
The role of ontologies in creating &

maintaining corporate knowledge: a case

study from the aero industry

Derek Sleeman
1
, Suraj Ajit

1
, David W. Fowler

1
, & David Knott

2

1
Department of Computing Science, University of Aberdeen, Scotland, UK

Email: d.sleeman@abdn.ac.uk, surajajit@yahoo.com, davidfowler0@googlemail.com

2
Rolls Royce plc, Derby, UK

Email: david.knott@rolls-royce.com

Abstract. The Designers’ Workbench is a system, developed to support

designers in large organizations, such as Rolls-Royce, to ensure that the design

is consistent with the specification for the particular design as well as with the

company’s design rule book(s). The evolving design is described against a jet

engine ontology. Design rules are expressed as constraints over the domain

ontology. To capture the constraint information, a domain expert (design

engineer) has to work with a knowledge engineer to identify the constraints,

and it is then the task of the knowledge engineer to encode these into the

Workbench’s knowledge base. This is an error prone and time consuming task.

It is highly desirable to relieve the knowledge engineer of this task, and so we

have developed a tool, ConEditor+ that enables domain experts themselves to

capture and maintain these constraints. The tool allows the user to combine

selected entities from the domain ontology with keywords and operators of a

constraint language to form a constraint expression. In order to appropriately

 2

apply, maintain and reuse constraints, we believe that it is important to

understand the assumptions and context in which each constraint is applicable;

we refer to these as “application conditions”. We hypothesise that an explicit

representation of constraints together with the corresponding application

conditions and the appropriate domain ontology could be used by a system to

support the maintenance of constraints. In this paper, we focus on the important

role the domain ontology plays in supporting the maintenance of constraints.

1 Introduction

The context for the principal system reported here, ConEditor+ (Ajit, Sleeman,

Fowler, Knott, & Hui, 2005; Ajit, Sleeman, Fowler, Knott, & Hui, 2007), is the

Designers’ Workbench (Fowler, Sleeman, Wills, Lyon, & Knott, 2004) that has been

developed to enable a group of designers to produce cooperatively a component that

conforms to the component’s overall specifications and the company’s design rule

book(s). One can view the design rule book(s) as an important repository of corporate

knowledge, in a company whose expertise is principally in the design and maintenance

of aero-engines. Moreover, we argue that the Designers’ Workbench is an interactive

environment in which this corporate knowledge is applied; further, ConEditor+ allows

engineers to capture and maintain (verify and refine) these constraints. Further, as we

shall demonstrate, an ontology for describing jet engines has a central role in these

systems.

Engineering Design is constraint-oriented and much of the design process

involves the recognition, formulation and satisfaction of constraints (Gross, Ervin,

Anderson, & Fleisher, 1987; Lin & Chen, 2002; Serrano & Gossard, 1992; Ullman,

2003). The engineering design process has an evolutionary and iterative nature as

designed artifacts often develop through a series of changes before a final solution is

 3

achieved. A common problem encountered during the design process is that of

knowledge (e.g. constraint) evolution, which may involve the identification of new

constraints or the modification or deletion of existing constraints. The reasons for such

changes include development in the technology, changes to improve performance,

changes to reduce development time and costs. Typically, maintenance involves

various issues/problems:

• Original experts are unlikely to be available: The transient nature of modern

organizations and workforces, the rapid flow of knowledge and experience out

of companies due to staff leaving make it difficult for new designers to properly

use stored design knowledge and subsequently to maintain it.

• Insufficient documentation provided: Several constraints may be applicable

only in particular contexts. These contexts are often implicit to the designer

formulating them but are not documented. In addition, many constraints are

based on assumptions that have become false subsequently. These assumptions

are often not made explicit.

• Maintenance is time consuming and complex: Maintenance of constraints in an

engineering design environment is a complicated process that can be

complicated and time consuming to perform manually. Thus, there is a pressing

need for tools to support maintenance of this kind of knowledge.

• The evolutionary nature of constraints establishes the need to constantly update,

revise, and maintain them. One needs to identify all the constraints that require

modification. In addition, one needs to make sure that the knowledge base is

consistent after making any changes.

The issues faced in Knowledge Base (KB) maintenance within engineering were

first raised by the XCON configuration system at Digital Equipment Corporation

 4

(Barker & O'Connor, 1989; Soloway, Bachant, & Jensen, 1987). Initially it was

assumed that knowledge-based systems could be maintained by simply adding new

elements or replacing existing ones. However this “simplicity” proved to be illusory as

indicated by the experience of R1/XCON (Coenen, 1992).

1.1 Research Aims and Hypothesis

Enabling domain experts to maintain knowledge in a knowledge-based system has

long been an objective of the knowledge engineering community (Bultman, Kuipers, &

Harmelen, 2000). This paper identifies a situation where it is highly desirable to

eliminate the knowledge engineer from doing this laborious, error-prone and time-

consuming task. The paper reports on a system ConEditor+ that we have developed to

enable domain experts themselves to capture and maintain constraints. Further, we

hypothesize that it is important to capture the context in which a constraint is applicable

in a system interpretable format and that this information (referred to as application

conditions) together with the constraints and the domain ontology can be used by a

system to support the maintenance of constraints. For us, the maintenance of constraints

includes reducing the number of inconsistencies and also detecting redundancy,

subsumption and fusion between pairs of constraints. In particular, we aim to exploit

inferencing inherent in the domain ontology to support the maintenance of constraints.

The main research question we plan to address is:

Can an explicit representation of application conditions together with the constraints

and the domain ontology help a system: a) reduce the number of inconsistencies and b)

detect subsumption, redundancy, fusion and suggest appropriate refinements between

pairs of constraints?

 5

The rest of the paper is organized as follows: Section 2 provides an introduction to

the Designers’ Workbench, and the domain ontology used; Section 3 describes the

problem(s) faced in developing the knowledge base for the Workbench and the need for

ConEditor and ConEditor+. Section 4 gives a brief overview of ConEditor+. Section 5

then focuses on the maintenance aspects of constraints with a description of our

approach. Section 6 describes how we extended the jet engine ontology and then used

this in the refinement of constraints from that domain. Implementation of ConEditor+ is

discussed in Section 7. Evaluation undertaken is described in Section 8 and is followed

by discussion of related work in Section 9. Conclusions and plans for future work

follow in Section 10.

2 Introduction to the Designers’ Workbench

Designers in Rolls-Royce, as in many large organizations, work in teams. Thus it is

important when a group of designers are working on aspects of a common project, that

the subcomponent designed by one engineer is consistent with the overall specification,

and with those designed by other members of the team. Additionally, all designs have

to be consistent with the company’s design rule book(s). Making sure that these various

constraints are complied with is a complicated process, and so we have developed the

Designers’ Workbench, which seeks to support these activities.

The Designers’ Workbench (Fig. 1) uses an ontology (Gruber, 1995) to describe

elements in a configuration task. Design rules are expressed as constraints over the

ontology. The system supports human designers by checking that their configurations

satisfy both physical and organizational constraints. Configurations are composed of

features, which can be geometric or non-geometric, physical or abstract. When a new

design is input into the system an engineering drawing is provided as a graphical

 6

backcloth, and the various parts are annotated using the domain ontology. Fig.1 shows

the result of such an annotation exercise; the relevant ontology displayed in the top

right hand corner can be expanded to show sub-classes, properties, and relations. A

graphical interface enables the designer to add new features, set property values, and

perform constraint checks. If a constraint is violated, the affected features are

highlighted and a report is generated.

 INSERT FIGURE 1 HERE

 The report gives the designer a short description of the constraint that is

violated, the features affected by that violation, and a link to the source document. The

designer can often resolve the violations by adjusting the property values of the affected

features. On selecting a feature, the GUI displays a table of corresponding properties

and their values. These property values can then be adjusted, and this often resolves the

constraint violation(s). The ontology used by the Designers’ Workbench was created

using the Protégé editor (Noy, Fergerson, & Musen, 2000), and the class hierarchy is

shown in Fig. 2. The ontology is written in the Web Ontology Language (OWL)

(McGuinness & Harmelen, 2004), and has 42 classes and 45 properties (of which 22

are object properties and 23 are data-type properties). Most classes in the ontology

correspond to features, and the properties correspond to parameters that can be set to

instances of feature (data-type properties), or to connections to other features (object

properties).

INSERT FIGURE 2 HERE

Fig. 3 shows the properties of a class (DiametralRingSeal) selected from the

ontology. There are three datatype properties (in_static_joint, name, and

owner) and six object properties (has_ferrule, has_housing,

 7

has_coating, has_material, has_sealing_ring, and

operating_temperature) that link to other entities in the design. Furthermore,

two of the properties (has_ferrule and has_housing) are only defined for the

class DiametralRingSeal, whereas the others are defined for classes that are

ancestors of the class, and are inherited (as shown by the brackets around the

rectangular icons in the screenshot).

INSERT FIGURE 3 HERE

 In the Designers' Workbench, the designer can select a feature class from the

ontology and create an instance of that class. The values of the properties of a typical

instance of the class DiametralRingSeal are shown in Fig. 4. In the Designers’

Workbench, property values are set by either typing values into a text box (for datatype

properties), or by selecting an instance from a drop down menu (for object properties);

also values can be left uninstantiated. This enables the designer to fill in the values that

are known, and to check constraints, in an incremental way.

INSERT FIGURE 4 HERE

Example constraints defined over the ontology include:

• The value of the maximum operating temperature of the material of each

concrete feature must be greater than the prevailing environmental temperature;

• The length of the bolt in a bolted joint must exceed the sum of the thicknesses

of the clamped parts, plus the height of the nut. For simplicity, issues such as

tolerances of dimensions have been ignored although these can be dealt with,

for example by defining a Measurement class (as subclass of AbstractFeature),

with properties dimension and tolerance.

 8

The first constraint above will apply to all concrete features that have a ‘has_material’

property and an ‘environmental_temperature’ property defined. The second constraint

above is more complicated, and applies to all bolts, nuts, and clamped parts that are

parts of bolted joints. Constraints are handled in a two stage process:

• Identify feature values that should be constrained;

• Formulate a tuple(s) of values for each set of feature values, and check that the

constraint is satisfied by these values.

The constraint processing uses SPARQL Query Language (Prud'hommeaux &

Seaborne, 2007) to find the constrained features and values. After using SPARQL to

extract the constrained values, SICStus1 Prolog is used to check that the constraints

hold. The SPARQL query that locates features affected by the material temperature

constraint is:

SELECT ?arg1,?arg2 WHERE

(?feature,<dwOnto:has_material>,?mat),

(?mat,<dwOnto:max_operating_temp>,?arg1),

(?feature,<dwOnto:operating_temp>,?optemp),

(?optemp,<dwOnto:temperature>,?arg2)

USING dwOnto FOR <namespace>

2Swedish Institute of Computer Science, version 3.10, Accessed online 29 May 2008 at

 http://www.sics.se/sicstus/

 9

The values of the returned variables ?arg1 and ?arg2 are the material’s maximum

operating temperature, and the current operating temperature, respectively. The check

that the values must satisfy is represented by the Sicstus predicate

op_temp_limit(MaterialMaxTemp, EnvironTemp) :-

EnvironTemp =< MaterialMaxTemp.

Using the values of the variables ?arg1 and ?arg2, the predicate

op_temp_limit(MaterialMaxTemp, EnvironTemp) is formed, and checked.

This process is repeated for each set of values returned by the SPARQL query, and for

each constraint that has been specified.

INSERT FIGURE 5 HERE

3 Capturing the knowledge in the design rule books

As noted above, the Designers’ Workbench needs access to the various constraints,

including those inherent in the company’s design rule book(s). To capture this

information, a design engineer (domain expert) worked with a knowledge engineer to

identify the constraints, and it was then the task of the knowledge engineer to encode

these into the Workbench’s knowledge base. This was an error prone and time

consuming task. As constraints are explained succinctly in the design rule book(s), a

non-expert often finds it very difficult to understand the context and formulate

constraints directly from the design rule book(s), and so a design engineer has to help

the knowledge engineer in this process. An example of a constraint as expressed in the

rule book(s) is shown in Fig. 5.

It would be useful if a new constraint could be formulated by an engineer in an

 10

intuitive way, by selecting classes and properties from the appropriate ontology, and

somehow combining them using a predefined set of operators. This would help

engineers to input the constraints themselves and relieve the programmer of that task.

This would also enable designers to have greater control over the definition and

refinement of constraints, and presumably, to have greater trust in the results of

constraint checks. This led initially to the development of a system, known as

ConEditor (Ajit, Sleeman, Fowler, & Knott, 2004), which enables a domain expert to

input and maintain constraints. ConEditor concentrated on the constraint capture and

provided basic maintenance facilities such as syntax error checking, allowing users to

read constraints from a file, edit the constraints and then write them to the same or a

new file. Following encouraging results from a preliminary evaluation undertaken at

Rolls-Royce, ConEditor was enhanced with additional features to support the

maintenance of constraints and became known as ConEditor+. The paper refers to the

latest version of the system, ConEditor+, throughout the paper. Details of the system

and its maintenance features are given in subsequent sections.

INSERT FIGURE 6 HERE

4 ConEditor+

ConEditor+ is a system that has been developed to enable domain experts to

capture and maintain constraints. ConEditor+’s graphical user interface (GUI) is shown

in Fig. 6. A constraint expression can be created by selecting entities from the

taxonomy (domain ontology) and combining them with a pre-defined set of keywords

and operators from the high level constraint language, CoLan (Bassiliades & Gray,

1995; Gray, Hui, & Preece, 2001). CoLan has features of both first-order logic and

functional programming, and was designed to enable scientists and engineers to express

 11

constraints in a computer environment themselves.

ConEditor+’s GUI essentially consists of six components, namely: (A) Keywords

Panel, (B) Menu Bar, (C) Functions Panel, (D) Taxonomy / Ontology Panel, (E) Tool

Bar and (F) Result Panel (see Fig. 6). The user can then select the appropriate entities

with the mouse and so form a constraint expression. The taxonomy in the top right hand

window (displayed again separately in

Fig. 7) shows that the class under discussion is ConcreteFeature, and the

class ConcreteFeature contains the various properties has_coating,

has_lubricant, has material, etc. Each property has a range class which, in

turn, consists of more properties (e.g., has_material is a property that has the range

class Material; further the class Material has properties density,

max_operating_temp, etc.). The Taxonomy/Ontology Panel is used to select

entities from the domain ontology. More details about the GUI can be found in (Ajit,

2008). An analysis of the Rolls-Royce’s design rule book(s) showed that a number of

constraints are expressed in tables and so ConEditor+ provides a mechanism for

inputting tables. When a constraint is modified and saved, ConEditor+ stores the

modified constraint as a new version together with the original constraint. Storing all

the versions would enable designers to study the evolution of constraints. Each

constraint is allocated a unique identification number (ID) that includes its version

number. The system provides facilities to retrieve constraints using keyword-based

searches, e.g. search and retrieve all the constraints containing the specified keyword(s)

or find the constraint with the specified ID.

INSERT FIGURE 7 HERE

5 Maintenance of constraints

Due to restricted availability of Rolls-Royce designers’ time and for simplicity, we

 12

initially used a kite domain for our study (Eden, 1998; Streeter, 1980; Yolen, 1976) and

so developed an ontology for kite design. In order to explain the concept of application

condition, we consider the following constraint from the kite domain together with its

associated application condition:

Constraint – “The density of the cover material of the kite must be greater than 0.5

ounces per square inch.”

Application condition – “This is applicable only when there is a requirement to produce

low cost kites for beginners. Kites for experts use lighter materials that are of higher

quality and hence costlier.”

As shown in the example above the application condition specifies the context in

which the constraint is applicable. In order to tackle the various maintenance issues, our

approach has the following stages:

• Capture the “context” of a constraint, in a machine interpretable form, as an

application condition associated with the constraint.

• Use the application condition together with the constraint and the appropriate

domain ontology to support the maintenance of constraints

We have extended ConEditor+ so that the user (the domain expert) can associate an

application condition with each constraint. Often, such information is implicit to the

person who formulates the constraint. We believe that it is important to make the

application conditions explicit so that they can be used for both maintenance and reuse

of constraints. The assumptions on which a constraint is based may no longer be true

and in such cases, it becomes necessary to deactivate or remove those constraints from

the KB. Further, an application condition may not be relevant to a particular design

 13

task.

ConEditor+ captures both the constraints and the application conditions in the same

language, CoLan. Both are then converted into a standard machine interpretable format

known as Constraint Interchange Format (CIF) (Gray et al., 2001). We give below a

typical constraint and its application condition in CoLan:

constrain each k in Kite

such that has_type(k) = “Flat” and has_shape(k) = “Diamond”

to have tail_length(has_tail(k)) = 7 * spine_length(has_spine(k))

In the above constraint, the application condition (in italics) is introduced by the

clause “such that”. This constraint states that the length of a tail of a kite needs to be

seven times the length of the spine of the kite; however, this constraint is only

applicable to flat diamond-shaped kites.

In order to make it clear, we divide a constraint in CoLan into three parts namely

antecedent, application condition and consequent. Thus, the above constraint consists

of:

Antecedent: constrain each k in Kite

Application condition: such that has_type(k) = “Flat” and

 has_shape(k) = “Diamond”

Consequent: tail_length(has_tail(k)) = 7 *

 spine_length(has_spine(k))

 14

The clause “such that” is a part of CoLan language and it is used to express

conditional statements. We have currently made use of this clause to represent

application conditions. As part of the future work, we plan to change the naming

conventions used by the properties in the ontology and also extend the CoLan language

to include “when” instead of “such that” for enhanced readability. The above

constraint can then be expressed alternatively as follows:

constrain each k in Kite

to have tail_length_of(tail_of(k)) = 7 *

spine_length_of(spine_of(k))

when type_of(k) = “Flat” and shape_of(k) = “Diamond”

INSERT FIGURE 8 HERE

6 Extension of Jet Engine Ontology and Maintenance of a more Complex Set of

Constraints

After a successful application and evaluation of ConEditor+ in the domain of kite

design, we decided to apply our approach to part of the considerably more demanding

Rolls-Royce domain. As the initial Rolls-Royce KB (used by the Designers'

Workbench) only covered a small part of the engine, it was decided to review some

additional design rule books, and interviews were held with an appropriate domain

expert at Rolls-Royce. We then extended the jet engine ontology to incorporate the

additional concepts and properties obtained from these analyses.

Fig. 8 shows a screenshot of the extended jet engine ontology developed using

Protége. We then expressed all the constraints together with their application conditions

against the extended jet engine ontology. There are a number of ways in which we can

use the domain ontology together with the constraints and application conditions to

support the maintenance of constraints. Refinement of the constraint KB is described,

in some detail, below.

 15

6.1 Redundancy

 Redundancy occurs between constraints when all the components of a constraint

(antecedent, application condition and consequent) are equivalent to the corresponding

components of another constraint. Two types [(a) and (b)] of redundancy that make use

of inferences from the domain ontology are described as follows:

(a) Using Class Equivalence

 In OWL (Bechhofer et al., 2004), owl:equivalentProperty is a built-in

property that links a class description to another class description such that the two

class descriptions involved have the same class extension (i.e., both class extensions

contain exactly the same set of individuals). Consider constraints of the following form:

(i) constrain each c in C1

such that X

to have Y

(ii) constrain each c in C2

such that X

to have Y

In the constraints above, c is a variable, C1 and C2 are classes, X and Y are properties.

If C1 is an equivalent class (i.e. owl:equivalentClass) to C2 in the domain ontology,

one can infer that the constraint (i) is equivalent to constraint (ii). ConEditor+ notifies

the user (domain expert) of this fact and suggests that the user considers eliminating

this redundancy.

 16

(b) Using Property Equivalence

 In OWL (Bechhofer et al., 2004), owl:equivalentProperty is a built-in

property that is used to state that two properties have the same property extension (i.e.

both properties contain exactly the same set of values). Consider constraints of the

following form:

(iii) constrain each c in C

such that X1

to have Y

(iv) constrain each c in C

such that X2

to have Y

In the constraints above, c is a variable, C is a class, X1, X2 and Y are properties. If X1

is an equivalent property (i.e. owl:equivalentProperty) to X2 in the domain

ontology, one can infer that the constraint (iii) is equivalent to constraint (iv).

ConEditor+ notifies the user (domain expert) of this fact and suggests that the user

considers eliminating this redundancy.

6.2 Subsumption

 Subsumption occurs between a pair of constraints when one constraint “covers”

all the conditions of another constraint i.e. constraint A subsumes constraint B, if B is

 17

satisfied whenever A is satisfied. A type of subsumption that makes use of inferences

from the domain ontology is described as follows:

The rdfs:subClassOf construct is defined as part of Resource Description

Framework (RDF) Schema (Brickley & Guha, 2004). It is used in OWL and the

meaning is exactly the same, i.e., if the class description C1 is defined as a subclass of

class description C2, then the set of individuals in the class extension of C1 should be a

subset of the set of individuals in the class extension of C2. Consider constraints of the

following form:

(v) constrain each c in C1

such that X

to have Y

(vi) constrain each c in C2

such that X

to have Y

In the constraints above, c is a variable, C1 and C2 are classes, X and Y are properties.

If C2 is a subclass (i.e. rdfs:subClassOf) of C1 in the domain ontology, one can infer

that the constraint (v) subsumes constraint (vi). ConEditor+ notifies the user (domain

expert) of this fact and suggests that the user removes / deactivates constraint (vi).

6.3 Fusion of Classes

 Fusion occurs between a pair of constraints when the two constraints can be

combined together and replaced with another constraint, i.e. two constraints A and B

 18

can be fused together and replaced by a constraint C if C is satisfied in the same

situations that A and B are both satisfied. A type of fusion that makes use of inferences

from the domain ontology is described below. Consider constraints of the following

form:

(vii) constrain each c in C1

 such that X

 to have Y

(viii) constrain each c in C2

 such that X

 to have Y

In the constraints above, c is a variable, C1 and C2 are classes, X and Y are properties.

Let C3 be another class in the same domain ontology. If C1 and C2 are the only two sub

classes (i.e. rdfs:subClassOf) of C3 in the domain ontology, and if every instance (or

individual) of C3 is an instance of either C1 or C2, then the constraints (vii) and (viii) can

be fused together and replaced by the constraint (ix) as follows:

(ix) constrain each c in C3

 such that X

 to have Y

ConEditor+ notifies the user (domain expert) of this fact and suggests that the user

considers fusing constraints (vii) and (viii) into (ix).

 The reader is encouraged to refer (Ajit, 2008) for several other types of

 19

redundancy, subsumption and fusion detected by ConEditor+. Also, all types of

refinements implemented in ConEditor+ are expressed in a formal notation and

logically proved. Inconsistency (or contradiction) detected by ConEditor+ is described

below in Section 6.4.

6.4 Inconsistency/Contradiction

An inconsistency/contradiction occurs between a pair of constraints when the

consequent of one constraint contradicts the consequent of another constraint while the

antecedents and application conditions are equivalent i.e., constraint A contradicts

constraint B or vice-versa if both constraints A and B are unsatisfiable. An example of

this type of inconsistency follows:

(x) constrain each c in Component

such that name(component_coating(c)) = "silver"

to have tensile_strength(component_material(c)) < 1390

(xi) constrain each c in Component

such that name(component_coating(c)) = "silver"

to have tensile_strength(component_material(c)) > 1590

By comparing the two constraints above, one can infer that the constraint (x)

contradicts constraint (xi). ConEditor+ notifies the user (domain expert) of this fact and

suggests that the user takes appropriate action (modify/delete) to resolve the

inconsistency.

6.5 Overview

 20

ConEditor+ can also deal with the situation where a constraint needs to have multiple

refinements applied before it is possible to determine whether another constraint is

equivalent, subsumed, inconsistent or fusible. For example, consider the following two

constraints:

(xii) constrain each s in SledKite

such that has_level(s) = “beginner” or

has_wind_condition(s) = “strong”

to have kite_line_strength(has_kite_line(s)) > 30

(xiii) constrain each c in ConventionalSledKite

such that has_class(c) = “beginner”

to have kite_line_strength(has_kite_line(c)) < 25

If ConventionalSledKite is a subclass (i.e. rdfs:subClassOf) of SledKite and

has_level is an equivalent property (i.e. owl:equivalentProperty) to has_class

in the domain ontology, then it can be concluded that the constraint (xii) contradicts

(xiii). ConEditor+ notifies the user (domain expert) of this type of inconsistency and

suggests that the user takes appropriate action (modify/delete) to resolve the

inconsistency.

 The concepts and properties used in the constraints here are taken from the

domain ontology. Hence the units used for all the measurements are to be defined in the

domain ontology, instead of explicitly specifying them in each constraint. As part of the

future work, we plan to integrate the domain ontology with the engineering

mathematics ontology developed by (Gruber & Olsen, 1994) to incorporate physical

 21

dimensions, units of measure, etc. and enhance the ability to ensure that there is

consistency between the units inherent in the constraints.

7 Implementation

Both the Designers’ Workbench and ConEditor+ are implemented in the Java

programming language. The domain ontology in OWL (McGuinness & Harmelen,

2004) is developed using the Protégé ontology editor (Noy et al., 2000) and accessed

using Jena (HP, 2000). ConEditor+ converts the ontology in OWL into an equivalent

P/FDM Daplex schema (Bassiliades & Gray, 1995) using a transformation program

developed in Java. This conversion is currently required as we have used an existing

constraint language (CoLan) that was developed for databases. The Daplex schema is

used by a Daplex compiler within ConEditor+ to detect any syntactic errors among

constraints. The constraints are initially expressed in CoLan and then converted into a

standard semantic web2 enabled XML-Constraint Interchange Format (CIF) (Gray et

al., 2001). ConEditor+ uses Jena to interpret the CIF representation of constraints and

application conditions together with the OWL domain ontology to detect

inconsistencies and refinements between pairs of constraints. The inferences made from

the domain ontology play an important role in detecting inconsistencies and

refinements.

 ConEditor+ performs a static comparison of pairs of constraint expressions, i.e.

ConEditor+ compares constraints at the syntactical level, rather than comparing the

solution sets. So ConEditor+ is comparing pairs of constraints of the form e.g. P(x1, x2)

& Q(x1,x3,a) and P(x1, x2) & Q(x1,x3,b). By looking at the values of the constants (a,

2 The semantic web is an evolving extension of the world wide web in which web content can be

expressed in a form that can be understood, interpreted and used by computers to find, share and

integrate information more easily. ((Berners-Lee, Hendler, & Lassila, 2001))

 22

b), the structure of the predicates (P, Q), and inferring the semantic relationships

between the corresponding classes and properties in the constraints from the domain

ontology, ConEditor+ determines whether there is an inconsistency, subsumption,

redundancy or fusion. When a constraint is submitted to ConEditor+, it is compared

with each constraint in the KB. Hence the time complexity is O(n). More details about

the implementation and complexity of ConEditor+’s algorithm can be found in (Ajit,

2008).

8 Evaluation

 An experiment conducted to address the main research question is described

below. The aim of this experiment was to address the research question:

Could an explicit representation of application conditions together with the constraints

and the domain ontology help a system: a) reduce the number of inconsistencies and

b) detect subsumption, redundancy, fusion and suggesting appropriate refinements

between pairs of constraints?

 We studied the kite design domain and captured constraints together with the

corresponding application conditions (rationales). We ran an experiment with

ConEditor+ using: (I) KB1 containing 15 constraints together with their application

conditions, (II) KB2 containing the same constraints without any application conditions.

The reader is encouraged to refer to (Ajit, 2008) for the complete list of constraints and

the corresponding application conditions that have been captured from the kite design

domain.

Results: For KB1, ConEditor+ detected 3 subsumptions, 0 inconsistencies, 3

redundancies and 2 cases of fusion between pairs of constraints. For KB2, ConEditor+

detected 2 subsumptions, 5 inconsistencies, 3 redundancies and 4 cases of fusion

 23

between pairs of constraints. The investigator confirmed that some of the

inconsistencies, etc reported for KB2 were spurious, and concluded that the absence of

application conditions have caused these to be reported by ConEditor+ (5

contradictions and a number of inappropriate refinements). This is explained further

below with the help of some examples. Let us consider two KBs, namely, KBA and

KBB containing the following constraints:

KBA (with application conditions):

(i) constrain each k in Kite

such that has_level(k) = “beginner”

to have density(has_material(has_cover(k))) < 0.5

(ii) constrain each k in Kite

such that has_level(k) = “advanced”

to have density(has_material(has_cover(k))) > 1.0

KBB (without application conditions):

(iii) constrain each k in Kite

to have density(has_material(has_cover(k))) < 0.5

(iv) constrain each k in Kite

to have density(has_material(has_cover(k))) > 1.0

 24

As shown above, the KBA contains two constraints [(i) and (ii)] with the corresponding

application conditions. The KBB contains the same pair of constraints [(iii) and (iv)]

without the corresponding application conditions. For KBA, ConEditor+ does not detect

any inconsistency (or contradiction). For KBB, ConEditor+ detects an inconsistency

between the two constraints [(iii) and (iv)]. Hence, it can be concluded that the absence

of application conditions can cause a number of inconsistencies among constraints.

Also, this can cause ConEditor+ to suggest inappropriate refinements as shown below:

For example, let us consider two KBs, namely, KBC and KBD containing the following

constraints:

KBC (with application conditions):

(v) constrain each k in Kite

such that has_level(k) = “beginner”

to have bridle_length(has_bridle(k)) > 3 * has_height(k)

 and kite_line_strength(has_kite_line(k)) > 90

(vi) constrain each d in Delta_kite

such that has_wind_condition(d) = “strong”

to have bridle_length(has_bridle(d)) > 3 * has_height(d)

KBD (without application conditions):

(vii) constrain each k in Kite

to have bridle_length(has_bridle(k)) > 3 * has_height(k)

 and kite_line_strength(has_kite_line(k)) > 90

 25

(viii) constrain each d in Delta_kite

to have bridle_length(has_bridle(d)) > 3 * has_height(d)

Again, two KBs have been considered: KBC and KBD, with and without application

conditions respectively. Delta_kite is a subclass of Kite in the domain ontology.

Hence, for KBD, ConEditor+ inappropriately suggests the user (domain expert)

considers deleting/deactivating constraint (viii) because constraint (vii) subsumes

constraint (viii).

 One can infer from the results of the experiment described above that an explicit

representation of the application conditions together with the constraint reduced the

number of inconsistencies and prevented ConEditor+ from suggesting inappropriate

refinements. The results have demonstrated that an explicit representation of

application conditions together with the constraints and the domain ontology could help

a system in i) reducing the number of inconsistencies and ii) detecting subsumption,

redundancy, fusion and suggesting appropriate refinements between pairs of

constraints.

 We performed usability studies of ConEditor at Rolls-Royce and obtained

encouraging feedback from the design engineers. We also conducted an experiment to

determine the usability of ConEditor+ using five subjects that included post-graduate

engineering students from our university. The subjects were asked to answer an

usability questionnaire and use a 5-point rating scale (1 being poor and 5 being

excellent). The average rating given by the subjects was 3.8. The reader is encouraged

to refer to (Ajit, 2008) for more information regarding the usability studies. Further, we

conducted an experiment to determine the time taken by ConEditor+ to process

 26

constraints (including application conditions) and detect inconsistencies, redundancy,

subsumption and fusion. Four KBs containing 30, 60, 90 and 120 constraints (including

application conditions) respectively were considered. For each KB, two types of tasks

were performed for each refinement to determine the worst case and best case time. To

determine the best-case time, the KB was organized such that ConEditor+’s comparison

of the submitted constraint with the first constraint in the KB resulted in an

inconsistency/ refinement. To determine the worst-case time, the KB was organized

such that ConEditor+’s comparison of the submitted constraint with the last constraint

in the KB resulted in an inconsistency/ refinement. The time was recorded

programmatically for each task. The experiment was run in a computer with the

following configuration: AMD Athlon 64-bit processor, clock frequency of 2.21 GHz,

960 MB of RAM, operating system: Windows XP, JDK (Java Development Kit) 1.4.2

and Jena 2.1.

INSERT FIGURE 9 HERE

 The time taken by ConEditor+ to report a syntax error in the submitted

constraint was recorded programmatically and it was equal to 500 milliseconds. It can

be observed from Fig. 9 that the average worst-case time taken by ConEditor+ for

refinements essentially increases linearly as the KB size increases while the average

best-case time taken is almost a constant. ConEditor+ uses Jena to parse the domain

ontology, constraints and application conditions in CIF. Currently a file system (text

files) is used to store the constraints. The increase in average worst-case refinement

time could become non-linear for larger KBs that involve manipulation of information

which cannot all be held in main memory. The semantic web technologies such as Jena

face scalability issues, and work is being carried out by the semantic web community to

tackle them. For large KBs containing thousands of constraints, we plan to use 3-store

 27

(Harris & Gibbins, 2003) which is a RDF bulk storage and query engine developed

within the AKT3 project to enable the efficient handling of large RDF KBs. Moreover,

although the total number of design constraints formulated by Rolls-Royce is in the

order of thousands, we expect that only a small subset (say in the order of hundreds)

will be needed for any particular design. With this number of constraints, our earlier

results, suggest that speed should not be an issue.

9 Related Work

 One of the first attempts to manage constraints for automation of computation in

engineering applications was the work of (Harary, 1962) and (Steward, 1962). Since

then there has been considerable amount of work done on the representation, use and

management of constraints including the development of rule-based systems (Frayman

& Mittal, 1987; Wielinga & Schreiber, 1997) and in the field of diagnosis (Felfernig,

Friedrich, Jannach, & Stumptner, 2004). Constraint management done in systems above

mainly refers to the detection of redundant and contradictory constraints during

constraint solving whereas ConEditor+ detects redundant, subsumed, contradictory and

fusible constraints prior to constraint solving. ConEditor+ compares pairs of constraints

by looking at the values of the constants, and the structure of the predicates rather than

by computing the solution sets of constraints. It became important to represent the

defaults and preferences declaratively as constraints, rather than encoding them in the

procedural parts of the program (Borning, Maher, Martindale, & Wilson, 1989). In

most cases, domain-oriented or method-oriented tools (in the form of templates) were

provided to capture constraints/rules from the domain experts. The cost of developing

such tools is high, especially when their restricted scope is taken into account (Eriksson

3 Advanced Knowledge Technologies Project. More information on http://www.aktors.org/.

 28

et al., 1995). In comparison to the above tools, ConEditor+ is a domain independent

tool that can be used by domain experts to capture constraints using the appropriate

domain ontology. These constraints are converted into a standard format (in CIF) for

use by other systems. A similar tool for capturing constraints has been developed by

(Gray & Kemp, 2006) for database schemas. This tool uses a diagrammatic

representation in the form of a relationship graph to capture constraints. The principal

disadvantage of this tool is that the diagram can become cumbersome for large database

schemas.

 CoLan is similar to the constraint language Galileo (Bowen, O'Grady, & Smith,

1990) that has been used to support conceptual design and design knowledge

representation. Both CoLan and Galileo are based on first-order logic and can be used

to express both existentially and universally quantified constraints. However we believe

CoLan provides better readability for domain experts compared to Galileo and other

constraint programming languages such as the ILOG OPL language (Junker &

Mailharro, 2003). Moreover CoLan was developed by one of our colleagues and we

have the software to convert Colan into standard semantic web enabled XML CIF

format. Also, Colan is mainly used in ConEditor+ as a declarative language for

expressing constraints and not used for constraint programming. CoLan is converted

into CIF which, in turn, is converted into a SPARQL query and a predicate in Prolog by

the Designers’ Workbench for constraint processing. In comparison to SWRL

(Horrocks et al., 2004), a semantic web rule language developed by the W3C, CIF can

express fully quantified constraints. SWRL has now been extended to CIF/SWRL in

order to express fully quantified constraints (McKenzie, Gray, & Preece, 2004).

10 Conclusions and Future Work

 29

 This paper describes a methodology to enable domain experts to capture and

maintain constraints in an engineering design environment. An ontology is used to

represent the domain knowledge and constraints are expressed against this ontology.

The context is a system known as the Designers’ Workbench that has been developed

to automatically check if all the constraints have been satisfied and if not, enable the

designers to resolve them. To function, the Designers’ Workbench must be provided

with a set of task specific requirements, and generic (company-wide) design

constraints. Originally, the latter needed a knowledge engineer to study the design rule

book(s), consult the design engineer (domain expert) and encode all the constraints into

the Designers’ Workbench’s KB. We describe the tool ConEditor+ that has been

developed to help domain experts themselves to capture and maintain engineering

design constraints.

 On the basis of the studies done in the domain of kite design and then in part of

the Rolls-Royce domain, we have demonstrated the following aspects with the help of

examples and experiments:

(i) An explicit representation of application conditions together with the constraints and

the domain ontology could help a system in: a) reducing the number of inconsistencies

and b) detecting subsumption, redundancy, fusion and suggesting appropriate

refinements between pairs of constraints. In particular, we have demonstrated how

inferencing from the domain ontology (using owl:equivalentClass,

owl:equivalentProperty, rdfs:subClassOf) together with an explicit

representation of application conditions and constraints could be used by a system to

support the maintenance of constraints.

 30

(ii) ConEditor+ is a useful system that enables domain experts to capture and maintain

constraints. ConEditor+'s inferencing done using the domain ontology plays an

important role in supporting the maintenance of constraints.

 INSERT FIGURE 10 HERE

 The proposed architecture that shows how ConEditor+ fits into a wider

framework is given in Fig. 10. A Design Standards author initially inputs all the design

rules (constraints) into ConEditor+. The design constraints are then converted into a

standard machine interpretable format (CIF). CIF is then processed by the Designers’

Workbench and converted into a SPARQL query and a Sicstus predicate. As can be

seen from

Fig. 10, it is planned to interface the Designers’ Workbench to a sophisticated

knowledge-based engineering (KBE) system. The Designers' Workbench would then be

called from the main system, the KBE, effectively as a sub-process to check the

consistency of a design, or part of a design, produced by the KBE.

In fact, Fig. 10 only represents one aspect (the design rule book) of the knowledge

which is both generated and used in a contemporary knowledge-based engineering firm

which is involved in design, manufacturing & maintenance. For example, there are a

number of further additional knowledge repositories needed by today’s KBE systems,

including:

• Design templates (and conditions under which they should be used, i.e.

application conditions)

• Libraries of designs for components and their rationales

• Requirements and constraints of the various manufacturing environments

• Best practices as collected by several parts of the organization (including

designers)

• Requirements and constraints mandated by the several organizations which

service the engines

 31

• Feedback from the servicing and maintenance organizations which indicate

which problems actually arise in the field, some analysis of their possible

causes, and suggested remedies.

The latter type of information is the focus of the IPAS project (www.3worlds.org),

a DTI / Rolls-Royce funded project, which started in 2005. The last source of data

quoted above makes it clear that there is an important Information Life Cycle inherent

in the aero- industry, where information flows from Design to the Manufacturing units,

and then to the Service / Maintenance facilities; the later in turn creates information

which needs to be passed to designers so that future engines can be improved as a result

of real-world feedback.

Fig. 11 shows this cycle:

INSERT FIGURE 11 HERE

It is also clear that there are vast amounts of data and information available from a

variety of sources, and to make this information inter-operational, there is potentially a

major role for ontologies as many of the data / information sources use different

terminologies. This is certainly an important role for ontologies in the IPAS project. In

fact in both the projects undertaken with Rolls-Royce (AKT and IPAS) we are not only

using standard ontology maintenance procedures, but we are encountering many of the

problems of contemporary ontology engineering, namely:

• ontology creation (seeking to develop ontologies systematically and to ensure that

relevant aspects of trust and provenance are captured; deciding whether or not

domain ontologies should be developed from high-level ontologies;

• ontology evolution (an ontology developed for one engine may need to be

 32

modified so that it is applicable to a future engine) and,

• ontology modularization (for some services a sparse description of, say, the

combustion chamber may be sufficient, but for other services much greater detail

may be required).

Acknowledgements

This work is supported by the EPSRC Sponsored Advanced Knowledge

Technologies project, GR/NI5764, which is an Interdisciplinary Research Collaboration

involving the University of Aberdeen, the University of Edinburgh, the Open

University, the University of Sheffield and the University of Southampton. We would

like to acknowledge the assistance of engineers and designers in the Transmissions and

Structures division of Rolls-Royce plc, Derby, UK. The IPAS project is funded by

Rolls-Royce and the Department of Trade and Industry under the Technology Program,

DTI Reference TP/2/IC/6/I/10292.

References

Ajit, S. (2008). Capture and Maintenance of Constraints in Engineering Design. PhD

thesis (to appear), University of Aberdeen, Aberdeen, UK.

Ajit, S., Sleeman, D., Fowler, D. W., & Knott, D. (2004). ConEditor: Tool to Input and

Maintain Constraints. In Proceedings of the 14th International Conference on

Engineering Knowledge in the Age of the Semantic Web, EKAW 2004 (pp. 466 -

468), Whittlebury Hall, Northampton, UK.

Ajit, S., Sleeman, D., Fowler, D. W., Knott, D., & Hui, K. (2005). Acquisition and

Maintenance of Constraints in Engineering Design. In Proceedings of the 3rd

 33

International Conference on Knowledge Capture, KCAP 2005 (pp. 173-174),

Banff, Canada.

Ajit, S., Sleeman, D., Fowler, D. W., Knott, D., & Hui, K. (2007). ConEditor+: Capture

and Maintenance of Constraints in Engineering Design. In Proceedings of the

IJCAI-07 Workshop on "Knowledge Management & Organizational Memories"

(pp. 6-11), Hyderabad, India.

Barker, V. E., & O'Connor, D. E. (1989). Expert Systems for Configuration at Digital:

XCON and Beyond. Communications of the ACM, 32(3), 298-318.

Bassiliades, N., & Gray, P. (1995). CoLan: A Functional Constraint Language and Its

Implementation. Data and Knowledge Engineering, 14(3), 203-249.

Bechhofer, S., van-Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-

Schneider, P. F., et al. (2004). OWL Web Ontology Language Reference.

Retrieved 29 May 2008, from http://www.w3.org/TR/2004/REC-owl-ref-

20040210/

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific

American, 284(5), 28-37.

Borning, A., Maher, M., Martindale, A., & Wilson, M. (1989). Constraint Hierarchies

and Logic Programming. In Proceedings of the International Conference on

Logic Programming (ICLP) (pp. 149-164), Lisbon, Portugal.

Bowen, J., O'Grady, P., & Smith, L. (1990). A constraint programming language for

Life-Cycle Engineering. Artificial Intelligence in Engineering, 5(4), 206-220.

Brickley, D., & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF

Schema. Retrieved 29 May 2008, from http://www.w3.org/TR/2004/REC-rdf-

schema-20040210/

 34

Bultman, A., Kuipers, J., & Harmelen, F. V. (2000). Maintenance of KBS's by Domain

Experts: The Holy Grail in Practice. In Proceedings of the Thirteenth

International Conference on Industrial & Engineering Applications of Artificial

Intelligence & Expert Systems IEA/AIE'00.

Coenen, F. P. (1992). A Methodology for the Maintenance of Knowledge based

Systems. In Proceedings of the Niku-Lari, A. (Ed), EXPERSYS-92, IITT-

International (pp. 171-176), France.

Eden, M. (1998). The Magnificient Book of Kites: Explorations in Design,

Construction, Enjoyment and Flight: Black Dog & Levanthal Publishers, New

York.

Eriksson, H., Puerta, A., Gennari, J., Rothenfluh, T., Tu, S., & Musen, M. (1995).

Custom-tailored development tools for knowledge-based systems. In

Proceedings of the Ninth Banff Knowledge Acquisition for Knowledge-Based

Systems Workshop, Banff, Canada.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consistency-based

diagnosis of configuration knowledge bases. Artificial Intelligence, 152, 213-

234.

Fowler, D. W., Sleeman, D., Wills, G., Lyon, T., & Knott, D. (2004). Designers'

Workbench. In Proceedings of the Twenty-fourth SGAI International

Conference on Innovative Techniques and Applications of Artificial Intelligence

(pp. 209-221), Cambridge, UK.

Frayman, F., & Mittal, S. (1987). COSSACK: A constraints-based expert system for

configuration tasks. In D. Sriram & R. A. Adey (Eds.), Knowledge based Expert

systems in Engineering: Planning and Design (pp. 143-166).

 35

Gray, P., Hui, K., & Preece, A. (2001). An Expressive Constraint Language for

Semantic Web Applications. In Proceedings of the E-Business and the

Intelligent Web: Papers from the IJCAI-01 Workshop (pp. 46-53), Seattle, USA.

Gray, P., & Kemp, G. (2006). Capturing Quantified Constraints in FOL, through

Interaction with a Relationship Graph. In Proceedings of the 15th International

Conference on Knowledge Engineering and Knowledge Management (EKAW

2006) (pp. 19-26), Podebrady, Czech Republic.

Gross, M., Ervin, S., Anderson, J., & Fleisher, A. (1987). Designing with constraints. In

Y. E. Kalay (Ed.), Computability of Design (pp. 53-83).

Gruber, T. R. (1995). Towards Principles for the Design of Ontologies Used for

Knowledge Sharing. International Journal of Human-Computer Studies, 43(5-

6), 907-928.

Gruber, T. R., & Olsen, G. R. (1994). An Ontology for Engineering Mathematics. In

Proceedings of the Fourth International Conference on Principles of

Knowledge Representation and Reasoning, Bonn, Germany.

Harary, F. (1962). A Graph Theoretic Approach to Matrix Inversion by Partitioning. In

Numerische Mathematik (Vol. 4, pp. 128-135).

Harris, S., & Gibbins, N. (2003). 3store:Efficient Bulk RDF Storage. In Proceedings of

the 1st International Workshop on Practical and Scalable Semantic Systems

(PSSS'03), International Semantic Web Conference, Sanibel Island, Florida.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M.

(2004). SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

Retrieved 01 June 2008, from http://www.w3.org/Submission/SWRL/

HP. (2000). Helwett Packard Labs, Jena - A Semantic Web Framework for Java.

Retrieved 04 June 2007, from http://jena.sourceforge.net/

 36

Junker, U., & Mailharro, D. (2003). The logic of ilog(j) configurator: Combining

constraint programming with a description logic. In Proceedings of the

Proceedings of IJCAI'03 Workshop on Configuration, Acapulco, Mexico.

Lin, L., & Chen, L. C. (2002). Constraints modelling in product design. Journal of

Engineering Design, 13(3), 205-214.

McGuinness, D. L., & Harmelen, F. v. (2004). OWL Web Ontology Language

Overview, W3C Recommendation 10 February 2004. Retrieved 29 August,

2006, from http://www.w3.org/TR/owl-features/

McKenzie, C., Gray, P., & Preece, A. (2004). Extending SWRL to Express Fully-

Quantified Constraints. In Proceedings of the Workshop on Rules and Rule

Markup Languages for the Semantic Web (RuleML 2004), International

Semantic Web Conference (pp. 139-154), Hiroshima, Japan.

Noy, N. F., Fergerson, R. W., & Musen, M. A. (2000). The knowledge model of

Protege-2000: Combining interoperability and flexibility. In Proceedings of the

International Conference on Knowledge Engineering and Knowledge

Management (EKAW' 2000), Juan-les-Pins, France.

Prud'hommeaux, E., & Seaborne, A. (2007). SPARQL Query Language for RDF, W3C

Working Draft 26 March 2007. Retrieved 04 June 2007, from

http://www.w3.org/TR/rdf-sparql-query/

Serrano, D., & Gossard, D. (1992). Tools and Techniques for Conceptual Design. In C.

Tong & D. Sriram (Eds.), Artificial Intelligence in Engineering Design (Vol. 1,

pp. 71-116).

Soloway, E., Bachant, J., & Jensen, K. (1987). Assessing the Maintainability of XCON-

in-RIME: Coping with Problems of a Very Large Rule-Base. In Proceedings of

the AAAI-87 (pp. 824-829), Seattle, USA.

 37

Steward, D. V. (1962). On an Approach to Techniques for the Analysis of the Structure

of Large Systems of Equations. In SIAM Review (Vol. 4, pp. 321-342).

Streeter, T. (1980). The Art of the Japanese Kite. Tokyo: Charles E Tuttle Company

Inc.

Ullman, D. G. (2003). The Mechanical Design Process. New York: McGraw-Hill.

Wielinga, B., & Schreiber, G. (1997). Configuration-Design Problem Solving. IEEE

Expert, 12(2), 49-57.

Yolen, W. (1976). The Complete Book of Kites and Kite Flying. New York: Simon and

Schuster Trade.

FIGURE CAPTIONS:

Fig. 1: A screenshot of the Designers' Workbench

Fig. 2: The class hierarchy of the jet engine ontology used with the Designers' Workbench

(screenshot from the OWLViz plugin for Protégé)

Fig. 3: The properties of the class DiametralRingSeal from the jet engine ontology (screenshot

from Protégé)

 38

Fig. 4: The property values for a DiametralRingSeal instance (screenshot from Designers'

Workbench)

Fig. 5: A constraint as expressed in a rule book

Fig. 6: A screenshot of ConEditor+

Fig. 7: Taxonomy/Ontology Panel

Fig. 8: Ontology of a part of the Rolls-Royce domain in Protégé

Fig. 9: Graph showing average refinement time taken by ConEditor+ versus number of

constraints in KB

Fig. 10: Proposed system architecture

Fig. 11: The principal Information Life Cycle in the Aero-Industry

FIGURES:

 39

 40

 41

 42

 43

 44

 45

 46

 47

0

20000

40000

60000

80000

100000

120000

140000

160000

30 60 90 120

KB Size

(Number of Constraints)

A
v

e
ra

g
e

 R
e

fi
n

e
m

e
n

t
T

im
e

 (
m

s
)

Worst-case

Best-case

 48

 49

DESIGN

SERVICE

MANUFACTURING

DESIGN

SERVICE

MANUFACTURING

