisfaction-degree: 20%;
END TUPLE

TUPLE
ARGUMENT-1: 3200<cost<=3300;
ARGUMENT-2: NIL;
ATTRIBUTES:

satisfaction-degree: 10%;
END TUPLE;

TUPLE
ARGUMENT-1: rent>3300;
ARGUMENT-2: NIL;
ATTRIBUTES:

satisfaction-degree: 0;
END TUPLE

END INSTANCE rent-and-period-constraint;

END KNOWLEDGE-BASE student-requirements;

Figure 18. Specification of the buyer’s requirement/preference knowledge base.

value expressed as 60%, he might be more committed to having a telephone (truth value expressed
as 70%), even more to an efficient heater (80%) and much less to the furniture being new (30%).
Their specification is shown in Figure 19.

It assumes that a user’s action knowledge is in the form of rules. In Figure 17(b), the condition
part of such a rule is the decision made by the inferences evaluate, critique or relax. Actually, the
decision contains two kinds of information: (1) the consequence of a previous inference, and (2) the
flag indicating which inference makes the decision. The consequent part of such a rule is a sending
message and a halting condition.

Examples of such action rules are shown in Figure 20. The first rule means that if the agent
thinks an offer of the other party is acceptable, then the negotiation succeeds in reaching a deal.
The second rule implies that if the agent does not think an offer of the other party is acceptable,
then it should ask the other party for an alternative offer and wait for the other party’s answer. The
third rule states that if the agent finds a constraint that cannot be satisfied with the other party’s
offer, then it should ask the other party for an alternative offer that can satisfy the constraint, and
wait for the other party’s response. The fourth rule indicates that if the agent succeeds in relaxing a
constraint, then it should let the other party know about relaxation, and wait for the other party’s

26 Computational Intelligence

KNOWLEDGE-BASE student-profile;
USE: buyer-schema;

INSTANCE sex;
INSTANCE-OF: buyer-profile-fact;

ATTRIBUTES:
fact: ‘female’;
truth: 1;

END INSTANCE cooking;

INSTANCE cooking;
INSTANCE-OF: buyer-profile-fact;

ATTRIBUTES:
fact: ‘cooking’;
truth: 0;

END INSTANCE cooking;

INSTANCE pet;
INSTANCE-OF: buyer-profile-fact;

ATTRIBUTES:
fact: ‘pet’;
truth: 0.6;

END INSTANCE pet;

INSTANCE phone;
INSTANCE-OF: buyer-profile-fact;

ATTRIBUTES:
fact: ‘phone’;
truth: 0.7;

END INSTANCE phone;

INSTANCE new-furniture;
INSTANCE-OF: buyer-profile-fact;

ATTRIBUTES:
fact: ‘new furniture’;
truth: 0.3;

END INSTANCE new-furniture;

INSTANCE air-conditioner
INSTANCE-OF: buyer-profile-fact;

ATTRIBUTES:
fact: ‘air conditioner’;
truth: 0.4;

END INSTANCE air-conditioner;

END KNOWLEDGE-BASE student-profile;

Figure 19. Specification of the user’s profile knowledge base.

decision.flag==‘evaluation’ AND decision.content==‘true’
CORRESPOND

sending-message.performative:=‘deal’ AND halting-condition:=‘true’

decision.flag==‘evaluation’ AND decision.content==‘false’
CORRESPOND

sending-message.performative:=‘re-find’ AND halting-condition:=‘false’

decision.flag==‘criticism’
CORRESPOND

sending-message.constraint:=decision.content
AND sending-message.performative:=‘find’ AND halting-condition:=‘false’

decision.flag==‘relaxation’ AND decision.content!=NIL
CORRESPOND

sending-message.constraint:=decision.content AND
sending-message.performative:=‘find’ AND halting-condition:=‘false’

decision.flag==‘relaxation’ AND decision.content==NIL
CORRESPOND

sending-message.performative:=‘fail’ AND halting-condition:=‘false’

Figure 20. Specification of the user’s action knowledge base.

new offer. The fifth rule says that if the agent cannot relax a constraint, then it should let the other
party know, and then wait to see what will happen.

4.5. Utility

This subsection presents a template of the utility method.

4.5.1. General Characterisation.

Goal. Given an offer of the other party, the method determines an offer that maximises the expected
utility.

Typical example. Business negotiations about price and quantity.
Terminology. Utility function: a measure that is defined in an uncertain environment for mea-

suring a user’s relative preference on options. Utility-indicator: the indicator representing the
current level of expected utility of the counter-offer. Alternative-offer: a new offer that can keep
unchanged the current level of the expected utility.

Input. The signal from the situation analysis subtask, which indicates whether the method should
commence.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 27

SUBTASK utility;
ROLES:
INPUT:

received-message: "the message received from the other party";
making-alternative-offer: "a signal that starts the process";
offer-history: "the set of offers the negotiating agent used to provide";

OUTPUT:
sending-message: "the message being sent to the other party";
halting-condition: "the halt indicator of the negotiation";
offer-history: "the set of offers the negotiating agent used to provide";

END SUBTASK utility;

SUBTASK-METHOD tradeoff-first-concede-second;
REALIZES: utility;
DECOMPOSITION:
INFERENCES: trade-off, concede, set;

ROLES:
GLOBAL INTERMEDIATE:

utility-indicator: "the indicator representing the current level of
the expected utility of its counter-offer";

LOCAL INTERMEDIATE:
counter-offer: "the counter-offer that can keep the current level of

the expected utility unchanged";
decision: "the generated counter-offer plus its type";

CONTROL-STRUCTURE:
IF making-counter-offer==‘true’ THEN

REPEAT
IF HAS-SOLUTION tradeoff(utility-indicator + offer-history -> alternative-offer)
THEN decision.content:=alternative-offer; decision.flag:=‘tradeoff’;

offer-history:=offer-history ADD alternative-offer;
ELSE concede(utility-indicator -> utility-indicator);

IF utility-indicator<utility-threshold THEN
decision.flag:=‘no-more-concede’;

END IF
END IF

UNTIL
utility-indicator<utility-threshold OR decision.flag==‘trade-off’

END REPEAT
END IF;
set(decision + received-message -> sending-message + halting-condition);

END SUBTASK-METHOD tradeoff-first-concede-second;

Figure 21. Textual specification of the tradeoff-first-concede-second method for utility based
decision making.

Output. The counter-offer (sending message) and halting condition.
Applicability. The utility method is suitable for the situations where the users like to use their own

utility functions to assess potential offers, try to maximise their own utility assessment, and think
the increase of the utility of some issue(s) can compensate for the decrease in the utility of other
issue(s). Actually, a utility function can be regarded as a special form of a fuzzy constraint.
Accordingly, the method can be viewed as a special treatment on this kind of fuzzy constraint.
Rather, the method in the previous subsection is a general treatment on general fuzzy constraints
representing he user’s requirements/preferences on a negotiation object.

4.5.2. Default Method. The basic idea of the method is: when the other party does not accept
an offer, the agent first tries to find an alternative offer that can keep its expected utility unchanged;
if the agent cannot find such an alternative, it reduces its expected utility as little as possible and
then finds another offer that can achieve the reduced expected utility. Its textual and graphical
specifications are shown in Figures 21 and 22(a).

The method is built upon the following inferences:

• tradeoff: This inference function generates an alternative offer that can keep the current level
of the expected utility unchanged. If the inference function cannot find a (new) counter-offer, it
returns null (denoted as “NIL”); otherwise, it returns the alternative offer.

• concede: This inference function reduces the current level of the expected utility. The user de-
termines how much of the reduction to make. Generally, the reduction rate is predefined by the
user whom the negotiating agent acts on behalf of. That is, this inference function is realised as

28 Computational Intelligence

alternative

offer

offer

history

add

making

counter offer

no new offer

found

concede
utility

indicator

set

halt condition

no more

sending−message

utility preference

tradeoff

strategy rules

message
received

(a) Inference structure

flag: {‘tradeoff’, ‘no-more-concede’};

content: universal;

decision

utility preference
issue: universal;

issue-value: universal;

utility-value: [0,1];

utility1+

received message

correspond

sending-message: universal;

halt-condition: {‘true’, ‘false’};

strategy rule

(b) Typical domain schema

Figure 22. Graphical specification of the first-tradeoff-concede-second method for utility.

decision.flag==‘trade-offer’

CORRESPOND
sending-message.offer:=decision.content AND
sending-message.performative:=‘counter-offer’ AND halting-condition:=‘false’
decision.flag==‘no-more-concede’ AND
received-message.performative==‘no-more-concede’

CORRESPOND
sending-message.performative:=‘no-more-concede’ AND halting-condition:=‘true’
decision.flag==‘no-more-concede’ AND
received-message.performative!=‘no-more-concede’

CORRESPOND
sending-message.performative:=‘no-more-concede’ AND halting-condition:=‘false’

Figure 23. Specification of the user’s action knowledge base.

a fixed reduction. However, it could also be realised as a knowledge based reduction (specifying
what reduction should be made under a certain condition).

• set: This inference function carries out the decision to compose the sending message and assign a
Boolean value to the halting condition according to the user’s action rules.

4.5.3. Typical Domain Schema. A typical domain schema for the first-tradeoff-concede-second
method is shown in Figure 22(b). It assumes that the user’s utility preference is represented by
utility functions corresponding to each of the individual issues. A pair of issue value and utility value
represents the utility of each possible solution to the issue that is negotiated.

It assumes that a user’s action knowledge is in the form of rules. In Figure 22(b), the antecedent
part of such a rule is the decision made by the inference tradeoff or concede. The decision contains the
following information: (1) the consequence of a previous inference, and (2) flag indicating whether a
solution is found. The subsequent part of such a rule is a sending message and a halting condition.

Examples of such action rules are shown in Figure 23. The first rule states that if the agent
makes a tradeoff, then it should tell the other party agent what the tradeoff is, and then see what
will happen. The second rule states that if the agent cannot concede any more when the other party
cannot concede any more either, then it should tell the other party agent that it cannot concede

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 29

SUBTASK prejudge;
ROLES:
INPUT:
OUTPUT:

necessary-to-negotiate: "the necessity for negotiation";
persuader-proposal: "the message that will be sent to the persuadee";

END SUBTASK prejudge;

SUBTASK-METHOD prejudge-through-trying;
REALIZES: prejudge;
DECOMPOSITION:
INFERENCES: select, prove, build;

ROLES:
INTERMEDIATE:

intention: "the objective that the persuader wants to achieve by himself or
by persuading the persuadee to accept";

argument: "the argument set used to persuade the persuadee to accept its
objective or drop the objection";

CONTROL-STRUCTURE:
select(-> intention);
IF prove(intention)==‘no-proof-found’

THEN necessary-to-negotiation:=‘true’;
build(intention -> argument);
persuader-proposal.performative:=‘convince’;
persuader-proposal.content:=argument;

ELSE necessary-to-negotiation:=‘false’;
END IF;

END SUBTASK-METHOD prejudge-through-trying;

Figure 24. Specification of the persuader’s knowledge of prejudge subtask.

further either, and halt the negotiation. The third rule implies that if the agent cannot concede any
more but the other party might be able to concede, then it should tell the other party agent that it
cannot concede any more, but hope the other party can do something.

5. SPECIFICATION OF BDI-LOGIC BASED NEGOTIATION AGENT

This section will show the validity of our methodology by using a high impact negotiation system
developed in (Parsons et al., 1998).7 It is a BDI-logic based negotiation system that automated the
human negotiations that have the following form:

A : Please give me a nail. I need it to hang a picture.
B : I can’t give you a nail because I need it to hang a mirror.
A : You may use a screw to hang the mirror.
B : Why not? OK, I give you the nail.

More specifically, this section gives the specification of the negotiating system with the above
illustration by the methodology. We do this from top to bottom: (1) the task models of two
negotiating agents, (2) the communication model that is used in the task models, (3) the inference
function used in the task models, and (4) domain knowledge that inference functions operate on.

5.1. Task Knowledge Models

According to the generic model of the initiator agent’s main task presented in Subsection 2.1,
the persuader’s task model consists of four subtask models (since the persuader is the initiator of the
negotiation) and one main task model. The persuader agent employs subtask prejudge (as shown in
Figure 24) to judge whether a negotiation is necessary or not. If it can do the thing it intends to do,
no negotiation is necessary; otherwise a negotiation is necessary. Subtask persuader-situation-analysis

7The impact of (Parsons et al., 1998) can easily be checked out through Google Scholar
(http://scholar.google.co.uk). Until 7 December 2010, it is cited 610 times. Given this, we believe it is more
compelling to use such a system to confirm the validity of our methodology, rather than use one that is more
recently published but whose quality and impact has not been proved so strongly yet.

30 Computational Intelligence

SUBTASK persuader-situation-analysis;
ROLES:
INPUT:

persuadee-proposal: "the message received from the persuader";
OUTPUT:

situation-class: "the situation class of the currently received message";
END SUBTASK persuader-situation-analysis;

SUBTASK-METHOD assess-through-performative;
REALIZES: persuader-situation-analysis;
CONTROL-STRUCTURE:
IF persuadee-proposal.performative==‘accept’ THEN situation-class:=1; END IF;
IF persuadee-proposal.performative==‘convince’ THEN situation-class:=2; END IF;

END SUBTASK-METHOD assess-through-performative;

Figure 25. Specification of the persuader’s knowledge of situation analysis subtask.

SUBTASK persuader-decision-making;
ROLES:
INPUT:

persuadee-proposal: "the message received from the persuader";
situation-class: "the situation class of the currently received message";

OUTPUT:
way: "an alternative way of achieving the original objective of the
persuader, or a way to persuading the persuadee to drop his objection,
or no way";

argument: "the argument used to persuade the persuadee to drop his
objection or accept the persuader’s objective";

END SUBTASK persuader-decision-making;

SUBTASK-METHOD decide-through-proving;
REALIZES: decision-making;
DECOMPOSITION:
INFERENCES: find-way;

CONTROL-STRUCTURE:
IF situation==1 THEN way:=‘no-more’; END IF;
IF situation==2 THEN

find-way(persuadee-proposal.content -> way + argument) END IF;
END SUBTASK-METHOD decide-through-proving;

Figure 26. Specification of the persuader’s knowledge of subtask decision making.

(as shown in Figure 25) is used to classify the message received from the persuadee. According
to the analysis result, the persuader-decision-making subtask (as shown in Figure 26) decides the
counter argument or whether to continue the negotiation. The persuader-decision-executing subtask
(as shown in Figure 27) is used to compose the sending message and assign a Boolean value to the
halting condition according to the decision made. Finally, main task persuasion (as shown in Figure
28) assembles the four subtasks together.

The method of persuader’s situation analysis subtask (shown in Figure 25) is a simplified version
of the classification method shown in Figures 5 and 6(a): inference functions abstract, specify and
select there are all omitted here, and evaluate there is implemented by two “IF ... THEN” rules.
Notice that the rules in the domain knowledge there are actually the condition part of the two
“IF...THEN” rules.

The persuader’s decision making subtask (shown in Figure 26) is a variation of the deduction
method shown in Figures 9 and 10(a): inference function select there is implemented explicitly by
the two “IF ... THEN ...” sentences here. In the first case, there is no deduction involved; and in
the second case, the deduce inference there is implemented by the find-way inference here, and the
selected strategic knowledge used by the find-way inference function are the persuader’s BDI-base
(shown in Figure 36), the action theory (shown in Figure 38), the persuader’s planning rules (shown
in Figure 39) and the bridge rules (shown in Figure 41).

In Figure 27, we give the specification of the persuader’s decision executing subtask. Actually, it
consists of two rules used to compose the sending message and assign a Boolean value to the halting
condition according to the decision made by the persuader’s decision-making subtask.

The specification of persuader’s main task knowledge is shown in Figure 28. Clearly, it is an
instantiation of the generic main task model shown in Figure 2. Actually, the generic main task

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 31

SUBTASK persuader-decision-executing;
ROLES:
INPUT:

way: "an alternative way to achieve the original objective of the
persuader, or a way to persuade the persuadee to drop his objection,
or no way";

argument: "the argument set used to persuade the persuadee to drop his
objection or accept the persuader’s objective";

OUTPUT:
persuader-proposal: "the message being sent to the persuadee";
halting-condition: "the indicator whether the negotiation should stop";

END SUBTASK persuader-decision-executing;

SUBTASK-METHOD act-through-plan;
REALIZES: persuader-decision-executing;
CONTROL-STRUCTURE:
IF way==‘alternative-way’ OR way==‘no-way’ OR way==‘no-more’

THEN persuader-proposal.performative:=‘end’;
persuader-proposal.content:=NIL; halting-condition:=‘true’;

ELSE IF way==‘argument-way’ THEN
persuader-proposal.performative:=‘convince’;
persuader-proposal.content:=argument; halting-condition:=‘false’;

END IF; END IF;
END SUBTASK-METHOD act-through-plan;

Figure 27. Specification of the persuader’s knowledge of decision executing.

TASK persuasion;
ROLES:
OUTPUT:

result: "the argument that is accepted by the persuadee";
END TASK persuasion;

TASK-METHOD persuade-through-argumentation;
REALIZES: persuasion;
DECOMPOSITION:
SUBTASK: prejudge, persuader-situation-analysis, persuader-decision-making,

persuader-decision-executing;
TRANSFER-FUNCTIONS: receive, present;

ROLES:
INTERMEDIATE:

necessary-to-negotiate: "the necessity for negotiation";
situation-class: "the situation class of the currently received message";
persuader-proposal: "the message received from the persuader";
persuadee-proposal: "the message sent to the persuader";
way: "an alternative way to achieve the original objective of the persuader
agent, or a way to persuade the persuadee to drop his objection, or no way";

argument: "the argument used to persuade the persuadee to drop his objection
or accept the objective";

CONTROL-STRUCTURE:
prejudge(-> necessary-to-negotiate + persuader-proposal);
IF necessary-to-negotiate==‘true’ THEN

present(persuader-proposal);
REPEAT
receive(persuadee-proposal);
situation-class:=persuader-situation-analysis(persuadee-proposal);
(way,argument):=persuader-decision-making(situation, persuadee-proposal);
(halting-condition, persuader-proposal):=persuader-decision-executing(way, argument);
present(persuader-proposal);

UNTIL halting-condition==‘true’ END REPEAT;
END IF;

END TASK-METHOD persuade-through-argumentation;

Figure 28. Specification of the persuader’s knowledge of main task.

captures some commonalities of many negotiation approaches. It reduces a complex task of building
an automated negotiation system to the three relatively simple subtasks of situation analysis, decision
making and decision executing, and further we have supplied many templates for such subtasks in
this paper. This must facilitate the designer to give the specification of an automated negotiation
system. However, perhaps programmers are not happy with the method of separating the three
subtasks since sometimes doing so leads to that some parts of such specifications are redundant. In

32 Computational Intelligence

TASK persuasion;
ROLES:
OUTPUT:

result: "the argument that is accepted by the persuadee";
END TASK persuasion;

TASK-METHOD persuader-through-argumentation;
REALIZES: persuasion;
DECOMPOSITION:
INFERENCES: select, prove, build, find-way;
TRANSFER-FUNCTIONS: receive, present;

ROLES:
INTERMEDIATE:

intention: "the objective that the persuader wants to achieve by itself or
by persuading the persuadee to accept";

way: "an alternative way of achieving the original objective of the persuader,
or a way to persuading the persuadee to drop his objection, or no way";

argument: "the argument set used to persuade the persuadee to drop his
objection or accept the persuader’s objective";

persuader-proposal: "the message received from the persuader";
persuadee-proposal: "the message sent to the persuader";

CONTROL-STRUCTURE:
select(-> intention);
IF prove(intention)==‘no-proof-found’ THEN

build(intention -> argument);
persuader-proposal.performative:=‘convince’;
persuader-proposal.content:=argument;
present(persuader-proposal);
REPEAT

receive(persuadee-proposal);
IF persuadee-proposal.performative!=‘accept’ THEN
find-way(persuadee-proposal.content -> way + argument);
IF way==‘alternative-way’ OR way==‘no-way’ THEN

persuader-proposal.performative:=‘end’;
persuader-proposal.content:=NIL;

ELSE IF way==‘argument-way’ THEN
persuader-proposal.performative:=‘convince’;
persuader-proposal.content:=argument;

END IF; END IF;
present(persuader-proposal);

END IF;
UNTIL

way==‘alternative-way’ OR way==‘no-way’ OR
persuadee-proposal.performative==‘accept’

END REPEAT;
END IF;

END TASK-METHOD persuade-through-argumentation;

Figure 29. Integrated specification of the persuader’s knowledge of task.

this case, the three subtasks can be substituted to the generic main task, and thus after simplifying
we can have a clearer version of the task model of a negotiating agent. For example, we can substitute
the persuader’s subtasks into its main task model (shown in Figure 28) and after simplifying we get
the one as shown in Figure 29.

Now we turn to the persuadee’s task model. Similarly, we can give the persuadee’s situation
analysis, decision making, and decision executing subtask models, but for the sake of simplicity and
space, we just give out its final integrated task model.

Finally, we put the graphic specification of the persuader and persuadee agents’ task knowledge
together in Figure 31. From the figure, we see clearly the negotiation procedures of these two agents
and their interaction as well as the domain knowledge.

5.2. Communication Knowledge

The specification of the messages between the persuader and the persuadee is shown in Figure
32. A message the persuader sends to the persuadee is represented as concept persuader-proposal
which has attributes performative and content. When the performative takes value ‘convince’,
it means that the persuader agent wants to convince the persuadee using the message; when the
performative takes value ‘end’, it means that the persuader agent wants to terminate the negotia-

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 33

TASK objection;
ROLES:
OUTPUT: result: "the argument that is accepted by the persuadee";

END TASK objection;

TASK-METHOD object-through-argumentation;
REALIZES: objection;
DECOMPOSITION:
INFERENCES: examine, vet;
TRANSFER-FUNCTIONS: receive, present;

ROLES:
INTERMEDIATE:

persuader-proposal: "the message received from the persuader";
arguments: "the argument set in which each argument attacks the persuader’s argument";
persuadee-proposal: "the message sent to the persuader";

CONTROL-STRUCTURE:
receive(persuader-proposal);
WHILE examine(persuader-proposal)!=NIL OR persuader-proposal.performative!=‘end’ DO

evaluate(persuader-proposal.content -> arguments);
vet(arguments -> persuadee-proposal.content);
persuadee-proposal.performative:=‘argue’; present(persuadee-proposal);
receive(persuader-proposal);

END WHILE;
IF examine(persuader-proposal)==NIL THEN

persuadee-proposal.performative:=‘accept’; persuadee-proposal.content:=NIL;
present(persuadee-proposal);
result:=persuader-proposal.content;

END IF;
IF persuader-proposal.performative==‘end’ THEN result:=‘not convince’ END IF;

END TASK-METHOD object-through-argumentation;

Figure 30. Integrated specification of the persuadee’s knowledge of task.

no proof found

select

intension

prove

proof found build

present

no−way

receive

acceptable

objection

find−way alternative−way

persuader
proposal

action theory

BDI base

panning rules
bridge rules

BDI base
BDI base

action theory

panning rules
bridge rules

exam

convince
message

receive message
end

presentproposal

to disagree

no reason

argument

vet

disagree withBDI base

panning rules
bridge rules

action theory

persuadee

Persuader agent

persuadee agent

persuader

persuader

persuader

persuader

persuader

persuadee

persuadee
 argument−way

argument

argument

Figure 31. Graphic specification of task knowledge of the persuader and persuadee agents.

tion. The content contains a BDI-proposition and the deduction step of the BDI-proposition. The
deduction step is comprised of a set of formulas. A formula is made up of a prerequisite (a set of

34 Computational Intelligence

MESSAGE persuader-proposal;
DESCRIPTION:
"The format of a message the persuader
agent sends to the persuadee agent.";

PERFORMATIVE: {‘convince’, ‘end’};
CONTENT:
proposition: BDI-proposition;
deductive-step: SET-OF formula;

END MESSAGE persuader-proposal;

�
�
�
�

performative: {‘convince’,‘end’}

persuader-proposal

proposition: BDI-proposition;
deduction-step: SET OF formula;

content

MESSAGE persuadee-proposal;
DESCRIPTION:
"The format of a message the persuadee
agent sends to the persuader agent.";

PERFORMATIVE: {‘argue’,‘accept’};
CONTENT:
proposition: BDI-proposition;
deductive-steps: SET-OF formula;

END MESSAGE persuader-proposal;

�
�
�

�
�
�

proposition: BDI-proposition;
deduction-step: SET OF formula;

content

persuadee-proposal
performative: {‘argue’, ‘accept’}

CONCEPT formula;
DESCRIPTION:
"A formula is a deductive step built
using only inference rules, bridge
rules, planning rules, action rules and
the BDI base of the corresponding agent.";

ATTRIBUTES:
prerequisite: SET-OF BDI-proposition;
consequence: BDI-proposition;

END CONCEPT formula;

formula
prerequite: SET-OF BDI-proposition;

consequence: BDI-proposition;

Figure 32. Specification of communication knowledge between persuader and persuadee agents.

BDI-proposition) and a consequence (a BDI-proposition). Similarly, concept persuadee-proposal
can be understood.

5.3. Inference Knowledge

The specification of the inference knowledge of the persuader and persuadee agents are shown
in Figure 33. In total, six inference functions are employed by the persuader and persuadee agents.
In particular, inference functions select, prove, build and find-way are used by the persuader agent,
while other two inference functions examine and vet are used by the persuadee.

• select: This inference selects an intention to achieve. It has (1) one dynamic knowledge role—
output role intention which is played by domain concept BDI-proposition, and (2) one static
knowledge role BDI-base which is also played by domain concept BDI-proposition.

• prove: This inference function finds a proof for an intention by using the agent’s BDI-base. It
has (1) two dynamic knowledge roles: input role intention and output role result, and (2) one
static knowledge role: BDI-base. These three knowledge roles are all played by domain concept
BDI-proposition.

• build: This inference function generates an argument for an intention. It has (1) two dynamic
knowledge roles: input role intention and output role argument); and (2) one static knowledge
role: BDI-base. These three knowledge roles are all played by domain concept BDI-proposition.

• find-way: This inference function finds an alternative way to achieve the original intention of the
persuader, or a way to persuade the persuadee to drop his objection; if the either way cannot
be found, return ‘NIL’. It has (1) three dynamic knowledge roles: input role objection and
output roles way and argument, and (2) one static knowledge role: BDI-base. Knowledge
roles objection, argument and BDI-base are played by domain concept BDI-proposition.
Knowledge role way takes value on {‘alternative-way’, ‘no-way’, ‘argument-way’, ‘no-more’}.
When way takes value ‘alternative-way’, it means that the persuader finds an alternative way
to gain its objective; when way takes value ‘no-way’, it means that the persuader cannot find any
argument to persuade the persuadee further; when way takes value ‘argument-way’, it means that

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 35

INFERENCE select;
ROLES:
INPUT:
OUTPUT: intention;
STATIC: BDI-base;

SPECIFICATION:
"To select an intention to be satisfied.";

END INFERENCE select;

KNOWLEDGE-ROLE intention;
TYPE: DYNAMIC;
DOMAIN-MAPPING: BDI-proposition;

END KNOWLEDGE-ROLE intention;

KNOWLEDGE-ROLE BDI-base;
TYPE: STATIC;
DOMAIN-MAPPING: BDI-proposition;

END KNOWLEDGE-ROLE BDI-base;

INFERENCE prove;
ROLES:
INPUT: intention;
OUTPUT: result:{‘proof found’,

‘no proof found’};
STATIC: BDI-base;

SPECIFICATION:
"To find a proof for an intention based
on its BDI base. If impossible, return
‘NIL’.";

END INFERENCE prove;

INFERENCE build;
ROLES:
INPUT: intention;
OUTPUT: argument;
STATIC: BDI-base;

SPECIFICATION:
"To generate an argument for an intention.";

END INFERENCE build;

KNOWLEDGE-ROLE argument;
TYPE: DYNAMIC;
DOMAIN-MAPPING: BDI-proposition;

END KNOWLEDGE-ROLE argument;

INFERENCE find-way;
ROLES:
INPUT: objection;
OUTPUT: way, argument;
STATIC: BDI-base;

SPECIFICATION:
"To find an alternative way to achieve the
original objective of the persuader, or a
way to persuade the persuadee to drop his
objection. If the either way cannot be
found, return ‘NIL’.";

END INFERENCE find-way;

KNOWLEDGE-ROLE objection;
TYPE: DYNAMIC;
DOMAIN-MAPPING: BDI-proposition;

END KNOWLEDGE-ROLE objection;

KNOWLEDGE-ROLE way;
TYPE: DYNAMIC;
DOMAIN-MAPPING: {‘alternative-way’,
‘no-way’, ‘argument-way’, ‘no-more’};

END KNOWLEDGE-ROLE way;

INFERENCE examine;
ROLES:
INPUT: proposal;
OUTPUT: flag: {‘no-reason-to-disagree’,

‘disagree-with-argument’};
arguments;

STATIC: BDI-base;
SPECIFICATION:
"To see whether the persuadee should
agrees with the persuader’s proposal";

END INFERENCE examine;

KNOWLEDGE-ROLE proposal;
TYPE: DYNAMIC;
DOMAIN-MAPPING: BDI-proposition;

END KNOWLEDGE-ROLE proposal;

KNOWLEDGE-ROLE arguments;
TYPE: DYNAMIC;
DOMAIN-MAPPING: SET-OF BDI-proposition;

END KNOWLEDGE-ROLE argument;

INFERENCE vet;
ROLES:
INPUT: arguments;
OUTPUT: argument;

SPECIFICATION:
"To pick up the the most acceptable
argument from a set of arguments.";

END INFERENCE critique;

Figure 33. Specification of the inference knowledge for persuader and persuadee agents.

the persuader has found an argument to persuade the persuadee further; when way takes value
‘no-more’, it means that the persuadee has already accepted the persuader’s proposal and so no
more negotiation is needed.

• examine: This inference function checks whether the persuadee should agree with the persuader’s
proposal. It has (1) three dynamic knowledge roles: input role proposal which is played by domain
concept BDI-proposition, and two output roles flag (which just takes value on {‘no-reason-to-
disagree’, ‘disagree-with-argument’}) and argument (which is played by domain concept BDI-
proposition); and (2) one static knowledge role BDI-base which is played by domain concept
BDI-proposition.

36 Computational Intelligence

CONCEPT can;
DESCRIPTION:
"A description of an ability of an agent.";

ATTRIBUTES:
agent-name: STRING;
can-do-thing: STRING;

END CONCEPT can;

agent−name: STRING;
can−do−thing: STRING;

can

CONCEPT have;
DESCRIPTION:
"A description of things that an agent have.";

ATTRIBUTES:
owner-name: STRING;
thing: STRING;

END CONCEPT have;

thing: STRING;
owner−name: STRING;

have

CONCEPT give;
DESCRIPTION:
"A description of the action an agent
gives a thing to another agent.";

ATTRIBUTES:
giver-name: STRING;
receiver-name: STRING;
thing: STRING;

END CONCEPT give;

 receiver: STRING;
 giver: STRING;

give

CONCEPT ask;
DESCRIPTION:
"A description of the action an agent
asks another agent for a thing.";

ATTRIBUTES:
asker-name: STRING;
responder-name: STRING;
thing: STRING;

END CONCEPT ask;

asker−name: STRING;
 responder−name: STRING;
thing: STRING;

 ask

CONCEPT tell;
DESCRIPTION:
"A description of the action an agent
tells another agent what can be given.";

ATTRIBUTES:
teller-name: STRING;
hearer-name: STRING;
thing: STRING;

END CONCEPT tell;

thing: STRING;

teller−name: STRING;
 hearer−name: STRING;

 tell

CONCEPT BDI-proposition;
DESCRIPTION:
"A description of a proposition with
modal Belief, Desire and Intention.";

ATTRIBUTES:
proposition: {can, have, give, ask,

tell, BDI-proposition},
CARDINALITY: 1+;

prefix: {‘Belief’, ‘Desire’,
‘Intention’, ‘NOT’};

END CONCEPT BDI-proposition;

proposition: {can, give, ask

prefix; {‘Belief’, ‘Desire’, ‘Intention’, ‘NOT’};
 tell, BDI−proposition};

 BDI−proposition

Figure 34. Concept schema of the domain knowledge of persuader and persuadee agents.

• vet: This inference function picks up the most acceptable argument from a set of arguments.8

This inference function has two dynamic knowledge roles: input role argument and output role
argument both of which are played by domain concept BDI-proposition.

5.4. Domain Knowledge

In the system, there are two negotiating agents persuader and persuadee. There are seven domain
concepts used by both agents, whose specification is shown in Figure 34. Concept can is used to

8The definition is that an argument is more acceptable than another one can be found just before Subsection
4.3 of (Parsons et al., 1998).

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 37

RULE-TYPE ability-rule;
ANTECEDENT: BDI-proposition;
CONSEQUENT: can;
CONNECTION-SYMBOL: indicates;
ATTRIBUTE:
Modal: {‘Belief’, ‘Desire’,

‘Intention’, ‘NOT’};
END RULE-TYPE ability-rule;

modal: {‘Belief’, ‘Desire’, ‘Intention’, NOT}

BDI−proposition indicates can

ability rule

RULE-TYPE ownership-rule;
ANTECEDENT: BDI-proposition;
CONSEQUENT: have;
CONNECTION-SYMBOL: indicates;
ATTRIBUTE:
modal: {‘Belief’, ‘Desire’,

‘Intention’, ‘NOT’};
END RULE-TYPE ownership-rule;

BDI−proposition indicates have

ownership rule
modal: {‘Belief’, ‘Desire’, ‘Intention’, NOT}

RULE-TYPE unicity-rule;
ANTECEDENT: BDI-proposition;
CONSEQUENT: NOT have;
CONNECTION-SYMBOL: indicates;
ATTRIBUTE:
modal: {‘Belief’, ‘Desire’,

‘Intention’, ‘NOT’};
END RULE-TYPE unicity-rule;

BDI−proposition indicates

unicity rule

NOT have

modal: {‘Belief’, ‘Desire’, ‘Intention’, NOT}

RULE-TYPE benevolence-rule;
ANTECEDENT: BDI-proposition;
CONSEQUENT: Intention give;
CONNECTION-SYMBOL: indicates;
ATTRIBUTE:
modal: {‘Belief’, ‘Desire’,

‘Intention’, ‘NOT’};
END RULE-TYPE benevolence-rule;

BDI−proposition indicates

benevolence rule

give

modal: {‘Belief’, ‘Desire’, ‘Intention’, NOT}

Intention

RULE-TYPE parsimony-rule;
ANTECEDENT: BDI-proposition
AND Belief ability-rule;

CONSEQUENT: BDI-proposition;
CONNECTION-SYMBOL: indicates;

END RULE-TYPE parsimony-rule;

AND

Belief
BDI−proposition

indicates BDI−proposition

parsimony rule

ability rule

RULE-TYPE reduction-rule;
ANTECEDENT: BDI-proposition AND
Belief ability-rule AND

NOT Belief ability-rule;
CONSEQUENT: BDI-proposition;
CONNECTION-SYMBOL: indicates;

END RULE-TYPE reduction-rule;

Belief AND

ANDBDI−proposition

ability rule
ability rule BDI−propositionindicates

reduction rule

NOT

RULE-TYPE unique-choice-rule;
ANTECEDENT: BDI-proposition AND
Belief ability-rule AND

Belief ability-rule;
CONSEQUENT: BDI-proposition;
XOR BDI-proposition;

CONNECTION-SYMBOL: indicates;
END RULE-TYPE unique-choice-rule;

Belief
Belief

AND

AND
XOR

unique choice rule

BDI−proposition

ability rule

BDI−proposition
BDI−proposition

indicatesability rule

RULE-TYPE bridge-rule;
ANTECEDENT: BDI-proposition;
CONSEQUENT: BDI-proposition;
CONNECTION-SYMBOL: indicates;

END RULE-TYPE bridge-rule;

indicatesBDI-proposition BDI-proposition

bridge rule

Figure 35. Rule type schema of the domain knowledge of persuader and persuadee agents.

describe an ability of a negotiating agent. Concept have is used to describe a resource or thing
that a negotiating agent has. Concepts give, ask and tell are used to describe an action that a
negotiating agent performs upon the another agent. Concept BDI-proposition is used to describe
a BDI proposition.

The specification of rule types used by the persuader and persuadee agents is shown in Figure

38 Computational Intelligence

KNOWLEDGE-BASE persuader-BDI-base;
USES:
can, have, BDI-proposition FROM concept-schema;
ability-rule FROM ability-rule-schema;

INSTANCE can-hang-picture; INSTANCE wish;
INSTANCE OF: can; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
agent-name: ‘persuader’; proposition: can-hang-picture;
can-do-thing: ‘hang-picture’; prefix: Intention;

END INSTANCE END INSTANCE

INSTANCE have-picture; INSTANCE believe-having-picture;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
owner-name: ‘persuader’; proposition: have-picture;
belongings: ‘picture’; prefix: Belief

END INSTANCE END INSTANCE

INSTANCE have-screw; INSTANCE believe-having-screw;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
agent-name: ‘persuader’; proposition: have-screw;
belongings: ‘screw’; prefix: Belief

END INSTANCE END INSTANCE

INSTANCE have-hammer; INSTANCE believe-having-hammer;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
owner-name: ‘persuader’; proposition: have-hammer;
belongings: ‘hammer’; prefix: Belief

END INSTANCE END INSTANCE

INSTANCE have-screw-driver; INSTANCE believe-having-screw-driver;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
owner-name: ‘persuader’; proposition: have-screw-driver;
belongings: ‘screw-driver’; prefix: Belief

END INSTANCE END INSTANCE

INSTANCE have-nail; INSTANCE believe-having-nail;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
owner-name: ‘persuadee’; proposition: have-nail;
belongings: ‘nail’; prefix: Belief

END INSTANCE END INSTANCE

Belief(have.owner-name=X AND have.belongings=‘hammer’ AND
have.belongings=‘nail’ AND have.belongings=‘picture’

INDICATES
can.agent-name=X AND can.can-do-thing=‘hang-picture’)

Belief(have.owner-name=X AND have.belongings=‘screw-driver’ AND
have.belongings=‘screw’ AND have.belongings=‘mirror’

INDICATES
can.agent-name=X AND can.can-do-thing=‘hang-mirror’)

END KNOWLEDGE-BASE persuader-BDI-base;

Figure 36. Specification of persuader’s BDI base.

35. There are four classes of rule types. The first class consists of only one rule type, ability-rule,
used to describe what resources are needed if an agent is able to do something. For example, if an
agent has a hammer, a nail and a picture then it can hang a picture. The second class consists
of three rule types: ownership-rule, unicity-rule and benevolence-rule, which form a simple
theory of action that integrates a model of the available resources with their planning capability
mechanism. The planning mechanism is described by the third class of rule types parsimony-rule,
reduction-rule and unique-choice-rule. In crude terms, such a rule means that when an agent
believes that it has the intention of doing something and has a rule for achieving that intention, then
the pre-conditions of the rule becomes a new intention. The final class consists of only one rule type
bridge-rule that links inter-agent communication and the agent’s internal state.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 39

KNOWLEDGE-BASE persuadee-BDI-base;
USES:
can, have, BDI-proposition FROM concept-schema;
ability-rule FROM ability-rule-schema;

INSTANCE can-hang-mirror; INSTANCE wish;
INSTANCE OF: can; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
agent-name: ‘persuadee’; proposition: can-hang-mirror;
can-do-thing: ‘hang-mirror’; prefix: Intention;

END INSTANCE END INSTANCE

INSTANCE have-mirror; INSTANCE believe-having-mirror;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
owner-name: ‘persuadee’; proposition: have-mirror;
belongings: ‘mirror’; prefix: Belief

END INSTANCE END INSTANCE

INSTANCE have-nail; INSTANCE believe-having-nail;
INSTANCE OF: have; INSTANCE OF: BDI-proposition;
ATTRIBUTES: ATTRIBUTES:
owner-name: ‘persuadee’; proposition: have-nail;
belongings: ‘nail’; prefix: Belief

END INSTANCE END INSTANCE

Belief(have.owner=X AND have.belongings=‘hammer’ AND
have.belongings=‘nail’ AND have.belongings=‘mirror’

INDICATES
can.agent-name=X AND can.can-do-thing=‘hang-mirror’)

END KNOWLEDGE-BASE persuadee-BDI-base;

Figure 37. Specification of persuadee’s BDI base.

KNOWLEDGE-BASE action-theory;
USES:
have, give, ask, BDI-proposition FROM concept-schema;
ownership-rule, unicity-rule, benevolence-rule FROM action-schema;

Belief(have.owner-name=X AND have.belongings=Z AND
give.giver-name=X AND give.receiver-name=Y AND give.thing=Z

INDICATES
have.owner-name=Y AND have.belongings=Z)

Belief(have.owner-name=X AND have.belongings=Z AND
give.giver-name=X AND give.receiver-name=Y AND give.thing=Z

INDICATES
NOT(have.owner-name=X AND have.belongings=Z))

Belief(have.owner-name=Y AND have.belongings=Z AND
NOT Intention(have.owner-name=Y AND have.belongings=Z) AND
ask.asker-name=X AND ask.responder-name=Y
AND ask.thing=(give.giver-name=Y AND give.receiver=X AND give.thing=Z)

INDICATES
Intention (give.giver-name=Y AND give.receiver=X AND give.thing=Z))

END KNOWLEDGE-BASE action-theory;

Figure 38. Specification of domain knowledge base for theory of action.

After giving the schema of domain concepts and rule types, we can give the specification of the
domain knowledge bases now. In total, there are five knowledge bases. The persuader and persuadee
have their own BDI bases and planning rules, but share knowledge bases action-theory and bridge-
rules, both of which are domain independent.

The specification of the persuader’s BDI base is shown in Figure 36. It means: the persuader
has a picture, a screw, a hammer and a screwdriver; the persuader believes that the persuadee has
a nail; the persuader knows that if a person has a hammer, a nail and a picture then the person can
hang the picture and if a person has a screw, a screwdriver and a mirror then the person can hang
the mirror; and the persuader intends to hang a picture.

40 Computational Intelligence

KNOWLEDGE-BASE persuader-planning-rules;
USES: have, give, ask, BDI-proposition FROM concept-schema;

ability-rule FROM ability-rule-schema;
parsimony-rules, reduction-rules FROM planning-rule-schema;

/* Parsimony type rules*/

Belief(Belief(NOT Intention(can.agent-name=X AND can.can-do-thing=‘hang-picture’)) AND
Belief(have.owner=X AND have.thing=‘hammer’ AND

have.thing=‘nail’ AND have.thing=‘picture’
INDICATES

can.agent-name=X AND can.can-do-thing=‘hang-picture’)
INDICATES

NOT Belief(Intention (have.owner=X AND have.thing=‘hammer’)) AND
NOT Belief(Intention (have.owner=X AND have.thing=‘nail’)) AND
NOT Belief(Intention (have.owner=X AND have.thing=‘picture’)))

Belief(Belief(NOT Intention(can.agent-name=X AND can.can-do-thing=‘hang-mirror’)) AND
Belief(have.owner=X AND have.thing=‘screw-driver’ AND

have.thing=‘mirror’ AND have.thing=‘mirror’
INDICATES

can.agent-name=X AND can.can-do-thing=‘hang-mirror’)
INDICATES

NOT Belief(Intention (have.owner=X AND have.thing=‘screw-driver’)) AND
NOT Belief(Intention (have.owner=X AND have.thing=‘screw’)) AND
NOT Belief(Intention (have.owner=X AND have.thing=‘mirror’)))

/* Reduction type rules */

Belief(Belief(Intention(can.agent-name=X AND can.can-do-thing=‘hang-picture’)) AND
Belief(have.owner=X AND have.thing=‘hammer’ AND

have.thing=‘nail’ AND have.thing=‘picture’
INDICATES

can.agent-name=X AND can.can-do-thing=‘hang-picture’)
INDICATES

Belief(Intention (have.owner=X AND have.thing=‘hammer’)) AND
Belief(Intention (have.owner=X AND have.thing=‘nail’)) AND
Belief(Intention (have.owner=X AND have.thing=‘picture’)))

Belief(Belief(Intention(can.agent-name=X AND can.can-do-thing=‘hang-mirror’)) AND
Belief(have.owner=X AND have.thing=‘screw-driver’ AND

have.thing=‘mirror’ AND have.thing=‘mirror’
INDICATES

can.agent-name=X AND can.can-do-thing=‘hang-mirror’)
INDICATES

Belief(Intention (have.owner=X AND have.thing=‘screw-driver’)) AND
Belief(Intention (have.owner=X AND have.thing=‘screw’)) AND
Belief(Intention (have.owner=X AND have.thing=‘mirror’)))

END KNOWLEDGE-BASE persuader-planing-rule;

Figure 39. Specification of the persuader’s planning rules.

The specification of the persuadee’s BDI base is shown in Figure 37. It means: the persuadee
has a mirror and a nail; the persuadee knows that if a person has a hammer, a nail and a mirror
then the person can hang the mirror; and the persuadee intends to hang a mirror.

The specification of knowledge base action-theory is shown in Figure 38. The first rule means
that after X gives Z to Y , Y has Z. The second rule means that after X gives Z away, it no longer
owns it. The third rule means that if an agent has something not in need for him then he likes to
give the thing to another agent who asks him for the thing.

The specifications of the planning rules of the persuader and persuadee agents are shown in
Figures 39 and 40, respectively. The parsimony type rules mean: if an agent believes that it does
not intend something, it does not believe that it will intend the means to achieve it. The reduction
type rules mean: if there is only one way to achieve an intention, an agent adopts the intention of
achieving its preconditions.

The specifications of the bridge rules shared by the persuader and persuadee agents are shown
in Figure 41. The first rule means that if an agent wants another agent to give it something then it
asks the other for the thing. The second rule means that if an agent intends to give another agent
something then it will tell the other the fact. The third rule means that if an agent is told something

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 41

KNOWLEDGE-BASE persuadee-planning-rules;
USES: have, give, ask, BDI-proposition FROM concept-schema;

ability-rule FROM ability-rule-schema;
parsimony-rule, reduction-rule, unique-choice-rule FROM planning-rule-schema;

/* Parsimony type rules */

Belief(Belief(NOT Intention(can.agent-name=X AND can.can-do-thing=‘hang-mirror’)) AND
Belief(have.owner-name=X AND have.belongings=‘hammer’ AND

have.belongings=‘nail’ AND have.belongings=‘mirror’
INDICATES

can.agent-name=X AND can.can-do-thing=‘hang-mirror’)
INDICATES

NOT Belief(Intention (have.owner-name=X AND have.belongings=‘hammer’)) AND
NOT Belief(Intention (have.owner-name=X AND have.belongings=‘nail’)) AND
NOT Belief(Intention (have.owner-name=X AND have.belongings=‘mirror’)))

/* Reduction rules */

Belief(Belief(Intention(can.agent-name=X AND can.can-do-thing=‘hang-mirror’)) AND
Belief(have.owner-name=X AND have.belongings=‘hammer’ AND

have.belongings=‘nail’ AND have.belongings=‘mirror’
INDICATES

can.agent-name=X AND can.can-do-thing=‘hang-mirror’)
INDICATES

Belief(Intention (have.owner-name=X AND have.belongings=‘hammer’)) AND
Belief(Intention (have.owner-name=X AND have.belongings=‘nail’)) AND
Belief(Intention (have.owner-name=X AND have.belongings=‘mirror’)))

END KNOWLEDGE-BASE persuadee-planing-rules;

Figure 40. Specification of the persuadee’s planning rules.

KNOWLEDGE-BASE bridge-rules;
USES: give, ask, tell, BDI-proposition FROM concept-schema;

bridge-rule FROM bridge-rule-schema;

Intention(give.giver-name=X AND give.receiver-name=Y AND give.thing=Z)
INDICATES

ask.asker-name=Y AND ask.responder-name=X AND
ask.thing=(give.giver-name=X AND give.receiver-name=Y AND give.thing=Z)

Intention(give.giver-name=X AND give.receiver-name=Y AND give.thing=Z)
INDICATES

tell.teller-name=X AND tell.hearer-name=Y AND
tell.thing=(give.giver-name=X AND give.receiver-name=Y AND give.thing=Z)

tell.teller-name=X AND tell.hearer-name=Y AND
tell.thing=Belief(BDI-proposition)

INDICATES
Belief(BDI-proposition)

Intention(BDI-proposition)
INDICATES

Belief(Intention(BDI-proposition))

Intention(BDI-proposition)
INDICATES

Belief(NOT Intention(BDI-proposition))

Belief(Intention(BDI-proposition))
INDICATES

Intention(BDI-proposition)

END KNOWLEDGE-BASE bridge-rules;

Figure 41. Specification of the persuadee’s bridge rules.

42 Computational Intelligence

by another agent then it will believe that. The fourth and fifth rules mean that if an agent intends
to do (or not do) something then it believes it has this intention. The sixth rule means that if an
agent believes it has an intention then it adopts that intention.

6. RELATED WORK

Many researchers are working on Agent-Oriented Software Engineering (AOSE) (e.g. Iglesias
et al., 1999; Jennings, 2000; Zambonelli and Omicini, 2004; Georgeff, 2009). This is because, on the
one hand, agents are being advocated as a next generation model for engineering open, complex,
distributed systems (Wooldridge and Jennings, 1995; Jennings, 2001); on the other hand the task
of agent system development is not easy especially without the help from software engineering
environments (Lin et al., 2007). Moreover, some of AOSE methodologies (e.g. Clarke, 2006) have
been proven successful in industrial use in various application domains.

The main types of AOSE methodology are:

• The ones which extend/adapt existing techniques or methodologies of object-oriented software
engineering. This can be done because agents can be thought of as more complex objects—active
ones. The well-known example of this type is Gaia (Wooldridge et al., 2000; Zambonelli et al.,
2003), which models a multi-agent system as a set of roles with permissions, responsibilities, and
protocols. More specifically, it provides a methodology for analysing the roles and the interac-
tion between roles and mapping them into agent, service and acquaintance models. Generally
speaking, the processes for developing a multi-agent system include early requirement analysis,
late requirement analysis, architectural design, detailed design and implementation. Gaia just
covers the middle two. MESSAGE (Caire et al., 2001) enhanced, based on UML and Gaia, design
and implementation processes. There are some alternative AOSE methodologies covering different
processes. For example, KAOS (Darimont et al., 1998; Damas et al., 2005) focuses on the first
two, AUML (Bauer and Odell, 2005) and the Petri-net based framework (Xu and Shatz, 2003)
on the detailed design, TROPOS (Bresciani et al., 2004) on all but the last one, and MaSE
(DeLoach et al., 2001; DeLoach, 2001), a goal-oriented methodology (Shen et al., 2006) and
ASPECS (Cossentinoand et al., 2010) tried to cover all the processes of agent modelling, design
and construction.

• The ones which build on existing modelling techniques from knowledge engineering. The agent
systems often need to use knowledge in autonomously interacting with the environment and other
agents. In other words, they can be viewed as a kind of knowledge based systems and so knowledge
engineering methodology can be extended for developing agent systems. Two well-known examples
of the extensions are CoMoMAS (Glaser, 1996) and MAS-CommonKADS (Iglesias et al., 1996).

In general, we can see that different AOSE methodologies have different focuses and characteris-
tics. However, this diversity might confuse the developers of practical applications. Thus, some effort
has been made to build up a unified framework that can capture commonalities of different AOSE
methodologies. For example, the FAML meta-model (Beydoun et al., 2009) is proposed for future
standardization of an agent modelling language. Also, some specific aspects of AOSE methodologies
are elaborated further. For example, the work of (Hu et al., 2009) proposes, for the implementation
process, the algorithms of transformation from platform-independent models to platform-specific
models, and from platform-specific models to code. And the work (Sardinha et al., 2006) proposes
an integrated framework of the specification language and development process (from requirement
analysis to implementation).

However, all of these existing methodologies are not specific enough for building up negotiating
agents because they fail to capture specific aspects of such agents: flexible, autonomous, decision
making behaviour, and the richness of interactions during the course of negotiation. In particular,
although in the area of AOSE some interaction, organization and role pattern templates have been
identified (Oluyomi et al., 2006, 2008), all of them lack sufficient details that would specifically help
in developing negotiating agents. Although the work (Chella et al., 2010) identifies a number of
pattern templates for specific agent systems—a robot, there no negotiation is involved in.

In contrast, this paper identifies many reusable pattern templates of communication, negotiation
situation analysis and response decision making, and provides a detailed description for them using

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 43

the CommonKADS specification language. In other words, we build up a pattern library for the design
of negotiating agents. Moreover, our generic model tells the developers how to assemble these pattern
components together to form a concrete, complete negotiating agent. We identify these templates
by analyzing existing negotiating agent systems (e.g. Parsons et al., 1998; Kowalczyk and Bui, 2000;
Barbuceanu and Lo, 2001; Faratin et al., 2002; He and Jennings, 2002; Luo et al., 2003a; He et al.,
2003a, 2006; Cheng et al., 2006; Skylogiannis et al., 2007) that have had a high impact in the area
of automated negotiation. So, by using these templates, reuse can certainly increase the quality of
the final systems developed. And also like all reusing in software engineering, these templates can
reduce the development cost of new negotiating agents. In the work of (Bartolini et al., 2005), a
software framework for automated negotiation has been proposed. Nonetheless, it is not based on a
throughout analysis of high impact systems, nor is it based on knowledge engineering. Thus it fails
to identify a rich library of modular and reusable templates for key components of decision analysis
and making during the course of negotiation. Also, since it is not based on knowledge engineering
principles, it captures little of the knowledge features of negotiation situation analysis and response
decision making, which plays an essential role in negotiation. In fact, the focus of (Bartolini et al.,
2005) is mainly on the interaction protocol design of the agents and no reusable and modular pattern
templates of the decision making and analysis method design are identified.

Speaking more generally, the work in this paper is mainly about the architecture design of
negotiating agents. Following this process is the detailed designing: negotiation strategy design or
acquisition. This is also an important aspect of negotiating agent development but very complicated.
Many papers focus on this issue. In particular, Luo et al. (2003b, 2004, 2006) investigated how to
help users design the trade-off strategies for multi-issue negotiating agents. Vytelingum et al. (2005)
proposed a framework for designing negotiation (bidding) strategies for trading agents in auctions.
In (Ludwig, 2008), the issue of a concession strategy design for negotiating agent is studied based on
the Thomas-Kilmann Conflict Mode Instrument (a commonly used psychological assessment tool)
(Blake and Mouton, 1964; Kilmann and Thomas, 1977). In (Lin et al., 2009), a toolbox is provided,
which can help facilitate the negotiation strategy design according to the performance evaluation
of the negotiating agent strategies. On the background of trading agent competition, Manistersky
et al. (2008) discussed the issue of how users change their design of strategy according to negotiating
agent performance in an open environment. Unlike our work in this paper, no architecture design
issues of negotiation agents are involved in all of these papers. Actually, their focus is to build up
the knowledge bases that are used in a negotiating agent whose architecture is pre-determined.

In addition, our methodology shares some common ideas with Component Based Software En-
gineering (CBSE) (Heineman and Councill, 2001): identify reusable components/patterns and then
put the pieces together to build a specific system. However, in the area of CBSE, few researchers try
to apply it for building autonomous software agents, especially negotiating agents. And negotiating
agents are knowledge intensive systems but in CBSE there are no facilities to handle the aspect of
knowledge modelling and specification. That is why we need to base our methodology on knowledge
engineering methodology.

7. CONCLUSIONS AND FUTURE WORK

Automated negotiation can be applied in any domain where multiple stakeholders with conflict-
ing positions and even conflicting interests have to work together to get a job done. However, it is not
easy to develop such systems without the aid of a software engineering methodology. Unfortunately,
so far such a methodology has been missing. To remove the limitation, this paper develops a template
based knowledge engineering methodology for building automated negotiation systems. It consists
primarily of a generic knowledge model of a main task and a number of standardised templates
which are modular and reusable components of the main task model. The different combination of
templates (including their variants) can constitute different automated negotiation models. Actually,
these templates function as blocks for building such systems, and the generic model functions as the
blue print for assembling these blocks together to produce different automated negotiation models.
Thus, with the help of the proposed methodology, it now becomes much easier to develop automated
negotiation systems. Moreover, since these standardised components are identified from some high
impact, typical negotiation systems which are selected from a wide variety of such systems, and the

44 Computational Intelligence

generic model that captures overall structure and organisation of a negotiating agent is based on the
analysis on many such systems, a negotiation system developed according to the methodology should
be effective. As a result, the methodology has the potential to facilitate the widespread development
of applications of automated negotiation.

Some limitations of this work could be addressed in the further work:

• Although most detailed settings of the methodology are primarily based on our analysis of bilateral
negotiation systems, we believe the application scope of the whole methodology can be readily be
extended to multilateral negotiation. However, this needs to be checked out further in the future
work.

• Although the validity of our methodology is shown by an argumentation model (Parsons et al.,
1998) that has a high impact in the area of automated negotiation, we believe that our methodology
is valid not only for the existing systems but also for new ones, especially complex business-to-
business negotiations. Of course, in the future more work (especially running examples) is required
to confirm this.

• From the viewpoint of software engineering, our methodology can be extended further. First, the
requirement analysis and elicitation process should be included. Like (Damas et al., 2005), existing
technologies of knowledge acquisition (Milton, 2007) and machine learning (Alpaydin, 2004) could
be employed for the requirement analysis process. Second, it would be helpful if the methodology
could help the developers to find the proper components from the library of standardised templates
according to the outcome of requirement analysis for specific applications. Third, the template
library needs to be extended further to include more templates. Finally, based on the extended
methodology, a software engineering environment, that supports the processes from requirement
analysis to system coding, could be made available. In particular, in such an environment, there
should be a tool to assist the users in specifying complex negotiation systems since as we shown
in the argumentation example of Parsons et al. (1998) it could be very time consuming to apply
the methodology to generate all the required specifications (although our methodology certainly
make the whole thing easier).

• In this paper we identified what types of domain knowledge are usually used in manual negotiation
approaches and automated negotiation models. On the basis, we can further develop techniques
to acquire these types of domain knowledge from human users. This is important because in order
that automated negotiation systems can negotiate faithfully on the behalf of their human users,
the relevant domain knowledge must be properly acquired from the human users (Preist, 2001;
Luo et al., 2003b, 2004, 2006; Ludwig, 2008).

• Although the verification problem in developing complex software systems is as important as
preparing the specification of a software system, it is beyond the scope of this paper. In the
future, we will address this issue. In particular, in the area of knowledge engineering, Cornelissen
et al. (1997) extended the idea of component reusing to the reuse of proofs for properties of
components reused. Actually, it is a case study for diagnostic reasoning, but maybe its idea can
be extended and applied, in our methodology, to investigate the properties of negotiating agents
from the properties of its components reused. Of course, we could also extend some ideas from the
area of software engineering, for example that of model-driven software verification (Holzmann
and Joshi, 2004).

Acknowledgments

The authors would like to thank the anonymous referees for their comments which significantly
improved the quality of the paper.

REFERENCES

Ai, M. (2002). Handbook of Negotiation and Contract Signing . Internal Mongolia Culture Publishing
House. In Chinese.

Alpaydin, E. (2004). Introduction to Machine Learning . The MIT Press.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 45

Bagüés, S., Mitic, J., Zeidler, A., Tejada, M., Matias, I., and Valdivielso, C. (2008). Obligations:
Building a bridge between personal and enterprise privacy in pervasive computing. In S. Furnell,
S. Katsikas, and A. Lioy, editors, Trust, Privacy and Security in Digital Business, volume 5185
of Lecture Notes in Computer Science, pages 173–184. Springer.

Barbuceanu, M. and Lo, W.-K. (2001). Multi-attribute utility theoretic negotiation for electronic
commerce. In F. Dignum and U. Cortés, editors, Agent-Mediated Electronic Commerce III ,
volume 2003 of Lecture Notes in Artificial Intelligence, pages 15–30. Springer.

Bartolini, C., Preist, C., and Jennings, N. R. (2005). A software framework for automated
negotiation. In Software Engineering for Multi-Agent Systems III , volume 3390 of Lecture
Notes in Computer Science, pages 213–235. Springer.

Bauer, B. and Odell, J. (2005). UML 2.0 and agents: How to build agent-based systems with the
new UML standard. Engineering Applications of Artificial Intelligence, 18(2), 141–157.

Benjamins, V. (1993). Problem Solving Methods for Diagnosis. Ph.D. thesis, University of
Amsterdam, Amsterdam.

Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J., Pavon, J., and
Gonzalez-Perez, C. (2009). Faml: A generic metamodel for mas development. IEEE Transactions
on Software Engineering , 35(6), 841–863.

Blake, R. and Mouton, J. (1964). The managerial Grid . Gulf Publications, Houston.
Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A. (2004). Tropos: An agent-

oriented software development methodology. Journal of Autonomous Agents and Multi-Agent
Systems, 8(3), 203–336.

Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon, J., Kearney, P., Stark, J.,
and Massonet, P. (2001). Agent oriented analysis using MESSAGE/UML. In Proceedings of
the Second International Workshop on Agent-Oriented Software Engineering , pages 101–108.

Cappiello, C., Comuzzi, M., and Plebani, P. (2007). On automated generation of web service level
agreements. In J. Krogstie, A. Opdahl, and G. Sindre, editors, Advanced Information Systems
Engineering , volume 4495 of Lecture Notes in Computer Science, pages 264–278. Springer.

Chao, K.-M., Younas, M., Godwin, N., and Sun, P.-C. (2006). Using automated negotiation for grid
services. International Journal of Wireless Information Networks, 13(2), 141–150.

Chella, A., Cossentino, M., Gaglio, S., Sabatucci, L., and Seidita, V. (2010). Agent-oriented software
patterns for rapid and affordable robot programming. Journal of Systems and Software, 83(4),
557–573.

Cheng, C.-B., Chan, C.-C., and Lin, K.-C. (2006). Intelligent agents for e-marketplace: Negotiation
with issue trade-offs by fuzzy inference systems. Decision Support Systems, 42(2), 626–638.

Clarke, D. (2006). Commercial experience with agent-oriented software engineering. In Proceeding of
2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology , pages 730–
736.

Collin, P. (2001). Dictionary of Business (Third Edition). Peter Collin Publishing.
Cornelissen, F., C.M.Jonker, and J.Treur (1997). Compositional verification of knowledge-based

systems: A case study for diagnostic reasoning , volume 1319 of Lecture Notes in Computer
Science, pages 65–80. Springer.

Cossentinoand, M., Gaud, N., Hilaire, V., Galland, S., and Koukam, A. (2010). Aspecs: An agent-
oriented software process for engineering complex systems. Autonomous Agents and Multi-Agent
Systems, 20(2), 260–304.

Damas, C., Lambeau, B., Dupont, P., and van Lamsweerde, A. (2005). Generating annotated
behavior models from end-user scenarios. IEEE Transactions on Software Engineering , 31(12),
1056–1073.

Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A. (1998). GRAIL/KAOS: An
environment for goal-driven requirements engineering. In Proceedings of the 20th International
Conference on Software Engineering , volume 2, pages 58–62.

DeLoach, S. (2001). Analysis and design using MaSE and agentTool. In Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference.

DeLoach, S., Wood, M., and Sparkman, C. (2001). Multiagent systems engineering. International
Journal of Software Engineering and Knowledge Engineering , 11(3), 231–258.

Egels-Zandèn, N. (2009). Tnc motives for signing international framework agreements: A continuous

46 Computational Intelligence

bargaining model of stakeholder pressure. Journal of Business Ethics, 84(4), 529–547.
Faratin, P., Sierra, C., and Jennings, N. R. (2002). Using similarity criteria to make issue tradeoffs

in automated negotiations. Artificial Intelligence, 142(2), 205–237.
Finin, T. and Labrou, Y. (1997). KQML as an agent communication language. In J. Bradshaw,

editor, Software Agents, pages 291–316. AAAI Press and MIT Press.
Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994). KQML as an agent communication

language. In Proceedings of the Third International Conference on Information and Knowledge
Management , pages 456–463.

Fisher, R., Ury, W., and Patton, B. (1991). Getting to yes: Negotiating an agreement without giving
in. Penguin Books. This is the revised 2nd edition. The first edition, unrevised, is published
by Houghton Mifflin, 1981.

Georgeff, M. (2009). The gap between software engineering and multi-agent systems: Bridging the
divide. International Journal of Agent-Oriented Software Engineering , 3(4), 391–396.

Glaser, N. (1996). Contribution to Knowledge Modelling in a Multi-Agent Framework: The CoMo-
MAS Approach. Ph.D. thesis, LUniverstitè Henri Poincarè, Nancy I, France.

Guan, S., Dong, X., Mei, Y., Wu, W., and Xue, Z. (2008). Towards automated trust negotiation for
grids. In Proceedings of the 2008 IEEE International Conference on Networking, Sensing and
Control , pages 154–159.

He, M. and Jennings, N. R. (2002). SouthamptonTAC: Designing a successful trading agent. In
Proceedings of the Fifth European Conference of Artificial Intelligence, pages 8–11.

He, M., Leung, H. F., and Jennings, N. R. (2003a). A fuzzy logic based bidding strategy in continuous
double auctions. IEEE Transactions on Knowledge and Data Engineering , 15(6).

He, M., Jennings, N. R., and Leung, H. F. (2003b). On agent-mediated electronic commerce. IEEE
Transactions on Knowledge and Data Engineering , 15(4), 985–1003.

He, M., Rogers, A., Luo, X., and Jennings, N. R. (2006). Designing a successful trading agent for
supply chain management. In Proceedings of the Fifth International Conference on Autonomous
Agents and Multi-Agent Systems, pages 61–62, Hakodate, Japan.

Heineman, G. T. and Councill, W. T. (2001). Component-based software engineering: Putting the
pieces together . ACM Press.

Hoffman, E., McCabe, K., and Shachat, K. (1994). Preferences, property rights, and anonymity in
bargaining games. Games and Economic Behavior , 7, 346–380.

Holzmann, G. J. and Joshi, R. (2004). Model-Driven Software Verification, volume 2989 of Lecture
Notes in Computer Science, pages 76–91. Springer.

Hu, C., Mao, X., and Ning, H. (2009). Integrating model transformation in agent-oriented software
engineering. In Proceedings of 2009 IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology , pages 62–65.

Huhns, M. N. and Stephens, L. M. (1999). Multiagent systems and societies of agents. In G. Weiss,
editor, Multiagent Systems, pages 79–120. The MIT Press.

Iglesias, C. A., Garijo, M., Gonzàlez, J. C., and Velasco, J. R. (1996). A methodology proposal for
mutiagent systems development extending CommonKADS. In Proceedings of the Tenth KAW ,
pages 345–360.

Iglesias, C. A., Garijo, M., and Gonzalez, J. C. (1999). A survey of agent-oriented methodologies. In
J. P. Müller et al., editors, Intelligent Agents V: Agent Theories, Architectures, and Languages,
volume 1555 of Lecture Notes in Computer Science, pages 317–330. Springer.

Jennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence, 117(2), 277–296.
Jennings, N. R. (2001). An agent-based approach for building complex software systems. Comms.

of the ACM , 44(4), 35–41.
Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica, 47, 263–290.
Keeney, R. and Raiffa, H. (1976). Decision with Multiple Objectives: Preferences and Value Tradeoffs.

John Wiley & Sons.
Kersten, G. and Lai, H. (2007). Negotiation support and e-negotiation systems: An overview. Group

Decision and Negotiation, 16(6), 553–586.
Kilmann, R. and Thomas, K. (1977). Developing a forced-choice measure of conflict-handling: The

mode instrument. Educational and Psychological Measurement , 37, 309–325.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 47

Koulouris, T., Spanoudakis, G., and Tsigkritis, T. (2007). Towards a framework for dynamic
verification of peer-to-peer systems. In Proceedings of the Second International Conference
on Internet and Web Applications and Services, pages 2–12.

Koumoutsos, G. and Thramboulidis, K. (2009). Towards a knowledge-base framework for complex,
proactive and service-oriented e-negotiation systems. Electronic Commerce Research, 9(4),
317–349.

Kowalczyk, R. and Bui, V. (2000). On constraint-based reasoning in e-negotiation agents. In
F. Dignum and U. Cortés, editors, Agent-Mediated E-Commerce III , volume 2003 of Lecture
Notes in Artificial Intelligence, pages 31–46. Springer.

Lee, K.-C. and Kwon, S.-J. (2006). The use of cognitive maps and case-based reasoning for B2B.
Journal of Management Information Systems, 22(4), 337–376.

Lin, C.-E., Kavi, K., Sheldon, F., Deley, K., and Abercrombie, R. (2007). A methodology to evaluate
agent oriented software engineering techniques. In Proceedings of the 40th Hawaii International
Conference on System Sciences, page 60a.

Lin, R., Kraus, S., Tykhonov, D., Hendriks, K., and Jonker, C. (2009). Supporting the design of
general automated negotiators. In Proceedings of the Second International Workshop on Agent-
based Complex Automated Negotiations, Budapest, Hungary.

Lomuscio, A. R., Wooldridge, M., and Jennings, N. R. (2003). A classification scheme for negotiation
in electronic commerce. International Journal of Decision and Negotiation, 12(1), 31–56.

Loutaa, M., Roussakib, I., and Pechlivanos, L. (2008). An intelligent agent negotiation strategy in
the electronic marketplace environment. European Journal of Operational Research, 187(3),
1327–1345.

Ludwig, S. (2008). Agent-based assistant for e-negotiations. In A. An, S. Matwin, Z. Raś, and
D. Ślezak, editors, Foundations of Intelligent Systems, volume 4994 of Lecture Notes in Artificial
Intelligence, pages 514–524. Springer.

Luo, X. and Jennings, N. R. (2007). A spectrum of compromise aggregation operators for multi-
attribute decision making. Artificial Intelligence, 171(2-3), 161–184.

Luo, X., Jennings, N. R., Shadbolt, N., Leung, H. F., and Lee, J. H. M. (2003a). A fuzzy constraint
based model for bilateral, multi-issue negotiation in semi-competitive environments. Artificial
Intelligence, 148(1-2), 53–102.

Luo, X., Jennings, N. R., and Shadbolt, N. (2003b). Knowledge-based acquisition of tradeoff
preferences for negotiating agents. In Proceedings of the 5th International Conference on
Electronic Commerce, pages 138–144, Pittsburgh, USA.

Luo, X., Jennings, N. R., and Shadbolt, N. (2004). Acquiring tradeoff preferences for automated
negotiations: A case study. In Agent-Mediated Electronic Commerce V: Designing Mechanisms
and Systems, volume 3048 of Lecture Notes in Computer Science, pages 37–55. Springer.

Luo, X., Jennings, N. R., and Shadbolt, N. (2006). Acquiring user tradeoff strategies and prefer-
ences for negotiating agents: A default-then-adjust method. International Journal of Human
Computer Studies, 64(4), 304–321.

Manistersky, E., Lin, R., and Kraus, S. (2008). Understanding how people design trading agents
over time. In Proceedings of the Seventh International Conference on Automous Agents and
Multiagent systems, pages 1593–1596.

McCauley-Bell, P. (1999). Intelligent agent characterization and uncertainty management with fuzzy
set theory: A tool to support early supplier integration. Journal of Intelligent Manufacturing ,
10, 135–147.

Milton, N. (2007). Knowledge Acquisition in Practice: A Step-by-step Guide. Springer.
Murch, R. and Johson, T. (1999). Intelligent Software Agents. Prentice-Hall.
Nash, J. (1950). The bargaining problem. Econometrica, 18(2), 155–162.
Neumann, J. V. and Morgenstern, O. (1944). Theory of Games and Economic Behaviour . Princeton

University Press.
O’Brien, P. and Nicol, R. (1998). FIPA: Towards a standard for software agents. BT Technology

Journal , 16(3), 51–59.
Oluyomi, A., Karunasekera, S., and Sterling, L. (2006). Design of agent-oriented pattern templates.

In Proceedings of Australian Software Engineering Conference, pages 113–121.
Oluyomi, A., Karunasekera, S., and Sterling, L. (2008). Description templates for agent-oriented

48 Computational Intelligence

patterns. Journal of Systems and Software, 81(1), 20–36.
Park, S. and Yang, S.-B. (2008). An efficient multilateral negotiation system for pervasive computing

environments. Engineering Applications of Artificial Intelligence, 21(8), 633–643.
Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that reason and negotiate by arguing.

Journal of Logic and Computation, 8(3), 261–292.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann.
Peasall, J. (2001). The New Oxford English Dictionary . Oxford University Press.
Preist, C. (2001). Agent mediated electronic commerce at HP labs, Bristol. Agentlink News, (7).
Pruitt, D. (1981). Negotiation Behavior . Academic Press.
Ragone, A., Noia, T., Sciascio, E., and Donini, F. (2008). Logic-based automated multi-issue bilateral

negotiation in peer-to-peer e-marketplaces. Autonomous Agents and Multi-Agent Systems,
16(3), 249–270.

Rahwan, I., Ramchurn, S. D., Jennings, N. R., McBurney, P., Parsons, S., and Sonenberg, L. (2004).
Argumentation-based negotiation. The Knowledge Engineering Review , 18(4), 343–375.

Raiffa, H. (1982). The Art and Science of Negotiation. Harvard University Press, Cambridge, USA.
Sixteenth printing, 2002.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica, 50(1), 97–109.
Sardinha, J., Choren, R., da Silva, V., Milidiù, R., and de Lucena, C. (2006). A combined specification

language and development framework for agent-based application engineering. Journal of
Systems and Software, 79(11), 1565–1577.

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R., N. Shadbolt, W. V., and Wielinga, B.
(1999). Chapter 5: Knowledge model construction. In Knowledge Engineering and Management:
The CommonKADS Methodology , pages 167–186. The MIT Press.

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R., Shadbolt, N., Velde, W., and Wielinga,
B. (2000). Knowledge Engineering and Management: The CommonKADS Methodology . The
MIT Press.

Searle, J. (1969). Speech Acts. Cambridge University Press.
Shen, Z., Miao, C., Gay, R., and Li, D. (2006). Goal-oriented methodology for agent system

development. IEICE TRANSACTIONS on Information and Systems, E89-D(4), 1413–1420.
Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori, G., and Bikakis, A. (2007). DR-

NEGOTIATE — A system for automated agent negotiation with defeasible logic-based strate-
gies. Data & Knowledge Engineering , 63(2), 362–380.

Unt, I. (1999). Negotiation Without A Loser . Copenhagen Business School.
Vytelingum, P., Dash, R. K., He, M., and Jennings, N. R. (2005). A framework for designing

strategies for trading agents. In Agent Mediated Electronic Commerce VII , volume 3937 of
Lecture Notes in Artificial Intelligence, pages 171–186. Springer.

Wang, M., Wang, H., Vogel, D., Kumar, K., and Chiu, D. (2009). Agent-based negotiation and
decision making for dynamic supply chain formation. Engineering Applications of Artificial
Intelligence, 22(7), 1046–1055.

Wellman, M., Greenwald, A., and Stone, P. (2007). Autonomous Bidding Agents: Strategies and
Lessons from the Trading Agent Competition. MIT Press, Cambridge MA, USA.

Wong, W., Zhang, D., and Kara-Ali, M. (2000a). Negotiating with experience. In Proceedings of
AAAI2000 Workshop on Knowledge-Based Electronic Markets, pages 85–90.

Wong, W., Zhang, D., and Kara-Ali, M. (2000b). Towards an experience-based negotiation agent. In
Proceedings of the Fourth International Workshop on Cooperative Information Agents, Boston.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge
Engineering Review , 10(2), 115–152.

Wooldridge, M. and Parsons, S. (2000). Languages for negotiation. In Proceedings of the Fourteenth
European Conference on Artificial Intelligence, Berlin, Humboldt University, Germany.

Wooldridge, M., Jennings, N. R., and Kinny, D. (2000). The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3(3), 285–312.

Xu, H. and Shatz, S. M. (2003). A framework for model-based design of agent-oriented software.
IEEE Transactions on Software Engineering , 29(1), 15–30.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control , 8, 338–353.

KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development 49

Zadeh, L. A. (1975). The calculus of fuzzy restrictions. In L. A. Zadeh et al., editors, Fuzzy Sets
and Applications to Cognitive and Decision Making Processes, pages 1–39. Academic Press.

Zambonelli, F. and Omicini, A. (2004). Challenges and research directions in agent-oriented software
engineering. Autonomous Agents and Multi-Agent Systems, 9(3), 253–283.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). Developing multiagent systems: The
Gaia methodology. ACM Transactions on Software Engineering and Methodology , 12(3), 317–
370.

Zeng, D. and Sycara, K. (1997). How can an agent learn to negotiate? In J. P. Müller, M. J.
Wooldridge, and N. R. Jennings, editors, Intelligent Agents III: Agent Theories, Architectures,
and Languages, volume 1193 of Lecture Notes in Artificial Intelligence, pages 233–244. Springer.

