
Abstract

The Designers’ Workbench is a system, developed
to support designers in large organizations, such as
Rolls-Royce, by making sure that the design is
consistent with the specification for the particular
design as well as with the company’s design rule
book(s). Currently, to capture the constraint infor-
mation, a domain expert (design engineer) has to
work with a knowledge engineer to identify the
constraints, and it is then the task of the knowledge
engineer to encode these into the Workbench’s
knowledge base (KB). This is an error prone and
time consuming task. It is highly desirable to re-
lieve the knowledge engineer of this task, and so
we have developed a tool, ConEditor+ that enables
domain experts themselves to capture and maintain
these constraints. The tool allows the user to com-
bine selected entities from the domain ontology
with keywords and operators of a constraint lan-
guage to form a constraint expression. Further, we
hypothesize that to apply constraints appropriately,
it is necessary to understand the context in which
each constraint is applicable. We refer to this as
“application conditions”. We show that an explicit
representation of application conditions, in a ma-
chine interpretable format, along with the con-
straints and the domain ontology can be used to
support the verification and maintenance of con-
straints.

1 Introduction

The context for the system reported here, ConEditor+ [Ajit
et al., 2005], is the Designers’ Workbench [Fowler et al.,
2004] which has been developed to enable a group of de-
signers to produce cooperatively a component which con-
forms to the component’s overall specifications and the
company’s design rule book(s). Sections 1.1 and 1.1.1 pro-
vide an introduction to the Workbench, a description of the
problem(s) faced and the need for ConEditor+. Section 2
gives a brief overview of our system ConEditor+. Section 3
then focuses on the maintenance aspects of constraints.
 The issues faced in KB maintenance were first raised by
the XCON configuration system at Digital Equipment Cor-

poration [Barker and O'Connor, 1989; Soloway et al.,
1987]. Initially it was assumed that knowledge-based sys-
tems could be maintained by simply adding new elements or
replacing existing elements. However this “simplicity”
proved to be illusory as indicated by the experience of
R1/XCON [Coenen, 1992].
 The engineering design process has an evolutionary and
iterative nature as designed artifacts often develop through a
series of changes before a final solution is achieved. A
common problem encountered during the design process is
that of constraint evolution, which may involve the identifi-
cation of new constraints or the modification or deletion of
existing constraints. The reasons for such changes include
development in the technology, changes to improve per-
formance, changes to reduce development time and costs. In
order to reduce/overcome the various maintenance prob-
lems, systems that capture and represent the rationales asso-
ciated with design knowledge have been developed. Design
rationales [Burge and Brown, 2003; Regli et al., 2000] cap-
ture the following types of information:

a) the reasons why a design decision was taken
b) the design alternatives considered with reasons for

acceptance/rejection
c) how certain design actions are performed

 However, we are interested in capturing information
about when a particular design constraint is applicable. We
believe it is important to know the context in which a par-
ticular constraint or a rule can be applied. We refer to this as
the application conditions associated with a constraint. In
this paper, we present an approach that involves the explicit
representation of application conditions in a machine inter-
pretable format, along with the constraint itself. This infor-
mation is used along with the appropriate domain ontology
to support the verification and maintenance of constraints.
Section 3 gives a description of our approach and its imple-
mentation for the domain of kite design. We discuss our
evaluation and results in section 4. The conclusions and
plans for future work follow in section 5.

1.1 Introduction to the Designers’ Workbench

Designers in Rolls-Royce, as in many large organizations,
work in teams. Thus it is important when a group of design-

ConEditor+: Capture and Maintenance of Constraints in Engineering Design

Suraj Ajit
1
, Derek Sleeman

1
, David W. Fowler

1
, David Knott

2
 and Kit Hui

1

1
Department of Computing Science, University of Aberdeen, Scotland, UK

Email: {sajit, sleeman, dfowler, khui} @ csd.abdn.ac.uk
2
Rolls-Royce plc, Derby, UK

Email: david.knott@rolls-royce.com

ers are working on aspects of a common project, that the
subcomponent designed by one engineer is consistent with
the overall specification, and with those designed by other
members of the team. Additionally, all designs have to be
consistent with the company’s design rule book(s). Making
sure that these various constraints are complied with is a
complicated process, and so we have developed the Design-
ers’ Workbench which seeks to support these activities.

Figure 1: Screenshot of the Designers’ Workbench

 The Designers’ Workbench (figure 1) uses an ontology
[Gruber, 1995] to describe elements in a configuration task.
The system supports human designers by checking that their
configurations satisfy both physical and organizational con-
straints. Configurations are composed of features, which can
be geometric or non-geometric, physical or abstract. A
graphical display enables the designer to easily add new
features, set property values, and perform constraint checks.
If a constraint is violated, the affected features are high-
lighted and a report is generated. The report gives the de-
signer a short description of the constraint that is violated,
the features affected by that violation, and a link to the
source document. The designer can resolve the violations by
adjusting the property values of the affected features. On
selecting the affected feature from the ontology tree, a table
is listed with the corresponding properties and values. These
property values can then be adjusted to resolve the con-
straint violations. More details about this system can be
found in [Fowler et al., 2004].

1.1.1 The problem addressed
As noted above, the Designers’ Workbench needs access to
the various constraints, including those inherent in the com-
pany’s design rule book(s). Currently, to capture this infor-
mation, a design engineer (domain expert) works with a
knowledge engineer to identify the constraints, and it is then
the task of the knowledge engineer to encode these into the
Workbench’s knowledge base (KB). This is an error prone
and time consuming task. As constraints are explained very
briefly in design rule book(s), a non-expert in the field can

find it very difficult to understand the context and formulate
constraints directly from the design rule book(s), and so a
design engineer has to help the knowledge engineer in this
process. An example of a constraint as expressed in rule
book(s) is shown in figure 2. Adding a new constraint into
the Designers’ Workbench’s KB currently requires coding a
query in RDF Query Language [HP], and a predicate in Sic-
stus Prolog [SICStus].
 It would be useful if a new constraint can be formulated
in an intuitive way, by selecting classes and properties from
the ontology, and somehow combining them using a prede-
fined set of operators. This would help engineers to input all
the constraints themselves and relieve the programmer of
that task. This would also enable designers to have greater
control over the definition and refinement of constraints,
and presumably, to have greater trust in the results of con-
straint checks. This led to the development of a system,
known as ConEditor+, which enables a domain expert to
input and maintain constraints. ConEditor+ is explained
further in the next section.

Figure 2: Constraint as expressed in rule book

2 ConEditor+

ConEditor+ is a tool to enable domain experts themselves to
input and maintain constraints. ConEditor+’s graphical user
interface (GUI) is shown in figure 3. A constraint expres-
sion can be created by selecting entities from a taxonomy
(domain ontology) and combining them with a pre-defined
set of keywords and operators from the high level constraint
language, CoLan [Bassiliades and Gray, 1995; Gray et al.,
2001]. CoLan has features of both first-order logic and func-
tional programming, and is intended for scientists and engi-
neers to express constraints.
 An example of a simple constraint expressed in CoLan,
against a domain ontology (a jet engine ontology) used by
the Designers’ Workbench is as follows:

constrain each f in Concrete Feature

to have max_operating_temp(has_material(f))

>= operating_temp(f)

The above constraint states that for every instance of the
class Concrete Feature, the value of the maximum operating
temperature of its material must be greater than or equal to
the environmental operating temperature.
 ConEditor+’s GUI essentially consists of six compo-
nents, namely: (A) Keywords Panel, (B) Menu Bar, (C)
Taxonomy Panel, (D) Functions Panel, (E) Tool Bar and (F)
Result Panel (see figure 3). These components provide the
user with entities required to form a constraint expression.
The user can then choose the appropriate entities by clicking
the mouse and so form a constraint expression. More details
about the GUI can be found in [Ajit et al., 2004]. An analy-
sis of the Rolls-Royce’s design rule book(s) showed that a
number of constraints are expressed in tables and so
ConEditor+ provides a mechanism for inputting tables.
ConEditor+ can store different versions of a constraint and
provides facilities to retrieve constraints using keyword-
based searches.

Figure 3: Screenshot of ConEditor+

3 Maintenance of constraints

Due to restricted availability of designers’ time and for sim-
plicity, we have used a kite domain [Eden, 1998; Streeter,
1980; Yolen, 1976] for our study. Consider the following
constraint along with its associated rationale and application
condition:

Constraint – “The strength of the kite line needs to be
greater than 90 daN

1
 units.”

Associated rationale – “This provides the required stability
for the kite to fly.”

Application condition – “This is applicable to stunt kites of
standard size in strong winds only.”

1
 Symbol for deca Newton, a common metric unit of force.

 The difference between a rationale and an application
condition is evident from the example considered above; the
rationale states the reason for a constraint (why), whereas
the application condition states the context in which it is
applicable (when).
 In order to tackle the various maintenance is-
sues/problems, our proposed solution is summarized as fol-
lows:

• Capture the “context” of a constraint, in a machine
interpretable form, as an application condition

• Use the application condition together with the
constraint and the appropriate domain ontology to
perform the several constraint maintenance tasks
described in section 3

We intend to capture the “context” of each constraint i.e. the
information pertaining to when a constraint is applicable,
referred to as its application conditions. Often, such infor-
mation is implicit to the person who formulates the con-
straint. We believe that it is important to make the applica-
tion conditions explicit so that it can be used for both verifi-
cation and maintenance. The assumptions/conditions on
which a constraint is based may no longer be true/applicable
and in such cases, it becomes necessary to deactivate or
remove those constraints from the KB. Further, an applica-
tion condition may not be relevant to a particular design
task.
 ConEditor+ captures both the constraints and the applica-
tion conditions in the same language, CoLan. Both the con-
straints and the application conditions are then automatically
converted into a standard machine interpretable format
known as Constraint Interchange Format (CIF) [Gray et al.,
2001]. Representation of a sample constraint with its appli-
cation condition in CoLan is as shown below:

constrain each k in Kite

such that has_type(k) = “Flat”

and has_shape(k) = “Diamond”

to have tail_length(has_tail(k)) = 7 *

spine_length(has_spine(k))

In the above constraint, the application condition (in italics)
is introduced by the clause “such that”. This constraint
states that the length of a tail of a kite needs to be seven
times the length of the spine of the kite; this constraint is
applicable for flat, diamond shaped kites only.
 There are a number of ways in which we can use the
information of application conditions to enable the verifica-
tion and maintenance of constraints. Some examples are
described below:

1. Subsumption
a)constrain each s in Sled_kite

such that has_size(s) = “standard”
to have kite_line_strength(has_kite_line(s))

>= 15

A

E

D

F

B

C

b)constrain each c in Conventional_sled_kite

such that has_size(c) = “standard”

to have kite_line_strength(has_kite_line(c))

>= 15

 Conventional_sled_kite is a subclass of Sled_kite in the
domain ontology. It can be inferred that the constraint in a)
subsumes the constraint in b). The domain expert is notified
of this fact and allowed to remove, shelve or deactivate the
constraint in b). Similarly, subsumption among application
conditions occurs, when we have:
c)constrain each s in Sled_kite

such that has_size(s) = “standard” or

has_size(s) = “large”

to have kite_line_strength(has_kite_line(s))

>= 15

d)constrain each s in Sled_kite

such that has_size(s) = “standard”

to have kite_line_strength(has_kite_line(s))

>= 15

 Again, it can be inferred that the constraint in c) sub-
sumes the constraint in d). The domain expert is notified of
this fact and allowed to remove, shelve or deactivate the
constraint in d).

2. Contradiction
e)constrain each k in Kite

such that has_type(k) = “stunt”

to have kite_line_strength(has_kite_line(k))

> 30

f)constrain each k in Kite

such that has_type(k) = “stunt”

to have kite_line_strength(has_kite_line(k))

< 30

 Comparing the above two constraints, it can be in-
ferred that the constraint in e) contradicts the constraint in
f). The domain expert is notified of this fact and allowed to
take the appropriate action (modify/delete).

3. Redundancy
g)constrain each c in Conventional_sled_kite

such that has_level(c) = “beginner”

to have density(has_material(has_cover(c)))

< 0.5

h)constrain each t in Traditional_sled_kite

such that has_class(t) = “beginner”

to have density(has_material(has_cover(t)))

< 0.5

 Coventional_sled_kite is an equivalent class to Tradi-
tional_sled_kite in the domain ontology. Also has_level is
an equivalent property to has_class. It can be inferred that
the constraint in g) or h) is redundant. The domain expert is
notified of this fact and allowed to take appropriate action to
eliminate redundancy.

4. Fusion
i)constrain each c in Conventional_sled_kite

such that has_wind_condition(c) = “moderate”

to have has_bridle_attachment_angle(c) < 40

j)constrain each m in Modern_sled_kite

such that has_wind_condition(m) = “moderate”

to have has_bridle_attachment_angle(m) < 40

 Conventional_sled_kite and Modern_sled_kite are the
only two subclasses of Sled_kite in the domain ontology.
The constraints in i) and j) can be fused together and re-
placed by k) as follows:
k)constrain each s in Sled_kite

such that has_wind_condition(s) = “moderate”

to have has_bridle_attachment_angle(s) < 40

 Also two or more application conditions or constraints
can be fused together using “or” and “and” respectively. For
example:
l)constrain each j in Japanese_kite

such that has_wind_condition(j) = “strong”

to have has_bridle_point_distance(j) > 3 *

surface_area(has_cover(j))

m)constrain each j in Japanese_kite

such that has_type(j) = “stunt”

to have has_bridle_point_distance(j) > 3 *

surface_area(has_cover(j))

 l) and m) can be fused together and replaced by n) as
follows:
n)constrain each j in Japanese_kite

such that has_wind_condition(j) = “strong”

or has_type(j) = “stunt”

to have has_bridle_point_distance(j) > 3 *

surface_area(has_cover(j)

 In this case, ConEditor+ suggests to the domain

expert that several constraints be fused.
 In all the examples above, we have considered univer-
sally quantified constraints involving a single variable that
are common in our knowledge base. However, more com-
plex first-order logic expressions involving existential quan-
tifiers or a combination of both existential and universal
quantifiers can also be expressed in CoLan/CIF [Gray et al.,
2001] by ConEditor+.

Implementation: ConEditor+ is implemented in the Java
programming language; the domain ontology in the Web
Ontology Language [OWL] is developed using Protégé
[Noy et al., 2000] and read using Jena [HP]. Any syntactic
errors among constraints are detected by ConEditor+ with
the help of a Daplex compiler [Bassiliades and Gray, 1995].
The constraints are initially expressed in CoLan and then
converted automatically into a standard Constraint Inter-
change Format (CIF) using a translator. ConEditor+ uses
this machine interpretable format to detect inconsistencies
(contradictions) between pairs of constraints and to suggest
various ways to refine (fuse, eliminate redundancies and

subsumptions) the knowledge base, as described earlier. The
domain expert could then resolve these inconsistencies
and/or refine the knowledge base by using the appropriate
functions of ConEditor+ to delete/modify/shelve constraints.

4 Evaluation and Results

Before implementing the maintenance features, we per-
formed a preliminary evaluation of our system. A demon-
stration was given to the design engineers at Rolls-Royce.
The demonstration involved the following three phases: i)
Presenting the constraint as in the rule book i.e. as a mixture
of textual and graphical information (figure 2) ii) Express-
ing the constraint in CoLan iii) Inputting the constraint us-
ing ConEditor+. The design engineers were able to follow
all the three phases. They found the GUI simple, user-
friendly and fairly intuitive to use. However they felt they
would need some training before they could do the steps in
the last two phases [(ii) and (iii)] unsupported. They also
made the general point that they have a Design Standards
group that has the responsibility for creating and maintain-
ing the company-wide rule book(s). They would expect this
group to use systems such as ConEditor+ to input con-
straints. The designers would then subsequently use the in-
formation either in the current form or in the Designers’
Workbench-like environment.
 After implementing the maintenance features, we con-
ducted two experiments.

Experiment 1: We studied the domain of kite design and
captured constraints along with their application conditions.
We ran an experiment with ConEditor+ using: (a) set con-
taining 15 constraints along with their application condi-
tions, (b) set containing the same constraints without appli-
cation conditions.

Results: For dataset in (a), ConEditor+ detected 3 subsump-
tions, 0 contradictions, 3 redundancies and 2 cases of fusion
between pairs of constraints. For dataset in (b), ConEditor+
detected 1 subsumption, 5 contradictions, 2 redundancies
and 4 cases of fusion between pairs of constraints. For data-
set in (b), it is evident that the absence of application condi-
tions caused a number of inconsistencies (5 contradictions),
and also, ConEditor+ suggested a number of inappropriate
refinements.

Experiment 2: We gave a demonstration of all the features
of ConEditor+ to five subjects (two mechanical engineering
research students, two computer science research students
and one computer science research fellow). Each subject
was then given the task of inputting a set of constraints in
CoLan using ConEditor+. The subjects were asked to use
ConEditor+ to resolve inconsistencies (contradictions) and
also follow any suggestion(s) given by ConEditor+ to refine
(fuse, eliminate redundancies and subsumptions) the knowl-
edge base. A questionnaire about the usability of ConEdi-
tor+ and its maintenance features was given to the subjects,
who were asked to use a 5 point rating scale (1 being poor
and 5 being excellent).

Results: All the subjects found ConEditor+ fairly easy to
use and helpful for the verification and maintenance of con-
straints. The average overall rating given by the subjects, for
both the usability and maintenance features of ConEditor+
was 4. Additionally, some subjects gave helpful suggestions
to improve the usability of ConEditor+.

5 Conclusions and Future Work

This paper describes a methodology to enable domain ex-
perts to capture and maintain constraints in an engineering
design environment. The context is a system known as the
Designers’ Workbench that has been developed to automati-
cally check if all the constraints have been satisfied and if
not, enable the designers to resolve them. The Designers’
Workbench is faced with the task of accumulating the con-
straints associated with the domain. This needs a knowledge
engineer to study the design rule book(s), consult the design
engineer (domain expert) and encode all the constraints into
the Designers’ Workbench’s KB. We describe the tool
ConEditor+ that has been developed to help domain experts
themselves capture and maintain engineering design con-
straints.

Figure 4: Proposed System Architecture

 We hypothesize that in order to apply constraints appro-
priately, it is necessary to capture the contexts (application
conditions) associated with the constraints and that these
would be beneficial for verification and maintenance. On
the basis of our studies and experiments done in the domain
of kite design, we find the above hypothesis to be true, and
also find ConEditor+ to be a useful tool for design engineers
to capture and maintain constraints.
 As part of the future work, it is planned to use ConEdi-
tor+ to capture the application conditions along with the
constraints for a significant part of the Rolls-Royce domain
and investigate how they help with verification and mainte-
nance of this more demanding KB. We also plan to com-
plete the implementation of the proposed architecture (fig-

ure 4) that shows how ConEditor+ fits into the whole frame-
work. A Design Standards author initially inputs all the de-
sign rules (constraints) into ConEditor+. The design
constraints are then automatically converted into a standard
machine interpretable format (CIF) and processed by the
Designers’ Workbench. As can be seen from figure 4, it is
planned to interface the Designers’ Workbench to a more
sophisticated CAD/KBE system.

Acknowledgements

This work is supported by the EPSRC Sponsored Advanced
Knowledge Technologies project, GR/NI5764, which is an
Interdisciplinary Research Collaboration involving the Uni-
versity of Aberdeen, the University of Edinburgh, the Open
University, the University of Sheffield and the University of
Southampton. We would like to acknowledge the assistance
of engineers and designers in the Transmissions and Struc-
tures division of Rolls-Royce plc, Derby, UK.

References

[Ajit et al., 2004] Suraj Ajit, Derek Sleeman, David W.

Fowler and David Knott. ConEditor: Tool to Input

and Maintain Constraints. In Proceedings of the

14th International Conference on Engineering

Knowledge in the Age of the Semantic Web, EKAW

2004, 466 - 468, Whittlebury Hall, Northampton,

UK, 2004.

[Ajit et al., 2005] Suraj Ajit, Derek Sleeman, David W.

Fowler, David Knott and Kit Hui. Acquisition and

Maintenance of Constraints in Engineering Design.

In Proceedings of the 3rd International Conference

on Knowledge Capture, KCAP 2005, 173-174,

Banff, Canada, 2005.

[Barker and O'Connor, 1989] V. E. Barker and D. E.

O'Connor. Expert Systems for Configuration at

Digital: XCON and Beyond. Communications of

the ACM, 32 (3): 298-318, 1989.

[Bassiliades and Gray, 1995] N. Bassiliades and P. Gray.

CoLan: A Functional Constraint Language and Its

Implementation. Data and Knowledge Engineer-

ing, 14 (3): 203-249, 1995.

[Burge and Brown, 2003] Janet Burge and David C.

Brown. Rationale Support for Maintenance of

Large Scale Systems. In Workshop on Evolution of

Large-Scale Industrial Software Applications

(ELISA), ICSM '03, Amsterdam, NL, 2003.

[Coenen, 1992] F. P. Coenen. A Methodology for the

Maintenance of Knowledge based Systems. In

Niku-Lari, A. (Ed), EXPERSYS-92 (Proceedings),

IITT-International, 171-176, France, 1992.

[Eden, 1998] Maxwell Eden. The Magnificient Book of

Kites: Explorations in Design, Construction, En-

joyment and Flight. Black Dog & Levanthal Pub-

lishers, New York, 1998.

[Fowler et al., 2004] D. W. Fowler, D. Sleeman, G. Wills,

T. Lyon and D. Knott. Designers' Workbench. In

Proceedings of the Twenty-fourth SGAI Interna-

tional Conference on Innovative Techniques and

Applications of Artificial Intelligence, Cambridge,

UK, 2004.

[Gray et al., 2001] Peter Gray, Kit Hui and Alun Preece.

An Expressive Constraint Language for Semantic

Web Applications. In E-Business and the Intelli-

gent Web: Papers from the IJCAI-01 Workshop,

46-53, Seattle, USA, 2001. AAAI Press.

[Gruber, 1995] T. R. Gruber. Towards Principles for the

Design of Ontologies Used for for Knowledge

Sharing. International Journal of Human-

Computer Studies, 43 (5-6): 907-928, 1995.

[HP] A semantic web framework for Java. [online].

Available from:

http://jena.sourceforge.net/index.html [Accessed 21

June 2006].

[Noy et al., 2000] N. F. Noy, R. W. Fergerson and M. A.

Musen. The knowledge model of Protege-2000:

Combining interoperability and flexibility. In In-

ternational Conference on Knowledge Engineering

and Knowledge Management (EKAW' 2000), Juan-

les-Pins, France, 2000.

[OWL] Web Ontology Language. [online]. Available from:

http://www.w3.org/TR/owl-features/ [Accessed 21

June 2006].

[Regli et al., 2000] W. C. Regli, X. Hu, M. Atwood and W.

Sun. A Survey of Design Rationale Systems: Ap-

proaches, Representation, Capture and Retrieval.

Engineering with Computers: An Int'l Journal for

Simulation-Based Engineering, special issue on

Computer Aided Engineering in Honor of Profes-

sor Steven J. Fenves, 16: 209-235, 2000.

[SICStus] Version 3.10.0, Swedish Institute of Computer

Science. [online]. Available from:

http://www.sics.se/sicstus/ [Accessed 21 June

2006].

[Soloway et al., 1987] E. Soloway, J. Bachant and K. Jen-

sen. Assessing the Maintainability of XCON-in-

RIME: Coping with Problems of a Very Large

Rule-Base. In Proceedings of AAAI-87, 824-829,

Seattle, USA, 1987.

[Streeter, 1980] Tal Streeter. The Art of the Japanese Kite.

Charles E Tuttle Company Inc, Tokyo, 1980.

[Yolen, 1976] Will Yolen. The Complete Book of Kites and

Kite Flying. Simon and Schuster Trade, New York,

1976.

