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Abstract—We report for the first time a CMOS-compatible
silicidation technology for surround-gate vertical MOSFETs. The
technology uses a double spacer comprising a polysilicon spacer
for the surround gate and a nitride spacer for silicidation and
is successfully integrated with a Fillet Local OXidation (FILOX)
process, which thereby delivers low overlap capacitance and high-
drive-current vertical devices. Silicided 80-nm vertical n-channel
devices fabricated using 0.5-μm lithography are compared with
nonsilicided devices. A source–drain (S/D) activation anneal of
30 s at 1100 ◦C is shown to deliver a channel length of 80 nm,
and the silicidation gives a 60% improvement in drive current in
comparison with nonsilicided devices. The silicided devices exhibit
a subthreshold slope (S) of 87 mV/dec and a drain-induced barrier
lowering (DIBL) of 80 mV/V, compared with 86 mV/dec and
60 mV/V for nonsilicided devices. S-parameter measurements on
the 80-nm vertical nMOS devices give an fT of 20 GHz, which
is approximately two times higher than expected for comparable
lateral MOSFETs fabricated using the same 0.5-μm lithography.
Issues associated with silicidation down the pillar sidewall are
investigated by reducing the activation anneal time to bring the
silicided region closer to the p-n junction at the top of the pil-
lar. In this situation, nonlinear transistor turn-on is observed in
drain-on-top operation and dramatically degraded drive current
in source-on-top operation. This behavior is interpreted using
mixed-mode simulations, which show that a Schottky contact is
formed around the perimeter of the pillar when the silicided
contact penetrates too close to the top S/D junction down the side
of the pillar.

Index Terms—Fillet Local OXidation (FILOX), interface states,
silicidation, vertical MOSFETs (v-MOSFETs).

I. INTRODUCTION

THIN-PILLAR fully depleted surround-gate vertical
MOSFETs (v-MOSFETs) are being researched as

candidates for end-of-roadmap CMOS technology [1]–[4].
The advantages of these devices stem from their excellent
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electrostatic control, the resulting short-channel effect (SCE)
immunity, and high drive current. Better SCE immunity
also allows the use of low-doped/undoped channels, which
improves carrier transport properties (mobility) and reduces
dopant fluctuation problems. Scaling the pillar thickness in
the fully depleted regime has been shown to deliver excellent
subthreshold and drain-induced barrier lowering (DIBL)
characteristics, although the expected improvement in drive
current has only been demonstrated for pillar diameters
of less than 20 nm, where a very strong volume inversion
exists in the channel [1], [2]. However, these devices usually
require aggressive electron beam lithography and/or complex
processing [1]–[4], and so far, no silicidation technology has
been reported for these devices.

Thick-pillar surround-gate v-MOSFETs are also of inter-
est [5]–[17] because they can easily be integrated into a
mature CMOS technology to provide a low-cost route to
radio-frequency (RF) transistors. Thick-pillar surround-gate
v-MOSFETs have several obvious advantages over planar
MOSFETs. First, surround-gate structures allow more chan-
nel width and drive current per unit silicon area. Second,
the channel length is controlled by nonlithographic methods,
allowing the devices with sub-100-nm channel length to be
realized without any advanced lithography. Hence, the ad-
vantages of short-channel transistors can be enjoyed with-
out costly processing. Third, co-integration of surround-gate
v-MOSFETs and conventional planar MOSFETs can easily be
achieved due to the bulk silicon starting material. However,
v-MOSFETs have several important disadvantages, i.e., high
overlap capacitance, dry etch damage on the pillar sidewall,
and lack of an appropriate silicidation technology. The problem
of overlap capacitance has been addressed using Fillet Local
OXidation (FILOX) [15], [16]. In this process, a thicker oxide
is grown at the bottom and top of the active pillar using nitride
spacer to suppress oxidation on the pillar sidewall. The thick
FILOX oxide reduces the overlap capacitance between the gate
and the source/drain (S/D) electrodes. Dry etch damage occurs
during pillar dry etch and polysilicon gate etch, and degrades
the subthreshold slope. Damage occurring during pillar dry etch
can be eliminated by sacrificial oxidation, and we have recently
shown how the device architecture and the FILOX process
[15] can be optimized to eliminate dry etch damage during
silicon gate etch and deliver excellent values of subthreshold
slope [18], [19]. However, to date, there have been no reports
in the literature on silicidation technologies for surround-gate
v-MOSFETs. Self-aligned silicidation is one of the key features
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of advanced MOSFETs, which reduces S/D series resistances
and increases the drive current, and hence is essential for RF
applications.

We recently reported preliminary results on silicided
v-MOSFETs [20] and showed that a subthreshold slope degra-
dation and drive current asymmetry in silicided devices could
be eliminated by using a frame-gate architecture [18]. In this
approach, a frame of polysilicon is incorporated around the
perimeter of the pillar, which unfortunately has the disad-
vantage of increasing the overlap capacitance. In this paper,
we show that excellent values of subthreshold slope can be
achieved in silicided devices without resorting to a frame gate.
A double spacer is implemented, comprising a polysilicon
spacer for the surround gate and a nitride spacer for the silici-
dation, and excellent values of subthreshold slope are achieved
by optimizing the FILOX process and S/D anneal. The silicided
80-nm n-channel devices deliver a 60% improvement in drive
current in comparison to nonsilicided devices, an excellent
subthreshold slope of 87 mV/dec, and a DIBL of 80 mV/V. The
RF performance of the v-MOSFETs is characterized, and issues
with the silicidation down the pillar sidewall are investigated.

II. EXPERIMENTAL PROCEDURE

A mature 0.5-μm CMOS technology was used to fabricate
v-MOSFETs. Boron-doped (0.75–1.25 Ω · cm) (100) wafers
were taken as the starting material, and a p-type body was
formed by boron implantation (2 × 1014/cm2, 100 keV, 7◦

tilt) and high-temperature drive-in. Transistors with different
channel lengths were then produced by varying the Si pillar
dry etch, with pillar heights varying from 300 to 450 nm.
A sacrificial oxidation was performed to eliminate dry etch
damage and reduce the surface roughness on the pillar sidewall.
After stripping of this oxide, a 10-nm stress relief oxide was
thermally grown at 900 ◦C. For the FILOX process [15], a
90-nm silicon nitride was deposited at 720 ◦C and anisotrop-
ically etched to create a nitride spacer; subsequently, a 60-nm
FILOX oxide layer was thermally grown at 1100 ◦C [Fig. 1(a)].

The source and drain were then implanted using a single
3 × 1015 cm−2 110-keV As implant at 7◦ tilt, and the ni-
tride fillet and pad oxide were subsequently removed by wet
etch. A 2.8-nm gate oxide was then grown at 700 ◦C, and a
230-nm in situ phosphorous-doped (1 × 1020/cm3) polysilicon
gate was deposited and patterned by dry etch to create a
surround gate. A rapid thermal annealing (RTA) at 1100 ◦C
for 10 or 30 s was then performed for dopant activation, which
resulted in different junction depths and, hence, different chan-
nel lengths for the same pillar height. In the silicided wafers,
the underlying FILOX oxide was also removed by dry etch just
after the gate etch. A 20-nm oxide layer and an 80-nm nitride
layer were then deposited, and subsequently, the nitride layer
was dry etched to leave nitride spacers over the polysilicon fillet
around the pillar sidewall [Fig. 1(b)].

After a brief hydrofluoric acid (HF) dip etch, a 20-nm Ni
layer was deposited by e-beam evaporation. A silicide layer
was formed by annealing for 30 s at 450 ◦C, and unreacted
Ni was removed using a piranha solution. In this way, the
S/D regions and the horizontal portions of the polysilicon gate

Fig. 1. Schematic process flow for silicidation of surround-gate v-MOSFETs.
(a) FILOX process [15], [16]. (b) Nitride spacer process for silicidation.
(c) Silicided v-MOSFETs.

were silicided [Fig. 1(c)]. A 300-nm LTO layer was used as a
passivation layer, and contacts and metal were defined.

The gate oxide thickness was measured from the second
derivative of the high-frequency capacitance/voltage charac-
teristic [21], and a value of 2.8 nm was obtained. The body
doping was also extracted from this measurement, and a value
of 1 × 1018/cm3 was obtained. A similar method was used to
measure the FILOX oxide thickness at the end of the process,
and a value in the range of 35–40 nm was obtained. S/D
sheet resistances were measured from Van der Pauw structures;
values of 32 and 42 Ω/sq were obtained for 30- and 10-s
anneals in nonsilicided wafers, and 7 Ω/sq were obtained in
silicided wafers. The channel length L was obtained from mea-
surements of the pillar heights using cross-sectional scanning
electron microscope (SEM) and measurements of the junction
depths by stain etching in a HF : HNO3 : CH3COOH, 1:3:8
for 5–10 s [22]. For a 10-s RTA at 1100 ◦C, channel lengths
of 120, 170, and 220 nm were obtained for pillar heights
of 350, 400, and 450 nm, respectively. For a 30-s RTA at
1100 ◦C, a channel length of 80 nm was obtained. We also
extracted the channel length by gate-channel capacitance CGC

measurements [23] and the drain conductance method [24]. The
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Fig. 2. SEM cross section of the v-MOSFET process (a) directly after the
FILOX [15], [16] oxidation and (b) after the nitride spacer process prior to
silicidation.

extracted channel lengths by these measurements were in good
agreement with the preceding results. Both dc and ac transistor
characterizations were performed from on-wafer measurements
using a Cascade semiautomatic Summit 12000B-AP probe
station. DC measurements were performed using an Agilent
B1500A semiconductor device analyzer, and ac electrical data
was acquired from S-parameter measurements using an Agilent
8361A microwave vector network analyzer. The parasitics were
de-embedded from the S-parameter measurements using open,
short, load, and through structures.

III. RESULTS

A. Process Characterization

A SEM cross section of the transistor immediately after
the FILOX process is shown in Fig. 2(a). The figure clearly
shows the 70-nm nitride spacer and the presence of the FILOX
oxide at the top and bottom of the pillar. The thickness of the
FILOX oxide is 60 nm, in agreement with expectations. Oxide
encroachment of 75 nm can be seen at the pillar top, but there
is no such encroachment at the pillar bottom. Fig. 2(b) shows a
SEM micrograph after the formation of the nitride spacer on the
polysilicon surround gate ready for silicidation. The successful
processing of the nitride spacer on the polysilicon gate can
be clearly seen. The nitride spacer and polysilicon gate have
thicknesses of 70 and 200 nm, respectively, at the pillar bottom.

Fig. 3(a) shows a SEM cross section of a 120-nm v-MOSFET
after silicide formation. A 45-nm-thick continuous silicide layer
can be easily seen at the pillar top and bottom. The silicided
surface is rather rough due to the polycrystalline grains formed
during the silicidation process. Furthermore, silicidation down
the pillar sidewall can be observed, which is found to be around

Fig. 3. SEM cross section of a 120-nm v-MOSFET after silicide formation
(a) without any etch and (b) after stain etching [22]. The outline of the sidewall
polysilicon fillet has been highlighted in (a) for clarity.

190 nm down from the pillar top. Fig. 3(b) shows the SEM cross
section at the same stage of the process but after a delineation
etch [22] that has been used to stain the p-n junction. The
silicided regions and the S/D junctions can be easily seen from
this image, although the nickel silicide has been etched by the
HF in the stain etch. The junction depth is around 200 nm,
and from the 190-nm extension of the silicide layer down the
pillar sidewall, which was measured from Fig. 3(a), the silicided
region extends to within 5–15 nm of the top p-n junction. At
the pillar bottom, the silicide layer is 250–270 nm away from
the bottom p-n junction in the horizontal direction. Similar
experiments on 80-nm v-MOSFETS gave a top p-n junction
depth of 240 nm and extension of the silicide layer to within
45–55 nm of the top p-n junction.

B. DC Electrical Characteristics

Fig. 4 shows typical output characteristics of 80-nm
v-MOSFETs for drain-on-top (DOT) and source-on-top (SOT)
modes of operation. Results are shown for (dashed line)
silicided and (solid line) nonsilicided v-MOSFETs. For the
DOT mode of operation, Fig. 4(a) shows a drive current of
400 μA/μm for silicided devices at a gate voltage overdrive
of 1 V and a VDS of 1.5 V, which compares with a value of
250 μA/μm for nonsilicided devices. The silicidation has
therefore delivered a 60% improvement in drive current for the
DOT mode of operation. Fig. 4(b) shows the equivalent results
for the SOT mode of operation, and drive currents of 385 and
255 μA/μm are obtained for silicided and nonsilicided devices,
respectively. For SOT operation, silicidation has delivered a
51% improvement in drive current. Measurements were made
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Fig. 4. Output characteristics of 80-nm v-MOSFETs annealed for 30 s at
1100 ◦C for (a) DOT and (b) SOT modes of operation. Results are shown for
(dashed line) silicided and (solid line) nonsilicided v-MOSFETs.

Fig. 5. Drive current (i.e., for a gate voltage overdrive of 1 V and a VDS of
1.5 V) of 80-nm surround-gate v-MOSFETs for different drawn channel widths.
Results are shown for silicided and nonsilicided v-MOSFETs and for DOT and
SOT modes of operation.

on v-MOSFETs with a variety of different channel widths, and
a similar behavior was observed (Fig. 5). For example, for
v-MOSFETs with a channel width of 21 μm, silicidation gave
65% and 51% improvements in the drive current for DOT and
SOT modes of operation, respectively. This result indicates that
the characteristics of these v-MOSFETs are rather symmetrical.

Fig. 6 shows the effects of silicidation on the subthreshold
characteristics of 80-nm v-MOSFETs. The silicided and non-
silicided devices exhibit almost identical values of subthreshold
slope, with values of 87 and 86 mV/dec, respectively. However,
there are small differences in the values of DIBL (80 and
60 mV/V) and threshold voltage (0.34 and 0.23 V) for sili-
cided and nonsilicided devices, respectively. Measurements on
120-nm v-MOSFETs (not shown) gave a smaller degradation of
the subthreshold slope after silicidation from 78 to 85 mV/dec.
The 120-nm v-MOSFETS also showed a 0.17-V increase in

Fig. 6. Subthreshold characteristics of 80-nm v-MOSFETs annealed for 30 s
at 1100 ◦C. Results are shown for silicided and nonsilicided v-MOSFETs.

the threshold voltage after silicidation. The OFF-state leakage
for both silicided and nonsilicided devices increases gradually
with increasing negative gate bias in Fig. 6 due to gate-induced
drain leakage and gate leakage. Measurements have shown that
the gate leakage originates from the bottom of the pillar and is
presumably due to the thinning of the gate oxide at the bottom
corner. We have seen much lower values of OFF-state leakage
in some of our FILOX v-MOSFETs [18], [19], indicating that
the leakage current can be significantly reduced by optimizing
the FILOX process. For example, a thinner nitride spacer will
allow the FILOX oxide to encroach further around the bottom
of the pillar, thereby thickening the oxide at the bottom corner.

To investigate the effects of silicidation down the pillar
sidewall, Fig. 7 shows the output characteristics of transistors
(120-nm channel length), which have been given a shorter
anneal of 10 s at 1100 ◦C. For DOT operation, Fig. 7(a) shows
drive currents for a gate voltage overdrive of 1 V and a VDS

of 1.5 V of 240 and 180 μA/μm for silicided and nonsili-
cided transistors, respectively, indicating a 30% improvement.
However, below VDS = 1 V, a nonlinear transistor turn-on can
be seen in the characteristic of the silicided device. For SOT
operation, Fig. 7(b) shows that the silicided transistors surpris-
ingly have a much lower drive current than the nonsilicided
transistors, with values of 55 and 170 μA/μm, respectively.

C. AC Electrical Characteristics

Fig. 8 shows the gate–S/D capacitances CGS/D at the
pillar top and pillar bottom as a function of gate voltage.
Measurements were made on test structures with an array
of 500 transistors connected in parallel, and the parasitic
interconnect capacitances were decoupled by measurements on
dummy metal line structures. The measured capacitances in ac-
cumulation represent overlap capacitances, whereas measured
capacitances in inversion represent the sum of overlap and gate-
channel capacitances. It is observed that FILOX vertical tran-
sistors exhibit pillar top and pillar bottom overlap capacitances
CGS/D of 1.1 and 2.25 fF/μm, respectively. For a 0.5-μm tech-
nology node, planar MOSFETs have an overlap capacitance
around 1 fF/μm when estimated for a gate oxide thickness of
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Fig. 7. Output characteristics of 120-nm surround-gate v-MOSFETs annealed
for 10 s at 1100 ◦C for DOT and SOT modes of operation. Results are shown
for silicided and nonsilicided v-MOSFETs.

Fig. 8. Gate–S/D capacitances CGS/D at the pillar top and bottom as a
function of gate voltage for surround-gate FILOX v-MOSFETs. These devices
have a channel length of 80 nm and were annealed for 30 s at 1100 ◦C.

2.8 nm [25]. This indicates that FILOX v-MOSFETs exhibit
a similar value of overlap capacitance at the top of the pillar
to comparable planar MOSFETs. This is achieved by using a
thick FILOX oxide and a significant polysilicon fillet overetch
(∼170 nm from the pillar top as calculated from Fig. 3), thereby
reducing the overlap between the polysilicon gate and the top
p-n junction. However, the pillar bottom overlap capacitance
is twice that of a comparable 0.5-μm planar MOSFET. This is
due to the use of a thick polysilicon surround gate (∼200 nm)
that creates a large overlap at the pillar bottom. The pillar
bottom overlap capacitance can be easily optimized by
reducing the polysilicon gate thickness, increasing the FILOX
thickness, or reducing the FILOX nitride spacer thickness.

Fig. 9. Current gain as a function of frequency for surround-gate FILOX
v-MOSFETs with and without silicidation. The silicided v-MOSFETs have a
channel length of 80 nm, and the nonsilicided v-MOSFETs have a channel
length of 70 nm. The 20-dB/dec lines are shown for illustration. The devices
had a channel width of 30 μm, and the measurements were made at biases of
VGS = 0.75 V and VDS = 1 V.

Fig. 9 shows the current gain as a function of frequency
for silicided and nonsilicided v-MOSFETs. For the silicided
v-MOSFET, a cutoff frequency fT of around 20 GHz has been
achieved, which compares with a value of 14.6 GHz for the
nonsilicided v-MOSFET. This 6-GHz improvement in fT has
been achieved by reducing the S/D series resistances using the
aforementioned silicidation process. It should be noted that this
improvement in fT has been achieved, even though the silicided
v-MOSFET has a slightly longer measured channel length
(80 nm) than the nonsilicided v-MOSFET (70 nm).

IV. DISCUSSION

The preceding results have shown that a silicidation technol-
ogy has been successfully developed for 80-nm v-MOSFETs.
The silicidation gives a 60% improvement in drive current, and
the output characteristics are symmetrical in SOT and DOT
modes of operation. A drive current of 400 μA/μm has been
achieved, which is significantly higher than previous results
reported in the literature, as shown in Table I [5]. Further-
more, the AC results in Fig. 9 show that an fT of 20 GHz
has been achieved in the silicided 80-nm v-MOSFETs, which
represents an excellent outcome for a technology that only used
0.5-μm lithography. To investigate how this performance com-
pares with that achieved for conventional lateral MOSFETs
at the same 0.5-μm lithography node, Fig. 10 plots fT as
a function of technology node for a variety of conventional
planar RF technologies taken from [26]. It can be seen that our
80-nm silicided v-MOSFET delivers a significantly higher fT

than comparable planar MOSFET technologies implemented
using the same 0.5-μm lithography. We have also estimated the
peak transconductances GM of silicided devices from Fig. 6,
and these were found to be 1.4 × 10−3 and 1.2 × 10−2 A/V
for VDS = 0.05 and 1 V, respectively. These GM values are
noticeably better than those reported for planar MOSFETs with
comparable 0.5/0.7-μm channel lengths [27], [28] and better
than the 0.18-μm planar MOSFET reported in [29]. It can
therefore be concluded that v-MOSFETs offer a viable route
for improving the RF performance of mature lateral CMOS
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TABLE I
COMPARISON OF SILICIDED SURROUND-GATE v-MOSFETs FABRICATED IN THIS WORK WITH DEVICES REPORTED IN THE LITERATURE. THESE DATA

WERE TAKEN FROM [5] AND UPDATED WITH MORE RECENT RESULTS. THE VALUES OF Ion WERE CALCULATED FOR VDS = VDD AND FOR A 1-V
GATE OVERDRIVE. TO ENSURE A MEANINGFUL COMPARISON, FULLY DEPLETED THIN-PILLAR v-MOSFETs HAVE BEEN EXCLUDED FROM THE

TABLE, BECAUSE IMPROVED DRIVE WOULD BE EXPECTED FROM THESE DEVICES DUE TO THE VOLUME INVERSION FROM THE

ACTION OF THE DUAL OR SURROUND GATES

Fig. 10. Cut-off frequency fT as a function of technology node for the
silicided 80-nm surround-gate FILOX v-MOSFET and a variety of comparator
technologies taken from [26].

technologies at the cost of only one additional mask for pillar
dry etch.

The results in Fig. 7 show a dramatic degradation in the dc
performance of the silicided v-MOSFETs when the anneal time
is reduced to bring the silicided region closer to the top S/D
junction. As previously discussed, the 30-s anneal used for the
80-nm v-MOSFETs locates the silicide layer 45–55 nm from
the top S/D junction, whereas the 10-s anneal used for the
120-nm v-MOSFETs reduces this distance to 5–15 nm. SIMS
analysis on the v-MOSFET with a 10-s anneal gave a dop-
ing concentration of 4 × 1020/cm3 near the pillar top, which
dropped to around 1 × 1018/cm3 at the edge of the silicide.
NiSi work functions (WFs) are known to vary with doping, and

in heavily doped silicon, silicidation-induced submonolayer
segregation of dopants causes a change in the apparent WF [27].
In low-doped Si, NiSi has a WF of around 0.56–0.67 eV [30],
[31], whereas, in high-doped silicon, this reduces to a value of
around 0.31 eV [30]. This reasoning suggests that silicidation
could lead to the formation of a Schottky barrier on the pillar
sidewall close to the top S/D junction, which could explain
the nonlinear turn on and asymmetry observed in the output
characteristic of the silicided v-MOSFET in Fig. 7(a).

To confirm this hypothesis, ATLAS mixed-mode simula-
tions were performed, incorporating numerical models for a
Schottky diode and the v-MOSFET. In these simulations, the
drain–source current entering the top S/D from the channel sees
two conduction paths in parallel [inset in Fig. 11(a)]. One is
through the bulk junction and into the NiSi ohmic contact on
top of the pillar. The other is along the sidewall surface and into
the Schottky NiSi contact on the sidewall of the pillar. The total
drain–source current collected at the drain is therefore the sum
of these two currents. In simulations, the quantum mechanical
tunneling and the thermionic emission models were both turned
on. In order to reproduce the measured current drive, arbitrary
series resistors (not shown) were introduced into the Schottky
and the ohmic conduction paths, and the barrier height was set
to a value that reproduced the onset of turn-on in the measured
IDS–VDS characteristics.

The simulated output characteristics for both DOT and SOT
operations are shown in Fig. 11 for 2-V gate bias. In DOT
operation, at low values of VDS , the current along the pillar
sidewall is limited by the Schottky contact, and hence, the total
current is dominated by the path through the bulk junction
to the ohmic contact on top of the pillar. However, once the
Schottky diode turns on, the current along the pillar sidewall
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Fig. 11. Simulated output characteristics of the 120-nm silicided surround-
gate v-MOSFETs annealed for 10 s at 1100 ◦C. (a) DOT operation and
(b) SOT operation under a gate bias of 2 V. Results are shown for two current
paths through the device, a surface current through a peripheral Schottky
contact, and a bulk current to the top ohmic contact. The inset of (b) shows
the total current in DOT and SOT operation.

is significantly larger than that through the bulk junction and
therefore dominates the total current. In SOT operation, the
Schottky diode is reverse biased, so conduction along the pillar
surface is completely blocked and the total current is dominated
by conduction through the bulk junction. Hence, no nonlinear
turn-on is seen at low VDS , and the drive current is very low due
to a relatively larger resistance expected in the bulk junction
conduction path. The total drain–source current in DOT and
SOT operation is shown in the inset of Fig. 11(b), and it can
be seen that this characteristic successfully reproduces the main
features of the measured results in Fig. 7. This analysis confirms
that the observed nonlinear turn-on and asymmetrical drive
current seen in Fig. 7 are due to the close proximity of the
silicidation to the top S/D junction. To characterize the effect of
different anneal conditions on this behavior, we have simulated
different RTA times using the ATHENA process simulator
using measured SIMS profiles to calibrate the simulations.
These simulations show that the optimum RTA is around 22 s
at 1100 ◦C, which places the NiSi interface 35 nm from the
channel and gives a silicidation tip doping density of around
1019/cm3, which is sufficient for an ohmic contact.

Finally, we discuss the degradation of the subthreshold slope
from 78 to 85 mV/dec in the silicided 120-nm v-MOSFETs and
the general trends of threshold voltage shift and DIBL degra-
dation after silicidation. The small degradation in subthreshold
slope suggests the presence of interface states, presumably due
to the proximity of the silicided region to the top S/D junction.
To further investigate this possibility, we have estimated the
increase in the interface state density ΔNit and oxide charge
ΔNot after silicidation for 80- and 120-nm v-MOSFETs using

the change in subthreshold slope and shift of midgap voltage,
respectively, [32]. For 80- and 120-nm v-MOSFETs, the values
of ΔNit are found to be 6 × 1011/cm2 and 1.3 × 1012/cm2,
and the values of ΔNot are found to be 2 × 1011/cm2 and
1.9 × 1011/cm2, respectively. The twice higher ΔNit in the
120-nm v-MOSFET, compared with the 80-nm v-MOSFET,
clearly shows that the closer proximity of the silicidation region
to the top S/D junction favors the creation of interface states in
the channel. Furthermore, the positive shift of the subthreshold
plots in silicided devices indicates that these interface states are
acceptorlike, which also agrees with a study of Ni irradiation-
induced modifications of nMOSFETs done by Shinde et al.
[33]. A similar reasoning can be used to explain the DIBL
degradation after silicidation, as we have discussed in previous
work [19].

V. CONCLUSION

We have reported a CMOS-compatible silicidation tech-
nology for surround-gate v-MOSFETs, which is integrated
with a FILOX process, delivering low-overlap-capacitance and
high-drive-current vertical devices. Silicided 80-nm vertical n-
MOSFETs show an excellent drive current improvement in
comparison to nonsilicided devices, with improvements of 60%
and 51% for DOT and SOT operations, respectively. The sili-
cided devices also exhibit an excellent subthreshold slope of
87 mV/dec and a DIBL of 80 mV/V, compared with 86 mV/dec
and 60 mV/V for nonsilicided devices. The silicided 80-nm
v-MOSFETs have an fT of 20 GHz, which is approximately
twice the value expected for comparable planar MOSFETs fab-
ricated using the same 0.5-μm lithography. This result demon-
strates the promise of v-MOSFETs as a route for improving the
RF performance of mature CMOS technologies. We have also
investigated issues associated with silicidation down the pillar
sidewall by reducing the activation anneal time to bring the
silicided region closer to the p-n junction at the top of the pillar.
In this situation, nonlinear transistor turn-on is observed in
DOT operation and dramatically degraded drive current in SOT
operation. These results have been explained by the formation a
Schottky contact around the pillar perimeter when the silicided
region comes too close to the top S/D junction.
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