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Abstract—In this paper, a new VLSI implementable Hopf
oscillator with dynamic plasticity is proposed for next-genera-
tion portable signal processing application. A circuit-realizable
piece-wise linear function has been used to govern the frequency
adaptation characteristic of the proposed oscillator. Furthermore,
a straightforward method is suggested to extract the frequency
component of the input signal. Mathematical model of the oscil-
lator is derived and it is shown, using VHDL-AMS model, that
despite using a new nonlinear function, the oscillator exhibits the
same characteristics and learning behavior as the original one
with improved learning time. Subsequently, an equivalent circuit
model and transistor level implementation for the oscillator is
suggested and the mathematical model is confirmed with system
and circuit level simulations. Capability of such oscillator to ex-
tract frequency futures without doing explicit signal processing is
shown with examples of both synthetic and real-life EMG signals.

Index Terms—Adaptive oscillator, analog signal processing,
Hopf oscillator, nonlinear oscillator.

1. INTRODUCTION

ESPITE impressive progresses in current VLSI, funda-

mental issues such as: power consumption, process vari-
ation, soft errors, noise, and other non-idealities in nanometer
process technologies threaten to nullify the great achievements
of scaling that the semiconductor industry has come to expect
[1]. This indicates that advances in manufacturing technology
alone cannot address all the problems effectively. Therefore,
material and device advances must be complemented by inno-
vations in system level and new computational paradigms to en-
rich or go beyond the standard computation models and archi-
tectures.

From this perspective, nature, especially biology, can be a
rich source of inspiration to engineers for designing new types
of information processing systems. The animals’ brain, for
instance, is far more efficient than CMOS technologies. Neural
pattern generators control the locomotion of animals, which
make them able to adapt their body movement dynamically
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with the changing signals from environment and manage to
coordinate multiple degrees of freedom needed for locomotion.
This can be done only by using signals of the right frequencies,
phases, and amplitudes in response to the external affects. This
mechanism includes a wide range of periodic behaviors in the
nature from a single cell movement to complex locomotion
systems such as different types of walking, running, flying,
swimming, etc. These mechanisms mostly rely on periodic be-
havior of the oscillators and their capability of synchronization
with the applied external signals.

Inspired by natural computational systems, nonlinear os-
cillator networks have been a subject of intensive researches,
ranging from mathematical models to practical applications.
Their wide range of applications and capabilities have made
them a serious suggestion for the future system design in
electronics [2]. Although oscillators are very well known in all
their varieties, they are traditionally designed to have a fixed
intrinsic frequency. This “fixed intrinsic frequency” results in
two basic limitations, which have restricted their application
in aforementioned emerging fields. First is synchronization
limit, which means, commonly oscillators have narrow syn-
chronization ranges. Second, they have no memory of their
past interactions. This means that they return to their intrinsic
frequency of oscillations if the external signal to which they
were synchronized vanishes. Consequently, in applications
that require wide-range synchronization and memory of past
interactions, traditionally designed oscillators are not suitable.
In this case, the main alternative to the traditional oscillators
are nonlinear adaptive oscillators.

Theoretically, nonlinear oscillators has been used for decades
to model diverse natural phenomena such as neuronal signaling
models [3], Central Pattern Generation (CPG) [4], [5], associa-
tive memory [6], [7] and beat perception [8], [9]; to engineering
applications such as universal machines [10], [11], image pro-
cessing [12], logic computation, [13] and robotics [14], [15].
The main challenge, which has limited a generalized practical
application of nonlinear oscillators, is the mathematical com-
plexity inherent in their model. This is a serious problem, which
is preventing their application in real-life VLSI systems.

Hopf dynamic system, as a nonlinear oscillator, has found
specific applications in artificial locomotion systems and basic
frequency analysis. Recently, in [15] and [16], Buchli et al. in-
troduced a new learning rule in the Hopf oscillator [17], ac-
cording to which the intrinsic frequency of the system evolves
towards the frequency of an external perturbation and thus in-
corporates dynamic plasticity in the oscillator itself. The novelty
of this work is that the oscillator is able to extract the frequency
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of any input signal without any explicit signal processing. This
work shows an immense application potential of the proposed
oscillatory system in developing future generations of signal
processing circuits and systems. The present work is primarily
motivated by this work in which we look at the nonlinear oscil-
lator described in [16] from a practical VLSI circuit design point
of view, so that it can be exploited for developing advanced and
portable signal processing systems for a variety of applications.
More precisely, in this paper we consider the possibility of its
efficient hardware realization in analog circuit domain. A pos-
sible digital implementation of such a system will be discussed
in our future work.

In terms of VLSI realization, the oscillator proposed in [16]
has several fundamental difficulties as follows.

1) The learning rule introduced utilizes terms like
y/v/22 +y? and x? + 3> which are extremely diffi-
cult to realize in practice.

2) The oscillation frequency, w, is considered as a system
state which is directly dependent on the input signal. In an
analog equivalent, this state value should be realized as a
capacitance voltage (or inductance current), if targeted to
VLSI implementation. In practice, this linear dependence
of w on capacitor voltage restricts its range of adaptation
to only a few volts (or equivalently to a few Hertz, a small
oscillation-frequency basin).

3) The frequency convergence/learning time of this oscillator
is very high (several thousand seconds in some cases). In a
practical application this delay is not acceptable.

4) Although the proposed oscillator can “learn” the frequency
of the external signal, the extraction of its amplitude re-
quires a large number of coupled oscillators (1000) which
is very costly in terms of real hardware particularly for a
signal with a wide frequency spectrum.

These four practical problems inspired us to develop a novel
and simple VLSI realizable model while staying within the
framework proposed in [16]. To the best of our knowledge, this
is the first time such a circuit has been proposed. Here, firstly,
we use a simple circuit realizable piecewise-linear function to
govern the frequency adaptation or learning process. We show
that the proposed function not only produces the oscillation
characteristics described in [16] but also adapts the frequency at
a faster rate. Secondly, we develop a new method for extending
the frequency basin of this modified oscillator. Subsequently,
we develop a generic circuit design methodology for the entire
system and validate it by circuit simulation. Thirdly, we intro-
duce a new and simple methodology and subsequent circuit
that is capable of finding the relative amplitudes of the input
signal harmonics.

Some parts of this study have been reported in [18] in a short
form, but here we present a detailed analysis on the limit cycle
characteristics and nature of the convergence for the proposed
oscillator. We have also proposed a new nonlinear function
which is a modification to that presented in [18] to make the
proposed oscillator more implementation friendly compared to
those in [16] and [18]. In addition a novel method for ampli-
tude extraction of the constituent frequency components with
their corresponding system/circuit level simulation results are
presented.
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The rest of the paper is organized as follows: Section II
presents the background of Hopf oscillator, [17], and the
modification done to it as described in [16]. In Section III,
we propose a new adaptive frequency non-linear oscillator.
Its circuit level implementation and corresponding simulation
results are provided in Sections IV and V, respectively. General
discussion about the open questions and conclusions are drawn
in Sections VI and VII.

II. BACKGROUND

The dynamics of the Hopf oscillator can be described by the
following ordinary differential equations [17]:

i= (0 - (" +y?))z+wy
g= - @ +9y°)y—wa (1)

where 2 > 0, z,5 € R are the states of the oscillator, w
is the oscillation frequency and (v determines the steady state
amplitude of oscillation (22, + y2, = p?) [19].

Under these conditions (1) gives stable periodic solutions,
known as limit cycles, [17]

x = psin(wt 4+ 0y), y = pcos(wt+ ) 2)

where 6 is determined by the initial conditions. This solution
represents a circle of the form z2 + 42 = 2, around the origin
of the state space.

In the Hopf oscillator, the oscillation radius is fixed and in-
dependent of the oscillation frequency. Changes to the phase of
the oscillation, however, can be permanent and happen only if
affect the limit cycle in the direction tangential to the oscillation,
when represented in the state space. The perpendicular compo-
nent of the perturbation force is damped out in the long term
leaving the tangential component of the perturbation (typically
termed as the “teaching force”) to tune the limit cycle frequency
to one of its frequency components. More details can be found
in [20].

Exploiting the above mentioned property, in [16], the Hopf
oscillator described in (1) is modified to incorporate dynamic
plasticity under an additive perturbation I(¢) as shown in (3)

= (1> = (2° + %)) v +wy + KI(t)
(0 = (@* +y?) y —wz
(©)

where K > 0 is a coupling constant.

Physically, in (3), the term p represents the radius of the os-
cillation circle and the term sin(¢) = y/+/x2 + y? represents
the teaching force in the state space at the point (x(¢), y(¢)) as
shown in Fig. 1. As it is explained in [20], this dynamic system
creates a limit cycle oscillation which synchronize with the
frequency of the input perturbation, I(¢). The oscillator will
have a tendency to accelerate or decelerate, according to the
tangential component of the 7(t) in the phase plane, which on
average results in an oscillation at a frequency of the 7(t). This
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Fig. 1. State-space representation of the oscillation characteristics of the oscil-
lator in [16].

teaching force, however, in frequency domain is manifested
as a jitter around the converged frequency. If 1(¢) comprises
different frequencies with different amplitudes, depending on
the initial values of the state variables, the oscillator tunes itself
to the frequency component having the highest amplitude.
More importantly, even when I(t) is withdrawn, the oscillator
keeps oscillating with the frequency it becomes tuned to. Thus,
a number of such oscillators may be employed to obtain the
complete time-frequency map of I(t¢), which is a fundamental
operation in signal processing. More detailed description of
different properties of this adaptive frequency oscillator can be
found in [15], [16], and [20].

III. PROPOSED OSCILLATOR

A. Mathematical Modification of Hopf Oscillator

Let us consider the equations in (1). Both of them consist of
two parts: (u? — (2% 4+ y?))z and +wy; in the first equation and
(u? — (% +y?))y and —wz in the second one. The second part
in these equations is responsible for providing feedback in the
system to create its oscillatory behavior. The first part, on the
other hand, is responsible for the amplitude limitation of the os-
cillation by comparing a measure of the oscillation amplitude or
energy (z? +y?) with a limit value (;22). We note that, in effect,
the frequency behavior of such an oscillatory system depends
only on the sign of & and ¢ and the relative values of = and y to
. From this understanding of the system behavior, we propose
to change the first parts of the both equations in (1) as

(1 = (] + ly])) sen(z) + wy
(= (] + ly])) sen(y) — wa @)

T
Y
where ||+ |y| is the new measure for the oscillation amplitude/
energy and sgn(-) is the sign value of 2 and y. Comparing with
the oscillator presented in [18], two multipliers in the equation
are replaced by sign functions, which has a very simple physical
realization in analog circuit design (a comparator). The state-
space representation of (4) is shown in Fig. 2.. It can be seen
that in this representation the circular function in (1) and Fig. 1
is replaced by a square shaped function |z| + |y| = p, which is
easily realizable in practice.
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Fig. 2. State-space representation of the oscillation characteristics of the pro-
posed oscillator.

B. Stability and Limit Cycle Behavior of the Modified
Oscillator

The stability of the proposed modified Hopf oscillator system
can be determined using the Lyapunov second method with the
energy function as [21]

1
V(z,y) = 52 +47) ®)

where, by differentiating V' and replacing x and y from (4), we
have

V =zi+yy
= (p = (lz[ + [y]) (Jz] + |y|) (6)

resulting in:

V>0 |zl+yl<mu
V=0 |z|+yl=mpn @)
V<0 |z|+ |y >un

which means that the system has a stable limit cycle for

lz] + |yl = n (®)

The inequalities of (7) apply to our applications in which initial
values are always bounded and therefore, the system is guided
to a limit cycle state.

To derive the oscillation behavior of the system, by trans-
forming (4) to the polar coordinates (z = rcos(¢) and y =
rsin(¢)), we get

7= (u—r(|cos |+ |sing])) (sin ¢ + cos @)

b=t (u—r(|sing| +|cosd)
X (sgn(sin ¢) cos ¢ — sgn(cos @) sin@)). (9)

Applying the steady-state criterion with 7 = 0, we get

p=
{ ) | sin ¢|+] cos ¢ (10)
P=w
Thus the steady state oscillation can be described as
poa(t) = psin(wt) (11

 Jsin(wt)| + |cos(wt)]
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Fig. 3. Output signal of the modified oscillator comparing with monotone si-
nusoidal oscillation.

assuming ¢(0) = 0. The nature of the oscillation described in
(11) is depicted in Fig. 3 comparing with psin(wt) (as in the
original Hopf oscillator).

From Fig. 3, the important thing to note is that the shape of the
oscillation waveform resembles a triangular wave rather than a
pure sinusoid. However, the frequency characteristic and ampli-
tude value of it are exactly similar to that of the reference sinu-
soid which is in conformation of the state-space representation
of the proposed oscillator as shown in Fig. 2.

C. New Adaptive Frequency Hopf Oscillator

The most important implication of the modification proposed
above is the change it makes in the frequency adaptation equa-
tion in (3). From a geometrical viewpoint, as shown in Fig. 2,
in our proposed oscillator, to create the limit cycle behavior of
the system, the circular function 22 + y?> = p? is replaced
with the square shaped function |z| + |y| = pu, thus referring
to Fig. 2, noting that the gradient of each side of the square
is 45°, under an additive perturbation the tangential compo-
nent of the teaching force can simply be defined as sin(«a) =
(V2/2) - sgn(y).

Using these modifications in (3), the dynamics of the pro-
posed oscillator can be described by the following equation:

@ = (p—(lz] + |yl)) sgn(z) + wy + KI(t)
g = (u— (=] +[y])) sgn(y) — wz

w =KI(t) - sgn(y) (12)

assuming that /2 /2 in the third equation is included in the cou-
pling parameter K.

Knowing that sgn(y) = y/|y| for y # 0 and |y| = /9?3, the
adaptation equation can be rewritten as

v
V2

Comparing with the adaptation equation in (3), we observe

w=KI(t) sgn(y) = KI(t) - (13)

(14)

sgn(y) = y_ > Y .
VE Ve

Using this basic inequality to compare the third equations in
(12) and (3), which are responsible for the frequency adaptation
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mechanism of the oscillators; it is evident that the rate of change
of w in the proposed oscillator is larger than the rate of change of
w in the original Hopf oscillator. This results in a faster learning
dynamics in the modified oscillator.

One important aspect of the proposed oscillator is to ensure
its frequency convergence. According to the argument pre-
sented in [20], due to the stable nature of the Hopf oscillator
and since the learning dynamics only depends on the conjugate
symmetry of the complex Fourier series of the input signal,
using any combination of periodic functions as the learning
rule will not change the frequency convergence characteristics.
This can also be proved analytically following the perturbation
based approach outlined in [20]. Thus, for brevity we omit
that proof here. However, in Section III-F through numerical
simulation we will show that the proposed oscillator indeed
follows the frequency convergence property of the oscillator in
[16].

D. Extension of the Frequency Basin

As mentioned earlier, from the practical VLSI circuit design
point of view, one fundamental problem of the oscillator in [16]
is that due to the linear relationship between w and the voltage
representing its value, the achievable size of the frequency
basin is very small for any practical purposes. To overcome this
problem, we observe from (12)

w=KI(t)-sgn(y(t)) (15)
and after integration
t
w=w0) + K [ 1(r)sen (u(r) dr
=wy + Aw " (16)

assuming w(0) = wy. In this way we split the oscillation fre-
quency into two parts wg and Aw. The first part is the intrinsic
frequency of the oscillator and the latter is a variable part which
evolves to synchronize the oscillator with the input signal. Using
this modification in (12), the final governing equation for our os-
cillator can be given as

&= (p—= (lz| + |yl)) sgn(z) + woy + Aw -y + KI(1)

g = (p— (el +y]) sen(y) — wor — Aw - =
Aw =KI(t) -sgu(y) with Aw(0) = 0. (17)

In this way, a spectrum analyzer can be designed using a set of
oscillators in which their intrinsic frequencies (wq ) are chosen to
be equally distributed over the range of the expected spectrum of
the input signal. Every oscillator in this set will tune itself to the
frequency component having the largest amplitude among those
included in the frequency basin around wy. A detailed analysis
of the choice of wy to cover a particular range of the frequency
spectrum is provided in [20], which can also be applied here
without any loss of generality.
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E. Computing the Relative Amplitude of the Frequency
Component

Considering the Fourier expansion of the input perturbation
I(t) = Zij\;o(ai sin w;t + b; cos w;t) :Zf\;o A; sin(w;t 4+ 6;),
analyzing frequency spectrum of the input also requires infor-
mation about the magnitude of each of the frequency compo-
nents (A;). Recalling the basic mathematical methods for com-
puting the Fourier series based on orthogonality of sin(-) and
cos(-), theoretically, the amplitudes a;, b; or A; of the frequency
component w; can be calculated as:

(18)

where T is the period of the first harmonic [22], [23].

In our case, after the oscillator learning time, by which it con-
verges to a single frequency of the input perturbation (when
t — oo then z(t) — psin(w;t) and y(t) — pcos(w;t)), using
the above equation, we can conclude that

0 o % | /T o(F)I(7)dr

b; % /y(T)I(T)dT
0

1 1
x —
T cosb;

19)

where the right-hand side of the equations represent averaging
operation over time 7. This proportionality means that after the
oscillator’s convergence to a frequency component in 7(¢) (w;
for instance), the amplitude of this frequency component (A;)
will be proportional to the time-average of z(7) - I(7). In terms
of system dynamics, this relationship can be represented as an
extra state equation in (17) as

A=KAI(t) - = (20)

This equation results in a linear relationship between A; and the
integration time, creating an ever-increasing signal in the circuit.
However, in practice it is possible to extract the slope of the
integration result within a limited time (i.e. after the oscillator’s
convergence) and stop the integration thereafter. The calculated
slopes correspond to the comparative amplitudes of different
frequency components of the input signal. Simulation results for
this method are presented in the next subsection.

FE. The Complete Oscillator and System Level Simulation

As mentioned earlier, in this work we consider that the state
variables are represented by capacitor voltages. With this as-
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sumption, combining (17) with (20), the complete governing
dynamics of the proposed adaptive frequency oscillator can be
given as follows:

Ve = (b= (IVal + [Vy])) sgn(Va) + woVy

Vy = (= (Ve +[Vy])) sgn(Vy) — wo Ve = Vau Ve
Vaw =K Vin(t) -sgn(Vy)  with Vau(0) =0

Va=KaViu(t) Vo (1)
where V,,, V,,, Va,,, and V4 represent the state variables in terms
of voltages representing x, y, Aw and amplitude (A) respec-
tively.

To investigate the functional behavior of the proposed oscil-
lator, it was modeled using VHDL-AMS [24] and simulated by
Mentor Graphics AdvanceMS tools. At the same time, for com-
parison, the oscillator proposed in [16] was also implemented.
Three issues were investigated, namely, the rate of frequency
convergence of the proposed oscillator, effect of K on the fre-
quency convergence rate, and the tuning property of an array of
oscillators having different intrinsic frequencies to their nearby
frequencies.

Fig. 4 shows the frequency convergence characteristic of the
proposed oscillator along with the oscillator proposed in [16]
for a single sinusoid with 10 Hz frequency when K is set to 10.
It can be clearly seen that the proposed oscillator converges to
the desired frequency faster than that proposed in [16], as pre-
dicted by (14). But the convergence characteristics of the oscil-
lator proposed in [16] is smoother than the one proposed here
which shows some “roughness”. This is because the value of
the tangential teaching component of the adopted piece-wise
linear function regulating the oscillator has a fixed value for
each particular region in the phase space. On the other hand,
the same component for the nonlinear function governing the
oscillator proposed in [16] adjusts itself smoothly in the phase
space. However, this behavior does not affect the final value of
the frequency at which the oscillator converges. To be noted
that here we present a system level simulation of the oscillators
started from wg = 0, therefore, despite long learning time of
these simulation results, in the circuit implementation of the os-
cillator it is shown that convergence time is considerably lower
(see Section V).

Fig. 5 shows the frequency convergence characteristics of the
proposed oscillator for different values of K keeping the ini-
tial values of the state variables constant. It is evident that with
increasing values of K the oscillator converges to the desired
frequency at faster rate. However, our simulation shows that a
bigger value of K can cause oscillatory behavior in w after con-
vergence, which in real life can be considered similar to a jitter
around the converged frequency. Therefore, a tradeoff between
the speed and stability has to be made for choosing the value of
K under a particular circumstance.

Fig. 6 briefly compares the frequency jitters of two different
versions of implementable oscillators (presented in [18] and
here). It is observable from figures that oscillators presented
here and in [18] have a similar jitter pattern. Jitter values are
also calculated in Table I for these oscillators. The calculated
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Fig. 4. Frequency convergence comparison between the oscillator in [16] and
the proposed one, (f = 10, K = 10).
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Fig. 5. Frequency convergence characteristics for different values of K (f =
207, K = 2-7).
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Fig. 6. Jitters comparison after frequency convergence between the oscillators
in a) [18] and b) the proposed here, (f = 10, K = 10).

TABLE I
JITTER VALUES FOR DIFFERENT VERSIONS OF THE
HOPF OSCILLATOR (f = 10, K = 10)

| Parameter [[ Ref. [18] | Proposed Osc. |
Jitter P2P 1.703196678 1.726628386
Jitter P2P (%) 2726180294 | 2.748146212
Jitter RMS 0.321973064 | 0.333826579
Jitter RMS (%) 0.515358346 | 0.531326981
Learning Time 0.5 (ms) 0.5 (ms)

values in the Table I show that, in terms of jitter and conver-
gence, differences between oscillators in [18] and our present
work are negligible.

As it is shown above, this jitter exists in both (original and
proposed) oscillators due to the nature of the adaptation mecha-
nism which is based on acceleration and decelerations of the os-
cillatory limit cycle induced by I(t) frequency components. The

260 -
2401 (raqss) .
220 /
200 -
180
160 |
140 [/
120
100

Fig. 7. Frequency convergence characteristics for different input frequencies.

only difference arises from the fact that the teaching forces [tan-
gential component of I(t)], are different between these two oscil-
lators. The teaching force in (3) changes smoothly when the os-
cillation point moves from one quadrant to another in the phase
plane (see Fig. 1), where this change is more stepwise in ours
(see Fig. 2). Although this effect is reflected in learning behavior
of the oscillator where the proposed oscillator exhibits faster
convergence rate, after convergence, however, system continues
to oscillate with the learned frequency and effects of adaptation
mechanism and teaching force will be eliminated or reduced
considerably. Therefore, we would not expect significant differ-
ences between the original oscillator and the proposed one after
frequency convergence. Our comparative system level simula-
tion of the oscillators supports this perception.

Fig. 7 shows oscillator response to different input frequen-
cies. It is observable that there is a one to one linear dependency
between different frequencies the oscillator can adapt and the
state value of w.

Fig. 8 shows the frequency adaptation behavior of the os-
cillator under a nonstationary external perturbation. In this
simulation, an input signal with different frequencies and
amplitudes at different time instants is used. As it is shown, the
oscillator “learns” different frequencies of the input at different
time slices. This characteristic can be employed to perform
a time-frequency analysis of a nonstationary input signal by
using an array of oscillators operating at different “time zones”
(equivalent to the Wavelet transform). Also note that when the
input signal is withdrawn, the oscillator keeps oscillating with
the latest frequency it encountered in the input signal, thereby
“memorizing” it.

To demonstrate the behavior of our proposed oscillator in sep-
arating different frequency components present in a particular
signal, we have used an input signal composed of three frequen-
cies, viz. 50, 30, and 10 Hz, each of the components having dif-
ferent amplitudes. We employed identical oscillators with dif-
ferent initial state values of wg. The result is shown in Fig. 9. In
this case, each of these oscillators converges to its nearest fre-
quency value and keeps oscillating at that frequency when the
input signal is withdrawn. It is to be noted that for each of the
oscillators, the choice of initial value of w impacts significantly
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Fig. 9. Array of similar oscillators with different initial values. Each oscil-
lator converges to a frequency components of the I(t) depending on its initial
w, I(t) = 12sin(50t) 4+ 27 sin(30¢) + 5sin(10t).

on the time of frequency convergence which is also shown in
Fig. 9.. Fig. 9 also confirms that each value of wy inherently has
a “band” of frequencies to which the oscillator can converge (as
discussed in [20]). However, given a particular application one
needs to find an optimal value of wy for each of the oscillators
so that the time to converge to the required frequency satisfies
the application constraint.

After frequency convergence of the oscillators, the slope of
the variable V4 in (21) represents the relative amplitude of the
adapted frequency component. Fig. 10 shows the simulation re-
sults of A for monotone signals with the same frequency (5 Hz)
but with different amplitudes. It can be seen that the slopes of
the graphs, after the oscillator converge to the input frequency
are proportional to the amplitude of the input, as has been dis-
cussed in Section III-A, and thus actually corresponds to the
relative amplitude of the input frequency component.

B L L L L L L L LB BB

14.0

16.0 30.0

Time (s)

18.0 20.0 220 240 26.0 28.0

1(t) = Asin(wt)
o =27x10Hz

0
Oscillators’ Convergences
0 50 100 150 200 250 300 350 400 450 500
Time (s)

Fig. 10. A slopes for different amplitude inputs after frequency convergence
of the oscillator.

IV. CIRCUIT REALIZATION

A. Equivalent Circuit Realization

From Section III-A and the equations therein [(21)], it is evi-
dent that there is a self-limitation mechanism which restricts the
energy of the system (or the amplitude of the oscillation) to grow
beyond a certain level dictated by the value of p. This feature,
which is consistent with (3), is obeyed by a conventional oscil-
lator intrinsically since its oscillation amplitude is restricted in
practice by the supply voltage. Taking this fact into account, the
first two equations of (21) can be rewritten as follows:

Vel + 1V, I))Sgn( o) T woVy +VauVy
(IVa| + [Vy 1)) sgn(Vy) — woVe =Vau Ve

v
Conventional Oscillator

Vy=(n— (22)
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Conventional oscillator

Frequency adaptation Amplitude Extraction Circuit

(a) (b)

Fig. 11. Equivalent circuit of the oscillator. (a) Oscillator and (b) amplitude
extraction.

where the first part of the equation would be considered as a
conventional oscillator with the intrinsic frequency wg and the
second part represents the frequency variation Aw, which is
governed by the VA, adaptation equation in (21). Depending
on the circuit design parameters, Va,, varies in the range of
Vinin € Vaw < Vinaz, which corresponds to the variation of
oscillation frequency in the range of wyin < Wose < Wax, 1N
other words

Aw = Wmax — Wmin (23)
A simple implementation of such an oscillator can be a ring
oscillator with controllable loop delay [25].

Accordingly, one may represent (22) in the form of an equiv-
alent circuit as shown in Fig. 11(a), where the associated param-
eters are already defined in (21). The equivalent circuit consists
of a number of controlled current sources and a multiplier and
two adders. The important point is that the learning function can
be directly represented by a full-wave rectifier only, which is ex-
tremely simple to realize in practice. To compute the amplitude
of the adapted frequency component, as mentioned earlier, one
needs an integrator with a controlled current source. This cur-
rent is generated by multiplying the value of V,, with the input.
However, as mentioned in the previous section, the integration
operation needs to be stopped as soon as the oscillator converges
to the target frequency. This is shown in Fig. 11(b), where AT
represents the integration time.

B. Physical Circuit Realization

The block diagram of the circuit implementation of the pro-
posed adaptive oscillator following the equivalent circuit de-
picted in Fig. 11 is shown in Fig. 12, where the main compo-
nents consist of two analogue multipliers, a state voltage where
we are holding the value of w and a frequency variable oscil-
lator. The analogue multipliers allow the arithmetic combina-
tion of the input signal V;,, and the feedback signal V), in order
to obtain the amplitude of the input voltage V;,, and to establish
the value of w as explained in Sections III-E and III-F. The state
variables V,, and V,;, of Fig. 12, are represented as the voltages at
the internal nodes of the tunable oscillator whereas the coupling
constant K is represented as a gain factor in the multiplier block.
Similarly K 4 is implicitly reflected in the amplitude evaluation
block of Fig. 12 and here considered to be 1.
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Fig. 12. Block diagram of the oscillator. (a) Block diagram implementation
of the equivalent circuit of Fig. 11. (b) Implementation based on conventional
oscillator.

Fig. 13(a) and (b) shows a transistor-level circuit implemen-
tation of the proposed adaptive oscillator and the amplitude ex-
traction circuitry which directly follows from its block diagram
in Fig. 12. The circuit is designed using 120 nm technology with
a dual ended supply of £0.6 V and threshold voltage ~230 mV.

Overall, the circuit can be divided into two major parts. The
first part does the frequency adaptation of the incoming signal;
while the second part calculates the amplitude of the input fre-
quency component. The former, itself is divided into five sub-
circuits, as shown in Fig. 13: a multiplier core, a current sub-
tracting circuit, a current-to-voltage converter, a state voltage
(where we calculate the value of w), and a tuneable oscillator.
The multiplier core, the current subtracting circuit and the cur-
rent-to-voltage converter together make the multiplier block as
shown in Fig. 13. The circuit used for extracting the amplitude
of the input signal also consists of a multiplier core, a current
subtracting circuit and a current-to-voltage converter.

The multiplier core (transistors M1-M11 in Fig. 13) is based
on the CMOS Gilbert cell [26], where all the transistors operate
in the saturation region. The current subtracting circuit is given
by transistors M12-M17. These perform subtraction of the cur-
rents flowing at the source nodes of the transistors M1 and M2
respectively. The current to voltage converter is a basic 2-stage
operational amplifier set as a current to voltage converter by
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Fig. 13. Transistor level implementation of the system using traditional circuit elements. (a) Adaptive oscillator. (b) Amplitude measurement.

transistors M18-M28. Furthermore, we can adjust the resistor
R1 of the current-to-voltage converter in order to increase the
gain K (K = 1). The w state, which is corresponding with the
input frequency of the signal, is given by the transistor M29
(W = 0.15 pgm, L, = 0.12 pm) set as a resistor with voltage
bias equal to —200 mV and capacitor C2 (5 pF). The RC com-
bination of transistor M29 and the capacitor C2 creates a delay
in the feedback loop which allows adaptation of the frequency
in the range of 7-45 MHz. Therefore, different bandwidths can
be chosen depending on the application by changing either the
dimensions of M29, the bias voltage or the value of the capac-
itor C2.

As discussed and shown in (22), in this implementation ap-
proach the amplitude limitation mechanism of the Hopf oscil-
lator is embedded in a tuneable oscillator. The tuneable oscil-
lator (transistors M29—M38 in Fig. 13) is based on a source
follower and a dual stage NMOS based operational amplifier
which allows high frequency bandwidth in the MHz range. The
role of the source follower is to transfer the voltage value of
w to the current source of the amplifier without influencing the
w state voltage explained before. Indeed, the voltage value of
w is used to increase or decrease the current given by the tran-
sistors M35-M36 and therefore to vary the frequency response
of this tuneable oscillator. The negative input of the amplifier
(M31-M38) is influenced by the input signal through the capac-
itor C4 (1 pF) and connected to its negative input at the gate of
transistor M33 while the positive input node is held to ground.
Note that in this circuit we use a very well-known configuration
for the tuneable oscillator as a standard controllable delay-line
oscillator. As mentioned earlier, any configuration for the core
oscillator is possible depending on the input frequency spec-
trum and the required performance criteria. The particular con-
figuration described here is only for the sake of an example. All
the transistor dimensions of the complete circuit are given in
Table II.

The circuit used to detect the amplitude of the incoming
signal uses the same subcircuits explained in this section above,
where the input Vj, of the multiplier core is connected to the
input signal and the second input V,, of the multiplier core is
connected to the output of the tuneable oscillator as described
by (21), capturing the amplitude of the signal.

TABLE II
TRANSISTOR DIMENSIONS USED FOR THE CIRCUIT LEVEL IMPLEMENTATION

Transistor [ WL | W (um) [[ Transistor [| WL [ W (um)
MI1-M2 8.3 1.0 M27 1.58 0.19
M3-M6 33.0 4.0 M28 16.67 2.0
M7-M8 4.2 0.5 M29 1.25 0.15
M9-M11 3.75 0.45 M30 166.67 | 20.0
M12-M15 1.25 0.15 M31 4.2 0.5
M16-M17 1.25 0.15 M32-M33 8.3 1.0
M18-M19 1.25 0.15 M34-M35 3.25 0.39
M20-M21 333.33 | 40.0 M36 1.25 0.15
M22-M23 5.42 0.65 M37 5.0 0.6
M24-M25 4.2 0.5 M38 166.67 | 20.0
M26 1250 150 M39 20.0 2.4

V. SIMULATION RESULTS

A full set of simulations was performed to evaluate the cir-
cuit performance by Cadence Spectre as presented in the fol-
lowing subsections. In all these simulations, according to (21)
the y-axes are the value of the state variable representing the fre-
quency in volts.

A. Adaptation to Monotone and Multiple-Frequency Signals

Fig. 14 shows response of the circuit to a monotone sinusoidal
input. It can be observed that the circuit level behavior of the os-
cillator is consistent with the system level simulation (shown in
Fig. 7). As discussed before, there is a frequency basin corre-
sponding to the value of the intrinsic frequency of each oscil-
lator which indicates the range of the frequencies that can be
adapted by the oscillator. In this particular case the frequency
basin ranges from 7 to 45 MHz. However it can be seen from
Fig. 14 that mapping of the detected frequencies to this range
is not linear. This nonlinearity is quite prominent at the lower
and upper ends of the frequency basin while maintaining linear
mapping around the middle range. On the contrary, the system
level simulation in Fig. 7 showed that a linear mapping relation-
ship exists throughout the range of frequency basin. This non-
linear mapping effect is attributed to the saturation effect of the
transistor components and its subsequent effect on the oscillator
behavior and its controlling mechanism close to the boundaries
of the frequency basin.
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Fig. 16. Behavior of the oscillator under nonstationary monotone.

Simulation results for a multifrequency input signal are pre-
sented in Fig. 15, which shows that after a certain learning time
the oscillator adapts to the input frequency component having
the largest amplitude. In both results of Figs. 14 and 15, there
exists a small ripple about the converged frequency value in the

steady state. According to the results of our simulations, am-
plitude of this ripple is directly related to the amplitude of the
frequency components in the input. Referring to the oscillator
equation (see (17) for instance) the input signal is directly added
to the = equation and it is expected in the output oscillation.

B. Nonstationary Signals

The response of the oscillator to a nonstationary input is de-
picted in Fig. 16, where the input signal is composed of different
frequencies at different times instants. As can be observed, the
oscillator adapts its frequency to the new input frequency in each
period of time. The time required to adapt to a new frequency
(“learning time”) depends strongly on the difference between
the already adapted frequency and the frequency to be adapted
and thus may be different in different time instants. However
the result is consistent with the system level simulation and is
as expected from the mathematical property of the adaptive os-
cillator. It is to be noted that unlike system-level simulations,
the learning times at the circuit level are very short and even
negligible in most of the cases.

The frequency adaptation characteristic of the proposed adap-
tive oscillator is further studied using a real-life EMG signal
captured from human subject. The result is shown in Fig. 17
where the captured EMG signal is shown at the upper left side
of Fig. 17. The frequency content of the EMG signal is analyzed
by performing 256-point FFT in Matlab as shown on the upper
right side of Fig. 17. It is evident from the Fourier spectrum
that the dominant frequency component present in this case is
40 Hz. In this simulation, we have employed only one low fre-
quency oscillator and thereby expect it to get tuned with this
dominant frequency component only. The frequency adaptation
characteristic of the proposed circuit is shown in the lower part
of Fig. 17. It is clearly evident that the behavior of the oscillator
is exactly as expected.

C. Amplitude Detection

The simulation characteristic of the proposed adaptive
oscillator for detecting amplitudes of different frequency com-
ponents is shown in Fig. 18. In this simulation, several inputs
with different amplitude and same frequencies are applied
to the circuit. It is clearly evident from Fig. 18 that there
exists a one-to-one relationship of the amplitude of the applied
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Fig. 17. Oscillator response to an EMG signal.

frequency components and the corresponding output voltage.
However, as in the case of frequency adaptation, there exists
some nonlinearity in this relationship around the edge of the
frequency basin.

VI. GENERAL DISCUSSION AND OPEN QUESTIONS

Although our design methodology for VLSI realizable Hopf
oscillator with dynamic plasticity and corresponding simulation
results show good promise for applying such system in signal
processing, there are issues which require more investigation in
future studies. First of all, as it is attainable from the simula-
tions results, in real-life circuit, the oscillator maps frequency
and amplitude values to the voltage space nonlinearly in con-
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trast to the system level behavior. This nonlinearity is more ob-
servable when the input frequency is closer to the edge of the
frequency basin which we believe is the result of nonlinear be-
havior of the tuneable oscillator at the boundaries of the fre-
quency basin. This issue and its relationship with the frequency
resolution of the oscillator need more investigation in future.
Secondly, the ripple values of the frequency state after conver-
gence and its relationship with the input perturbation ampli-
tude and frequency is another matter of concern. Overall, the
ripple value is directly dependent on the perturbation ampli-
tude but this dependency needs to be formulated, in terms of
the frequency spectrum, using different types of inputs. Thirdly,
at present, the proposed oscillator is only capable of adapting
its frequency to the dominant frequency component in the fre-
quency spectrum of the input signal. A suitable method needs
to be formulated for adapting its frequency to any arbitrary fre-
quency components of the input spectrum as long as they fall
within its frequency basin. This particular problem leads to the
fourth open question—the resolution of the oscillator given a

Fig. 18. Simulated characteristics of amplitude detection circuit.

particular intrinsic frequency and also quantification of learning
time of the oscillator. Another important question is how to re-
alize an equivalent digital implementation of the proposed os-
cillator and by doing this whether there exists any advantage in
terms of silicon area and power consumption compared to the
analog counterpart. Currently these open questions are under
investigation and will be addressed in our future works. These
investigations are particularly important from the viewpoint of
deploying a population of such adaptive oscillators in hardware
for general purpose signal analysis at the cost of very small sil-
icon area and power dissipation.

VII. CONCLUSION

In this paper, we present a new VLSI realizable nonlinear
Hopf oscillator with dynamic plasticity using the analog design
approach for the first time. The proposed oscillator shows the
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enhanced frequency basin compared to the theoretical ones ex-
isting in literature. Our results show that this oscillator learns the
frequency of the input signal and also does so in a shorter time.
The circuit simulation results show consistency with the math-
ematical model. In addition, the method and subsequent circuit
proposed for amplitude extraction of the frequency components
implies that it is possible to employ the proposed oscillator for
performing a wide range of signal processing tasks on real-life
hardware. But there are several open questions which are cur-
rently under investigation. However, despite all these open ques-
tions, due to its compact analog implementation the oscillator
shows an immense potential to be used in analog frequency
analysis method and thereby paving its way to realize a unified
analog Fourier and Wavelet transform processor.
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