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Abstract

The Open Provenance Model (OPM) is a community data model for
provenance that is designed to facilitate the meaningful interchange of
provenance information between systems. Underpinning OPM, is a no-
tion of directed graph, used to represent data products and processes in-
volved in past computations, and dependencies between them; it is com-
plemented by inference rules allowing new dependencies to be derived.
The Open Provenance Model was designed from requirements captured
in two “Provenance Challenges”, and tested during the third: these chal-
lenges were international, multi-disciplinary activities aiming to exchange
provenance information between multiple systems and query it. The de-
sign of OPM was mostly driven by practical and pragmatic considera-
tions. The purpose of this paper is to formalize the theory underpinning
this data model. Specifically, this paper proposes a temporal semantics
for OPM graphs, defined in terms of a set of ordering constraints be-
tween time-points associated with OPM constructs. OPM inferences are
characterized with respect to this temporal semantics, and a novel set of
patterns is introduced to establish soundness and completeness properties.
Building on this novel foundation, the paper proposes new definitions for
graph algebraic operations, graph refinement and the notion of account,
by which multiple descriptions of a same execution are allowed to co-exist
in a same graph. Overall, this paper provides a strong theoretical under-
pinning to a data model being adopted by a community of users that help
its disambiguation and promote inter-operability.

1 Introduction

In the fine arts and in digital libraries, provenance respectively refers to the doc-
umented history of an art object, or the documentation of processes in a digital
object’s life cycle [24]. The “e-science community” [27] also shows a growing
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interest in provenance since it is crucial to ensure reproducibility of scientific
experiments [7]. At the World Wide Web consortium, the Provenance Incuba-
tor [31] has also demonstrated the importance of provenance on the Web; in this
context, it defines the provenance of a resource as a record that describes entities
and processes involved in producing and delivering or otherwise influencing that
resource.

Over the years, a series of systems have been developed to track and exploit
provenance, in order to address many different requirements [16]. In most mod-
ern applications, information flows across multiple systems, implemented using
different technologies, and potentially hosted by different institutions; tracking
the provenance of data in this context is particular challenging, since it involves
understanding flows of information in these different systems [19].

It is not anticipated that a single methodology for tracking provenance could
readily be deployed to technologies as varied as database systems, workflow sys-
tems and web services stacks. Instead, it has been proposed that a provenance
interchange language could be adopted [19], which would allow systems to con-
vert their internal provenance representation, into a provenance lingua franca.
In the course of a series of inter-operability Provenance Challenges [21, 29],
a data model for exchanging provenance information has been designed, im-
plemented and used in practice. This data model, referred to as the Open
Provenance Model (OPM) [20], has already undergone several revisions, using
an open-source like governance mechanism to manage changes.

Despite its fairly recent development, OPM is getting significant traction
beyond its initial set of designers. OPM is used by data.gov.uk to track prove-
nance of data published by the UK government [33], it inspired the design of a
provenance-based policy language [25], and it is adopted by the SHIWA project
(shiwa-workflow.eu), to ensure coarse-grained inter-operability of workflow sys-
tems. Furthermore, in a quest to understand emerging provenance models, the
W3C Incubator Group on Provenance decided to map from their concepts to
a single target model, and adopted OPM as its target model. The Incubator
Group found that the emerging models for provenance, despite being originated
from a wide range of domains, map well to terms and extensibility mechanisms
defined in OPM [26].

From the outset, OPM was described in a technology-agnostic manner. The
key data structure defined in the Open Provenance Model is an OPM graph,
a directed graph aimed at representing data and control dependencies of past
computations; such graphs can be decorated with time information for specific
events associated with OPM constructs. The specification also outlined the
kind of inferences that are permitted over such graphs, and some constraints
that graph topology and time information must preserve. OPM is informally
defined in the OPM specification [20], which we refer to as the OPM reference
specification.

A criticism of the Open Provenance Model is that it does not provide a
formal semantics [4]: the lack of unambiguous concept definition potentially
hinders the development of mappings [26] to other provenance languages, and
ultimately can challenge inter-operability of systems.

The aim of this paper is to address this shortcoming by providing a formal
semantics for the Open Provenance Model. First, we formalize the notion of
an OPM graph, and equip it with a temporal theory. This kind of semantics
maps an OPM graph to a set of ordering constraints between time-points. Such
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temporal theory allows for new inferences to be made, by applying a transitive
closure on the ordering constraints; the set of inferred constraints, which we
refer to as logical consequences, offers a purely semantic definition of an OPM
graph. Second, we axiomatize the inference rules for OPM graphs as outlined
in the OPM reference specification [20], and characterize them with respect to
the semantic definition. Specifically, we characterize logical consequences in
OPM graphs, by establishing soundness and completeness properties for a novel
set of graph patterns. Leveraging the formalization of OPM graphs, we finally
specify useful graph algebraic operations, and define a notion of refinement,
which allows different OPM accounts1 to be related.

A key motivation of this paper has been to provide a semantics for an ex-
isting informal data model. In doing so, we have refrained from introducing
mathematical artifacts, which could have simplified some definitions, but would
not have corresponded to OPM as defined by a practitioner’s community. We
have also tackled the complete OPM data model (except the notion of agency),
and have not restricted us to a smaller, more manageable subset. As part of
this formalization, and to be able to characterize inferences properly, we have
introduced two modifications to the data model, which we regard as minor,
but bring substantial benefit; we discuss these in detail in the paper. For this
paper to remain of interest to a broad audience, we grouped a set of notes in
Section 11, covering technical details of the OPM reference specification, and
their relationship with the semantics introduced in this paper. When relevant,
we refer to these notes in the paper.

We would like to stress that a temporal approach is only one possible ap-
proach to give a semantics to OPM graphs. It is an interesting topic for future
research to explore alternative approaches, e.g., as suggested by Cheney [2].

This paper is organized as follows. As we aim for this paper to be self-
contained, we begin with a brief, informal and intuitive overview of OPM, by
means of a concrete example in Section 2. Section 3 formally defines OPM
graphs and their temporal interpretation. In Section 4, the notion of OPM
inference, which allows new edges to be inferred, is defined and characterized
with respect to the temporal semantics. Given that OPM graphs are meant to
be exchanged and manipulated to address provenance use cases, we formalize
common operations over OPM graphs in Section 5. From the outset, it was
envisaged that relations between OPM graphs, such as refinement, would be
of value to reasoners; however, no precise definition of refinement has been
proposed so far. This problem is tackled in Section 6, where a purely semantic
definition of refinement is proposed, based on the temporal semantics. Finally,
the notion of account is formalized in Section 7, before related work is discussed
in Section 8.

2 OPM Overview

The purpose of this section is to overview the Open Provenance Model [20]
and provide intuition about its key components. The rest of the paper is then
dedicated to its formalization. Of course, the present brief overview cannot

1We shall see that an OPM account is a mechanism that allows multiple descriptions of
past execution to co-exist in a single OPM graph.
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Figure 1: OPM graph for coffee shop order. The dotted edges are imprecise.

replace the detailed presentation of OPM, as given in the OPM reference speci-
fication [20], nor can it encompass the precise characterization, found in the rest
of this paper. Our intuitive overview of OPM draws on the following scenario:

Alice and her young son Bob ordered a latte and a fruit juice in a
coffee shop. Bob, who is a young child, did not observe the activities
involved in processing their order, and only focused on his own drink.
Hence, Bob’s version of events is that an order was submitted and
resulted in his juice being delivered.

Alice, who could observe the activities behind the counter, identified
three different processes. The cashier took the order and associated
payment. As soon as the order was taken, the cashier put an empty
cup on a tray next to the coffee machine; once payment was taken,
the cashier added a till receipt to the same tray. The coffee machine
operator picked up the cup, and filled it with the requested coffee,
as per receipt, and handed the tray over to Alice. A third person
behind the counter served other drinks, on request from the cashier.
Alice was unable to ascertain how information was communicated
(e.g., the request was stated by cashier, or order read from receipt);
what is definite from Alice’s viewpoint is the juice was also delivered
with the tray.

The OPM data model consists of a directed graph, whose nodes are artifacts
and processes, and edges are dependencies between them. Artifacts in this
scenario consist of an “order”, some “cash”, an “empty cup”, a “receipt”, a
“juice” and a “latte”. According to Bob, there is a single process: “Get Drink”.
Alice’s version of events is more detailed and involves three processes: “Take
Order”, “Make Coffee”, and “Provide other Beverages”.

OPM edges are directional: an edge source represents an effect and an edge
destination a cause. There exist four types of edges according to the types of
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Table 1: OPM processes and artifacts for coffee shop order

node type node label
process p1 Take Order
process p2 Make Coffee
process p3 Provide other Beverage
process p4 Get Drink
artifact a1 order
artifact a2 cash
artifact a3 empty cup
artifact a4 receipt
artifact a5 latte
artifact a6 juice

effect and cause. A used -edge is between a process and an artifact; a generated-
by edge is between an artifact and a process; a derived-from edge is between
two artifacts; and an informed-by edge is between two processes.

Moreover, the first three types of edges are further categorized into precise
and imprecise versions. Precise edges are labeled with roles, which indicate
the role in which artifacts are used and generated; roles are comparable to
parameter positions in a procedure. Imprecise edges are used when precise
information about what happened is not important or not available.

Nodes are listed in Table 1, and edges in Table 2. Nodes and edges are
displayed graphically in Figure 1. The “Take Order” process used two artifacts,
“order” and “cash”, and generated the “empty cup”. The latter was used by
the process “Make Coffee”, to generate a “latte”.

We note that the empty cup was put on the tray, before payment was taken.
So there is no edge from the “empty cup” to “cash”. On the other hand, the
receipt was put on the tray after cash was received, which explains the presence
of an edge from “receipt” to “cash”.

Furthermore, some OPM edges can be decorated with time information (not
represented explicitly in the figure and table). Specifically, the time associated
with a precise used-edge denotes the time at which an artifact was used by a
process; likewise, the time associated with a precise generated-by edge denotes
the time at which an artifact was generated by a process. Moreover, processes
may be given a beginning and an ending time.

OPM specifies some constraints between such time information and the
graph structure. For instance, let t be the time associated with (p1,money, a2).
Time t represents the time at which p1 (“Take Order”) used artifact a2 (“cash”),
with role “money”. Time t is required to precede the ending of p1, and to follow
the beginning of p1. Note also that p1 may well be finished before artifact a5

(“latte”) was actually produced. This paper formalizes all constraints identified
by OPM.

We note that Bob’s version of events is represented in the same graph as Al-
ice’s version. In the graphical representation of Figure 1, these descriptions are
distinguished by color (black for Alice’s version, and violet for Bob’s; artifacts
“order” and “juice” belong to both versions.). To support multiple descriptions
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Table 2: OPM edges for coffee shop order

edge type source destination asserted edges for Figure 1
/effect /cause

precise generated-by artifact process (a3, cup, p1), (a4, receipt, p1),
(a5, coffee, p2),(a6, juice, p3)
(a6, juice, p4)

precise used process artifact (p1,money, a2), (p1, order, a1),
(p2, receipt, a4), (p2, cup, a3),
(p4, order, a1)

precise derived-from artifact artifact (a3, order, a1), (a4, order, a1),
(a4,money, a2), (a5, cup, a3),
(a5, receipt, a4)

generated-by artifact process (a6, p1)
used process artifact (p3, a1), (p3, a2)
derived-from artifact artifact (a6, a1)
informed-by process process (p3, p1)

of an execution, OPM introduces a notion of account. An account is a subgraph,
which is also an OPM graph, as represented by colors in Figure 1.

3 OPM graphs and their temporal semantics

The OPM reference specification [20] defines the proposed data model only
informally. The purpose of this section is to provide a temporal semantics to
OPM graphs, the data structure introduced in the reference specification.

3.1 OPM graphs

We begin by formally defining OPM graphs. Our definition is slightly more
detailed in distinguishing between precise and imprecise edges. In the OPM
reference specification, OPM graphs have different accounts, but we defer the
treatment of accounts to Section 7.

In our formalization, OPM graphs consist of nodes and edges. Nodes can be
of two types: artifacts and processes (Note 11.1). There are four types of edges:
generated-by, used, derived-from, and informed-by, depending on the type of
their source and destination (Note 11.2).

The edges are further categorized into precise and imprecise edges. Precise
edges are syntactically marked by the presence of roles to characterize the nature
of the relationship between the source and destination of the edge. Intuitively,
OPM roles are to used-edges, what parameter positions are to procedures in
programming languages; likewise, roles in a generated-by edge identify the na-
ture of an output generated by a process; finally, roles in a derived-from edge
characterize the precise usage of an artifact by a process. By contrast, imprecise
edges do not have roles; they represent incomplete information (Note 11.3).

This paper provides a semantic interpretation of precise and imprecise edges.
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Definition 3.1 (OPM graph). An OPM graph is a structure

(Art ,Proc,Roles,GeneratedBy !,Used !,DerivedFrom!,
GeneratedBy ,Used ,DerivedFrom, InformedBy)

where

• Art and Proc are two disjoint finite sets of elements called artifacts and
processes, respectively;

• Roles is a finite set of elements called roles;

• GeneratedBy ! ⊆ Art × Roles × Proc;

• Used ! ⊆ Proc × Roles ×Art ;

• DerivedFrom! ⊆ Art × Roles ×Art ;

• GeneratedBy ⊆ Art × Proc;

• Used ⊆ Proc ×Art ;

• DerivedFrom ⊆ Art ×Art ;

• InformedBy ⊆ Proc × Proc.

Artifacts and processes are collectively referred to as the nodes of an OPM
graph. The elements of GeneratedBy !∪Used !∪DerivedFrom! are called precise
edges, and the elements of GeneratedBy ∪Used ∪DerivedFrom∪InformedBy are
called imprecise edges; all together they are called edges (Note 11.4). Precise
edges are of the form (x, r, y) and are additionally denoted as x r→ y, or, when it
is not important to know r, as x !→ y. Imprecise edges (x, y) are denoted simply
as x → y. When the distinction between precise and imprecise derived-from
edges is of no consequence, we use the following set to refer to all derived-from
edges of an OPM graph:

DerivedEdges = DerivedFrom ∪ {(A,B) | (A, r,B) ∈ DerivedFrom!} .

This definition of graph allows for multiple precise used-edges between a
same process-artifact pair with multiple roles. They would indicate that during
its lifetime a process used a same artifact several times, with different roles.

The OPM reference specification defines a notion of legal graph as a di-
rected graph without cycles in the derived-from edges, in which each artifact
is generated by at most one process. For now, we relax the constraint on the
derived-from edges, which we revisit in Section 5.2, and refine such a notion of
legality in the context of our formalization (Note 11.5).

Definition 3.2 (Legal OPM graph). An OPM graph is called legal if

• for each artifact A there is at most one process P with a precise generated-
by edge A !→ P ; and

• for each precise derived-from edge A r→ B there is a process P with precise
edges A !→ P and P

r→ B, for the same role r.
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Figure 2: A use–generate-derive triangle (A,B, P, r).

A configuration (A,B, P, r) as above, with edges A r→ B, A !→ P , and
P

r→ B, is called a use–generate–derive triangle, or simply triangle for short
(see Figure 2). To denote that a use–generate–derive triangle (A,B, P, r) occurs
in some given OPM graph G, we use the notation G 4 (A,B, P, r).

A use–generate–derive triangle offers an insight into the inner workings of
a process P , since not only does it state that B was used by P in role r and
A generated according to a role, but also does it state that B had a direct
influence on A, because it was used in this precise role r.2 A typical usage of a
use–generate–derive triangle is for a division process, illustrated in the following
example.

Example 3.3. Let / be a division process, 8 and 4 be its inputs (in respective
capacity of dividend and divisor), and the quotient 2 be its output. So, edges
are as follows:

edge type source destination
precise generated-by artifact process (2, quotient, /)
precise used process artifact (/, dividend, 8), (/, divisor, 4)
precise derived-from artifact artifact (2, dividend, 8), (2, divisor, 4)

They form two triangles: (2, 8, /, dividend) and (2, 4, /, divisor).

In this paper, unless otherwise explicitly stated, we only consider legal OPM
graphs. Whenever we refer to a single OPM graph G, we use the names defined
in this section to refer to the different constituents of the OPM graph. If we
handle more than one OPM graph, for instance graphs G and H, we use su-
perscripts G and H to distinguish their respective constituents. We extend this
convention to other concepts related to OPM graphs.

3.2 Temporal models for OPM graphs

The OPM reference specification [20] allows OPM graphs to be decorated with
time information for specific time-points, which are meaningful in the context
of a computation. Four of these are identified: the beginning of a process, the
ending of a process, the instant a process uses an artifact, and the moment a
process creates an artifact. Such time information is routinely captured by com-
puter systems. For instance, creation time is readily available from file systems
in typical operating systems. HTTP servers and databases logs would usually

2The usage role in the use–generate–derive triangle is crucial. We could imagine an exten-
sion of Figure 2, in which P uses B in a second role, say s. The triangle of Figure 2 identifies
the precise usage of B that affected the output A, here r, whereas, an alternate use of B, with
role s, could have not impacted A (for instance, because it took place after A was created).
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include the time at which a document or table is read or queried, respectively.
Likewise, the beginning and ending time of processes are frequently recorded
by job submission systems. The OPM reference specification introduces some
constraints between time-points, such as an artifact can only be used after it has
been created. In this section, we revisit the notion of time in OPM, by means
of a temporal interpretation of a graph, in terms of all the time constraints that
it implies (Note 11.6).

A temporal interpretation of a legal OPM graph is an assignment of the fol-
lowing time-points to processes, artifacts, and precise used-edges:3 (Note 11.7)

• for each artifact A, its creation time, denoted by create(A);

• for each process P , its beginning and ending times, denoted by begin(P )
and end(P ) respectively;

• for each precise used-edge P r→ A, the time when P “read” A in role r,
denoted by use(P, r,A).

Formally, we fix some OPM graph G for the remainder of this section. We
define the set of temporal variables of G, denoted by Vars(G), as follows:

Vars(G) = {create(A) | A ∈ Art} ∪ {begin(P ), end(P ) | P ∈ Proc}
∪ {use(P, r,A) | (P, r,A) ∈ Used !} .

We then define:

Definition 3.4. A temporal interpretation of G is a triple (T,≤, τ), where

• T is a set, we call its elements time-points;

• ≤ is a partial order on T ;

• τ is a mapping from Vars(G) to T .

When no confusion can arise, we omit T and ≤ from the notation and simply
denote a temporal interpretation by τ .

Not every temporal interpretation makes sense as a temporal model of G.
Indeed, to reflect the dependencies specified in G, the interpretation should
satisfy various constraints reflecting these dependencies.

In order to define these constraints formally, we define an inequality over G
as an expression of the form u � v, with u, v ∈ Vars(G). By a trivial inequality
we mean an inequality of the form u � u. We are now ready to define the set
of constraints expressed by a legal OPM graph.

Definition 3.5. The temporal theory of G, denoted by Th(G), is the set con-
sisting of all the inequalities stated in the following axioms:

ax 1: for each process P , the inequality begin(P ) � end(P );

ax 2: for each precise generated-by edge A
!→ P in G, the inequalities

begin(P ) � create(A) � end(P );
3One may wonder why precise generated-by edges do not get a time-point. But, as a matter

of fact, they do. For each precise generated-by edge A
r→ P , we indeed have a time-point

create(A). Since the OPM graph is legal, there can be at most one precise edge emanating
from A, so we do not need to specify r and P .
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ax 3: for each precise used-edge P r→ A in G, the three inequalities begin(P ) �
use(P, r,A), use(P, r,A) � end(P ), and create(A) � use(P, r,A);

ax 4: for each imprecise derived-from edge A → B in G, the inequality
create(B) � create(A);

ax 5: for each imprecise generated-by edge A → P in G, the inequality
begin(P ) � create(A);

ax 6: for each imprecise used-edge P → A in G, the inequality create(A) �
end(P );

ax 7: for each informed-by edge P → Q in G, the inequality begin(Q) �
end(P );

ax 8: for each G 4 (A,B, P, r), the inequality use(P, r,B) � create(A).

Axioms 1–7 are either obvious (e.g., axiom 1) or are in line with the OPM
reference specification (Note 11.8). The eighth axiom, the “triangle axiom”,
corresponds to the intended usage of OPM by which a precise derived-from
edge in a generate–use–derive triangle (A,B, P, r) in G is not redundant, but
expresses exactly that P needed to read B in role r before it could generate A
(Note 11.9).

Example 3.6. The temporal interpretation of precise edges can be illustrated
by a service analogy. Let us consider a translation Web Service P . The service
has to be running to receive a translation request A and for the translation
result B to be returned; so A is received (used) and B is sent (created) after
the beginning of P and before its end; furthermore, B is created after A is
received.

Example 3.7. Referring to Figure 1, the coffee machine operator begins the
“Make Coffee” process by cleaning the steam pipe and emptying the coffee filter;
once an “empty cup” and “receipt” are available, they are used (precise edge)
to generate a “latte” (precise edge). In the same figure, it is unspecified when
the “order” is taken, with respect to the beginning of the “Provide Beverages”
process; hence, an imprecise used-edge appears in the figure.

We finally define the temporal models of G as follows. Naturally, a temporal
interpretation τ is said to satisfy an inequality u � v if τ(u) ≤ τ(v).

Definition 3.8. A temporal interpretation τ of G is a temporal model of G,
denoted by τ |= Th(G), if it satisfies all inequalities from Th(G).

Example 3.9. Consider the small OPM graph G shown in Figure 2. Let us
use natural numbers with their natural ordering as time-points. Then the two
interpretations τ1 and τ2, presented in Table 3, are temporal models of G.
Temporal model τ2, which maps all temporal variables to the same time-point,
might be generated by a very coarse clock.

Many temporal interpretations of G, however, are not temporal models of
G. If, for example, we would modify τ1 to τ ′1 by setting τ ′1(end(P )) = 0, then
Axiom 1 would be violated. Likewise, if we would modify τ2 to τ ′2 by setting
τ ′2(use(P, r,B)) = 0, then Axiom 3 would be violated. Also, if we would modify
τ1 to τ ′′1 by setting τ ′′1 (create(A)) = 0, then we would violate Axioms 2 and 8.
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Table 3: Two temporal models for the graph shown in Figure 2.

τ1 variable value
create(B) 1
begin(P ) 2
use(P, r,B) 3
create(A) 4
end(P ) 5

τ2 variable value
create(B) 1
begin(P ) 1
use(P, r,B) 1
create(A) 1
end(P ) 1

Example 3.10. For another example, consider an OPM graph with two arti-
facts A and B and nothing else (no edges either). Then any possible tem-
poral interpretation qualifies as a model. In particular, in some models τ we
have τ(create(A)) < τ(create(B)); in other models we have τ(create(B)) <
τ(create(A)); and still in others we have τ(create(A)) = τ(create(B)). This is
because the OPM graph does not impose any constraints by the absence of any
edges.

Whilst the temporal semantics is a novel contribution of this paper, the
OPM reference specification defines time placeholders in some constructs, and
allows them to be filled with time information. These time-decorated constructs
correspond to the time variables introduced in this paper. The OPM reference
specification does not mandate all time placeholders to be filled. Thus, from
a temporal semantics viewpoint, for every decorated construct, the time infor-
mation found in the placeholder fixes τ for the corresponding variable. If all
placeholders are filled, then a single temporal interpretation exists. In general,
for every filled placeholder, the number of possible interpretations is reduced.

Now that we have formally defined a temporal model for OPM graphs, we can
investigate, in the next section, how we can conduct inference in OPM graphs.
Whether there are other, non-temporal, ways to provide a formal semantics for
OPM graphs is an interesting direction for further research. (We discuss other
efforts in Section 8.)

4 Inference in OPM graphs

The axioms of Definition 3.5 allow us to obtain a number of inequalities over
an OPM graph’s variables. These inequalities logically imply further inequal-
ities. For a trivial example, in an OPM graph with derived-from edges A →
B → C, Axiom 4 gives the inequalities create(C) � create(B) and create(B) �
create(A), which logically imply the further inequality create(C) � create(A).

Formally, we define:

Definition 4.1. Let G be a legal OPM graph and let u, v ∈ Vars(G). The
inequality u � v is a logical consequence of G, denoted by Th(G) |= u � v, if
u � v is satisfied in every temporal model of G.

A general example of logical consequence is provided by the following lemma
and proof.

Lemma 4.2. Let G be a legal OPM graph with artifacts A and B and a precise
edge A r→ B for some role r. Then Th(G) |= create(B) � create(A).
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Before proving this lemma we note that Axiom 4 is almost exactly the same,
except that it is stated for an imprecise derived-from edge. Thus, the present
lemma shows that the same constraint holds for precise derived-from edges. This
constraint did not need to be explicitly given as an axiom because it already
logically follows from the given axioms.

Proof. Since G is legal, there exists a process P in G with edges P r→ B and
A

!→ P . Let τ be a temporal model of G. By Axiom 3 we have τ(create(B)) ≤
τ(use(P, r,B)). By Axiom 2 we have τ(use(P, r,B)) ≤ τ(create(A)). We con-
clude τ(create(B)) ≤ τ(create(A)) as desired.

One may indeed wonder exactly which inequalities logically follow from a
given OPM graph. It is well known that an inequality u � w can be inferred
from Th(G) by using repeated applications of the rule of transitivity: “from
u � v and v � w we infer u � w”.4 However, this way it is hard to relate
the newly inferred inequalities to nodes and edges in the graph. Fortunately,
we show in Section 4.2 that it is possible to perform temporal inference in a
purely graphical manner. We prove in Theorem 4.4 that every possible logical
consequence can be directly inferred from the OPM graph by looking for a fixed
set of patterns in the graph.

4.1 Edge-inference rules

The cornerstone of our graph-based inference of inequalities is provided by four
inference rules that infer new edges in an OPM graph. These four rules are
already part of the OPM reference specification [20], except that here we extend
them to better take precise edges into account. Inferred edges prove to play an
important role in graphical patterns that we introduce to infer inequalities.
Moreover, we establish that inference of edges is the only action we need to
perform to infer inequalities that do not involve use-variables. (For inequalities
involving use-variables, patterns more complicated than a single edge have to be
matched in the graph.) We thus provide a justification for the edge inferences
introduced in the OPM reference specification.

We first introduce the inference of edges at an intuitive level. Then we define
it formally in Definition 4.3. According to the OPM reference specification,
the edges present in an OPM graph G denote dependencies. From the given
dependencies in G, we can infer derived dependencies. A very intuitive type of
inference is to follow chains of derived-from edges. In this section, we define
edge-inference rules based on this intuition.

Suppose there is a chain of derived-from edges in G (which can be either
precise or imprecise) that starts in an artifact A and ends in an artifact C. We
denote this by A 99K C. Formally, relation 99K between two artifacts is nothing
else than the transitive closure of DerivedEdges. Since A has been indirectly
derived from C, we can think of A 99K C as an inferred edge, as illustrated in
Figure 3(a).

Next we show how to infer generated-by edges. Suppose we have artifacts A
and B with A 99K B and, in addition, a generated-by edge from B to a process

4For a set of inequalities Σ and an inequality ϕ, ϕ is a logical consequence of Σ if and only
if ϕ can be inferred from Σ by using transitivity. Ullman [30] presents a self-contained proof
for a slightly more general case.

12



B

A

C

(a)

B

(!)

P

A

(b)

A

(!)

P

B

(c)

A

!

P

B

(d)

Q

A

P

(e)

A

!

P

Q

(f)

Figure 3: Inference of (a) derived-from, (b) generated-by, (c)–(d) used and (e)–
(f) informed-by edges. The bold edges are newly inferred. The edges labeled by
“(!)” may be either precise or imprecise.
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Figure 4: Trivial inference of (a) derived-from, (b) generated-by, (c) used and
(d) informed-by edges.

P in G, either a precise edge B !→ P or an imprecise edge B → P . Then A has
been indirectly generated by P and we can infer an edge A 99K P , as illustrated
in Figure 3(b).

We can infer used-edges as well. Suppose we have artifacts A and B with
A 99K B. In addition, there is a used-edge from a process P to A in G, either
precise P !→ A or imprecise P → A. Then P has indirectly used B and we
can infer an edge P 99K B, as illustrated in Figure 3(c). Moreover, we can also
infer a used-edge in the following situation. Suppose we again have A 99K B,
but now in combination with a precise edge A !→ P in G. Since A was precisely
generated by P , but A has also been indirectly derived from B, we can conclude
that P has indirectly used B. Again, we can infer P 99K B, which we show in
Figure 3(d).

Finally, to infer informed-by edges, we can reason as follows. Suppose, for
some processes P and Q and an artifact A, we have edges P 99K A and A 99K
Q, which are already present in G (either precise or imprecise) or have been
previously inferred. Then A represents information that flowed from Q to P
and we can infer an edge P 99K Q, as illustrated in Figure 3(e). Moreover, an
informed-by edge can also be inferred in the following case. Suppose we again
have A 99K Q, but now in combination with a precise edge A !→ P in G. Since A
was directly generated by P , but A was also indirectly generated by Q, we can
conclude that P was somehow influenced by Q. Again, we can infer P 99K Q,
which we show in Figure 3(f).

There are also trivial inferences for all types of edges, to the effect that an
edge that is already present in the graph can always be inferred, as illustrated
in Figure 4.

The above discussion is formalized in the following definition. We present
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A→ B in G or A !→ B in G

G ` A 99K B
trivial derived-from

A→ P in G or A !→ P in G

G ` A 99K P
trivial generated-by

P → A in G or P !→ A in G

G ` P 99K A
trivial used

P → Q in G

G ` P 99K Q
trivial informed-by

Figure 5: Trivial edge-inference rules.

G ` A 99K B G ` B 99K C

G ` A 99K C
derived-from

G ` A 99K B B → P in G or B !→ P in G

G ` A 99K P
generated-by

G ` A 99K B P → A in G or P !→ A in G or A !→ P in G

G ` P 99K B
used

G ` A 99K Q G ` P 99K A or A !→ P in G

G ` P 99K Q
informed-by

Figure 6: Edge-inference rules.

the rules in a standard notation used in formal logic, where for each rule the
premises are stated above a bar, and the conclusion below it.

Definition 4.3 (Edge-inference rules). Let G be a legal OPM graph and let
X and Y be two nodes in G. In the following, we define when X 99K Y can
be inferred from G, denoted by G ` X 99K Y . Specifically, let A, B and C be
artifacts in G, and let P and Q be processes in G.

We begin by stating four trivial inference rules which mean that if an edge
already belongs to G, then that edge can be inferred from G. These rules are
presented in Figure 5. Next we define four further inference rules, in cases
where at least one of the present edges was previously inferred. These rules are
presented in Figure 6.

Note that, as a direct consequence of the above definition, we have the
following properties:

• G ` A 99K B iff (A,B) belongs to the transitive closure of DerivedEdges;
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• if G ` A 99K B and G ` B 99K P then G ` A 99K P ;

• if G ` P 99K A and G ` A 99K B then G ` P 99K B.

Edge-inference rules introduced in this section allow us to derive new edges
from a graph G, noted as G ` X 99K Y , with X and Y two nodes of G. Inferred
edges do not belong to the sets of edges identified in Definition 3.1, implying
that these edges X 99K Y are inferred “outside” G. Thus, the temporal theory
of Definition 3.5 does not associate a temporal meaning to these edges, directly.
In the next section, we observe that inferred edges have a similar temporal
semantics as imprecise edges.

4.2 Characterization of temporal inference

Let us reconsider the axioms of Definition 3.5 that define the temporal semantics
of an OPM graph. We see that each axiom is a rule that relates a pattern
in the graph to one or more inequalities. For example, Axiom 2 relates the
pattern consisting simply of a single edge A !→ P , to the inequalities begin(P ) �
create(A) and create(A) � end(P ). Axiom 1 even relates the pattern consisting
simply of a process node P to the inequality begin(P ) � end(P ). Axiom 8 has
a more complicated pattern in the form of a use–generate–derive triangle.

In a similar way, we now introduce ten more such rules. Rules 1–9A–9B
are shown in Figure 7. (The figure also includes some axioms, but we explain
this after the statement of Theorem 4.4.) An important difference with the
axioms, however, is that every dashed edge in a pattern now stands not just for
an edge that is present in the graph, but for an edge that can be inferred by the
edge-inference rules.

The following theorem states that these rules are sound and complete in the
following sense. The rules are sound in that they represent valid inferences: the
inequalities they infer are indeed logical consequences of the axioms in the sense
of Definition 4.1. Moreover, the rules are complete in that any inequality that is
a logical consequence of the axioms, and that is not already part of the axioms,
can be inferred by one of the ten rules.

Theorem 4.4. Let G be a legal OPM graph and let ϕ be a nontrivial inequality
over the temporal variables of G. Then Th(G) |= ϕ if and only if either (0) ϕ
already belongs to Th(G), or ϕ matches one of the following inequalities:

• Cases not involving use-variables:

1. create(B) � create(A) with G ` A 99K B;

2. begin(P ) � create(A) with G ` A 99K P ;

3. create(A) � end(P ) with G ` P 99K A;

4. begin(Q) � end(P ) with G ` P 99K Q;

• Cases involving use-variables:

5. create(B) � use(P, r,A) with P r→ A in G and G ` A 99K B;

6. begin(Q) � use(P, r,A) with P r→ A in G and G ` A 99K Q;

7. use(P, r, C) � create(A) with G 4 (B,C, P, r) for some B, and G `
A 99K B;
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8. use(P, r,B) � end(Q) with G 4 (A,B, P, r) for some A, and G `
Q 99K A;

9. use(P, r,B) � use(Q, s,A) with G 4 (C,B, P, r) for some C, with
Q

s→ A in G, and either (a) A = C or (b) G ` A 99K C.

Note that in the above, A, B and C, or P and Q, need not be distinct.
Since Rules 1–4 subsume Axioms 4–7, Figure 7, which includes the remaining

axioms, provides a complete picture of the possible logical consequences of an
OPM graph in the sense of Definition 4.1. That definition was purely semantic
and does not give any concrete algorithm for checking logical consequence. The
figure now gives us direct shortcuts from patterns in an OPM graph to its logical
consequences.

The inference rules of Figure 7 are an entirely novel characterization of the
temporal inferences of OPM since they are sound and complete, in the sense
defined in this section. To check that an inequality u � v is logical consequence
of a graph, it suffices to select the corresponding pattern in Figure 7, and verify
that it is satisfied by the graph (extended with the proper inferred edges).
Vice versa, if an inequality u � v is logical consequence of Th(G), then the
corresponding pattern is known to exist in G.

We anticipate that developers can leverage Theorem 4.4 to design reasoners
for OPM. So far, reasoners have typically relied on Semantic Web technologies,
such as OWL and SRWL, to compute transitive closures of OPM properties [22,
14]. What this theorem shows is that there are logical consequences involving
use-variables that cannot be directly represented by edges in OPM graphs.

4.3 Proof of Theorem Theorem 4.4

In this section we present the proof of Theorem 4.4. First, we tackle the sound-
ness property; then, we address the completeness proposition.

4.3.1 Proof of soundness

Let G be a legal OPM graph and let ϕ be a nontrivial inequality over the
temporal variables of G that satisfies the conditions from Theorem 4.4. We
have to show that Th(G) |= ϕ. Thereto, let τ be a temporal model of G, i.e.,
τ |= Th(G). We have to show that τ satisfies ϕ. We inspect the ten possibilities
for ϕ:

(0) if ϕ ∈ Th(G), then τ satisfies ϕ since τ |= Th(G).

(1) ϕ is create(B) � create(A) with G ` A 99K B.

As a consequence of Definition 4.3, G ` A 99K B holds if (A,B) be-
longs to the transitive closure of DerivedEdges. Therefore, there is a
path A1, A2, . . . , An of derived-from edges from A to B, for some n ≥ 2
with A1 = A and An = B, and with (Ai, Ai+1) ∈ DerivedEdges, for
i ∈ {1, . . . , n− 1}. Since every (Ai, Ai+1) is an edge in G, we know that
create(Ai+1) � create(Ai) belongs to Th(G) (Axiom 4 and Lemma 4.2)
and is thus satisfied by τ , i.e., τ(create(Ai+1)) ≤ τ(create(Ai)). Hence we
also have τ(create(An)) ≤ τ(create(A1)), because ≤ is a partial order for
τ . Thus τ satisfies create(B) � create(A).
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Figure 7: Characterization of temporal inference.
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(2) ϕ is begin(P ) � create(A) with G ` A 99K P .

By Definition 4.3, G ` A 99K P if either

a) there is already an edge A→ P or A !→ P in G; or
b) there is an artifact B such that G ` A 99K B and there is an edge

B → P or B !→ P in G.

2a) For an edge A→ P (A !→ P ) in G, we know by Axiom 5 (Axiom 2),
that ϕ ∈ Th(G) and thus τ satisfies ϕ.

2b) We already know from case 1 that τ satisfies create(B) � create(A)
for G ` A 99K B, i.e., we have τ(create(B)) ≤ τ(create(A)). For
an edge B → P (B !→ P ) in G, we know by Axiom 5 (Axiom 2),
that begin(P ) � create(B) belongs to Th(G). Therefore τ satis-
fies begin(P ) � create(B), i.e., τ(begin(P )) ≤ τ(create(B)). Hence
τ(begin(P )) ≤ τ(create(A)), since ≤ is a partial order for τ . We
conclude that τ satisfies begin(P ) � create(A).

(3) ϕ is create(A) � end(P ) with G ` P 99K A.

By Definition 4.3, G ` P 99K A if either

a) there is already an edge P → A or P !→ A in G; or
b) there is an artifact B such that G ` B 99K A and there is an edge

P → B or P !→ B or B !→ P in G.

3a) For an edge P → A (P !→ A) in G, we know by Axiom 6 (Axiom 3)
that ϕ ∈ Th(G) and thus τ satisfies ϕ.

3b) We already know from case 1 that τ satisfies create(A) � create(B)
for G ` B 99K A. For an edge P → B (P !→ B) in G, we
know by Axiom 6 (Axiom 3) that create(B) � end(P ) belongs to
Th(G). For an edge B

!→ P in G, we know by Axiom 2 that
create(B) � end(P ) belongs to Th(G). Therefore, in each case, τ
satisfies both create(A) � create(B) and create(B) � end(P ). Hence
τ also satisfies create(A) � end(P ).

(4) ϕ is begin(Q) � end(P ) with G ` P 99K Q.

By Definition 4.3, G ` P 99K Q if either

a) there is already an edge P → Q in G; or
b) there is an artifact A such that G ` A 99K Q, and either G ` P 99K A

or there is an edge A !→ P in G.

4a) For an edge P → Q in G, we know by Axiom 7 that ϕ ∈ Th(G) and
thus τ satisfies ϕ.

4b) We already know from case 2 that τ satisfies begin(Q) � create(A) for
G ` A 99K Q. We also know from case (3) that τ satisfies create(A) �
end(P ) for G ` P 99K A. For an edge A !→ P in G, we know by
Axiom 2 that create(A) � end(P ) belongs to Th(G). Therefore, in
each case, τ satisfies both begin(Q) � create(A) and create(A) �
end(P ). Thus τ also satisfies begin(Q) � end(P ).
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(5) ϕ is create(B) � use(P, r,A) with P
r→ A in G and G ` A 99K B.

We already know from case 1 that τ satisfies create(B) � create(A) forG `
A 99K B. For edge P r→ A in G we know, by Axiom 3, that create(A) �
use(P, r,A) belongs to Th(G), and is thus satisfied by τ . Therefore, τ also
satisfies create(B) � use(P, r,A).

(6) ϕ is begin(Q) � use(P, r,A) with P
r→ A in G and G ` A 99K Q .

We already know from case 2 that τ satisfies begin(Q) � create(A) for
G ` A 99K Q. For edge P

r→ A in G, we know, by Axiom 3, that
create(A) � use(P, r,A) belongs to Th(G), and is thus satisfied by τ .
Thus, τ also satisfies begin(Q) � use(P, r,A).

(7) ϕ is use(P, r, C) � create(A) with G 4 (B,C, P, r) and G ` A 99K B.

We already know from case 1 that τ satisfies create(B) � create(A) forG `
A 99K B. From G 4 (B,C, P, r) we know, by Axiom 8, that use(P, r, C) �
create(B) belongs to Th(G), and is thus satisfied by τ . Therefore, τ also
satisfies use(P, r, C) � create(A).

(8) ϕ is use(P, r,B) � end(Q) with G 4 (A,B, P, r) and G ` Q 99K A.

We already know from case 3 that τ satisfies create(A) � end(Q) for G `
Q 99K A. From G 4 (A,B, P, r) we know, by Axiom 8, that use(P, r,B) �
create(A) belongs to Th(G), and is thus satisfied by τ . Hence, τ also
satisfies use(P, r,B) � end(Q).

(9) ϕ is use(P, r,B) � use(Q, s,A) with G 4 (C,B, P, r) in G, Q s→ A in G,
and either (a) A = C or (b) G ` A 99K C.

We already know from case 1 that τ satisfies create(C) � create(A) for
G ` A 99K C (9b). If A = C (9a) then, obviously, τ(A) = τ(C), and τ

still satisfies create(C) � create(A). For edge Q
s→ A in G, we know,

by Axiom 3, that create(A) � use(Q, s,A) belongs to Th(G), and is
thus satisfied by τ . From G 4 (C,B, P, r) we know, by Axiom 8S, that
use(P, r,B) � create(C) belongs to Th(G), hence is satisfied by τ . There-
fore, we have use(P, r,B) � create(C) � create(A) � use(Q, s,A). We
conclude that τ also satisfies use(P, r,B) � use(Q, s,A).

4.3.2 Proof of completeness

Let G be a legal OPM graph and let ϕ be a nontrivial inequality over the
temporal variables of G such that Th(G) |= ϕ. We must show that ϕ ∈ Th(G)
or ϕ matches one of the cases 1–9 of Theorem 4.4.

It is well known [30] that ϕ can be inferred from Th(G) by using repeated
applications of the rule of transitivity: “from u � v and v � w infer u � w.”
We proceed by induction on the number of applications of the transitivity rule.

If ϕ can be inferred by zero applications, then ϕ is already in Th(G) and we
are done, as this corresponds to case 0 of the theorem.

Now consider an application of transitivity inferring ϕ of the form u � w
from u � v � w, where, by induction, the theorem can already be assumed to
hold for the inequalities u � v and v � w. Since begin-variables (end-variables)
never appear on the right-hand (left-hand) side of an inequality, v cannot be a
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begin-variable (end-variable). That leaves us with two cases, with v being either
a create- or a use-variable.

Case v is a create-variable Let v be a create-variable, say create(Av). Let us
list the possibilities for u and note the relevant properties:

(a) u is also a create-variable, say create(Au). By induction, we know
that the inequality u � v either already belongs to Th(G), so there
is an edge Av → Au in G (Axiom 4), or the inequality corresponds
to case 1 of the theorem, therefore G ` Av 99K Au. In either case we
have G ` Av 99K Au.

(b) u is a begin-variable, say begin(Pu). By induction, u � v either
belongs to Th(G), so there is an edge Av

!→ Pu in G (Axiom 2)
or Av → Pu in G (Axiom 5); or u � v corresponds to case 2 of
the theorem, therefore G ` Av 99K Pu. In either case we have G `
Av 99K Pu.

(c) u is a use-variable, say use(Pu, ru, Au). By induction, u � v either
(c1) belongs to Th(G), so there is some use–generate–derive trian-
gle (Av, Au, Pu, ru) in G (Axiom 8); or (c2) u � v corresponds to
case 7 of the theorem, thus there is a use–generate–derive triangle
(A′v, Au, Pu, ru) in G with G ` Av 99K A′v.

We also list the possibilities for w and their relevant properties:

(d) w is also a create-variable, say create(Aw). By the induction hypoth-
esis applied to v � w, reasoning similarly as in case (a) above, we
have G ` Aw 99K Av.

(e) w is an end-variable, say end(Pw). By induction, v � w either belongs
to Th(G), so there is an edge Av

!→ Pw in G (Axiom 2) or Pw → Av
in G (Axiom 6); or v � w corresponds to case 3 of the theorem,
therefore G ` Pw 99K Av. We have thus either (e1) Av

!→ Pw in G
or (e2) G ` Pw 99K Av.

(f) w is a use-variable, say use(Pw, rw, Aw). This necessitates the pres-
ence of edge Pw

rw→ Aw in G. By induction, the inequality v � w
either (f1) belongs to Th(G), so that Aw = Av (Axiom 3); or (f2)
v � w corresponds to case 5 of the theorem, thus G ` Aw 99K Av.

We can now inspect the nine possible combinations:

(ad) ϕ is create(Au) � create(Aw). From G ` Av 99K Au and G ` Aw 99K
Av we infer G ` Aw 99K Au, which matches case 1 of the theorem.

(ae) ϕ is create(Au) � end(Pw). From G ` Av 99K Au and either Av
!→

Pw in G or G ` Pw 99K Av we infer G ` Pw 99K Au, which matches
case 3 of the theorem.

(af) ϕ is create(Au) � use(Pw, rw, Aw) with Pw
rw→ Aw in G. In case f1,

we have G ` Av 99K Au and Av = Aw, so the case corresponds to
case 5 of the theorem. In case f2, we infer G ` Aw 99K Au from
G ` Aw 99K Av and G ` Av 99K Au, which again matches case 5 of
the theorem.
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Figure 8: Proof of the completeness of Theorem 4.4 for cases (a) c2 with e1, (b)
c2 with e2, (c) h1 with l, and (d) h2 with l. The bold edges are newly inferred.

(bd) ϕ is begin(Pu) � create(Aw). From G ` Av 99K Pu and G ` Aw 99K
Av we infer G ` Aw 99K Pu, which corresponds to case 2 of the
theorem.

(be) ϕ is begin(Pu) � end(Pw). From G ` Av 99K Pu and either Av
!→ Pw

in G or G ` Pw 99K Av we infer G ` Pw 99K Pu, which matches case 4
of the theorem.

(bf) ϕ is begin(Pu) � use(Pw, rw, Aw) with Pw
rw→ Aw in G. In case f1,

we have G ` Av 99K Pu and Av = Aw, so the case corresponds to
case 6 of the theorem. In case f2, we infer G ` Aw 99K Pu from
G ` Aw 99K Av and G ` Av 99K Pu, which again matches case 6 of
the theorem.

(cd) ϕ is use(Pu, ru, Au) � create(Aw). Case c1 corresponds directly to
case 7 of the theorem. In case c2, we infer G ` Aw 99K A′v from
G ` Av 99K A′v and G ` Aw 99K Av, which again matches case 7 of
the theorem.

(ce) ϕ is use(Pu, ru, Au) � end(Pw). First, consider case c1 together with
e1. SinceG 4 (Av, Au, Pu, ru), Pu and Pw must be equal becauseG is
legal. In this case the inequality holds by Axiom 3. Case c1 together
with e2 corresponds directly to case 8 of the theorem. Finally, in
case c2, from G ` Av 99K A′v, and either Av

!→ Pw (from e1, see
Figure 8(a)) or G ` Pw 99K Av (from e2, see Figure 8(b)) we infer
G ` Pw 99K A′v, which matches case 8 of the theorem.

(cf) ϕ is use(Pu, ru, Au) � use(Pw, rw, Aw). Case c1 together with f1
corresponds directly to case 9a of the theorem. Case c1 together with
f2 matches case 9b of the theorem. The same holds for c2 together
with f1. In case c2 together with f2 we infer G ` Aw 99K A′v from
G ` Aw 99K Av and G ` Av 99K A′v, which again matches case 9b of
the theorem.

Case v is a use-variable
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Let v be a use-variable, say use(Pv, rv, Av). Note that this necessitates
the presence of the edge Pv

rv→ Av in G. Let us list the possibilities for u
and note the relevant properties:

(g) u is a create-variable, say create(Au). By induction, we know that the
inequality u � v either (g1) already belongs to Th(G), so Au equals
Av with the edge Pv

rv→ Av in G (Axiom 3); or (g2) the inequality
corresponds to case 5 of the theorem, therefore G ` Av 99K Au with
the edge Pv

rv→ Av in G.

(h) u is a begin-variable, say begin(Pu). By induction, u � v either (h1)
already belongs to Th(G), thus Pu equals Pv with the edge Pv

rv→ Av
in G (Axiom 3); or (h2) the inequality corresponds to case 6 of the
theorem, therefore G ` Av 99K Pu with the edge Pv

rv→ Av in G.

(i) u is also a use-variable, say use(Pu, ru, Au). By induction, we know
that the inequality u � v can only correspond to case 9 of the theo-
rem, therefore we have some triangle (A′v, Au, Pu, ru) in G with the
edge Pv

rv→ Av in G, and either Av = A′v or G ` Av 99K A′v.

We also list the possibilities for w and their relevant properties:

(j) w is a create-variable, say create(Aw). By induction, v � w either
(j1) already belongs to Th(G), so there is some use–generate–derive
triangle (Aw, Av, Pv, rv) in G (Axiom 8); or (j2) the inequality corre-
sponds to case 7 of the theorem, and there is a use–generate–derive
triangle (A′w, Av, Pv, rv) in G with G ` Aw 99K A′w. Note that in
both cases we can infer G ` Aw 99K Av. Indeed, in case j1 we have
the edge Aw

rv→ Av in G. In case j2 we have G ` Aw 99K A′w and the
edge A′w

rv→ Av in G.

(k) w is an end-variable, say end(Pw). By induction, v � w either (k1)
already belongs to Th(G), so Pw equals Pv with the edge Pv

rv→ Av
in G (Axiom 3); or (k2) corresponds to case 8 of the theorem, thus
there is some use–generate–derive triangle (Aw, Av, Pv, rv) in G with
G ` Pw 99K Aw. Note that in both cases we can infer G ` Pw 99K Av.
Indeed, in case k1 we have the edge Pw

rv→ Av in G. In case k2 we
have G ` Pw 99K Aw and the edge Aw

rv→ Av in G.

(l) w is also a use-variable, say use(Pw, rw, Aw). By induction, we know
that the inequality v � w can only correspond to case 9 of the the-
orem, so there is some use–generate–derive triangle (A′w, Av, Pv, rv)
in G with Pw

rw→ Aw in G, and either Aw = A′w or G ` Aw 99K A′w.
Note that in both cases we can infer G ` Aw 99K Av by the edge
A′w

rv→ Av in the triangle.

We can now inspect the nine possible combinations:

(gj) ϕ is create(Au) � create(Aw). In case g1, we have G ` Aw 99K
Av and Av = Au, so the case corresponds directly to case 1 of the
theorem. In case g2, we have G ` Aw 99K Av and G ` Av 99K Au,
so we can infer G ` Aw 99K Au, which, again, matches case 1 of the
theorem.

22



(gk) ϕ is create(Au) � end(Pw). In case g1 together with k1, we have
Av = Au, Pv = Pw, and the edge Pv

rv→ Av in G, so the case corre-
sponds directly to case 3 of the theorem. In case g2 together with k1,
we have Pv = Pw with the edge Pv

rv→ Av in G. From the latter and
G ` Av 99K Au, we infer G ` Pw 99K Au, which again matches case 3
of the theorem. In case g1 together with k2, we have G ` Pw 99K Av
and Av = Au, so the case corresponds directly to case 3 of the the-
orem. In case g2 together with k2, we infer G ` Pw 99K Au from
G ` Pw 99K Av and G ` Av 99K Au. Hence the case again matches
case 3 of the theorem.

(gl) ϕ is create(Au) � use(Pw, rw, Aw). In case g1, we have G ` Aw 99K
Av and Av = Au, so the case corresponds directly to case 5 of the
theorem. In case g2, we infer G ` Aw 99K Au from G ` Aw 99K Av
and G ` Av 99K Au, which matches case 5 of the theorem.

(hj) ϕ is begin(Pu) � create(Aw). By case j, we infer G ` Aw 99K Pv.
(Indeed, in case j1 we easily infer G ` Aw 99K Pv. In case j2 we also
infer G ` Aw 99K Pv from G ` Aw 99K A′w and A′w

!→ Pv in G.)
Now in case h1 we have Pv = Pu, so the case corresponds directly
to case 2 of the theorem. In case h2 we have G ` Aw 99K Av and
G ` Av 99K Pu, so we can infer G ` Aw 99K Pu. Thus the case again
matches case 2 of the theorem.

(hk) ϕ is begin(Pu) � end(Pw). In case h1 together with k1, we have
Pu = Pv = Pw, so the inequality trivially holds (Axiom 1). In case
h1 together with k2, we have Pv = Pu, and we infer G ` Pw 99K Pv
from G ` Pw 99K Aw and G ` Aw 99K Pv. Thus the case corresponds
to case 4 of the theorem. In case h2 we have G ` Pw 99K Av, which
combined with G ` Av 99K Pu, yields G ` Pw 99K Pu. Hence the
case again matches case 4 of the theorem.

(hl) ϕ is begin(Pu) � use(Pw, rw, Aw). By case l, we infer G ` Aw 99K Pv
from A′w

!→ Pv in G, and either Aw = A′w or G ` Aw 99K A′w. Also,
there is an edge Pw

rw→ Aw in G, and G ` Aw 99K Av. In case h1
(see Figure 8(c)) we have Pv = Pu, so the case corresponds to case 6
of the theorem. In case h2 (see Figure 8(d)), from G ` Aw 99K Av
and G ` Av 99K Pu, we infer G ` Aw 99K Pu. Hence the case again
matches case 6 of the theorem.

(i j) ϕ is use(Pu, ru, Au) � create(Aw). We infer G ` Aw 99K A′v from
G ` Aw 99K Av, and either Av = A′v or G ` Av 99K A′v. Together
with G 4 (A′v, Au, Pu, ru), the case corresponds to case 7 of the
theorem.

(ik) ϕ is use(Pu, ru, Au) � end(Pw). We already haveG 4 (A′v, Au, Pu, ru).
In case k1, we have Pw = Pv. We infer G ` Pv 99K A′v from the edge
Pv

rv→ Av in G, and either Av = A′v or G ` Av 99K A′v. The case thus
matches case 8 of the theorem. In case k2, we infer G ` Pw 99K A′v
from G ` Pw 99K Aw, Aw

rv→ Av in G, and either Av = A′v or
G ` Av 99K A′v. Hence the case again matches case 8 of the theorem.

(i l) ϕ is use(Pu, ru, Au) � use(Pw, rw, Aw). We already have Pw
rw→ Aw

in G and G 4 (A′v, Au, Pu, ru). We additionally infer G ` Aw 99K A′v
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from G ` Aw 99K Av, and either Av = A′v or G ` Av 99K A′v. Hence
the case matches case 9b of the theorem.

4.4 About no-use inequalities

The Open Provenance Model reference specification defines edges adjacent to
artifacts in terms of the creation of the artifact, with respect to the creation
of another artifact, or the beginning and ending of a process. There is some
value in considering a temporal theory that ignores use time-points, since the
theory becomes simpler (though it is unable to tell us anything about usage
of artifacts). In this case, it is worth characterizing temporal inference in the
context of this simpler theory.

First we state a remarkable corollary, after introducing the following defini-
tion.

Definition 4.5. If in an inequality ϕ of the form u � v, neither u nor v is a
use-variable, then we call ϕ a no-use inequality.

As a corollary to Theorem 4.4, we obtain the following completeness result
for edge inference, as far as no-use inequalities are concerned. Note that the
edge-inference rules are present as Rules 1–4 in Figure 7.

Corollary 4.6. Let G be a legal OPM graph and let ϕ be a no-use inequality.
Then Th(G) |= ϕ if and only if ϕ can be inferred using Axioms 1–2 and Rules 1–
4 in Figure 7.

Proof. It is clear from Theorem 4.4 that if ϕ can be inferred using Axioms 1–2
and Rules 1–4, then Th(G) |= ϕ. For the other direction, assume that Th(G) |=
ϕ holds. Then we know by Theorem 4.4 that ϕ can be inferred by the axioms
and rules presented in Figure 7. By examination of these axioms and rules,
however, we notice that Axioms 1–2 and Rules 1–4 are the only ones that infer
no-use inequalities.

It is interesting to note, that when dealing with no-use inequalities, we do
not need the full temporal theory of an OPM graph. We start with a small
generalization of Definitions 3.8 and 4.1.

Definition 4.7. Let G be a legal OPM graph and let u, v ∈ Vars(G). Let Σ be
a subset of Th(G). Any temporal interpretation that satisfies all inequalities of
Σ is called a temporal model of Σ. Furthermore, the inequality u � v is a logical
consequence of Σ, denoted by Σ |= u � v, if u � v is satisfied in every temporal
model of Σ.

We can now select, for a given OPM graph G, only the no-use inequalities
from its temporal theory.

Definition 4.8. For a legal OPM graph G, we define the no-use temporal theory
of G, denoted by Thno-use(G), as follows:

Thno-use(G) = {ϕ ∈ Th(G) | ϕ is a no-use inequality}

∪
{

create(A) � end(P ) | P !→ A in G
}

∪
{

create(B) � create(A) | A !→ B in G
}
.
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The intuition is that Thno-use(G) does not contain Axioms 3 and 8, and
enforces Axioms 4 and 6 for precise and imprecise edges alike.5

We can now observe that use-variables do not influence the no-use inequali-
ties that are logical consequences of Th(G).

Proposition 4.9. Let G be a legal OPM graph and let ϕ be a no-use inequality.
Then Th(G) |= ϕ if and only if Thno-use(G) |= ϕ.

Proof. Since any temporal model τ of Th(G) is also a temporal model of
Thno-use(G), the if-direction is immediate. For the only-if direction, let τ be
a temporal model of Thno-use(G). We try to extend τ to τ ′ in such a way
that τ ′ is a temporal model of Th(G). For every no-use variable u simply put
τ ′(u) = τ(u). Now we have to find suitable values for:

• use(P, r,A) for each P
r→ A in G, so that Axiom 3 is satisfied, and

• use(P, r,B) for each G 4 (A,B, P, r), so that Axiom 8 is satisfied.

It is easy to verify that Axiom 3 holds if τ ′(use(P, r,A)) equals the maximum
of τ(create(A)) and τ(begin(P )). Likewise, Axiom 8 holds if τ ′(use(P, r,B))
equals the maximum of τ(create(B)) and τ(begin(P )). Thus τ ′ satisfies all
eight axioms and is a temporal model of Th(G). We know thus that τ ′ satisfies
ϕ. Since ϕ is a no-use inequality, and τ ′ and τ coincide on all variables used in
no-use inequalities, τ also satisfies ϕ.

The above proposition together with Corollary 4.6 yields the following:

Corollary 4.10. Let G be a legal OPM graph and let ϕ be a no-use inequality.
Then Thno-use(G) |= ϕ if and only if ϕ can be inferred using Axioms 1–2 and
Rules 1–4 in Figure 7.

This section provides a remarkable result since it establishes the complete-
ness of edge inferences (Rules 1–4 in Figure 7) for no-use inequalities. Fur-
thermore, reasoning with use time-points does not allow us to derive any new
inequality about no-use variables. We envisage this result to be leveraged by
developers of reasoners for OPM, since it offers opportunities to optimize rea-
soners, by reducing the number of time-points to reason over, focusing on no-use
variables in a first phase, and dealing efficiently with use-variables afterwards.

5 Operations on OPM graphs

The reason for capturing provenance is that it can be used to address a variety
of use cases [16]. To this end, one needs to collect provenance information from
potentially different sources, combine and process it in multiple ways. It is
therefore useful to define operations on OPM graphs, which we anticipate can
become part of “provenance toolkits”.

5Note that in the full theory Th(G), the no-use inequality create(A) � end(P ) for P
!→ A

in G is implied by Axiom 3, but since we omit this axiom, we need to recover the inequality in

axiom 6. Likewise, the no-use inequality create(B) � create(A) for A
!→ B in G is provided

by Lemma 4.2. Since the proof of the lemma utilizes use-variables, the lemma doesn’t hold
anymore and we need to recover the inequality in axiom 4.
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Figure 9: Three legal OPM graphs.

When two OPM graphs are obtained from different sources, a reasoner may
want to take their union, if it ascertains they relate to some common entities.
Given two OPM graphs, an intersection operation helps identify their common
elements. Different sources may use different identifiers for graph nodes; thus,
to be able to compute meaningful union and intersection, it may be required
to rename some nodes, before performing these operations. In this section, we
formalize notions of subgraph, union, intersection, and renaming and merging.

Let us fix two OPM graphs G and H for use in this section. Neither G nor
H have to be legal.

Definition 5.1 (Subgraph). H is a subgraph of G if every constituent of H is
a subset of the corresponding constituent of G. Formally:

• ArtH ⊆ ArtG,

• ProcH ⊆ ProcG,

• RolesH ⊆ RolesG,

• GeneratedBy !H ⊆ GeneratedBy !G,

• Used !H ⊆ Used !G,

• DerivedFrom!H ⊆ DerivedFrom!G,

• GeneratedByH ⊆ GeneratedByG,

• UsedH ⊆ UsedG,

• DerivedFromH ⊆ DerivedFromG,

• InformedByH ⊆ InformedByG.

Note that a subgraph of a legal OPM graph may not be legal. For example,
the graph presented in Figure 9(a) is legal, whereas its subgraph composed of

nodes A, B, P , role r, and edges A r→ B and A
r′→ P is not legal, since the

use–generate–derive triangle (A,B, P, r) is not complete.

Definition 5.2 (Union). The union of G and H, denoted by G∪H, is the OPM
graph where each constituent equals the union of the corresponding constituents
in G and H. Formally:

• ArtG∪H = ArtG ∪ArtH ,

• ProcG∪H = ProcG ∪ ProcH ,
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• RolesG∪H = RolesG ∪ RolesH ,

• GeneratedBy !G∪H = GeneratedBy !G ∪GeneratedBy !H ,

• Used !G∪H = Used !G ∪Used !H ,

• DerivedFrom!G∪H = DerivedFrom!G ∪DerivedFrom!H ,

• GeneratedByG∪H = GeneratedByG ∪GeneratedByH ,

• UsedG∪H = UsedG ∪UsedH ,

• DerivedFromG∪H = DerivedFromG ∪DerivedFromH ,

• InformedByG∪H = InformedByG ∪ InformedByH .

Note that the union of two legal OPM graphs may not be legal. For instance,
the graph presented in Figure 9(a) is legal, and so is the graph in Figure 9(b).
The union of these two graphs, however, is not legal, since in the union A has

two different precise generated-by edges: A r′→ P and A
s′→ Q.

Definition 5.3 (Intersection). The intersection of G and H, denoted by G ∩
H, is the OPM graph where each constituent equals the intersection of the
corresponding constituents in G and H. Formally:

• ArtG∩H = ArtG ∩ArtH ,

• ProcG∩H = ProcG ∩ ProcH ,

• RolesG∩H = RolesG ∩ RolesH ,

• GeneratedBy !G∩H = GeneratedBy !G ∩GeneratedBy !H ,

• Used !G∩H = Used !G ∩Used !H ,

• DerivedFrom!G∩H = DerivedFrom!G ∩DerivedFrom!H ,

• GeneratedByG∩H = GeneratedByG ∩GeneratedByH ,

• UsedG∩H = UsedG ∩UsedH ,

• DerivedFromG∩H = DerivedFromG ∩DerivedFromH ,

• InformedByG∩H = InformedByG ∩ InformedByH .

Note that G and H need to have at least one node or one role in common
for their intersection to be non-empty. For example, the intersection of the two
graphs in Figures 9(a) and 9(b) yields the OPM graph consisting of the artifacts
A and D.

The following is readily verified:

Proposition 5.4. The intersection of two legal OPM graphs is legal.

One may wonder about the relations between union and intersection of legal
OPM graphs and their temporal theories. We answer this question next. Let G
and H now be two legal OPM graphs.

Proposition 5.5. Th(G ∪H) = Th(G) ∪ Th(H).
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Proof. Each inequality in Th(G) or Th(H) corresponds to a single node, a
single edge or some use–generate–derive triangle present in G or H. Thus all
inequalities present in Th(G) ∪ Th(H), also belong to Th(G ∪ H). Moreover,
the only additional inequalities in Th(G ∪ H) would correspond to some use–
generate-derive triangles that were newly formed by the union of G and H.
Since both G and H are legal, this is impossible, because legal OPM graphs
cannot contain parts of a use–generate-derive triangle. Therefore, Th(G ∪ H)
contains only inequalities that are already present in Th(G), or in Th(H), or in
both.

Proposition 5.6. Th(G ∩H) ⊆ Th(G) ∩ Th(H).

Proof. Any inequality from Th(G ∩H) corresponds to a single node, an edge,
or a use–generate–derive triangle present in G∩H, and thus in both G and H.
Therefore, it also belongs to Th(G) ∩ Th(H).

The converse inclusion does not hold. If G consists only of edge P → A, and
H consists only of edge A !→ P , then G∩H consists of the two nodes A and P .
So

Th(G) = {create(A) � end(P ),begin(P ) � end(P )} ,
Th(H) = {begin(P ) � create(A), create(A) � end(P ),begin(P ) � end(P )} ,

and

Th(G ∩H) = {begin(P ) � end(P )} .

Clearly create(A) � end(P ) ∈ Th(G) ∩ Th(H) 6⊆ Th(G ∩ H). Note that
create(A) � end(P ) is not even a logical consequence of Th(G ∩H).

5.1 Renaming and merging

By definition, the nodes and roles of an OPM graph are local to the graph.
Prior to performing a union or an intersection of two OPM graphs G and H,
we may need to resolve some identity issues between the nodes and roles in the
graphs. For example, some process node P in G may represent the same actual
process as some process node Q in H. Likewise, role r in edge P r→ B in G
may refer to the same actual role as role s in edge Q s→ C in H, and also B
and C may represent the same actual artifact. Moreover, it is equally possible
that some node or role is accidentally used in both graphs whereas this node or
role does not represent the same actual entity across the two graphs. Resolving
such identity issues leads to a renaming operation on one or both of the graphs,
whereby nodes and roles representing the same actual entity can be renamed
to a common node or role; likewise, nodes and roles not representing the same
actual entity, but accidentally used in both graphs, can be renamed to distinct
nodes or roles.

Definition 5.7 (Renaming). Let G and H be OPM graphs, which need not
be legal. Let ρArt be a bijection from ArtG to a finite set Art ′, let ρProc be
a bijection from ProcG to a finite set Proc′, and let ρRoles be a bijection from
RolesG to a finite set Roles ′, with the sets Art ′, Proc′, and Roles ′ mutually
disjoint. Then H is the renaming of G by ρArt , ρProc , and ρRoles , if the following
holds:
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• ArtH = Art ′,

• ProcH = Proc′,

• RolesH = Roles ′,

• GeneratedBy !H = {(ρArt(A), ρRoles(r), ρProc(P )) | (A, r, P ) ∈ GeneratedBy !G};

• Used !H =
{

(ρProc(P ), ρRoles(r), ρArt(A)) | (P, r,A) ∈ Used !G
}

;

• DerivedFrom!H = {(ρArt(A), ρRoles(r), ρArt(B)) | (A, r,B) ∈ DerivedFrom!G};

• GeneratedByH =
{

(ρArt(A), ρProc(P )) | (A,P ) ∈ GeneratedByG
}

;

• UsedH =
{

(ρProc(P ), ρArt(A)) | (P,A) ∈ UsedG
}

;

• DerivedFromH =
{

(ρArt(A), ρArt(B)) | (A,B) ∈ DerivedFromG
}

;

• InformedByH =
{

(ρProc(P ), ρProc(Q)) | (P,Q) ∈ InformedByG
}

;

Note that ArtG and Art ′ need not be disjoint; similarly, neither ProcG and
Proc′, nor RolesG and Roles ′, need to be disjoint. Indeed, ρArt , ρProc and
ρRoles may coincide with the identity function on some of their inputs, i.e., not
all artifacts, processes and roles need to be renamed.

Example 5.8. We can rename the graph presented in Figure 9(b) by the following
bijections:

• ρArt(A) = A, ρArt(C) = B, ρArt(D) = F , and ρArt(E) = E;

• ρProc(Q) = P ;

• ρRoles(s) = r and ρRoles(s′) = r′.

Then we can take the union of the renamed graph with the graph shown in
Figure 9(a), which yields the legal OPM graph presented in Figure 9(c).

The following is readily verified:

Proposition 5.9. The renaming of a legal OPM graph is legal.

We next define the following generalization of renaming.

Definition 5.10 (Merge-renaming). Let G and H be OPM graphs, which need
not be legal. Let ρArt , ρProc and ρRoles be as in Definition 5.7 except that ρArt ,
ρProc and ρRoles need not be bijective: they only need to be surjective (onto)
mappings. Then we say that H is the merge-renaming of G by ρArt , ρProc , and
ρRoles , exactly if the same equalities of Definition 5.7 hold.

Merge-renaming allows the coalescing of two or more nodes to a single node
(or two or more roles to a single role). Coalescing of nodes or roles may be
performed when analyzing an OPM graph on a coarser level of detail. But
coalescing may also be practical when more information becomes available. For
example, in a traffic accident scenario, there may be observations about a “blue

29



car” and other observations about a “Toyota”, only to realize later that the blue
car is the Toyota.

In contrast to Proposition 5.9, the merge-renaming of a legal OPM graph
need not be legal. For example, in Figure 10(c), if we coalesce C and D into a
single artifact E, but do not coalesce P and Q, nor their roles, then E has two
distinct precise generated-by edges.

As a merge-renaming can coalesce artifacts, such an operation can intro-
duce cycles of derived-from edges to an OPM graph. In the next section, we
investigate the consequences of such cycles in OPM graphs.

5.2 Equality inference

Our definitions allow the presence of derived-from cycles in legal OPM graphs.
By a derived-from cycle, we mean a directed simple cycle composed of derived-
from edges (precise or imprecise). An OPM graph resulting from a typical
experimental provenance collection procedure does not contain such cycles, and
indeed the current OPM reference specification forbids them. For example, it
would be strange to assert that A is derived from B and that B is derived from
A.

Nevertheless, cycles may arise in a graph when, after a merge operation,
certain nodes coalesce. Suppose, for example, that we have three artifacts A→
B → C without a cycle. If an application does not need the full level of detail
provided, it may consider, for example, A and C to be the same at a coarser
level of detail. As a consequence, a cycle A→ B → C = A is created.

Thus, we do not want to disallow derived-from cycles in OPM graphs from
the outset. It is important, however, to understand the consequences of the
presence of such cycles. We observe that they enforce the equality of certain
temporal variables. In the preceding example, we would have create(A) =
create(B) = create(C).

First of all, we point out that every OPM graph has a trivial model τtriv
consisting of a single time-point t0 with τtriv(u) = t0 for every temporal variable
u. Indeed, since the temporal theory of an OPM graph consists only of non-
strict inequalities, this interpretation trivially satisfies all non-strict inequalities.
Of course, that does not mean that this trivial model is the only model that the
OPM graph possesses. On the contrary: intuitively, on a fine enough temporal
granularity, we should expect that every OPM graph indeed possesses a model
where all temporal variables are assigned distinct time-points. We observe that
this is indeed always possible provided there are no derived-from cycles.

Formally, we fix some OPM graph G for this section. Let us say that a
temporal interpretation (T,≤, τ) of G is all-distinct if τ(u) 6= τ(v) for any two
distinct temporal variables u and v of G. When, in addition, ≤ is a total order
on T , we say that τ has the strict linear order property.

Proposition 5.11. If G does not contain any derived-from cycles, then G has
an all-distinct temporal model that even satisfies the strict-linear-order property.

Proof. We construct a total order on all temporal variables of G that is a tem-
poral model of G under the identity mapping. Since G does not contain any
derived-from cycles, we can linearly order all artifacts so that no artifact has a
derived-from edge from an artifact coming later in the order. Note that there
may be many possibilities for such an ordering. Any such ordering imposes an
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Figure 10: Graph patterns for Proposition 5.13.

ordering on the corresponding create-variables. All begin-variables are placed
before all create-variables, in some arbitrary order among them, and similarly
all end-variables are placed after all create-variables. Finally, a use-variable in-
volving artifact A is placed immediately as a successor of create(A). If there are
more than one use-variables for the same artifact A, they can all be placed in
an arbitrary order right after create(A). By inspecting the axioms we see that
this order satisfies all axioms.

We note that Proposition 5.11 does not state that all temporal models of
cycle-free graphs are all-distinct. Rather, it establishes that one such all-distinct
model exists. The next proposition provides a partial converse to Proposi-
tion 5.11:

Proposition 5.12. If G does contain a derived-from cycle of length at least
two, then G cannot have an all-distinct temporal model.

Proof. Consider a derived-from cycle and let A and B be two distinct arti-
facts on that cycle. Then any temporal model τ should satisfy τ(create(A)) ≤
τ(create(B)) as well as τ(create(B)) ≤ τ(create(A)), so τ(create(A)) equals
τ(create(B)). Hence τ is not all-distinct.

Propositions 5.11–5.12 do not specify what happens when there are only
derived-from cycles of length one (self-loops). Moreover, for a temporal model
τ , they do not specify which distinct variables u and v cannot have distinct
τ(u) and τ(v) if the graph contains derived-from cycles. The next proposition
fills these gaps by characterizing exactly when two temporal variables must be
equal in all temporal models.

Naturally, for two distinct temporal variables u and v ofG, we write Th(G) |=
u = v to denote that both Th(G) |= u � v and Th(G) |= v � u. Thus, if
Th(G) |= u = v, then there is no model of G that is all-distinct since any
temporal model τ must satisfy τ(u) ≤ τ(v) and τ(v) ≤ τ(u); so τ(u) = τ(v).
Intuitively, two temporal variables u and v of G such that Th(G) |= u = v can
be seen as indistinguishable in the given temporal model, for example as a result
of coalescing some nodes in a graph with a more detailed temporal model.

Proposition 5.13. Th(G) |= u = v if and only if u and v match one of the
following possibilities:
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(1) u is create(A), v is create(B), and A and B lie together on a derived-from
cycle.

(2) u is create(B), v is use(P, r,B), and in G, the nodes P and B, together
with some node C, match the pattern shown in Figure 10(a). Note that B
and C need not be distinct.

(3) u is create(A), v is use(P, r,B), and in G, the nodes P , A and B, together
with some node C, match the pattern shown in Figure 10(b). Note that
A, B and C need not be distinct.

(4) u is use(P, r,B), v is use(Q, s,A), and in G, nodes P , Q, A and B, to-
gether with some nodes C and D, match the pattern shown in Figure 10(c).
Note that A, B, C and D need not be distinct, nor P and Q.6

Proof. The proof of the if-direction amounts to an inspection of involved pat-
terns to verify that Th(G) |= u = v indeed holds. For example, let us ex-
amine pattern in Figure 10(c) in case 4. By Axiom 3 we have Th(G) |=
create(B) � use(P, r,B) for edge P r→ B and Th(G) |= create(A) � use(Q, s,A)
for edge Q s→ A. For the triangle (C,B, P, r) and G ` B 99K C, we can apply
Rule 7 from Figure 7, so we have Th(G) |= use(P, r,B) � create(B), and thus
Th(G) |= create(B) = use(P, r,B). Likewise, for the triangle (D,A,Q, s) and
G ` A 99K D, we obtain Th(G) |= create(A) = use(Q, s,A). Since A and B lie
on a derived-from cycle, we also have Th(G) |= create(A) = create(B), hence
Th(G) |= use(P, r,B) = use(Q, s,A).

The proof of the only-if direction amounts to a lengthy but straightforward
inspection of the possible cases where both Th(G) |= u � v and Th(G) |= v � u,
in the characterization of temporal inference provided by Figure 7. For exam-
ple, in case 4, we clearly see that we can only obtain Th(G) |= use(P, r,B) =
use(Q, s,A) by combining the following rules of Figure 7: Rule 9a with again
Rule 9a resulting in the pattern from Figure 10(c) with A = C and B = D;
Rule 9a with Rule 9b resulting in the pattern from Figure 10(c) with A = C;
and Rule 9b with again Rule 9b resulting in the pattern from Figure 10(c).

The patterns of Figures 10(a), 10(b), and 10(c) are respectively super graphs
of Axiom 8, and cases 7 and 9B in Figure 7. It is interesting to note that a
graph that matches Figure 10(c) also matches Figure 10(b) since B 99K A can
be inferred from B 99K D and D

s→ A in Figure 10(c). Likewise, a graph that
matches Figure 10(b) also matches Figure 10(a) since B 99K C can be inferred
from B 99K A and A 99K C in Figure 10(b).

Hence, by repeated application of Proposition 5.13 (1)–(4), we derive that
all use and create time-points for artifacts A,B,C,D in Figure 10(c) are equal.
Likewise, we note the equality of all use and create time-points for artifacts
A,B,C in Figure 10(b) and for B,C in Figure 10(a).

The OPM reference specification does not allow derived-from cycles, but it
does not define a merge operation either. This section has demonstrated that a
merge operation can introduce derived-from loops into OPM graphs, but they
must satisfy some constraints: all time-points of artifacts involved in a loop must
coalesce to a single time-point. Were a merge operation added to the reference

6Note that in Figure 10(c), if C and D coincide then C
!→ P and D

!→ Q must also coincide
for G to be legal.
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specification, two options are possible. On the one hand, the absence of derived-
from cycles can remain a legality constraint, but, therefore, the merge operation
should be such that it coalesces all artifacts (and related process) in a loop and
removes all self-loops to ensure legality is preserved. On the other hand, the
constraint on derived-from cycles can be lifted, as it is in this paper, but the
OPM edges decorated with time information and involved in loops should have
their time information updated, to reflect the constraints of Proposition 5.13.

6 Refinement and Completion

The OPM reference specification introduces the notion of refinement as a re-
lation between two graphs: this relation expresses that one graph represents
a more complete description of execution than another graph. The term re-
finement is inspired by the concept of specification refinement in formal meth-
ods [32]. The concept was only intuitively defined as follows: a graph is a
refinement of another if dependencies that can be inferred in the original graph
are “preserved” in the refinement. The purpose of this section is to formally
ground such a notion of refinement in the context of our temporal semantics
(Note 11.10).

We fix two legal OPM graphs G and H for use in this section. We also define
the following convenient notion.

Definition 6.1. The logical closure of a set of inequalities Σ, denoted by Σ, is
the set of logical consequences of Σ, i.e., Σ = {ϕ | Σ |= ϕ}.

When context allows, we abbreviate logical closure to closure.
First, we define restriction of an arbitrary set of inequalities Σ to a subset

of variables occurring in Σ.

Definition 6.2. Let Σ be a set of inequalities over a set of variables V . Let W
be a subset of V . The restriction of Σ to W , denoted by Σ|W , is the set

Σ|W = {u � v ∈ Σ | u, v ∈W} .

Given our temporal semantics, the intuition of a refinement is the following.
Graph H is a refinement of G if all the temporal constraints that can be inferred
from Th(G) can also be inferred from Th(H). However, such definition is too
broad, since refinements can replace nodes by others (say, when a process is
implemented by composing two other processes); some temporal constraints of
Th(G) may range over temporal variables that do not exist in Th(H). Hence,
H is a refinement of G, if the temporal constraints that can be inferred from
Th(G) over the common set of variables between H and G, can also be inferred
from Th(H). Formally, the definition is expressed as follows.

Definition 6.3 (Refinement). H is a refinement of G if

Th(G)|Vars(G)∩Vars(H) ⊆ Th(H) .

In this definition, it is not necessary to restrict Th(H) because Th(H) is on
the right-hand side of a set containment. Indeed, for any three sets A, B and
C, we have that (A ∩B) ⊆ C iff (A ∩B) ⊆ (C ∩B).
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Note that Theorem 4.4 can be effectively used to decide whether a given
graph H is a refinement of a given graph G. Still, the definition of refinement
is strictly semantic and does not provide much guidance towards constructing a
refinement. An interesting open problem is to find a finite set of graph operations
that all result in refinements, and such that every refinement can be obtained
by using these operations.

6.1 Graph operations and refinement

In this section we investigate the relations between the graph operations defined
in Section 5 and refinement. We first investigate the subgraph operation, the
union and the intersection. Let G and H be two legal OPM graphs.

Proposition 6.4. If H is a legal subgraph of G, then G is a refinement of H.

Proof. Since H is a subgraph of G, it is clear from Definition 3.5 that Th(H) ⊆
Th(G). Hence Th(H)|Vars(H)∩Vars(G) = Th(H) ⊆ Th(G) as desired.

Note that a legal subgraph of G is not necessarily a refinement of G. For
instance, let G be a use–generate–derive triangle (A,B, P, r), and let H be a
subgraph of G consisting of P r→ B and A

!→ P . Then H is legal, but is
not a refinement of G: create(B) � create(A) ∈ Th(G)|Vars(G)∩Vars(H) yet
create(B) � create(A) 6∈ Th(H).

The above proposition also applies to the union and intersection, and their
operands.

Corollary 6.5. If G ∪H is legal, then G ∪H is a refinement of G.

Note that G is not necessarily a refinement of a legal G ∪H. For example,
let G consist of A→ B and node P and let H consist of A !→ P and node B. So
G∪H is legal and consists of A→ B and A !→ P . Then G is not a refinement of
G∪H: G∪H ` P → B, so create(B) � end(P ) ∈ Th(G ∪H)|Vars(G∪H)∩Vars(G)

yet create(B) � end(P ) 6∈ Th(G).
However, if G and H are node-disjoint, then G is a refinement of G ∪H.

Corollary 6.6. G is a refinement of G ∩H.

Note that G ∩ H is not necessarily a refinement of G. For example, let G
consists of A → Q, A !→ P and P → Q, and let H consist of A → Q and
P → Q. Then G ∩ H equals H, which is not a refinement of G: create(A) �
end(P ) ∈ Th(G)|Vars(G)∩Vars(H), yet create(A) � end(P ) 6∈ Th(G ∩H).

Next we investigate the merge-renaming operation. Let H be a renaming
of G by ρArt , ρProc and ρRoles (conforming to Definition 5.7). Then G is not
necessarily a refinement of H, or vice versa. For instance, let G consist of
A → B, let ρArt(A) = B and ρArt(B) = A, then H consists of B → A. They
are clearly not each others refinements.

Still, if one needs to apply a merge-renaming on a graph before performing a
union or an intersection, a merge-renaming operation that preserves the tempo-
ral constraints of the original would be advisable. This motivates the following
restricted version of the merge-renaming operation:
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Definition 6.7 (Proper merge-renaming). Let ρArt , ρProc and ρRoles be as in
Definition 5.10, and let ρ be the point-wise union of ρArt , ρProc and ρRoles . Then
we use ρ(G) to denote the merge-renaming of G by ρArt , ρProc and ρRoles .

We call a merge-renaming ρ(G) proper if for any node (or role) x in G, if
ρ(x) 6= x but ρ(x) is also a node (or role) in G, then ρ(ρ(x)) = ρ(x).

Intuitively, in a proper merge-renaming operation, some nodes/roles are pre-
served, whereas all the others are either renamed into new ones or coalesced into
preserved ones. Such an operation disallows arbitrary renaming and permuta-
tion of nodes/roles. Although it seems overly restrictive, it makes sense in the
OPM model, because nodes and roles are actually identifiers. Hence, coalescing
of nodes/roles, or renaming them into new ones, is a form of identity resolution.
For example, witnesses of a car accident may speak of a “blue car” or a “Toy-
ota”. Later on, one realizes the witnesses talked about the same car, so both
“blue car” and “Toyota” should be renamed to the car’s registration number
(while “blue car” and “Toyota” become its annotations). Likewise, hospitals
frequently admit unconscious patients under a temporary ID. Later on, they
are either matched to an already known patient or to a new ID if the patient is
admitted for the first time.

We conclude this section by showing that a proper and legal merge-renaming
of a graph is indeed a refinement of the original graph.

Theorem 6.8. Let G be a legal OPM graph, and let ρ(G) be a proper and legal
merge-renaming of G, for some ρ. Then ρ(G) is a refinement of G.

To prove the theorem we use the following auxiliary lemmas.

Lemma 6.9. Let G be a legal OPM graph, and let ρ(G) be a legal merge-
renaming of G, for some ρ. Then if G ` X 99K Y , also ρ(G) ` ρ(X) 99K ρ(Y ),
i.e., a legal merge-renaming preserves edge-inference.

The above lemma is readily verified.

Lemma 6.10. Let G be a legal OPM graph, and let ρ(G) be a proper merge-
renaming of G, for some ρ. If a node (or role) x belongs to both G and to the
image of ρ, then ρ(x) = x.

Indeed, if x is in the image of ρ, then there exist a node (role) y in G, such
that ρ(x) = y. If x = y, then ρ(x) = x holds immediately. If x 6= y, then
ρ(y) 6= y, so ρ(ρ(y)) = ρ(y) (by Definition 6.7). Thus ρ(x) = x holds as desired.

We can now prove the theorem. We need to prove the following:

Th(G)|Vars(G)∩Vars(ρ(G)) ⊆ Th(ρ(G)) .

Let Commons = Vars(G)∩Vars(ρ(G)). For each inequality ϕ ∈ Th(G)|Commons ,
we must show that ϕ belongs to Th(ρ(G)). We know from Theorem 4.4, illus-
trated in Figure 7, that each such inequality is associated with a pattern in G.
Therefore, we need to find a similar pattern in ρ(G) that produces exactly the
same inequality.

Let ϕ ∈ Th(G)|Commons . We follow the axioms and rules presented in Fig-
ure 7, the axioms first, to cover all possible forms that ϕ may assume:
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(a) ϕ is begin(P ) � end(P ), for some P in G. Since begin(P ), end(P ) ∈
Commons, P is also present in ρ(G). By Axiom 1, begin(P ) � end(P ) ∈
Th(ρ(G)).

(b) ϕ is begin(P ) � create(A) or create(A) � end(P ), for some A !→ P in G.
Since create(A), begin(P ), end(P ) ∈ Commons, we also have A and P in
ρ(G). From A

!→ P in G, by Definition 6.7, we have ρ(A) !→ ρ(P ) in ρ(G).
We can apply Lemma 6.10 to A and P , obtaining ρ(A) = A and ρ(P ) = P .
Hence, A !→ P is also in ρ(G) and, by Axiom 2, both begin(P ) � create(A)
and create(A) � end(P ) belong to Th(ρ(G)). Note that A !→ P in G and
A

!→ P in ρ(G) need not have the same role.

(c) ϕ is one of the following: begin(P ) � use(P, r,A), use(P, r,A) � end(P ), or
create(A) � use(P, r,A), for some P r→ A in G. The variable use(P, r,A)
belongs to Commons; that is only possible if edge P r→ A is also present
in ρ(G). By Axiom 3, begin(P ) � use(P, r,A), use(P, r,A) � end(P ), and
create(A) � use(P, r,A) belong to Th(ρ(G)).

(d) ϕ is use(P, r,B) � create(A), for some G 4 (A,B, P, r). For P r→ B in
G we apply case c, so P

r→ B is also in ρ(G). For A !→ P in G, by
case b, A !→ P belongs to ρ(G). We can apply Lemma 6.10 to A, B, and r,
obtaining ρ(A) = A, ρ(B) = B, and ρ(r) = r. For A r→ B in G, we apply

Definition 6.7, so ρ(A)
ρ(r)→ ρ(B) in ρ(G), and thus A r→ B in ρ(G). Clearly,

ρ(G) 4 (A,B, P, r), hence use(P, r,B) � create(A) ∈ Th(ρ(G)) (Axiom 8).

(e) ϕ is create(B) � create(A), for G ` A 99K B. Since create(A), create(B) ∈
Commons, A and B also belong to ρ(G). From G ` A 99K B, by Lemma 6.9,
we have ρ(G) ` ρ(A) 99K ρ(B). We can apply Lemma 6.10 to A and B,
obtaining ρ(A) = A and ρ(B) = B. Hence ρ(G) ` A 99K B as desired and,
by Rule 1, create(B) � create(A) ∈ Th(ρ(G)).

(f) ϕ is begin(P ) � create(A), for G ` A 99K P . Since create(A), begin(P ),
end(P ) ∈ Commons, A and P belong to ρ(G). From G ` A 99K P , by
Lemma 6.9, ρ(G) ` ρ(A) 99K ρ(P ). We can apply Lemma 6.10 to A and P ,
obtaining ρ(A) = A and ρ(P ) = P . Thus ρ(G) ` A 99K P and, by Rule 2,
begin(P ) � create(A) ∈ Th(ρ(G)).

(g) ϕ is create(A) � end(P ), for G ` P 99K A. Since create(A), begin(P ),
end(P ) ∈ Commons, A and P belong to ρ(G). From G ` P 99K A, by
Lemma 6.9, we have ρ(G) ` ρ(P ) 99K ρ(A). We can apply Lemma 6.10 to
A and P , obtaining ρ(A) = A and ρ(P ) = P . Therefore, ρ(G) ` P 99K A
and, by Rule 3, create(A) � end(P ) ∈ Th(ρ(G)).

(h) ϕ is begin(Q) � end(P ), for G ` P 99K Q. Since begin(P ), end(P ),
begin(Q), end(Q) ∈ Commons, P and Q belong to ρ(G). From G ` P 99K
Q, by Lemma 6.9, ρ(G) ` ρ(P ) 99K ρ(Q). We can apply Lemma 6.10 to P
and Q, obtaining ρ(P ) = P and ρ(Q) = Q. Hence ρ(G) ` P 99K Q and, by
Rule 4, begin(Q) � end(P ) ∈ Th(ρ(G)).

(i) ϕ is create(B) � use(P, r,A), for P r→ A in G and G ` A 99K B. By
applying cases c and e to P

r→ A in G and G ` A 99K B, respectively,
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we have P r→ A in ρ(G) and ρ(G) ` A 99K B. By Rule 5, create(B) �
use(P, r,A) ∈ Th(ρ(G)).

(j) ϕ is begin(Q) � use(P, r,A), for P r→ A in G and G ` A 99K Q. By
applying cases c and f to P

r→ A in G and G ` A 99K Q, respectively,
we have P r→ A in ρ(G) and ρ(G) ` A 99K Q. By Rule 6, begin(Q) �
use(P, r,A) ∈ Th(ρ(G)).

(k) ϕ is use(P, r, C) � create(A), for G 4 (B,C, P, r) and G ` A 99K B. By
applying cases d and e to G 4 (B,C, P, r) and G ` A 99K B, respectively,
we have ρ(G) 4 (B,C, P, r) and ρ(G) ` A 99K B. By Rule 7, use(P, r, C) �
create(A) ∈ Th(ρ(G)).

(l) ϕ is use(P, r,B) � end(Q), for G 4 (A,B, P, r) and G ` Q 99K A. By
applying cases d and g to G 4 (A,B, P, r) and G ` Q 99K A, respectively,
we have ρ(G) 4 (A,B, P, r) and ρ(G) ` Q 99K A. By Rule 8, use(P, r,B) �
end(Q) ∈ Th(ρ(G)).

(m) ϕ is use(P, r,B) � use(Q, s,A), for G 4 (C,B, P, r) and Q
s→ A in G, and

either A = C or G ` A 99K C. By applying cases d and c to G 4 (C,B, P, r)
and Q

s→ A, respectively, we obtain ρ(G) 4 (C,B, P, r) and Q
s→ A in

ρ(G). If A = C, then A clearly belongs to G and to the image of ρ, so, by
Lemma 6.10, ρ(A) = A. If G ` A 99K C, then, by case e, ρ(G) ` A 99K C.
We can thus apply either Rule 9a or Rule 9b, so use(P, r,B) � use(Q, s,A) ∈
Th(ρ(G)).

6.2 Completion Operations

The edge-inference rules introduced in Definition 4.3 allow new edges to be
inferred in an OPM graph, the nodes of the graph remaining unchanged. The
OPM reference specification defines completion operations, which add new nodes
and new edges to a graph.

The rationale for such completion operations was to provide syntactic trans-
formations over graphs, which offer an explanation for some OPM edges. First,
we present the operations graphically and intuitively, before formalizing them.
According to Figure 11(a), process introduction states that if an artifact B was
derived from an artifact A, then there exist a process R and role r such that B
was generated by R with role r and R used A. The operation does not specify
which process was involved, nor the role of B with regard to this process, but it
states that such a process R and role r existed. Likewise, artifact introduction,
presented in Figure 11(b), states that if there is a process Q that was informed
by a process P , then there exist an artifact C and a role s such that Q used C
precisely with role s and C was generated by P . Again, the completion does
not specify which artifact and role were involved. (Note 11.11)

We can see that process introduction generalizes the use–generate–derive
triangle of Figure 2 to imprecise derived-from and used-edges. We refer to this
triangle as an imprecise use–generate–derive triangle. Likewise, artifact intro-
duction recognizes the existence of a complementary imprecise use–generate–
inform triangle. (We note that there is no precise use–generate–inform triangle,
since informed-by edges are always imprecise.)
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Figure 11: Completion operations: (a) process introduction and (b) artifact
introduction.
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producing a legal graph.
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Figure 13: When completion be-
comes edge inference.

Completion operations should be considered in conjunction with legality
constraints. For instance, Figure 12(a) depicts an artifact A2 derived from
two artifacts A0 and A1. The process introduction operation can be applied
twice here, but the legality constraint requires an artifact to be generated by a
single process. Hence, Figure 12(b) displays the only possible completion, where
introduced process P used both A0 and A1, and generated A2.

Application of process insertion to the graph of Figure 13(a) entails that
there is a process that used A0 and that generated A2 precisely, but the legality
constraint implies that this process is P . Hence, we can derive that P used A0,
which is the inference of a used-edge as in Definition 4.3.

Completion operations can introduce new nodes in a graph, but can result
in some uncertainty as illustrated by Figures 14 and 15. In Figure 14, it is
unknown whether the two processes P0 and P1 introduced by the process intro-
duction operation are identical. Likewise, in Figure 15, it is not known whether
the two artifacts A0 and A1 introduced by artifact introduction are the same.
This uncertainty is formalized below to the effect that completion is a non-
deterministic operation: a given graph may have several possible completions.

To define completion formally, we first formalize the notions of triangle rel-
evant to completion operations.

Definition 6.11 (Complete Triangle for B → A). Let G be an OPM graph
with two artifacts A and B and an imprecise edge B → A. Graph G contains
a complete triangle for B → A if there exists a process R and role r in G, with
edges B r→ R and R→ A. We then say that B,A,R, r constitute an imprecise
use–generate–derive triangle.
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or P0 6= P1?
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Figure 15: Uncertainty: is A0 = A1

or A0 6= A1?

Definition 6.12 (Complete Triangle for Q → P ). Let G be an OPM graph
with two processes Q and P and an informed-by edge Q→ P . Graph G contains
a complete triangle for Q→ P if there exists an artifact C and role s in G, with
edges Q s→ C and C → P . We then say that Q,P,C, s constitute an imprecise
use–generate–inform triangle.

There can be at most one complete triangle for a given imprecise edge B → A
in a legal OPM graph G, since B can only be generated by one process R. On
the other hand, there may be several complete triangles for a given imprecise
edge Q → P : for instance, two artifacts C1, C2 could be generated by P and
used by Q, with respective roles s1 and s2.

We then define a completion operation as possibly introducing a node, a
role, and edges, as appropriate, in order to form complete triangles.

Definition 6.13 (CompletionOperation). Let G be an OPM graph. A graph
H results from a completion operation on G, if H was obtained as follows:

• H is the result of process introduction for B → A in G, with A,B ∈ ArtG,
if there exists a process R and a role r, such that:

– ProcH = ProcG ∪ {R},
– RolesH = RolesG ∪ {r},
– GeneratedBy !H = GeneratedBy !G ∪ {(B, r,R)},
– UsedH = UsedG ∪ {(R,A)},
– all other sets remain the same;

• H is a result of artifact introduction for Q→ P in G, with P,Q ∈ ProcG,
if there exists an artifact C and a role s, such that:

– ArtH = ArtG ∪ {C},
– RolesH = RolesG ∪ {s},
– GeneratedByH = GeneratedByG ∪ {(C,P )},
– Used !H = Used !G ∪ {(Q, s, C)},
– all other sets remain the same.

We note that a completion operation can introduce new nodes R and C or
reuse existing ones in G. Likewise, they can create new edges or reuse existing
ones. In some cases, a completion operation is exactly an edge inference (cf.
inference of used-edges in Definition 4.3).
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Not all completion operations lead to legal graphs. Hence, a completion
operation applied to legal graph G is said to be valid if it results in a legal
graph H. We then call H a valid completion of G.

Since G is always a subgraph of H, the result of a completion is always a
refinement of G (Proposition 6.4). The converse does not hold, however. Indeed,
let us consider a graph G with imprecise edges C → A and C → B, and an
isolated process P . If graph H is the result of completing C → A via P , we can
infer H ` P 99K B. Hence, the inequality create(B) � end(P ) holds in H but
not in G. Alternatively, let us consider a graph G with imprecise edges Q→ P
and B → A. If graph H is the completion of Q→ P via B, then H ` Q 99K A,
which cannot be inferred in G.

So, in summary, graphs can be completed non-deterministically, but com-
pletions are a refinement of the original graph.

7 Multi-account OPM graph

In the OPM reference specification [20], OPM graphs can contain multiple ac-
counts. Accounts are used to identify parts of a large, integrated, OPM graph,
in which each account is a coherent OPM graph in itself. An account should
be perceived as one perspective on what happened during a past execution, as
illustrated by Alice’s and Bob’s account in Section 2.

We define a multi-account OPM graph as follows:

Definition 7.1 (Multi-account OPM graph). A multi-account OPM graph is
a structure

(Art ,Proc,Roles,GeneratedBy !,Used !,DerivedFrom!,
GeneratedBy ,Used ,DerivedFrom, InformedBy , accountOf )

where

• Art and Proc are two disjoint finite sets of elements called artifacts and
processes, respectively;

• Roles is a finite set of elements called roles;

• GeneratedBy ! ⊆ Art × Roles × Proc;

• Used ! ⊆ Proc × Roles ×Art ;

• DerivedFrom! ⊆ Art × Roles ×Art ;

• GeneratedBy ⊆ Art × Proc;

• Used ⊆ Proc ×Art ;

• DerivedFrom ⊆ Art ×Art ;

• InformedBy ⊆ Proc × Proc;

• accountOf is a function from Nodes ∪ Edges to Pfin(Account), the set of
all finite subsets of Account , where

– Account is a finite set of elements called accounts,
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– Nodes = Art ∪ Proc, and

– Edges = GeneratedBy !∪Used !∪DerivedFrom!∪GeneratedBy ∪Used
∪DerivedFrom ∪ InformedBy .

The sets Art , Proc, Roles and Account are mutually disjoint.

In a multi-account OPM graphG, every node and edge ofG can be associated
with zero, one, or more accounts, which is captured by the function accountOf ,
provided as the last constituent of graph G.

For a given OPM graph G, for any A ∈ Art , we call accountOf (A) the ac-
count membership of A in G. Likewise, for any P ∈ Proc, we call accountOf (P )
the account membership of P in G.

For a precise edge e in G, of the form (x, r, y), or for an imprecise edge e in
G, of the form (x, y), we say that x and y are incident to e, and denote this by
the predicates isIncident(x, e) and isIncident(y, e).

To ensure that the source and destination of an edge belong to the same
account as the edge, a node “inherits” and cumulates the account memberships
of the edges it is incident to. Formally, this is expressed as follows.

Definition 7.2 (Effective Account). For a given OPM graph G we define the
effective-account function

effectiveAccountOf G : Nodes ∪ Edges → Pfin(Account)

as follows:

• If x ∈ Nodes, then

effectiveAccountOf G(x) = accountOf (x) ∪⋃
{accountOf (e) | e ∈ Edges and isIncident(x, e)} .

• If x ∈ Edges, then

effectiveAccountOf G(x) = accountOf (x).

An account view is the single-account OPM graph extracted from a multi-
account OPM graph by restricting attention to the nodes and edges associated
with a given account. Formally, this operation is defined as follows.

Definition 7.3 (Account View). For a given multi-account OPM graph G and
an account α, we define the account view of G according to α, denoted by
view(G,α), as follows:

• Artview(G,α) =
{
A ∈ Art | α ∈ effectiveAccountOf G(A)

}
;

• Procview(G,α) =
{
P ∈ Proc | α ∈ effectiveAccountOf G(P )

}
;

• Rolesview(G,α) = {r ∈ Roles | (x, r, y) is an edge in view(G,α)};

• GeneratedBy !view(G,α) =
{

(A, r, P ) | α ∈ effectiveAccountOf G(A, r, P )
}

;
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• Used !view(G,α) =
{

(P, r,A) | α ∈ effectiveAccountOf G(P, r,A)
}

;

• DerivedFrom!view(G,α) =
{

(A, r,B) | α ∈ effectiveAccountOf G(A, r,B)
}

;

• GeneratedByview(G,α) =
{

(A,P ) | α ∈ effectiveAccountOf G(A,P )
}

;

• Usedview(G,α) =
{

(P,A) | α ∈ effectiveAccountOf G(P,A)
}

;

• DerivedFromview(G,α) =
{

(A,B) | α ∈ effectiveAccountOf G(A,B)
}

;

• InformedByview(G,α) =
{

(P,Q) | α ∈ effectiveAccountOf G(P,Q)
}

.

Definition 7.4. A multi-account OPM graph is called legal if all its account
views are legal.

Note that in a legal multi-account OPM graph, we can perform temporal
inferences on each account view, although separately. It is difficult to define
temporal inference on the whole graph, since each account potentially provides
a different perspective. However, one can perform various graph operations to
combine different accounts into a single one, and then perform temporal infer-
ence on the latter. One can also establish whether one account is a refinement
of another one.

8 Related work

With well over 400 publications [19] on the topic of provenance, this section
focuses on OPM-specific related work. For a broader perspective, we refer the
reader to comprehensive surveys for provenance and e-science [27], provenance
and databases [1, 3] and provenance and the Web [19].

Cheney [2] investigates the use of structural causal models as a semantics for
provenance graphs, and relates some OPM concepts to notions of actual cause
and explanation proposed by Halpern and Pearl [9] (Note 11.12). The seman-
tics that we propose here is similar to Cheney’s in the sense that it provides a
mathematical meaning for OPM graphs, however, it differs in other significant
ways: (i) our semantics conforms to the OPM reference specification [20] and
in particular handles time, all permitted OPM edges, accounts, algebraic opera-
tions and refinements; Cheney’s semantics is account-less and regards single-step
derivation edges as inferable, when they can only be asserted in OPM, and does
not characterize inferred edges; (ii) our semantics is purely temporal, and does
not see an OPM graph as a function operating on some inputs and generating
outputs; this view of OPM graphs is complementary to ours, but relies on mean-
ings associated with processes by means of annotations, which have not been
modeled here. (iii) Cheney’s semantics attempts the more ambitious goal of
providing a global approximation (using the predictive nature of causal models)
for the program being executed (without having its explicit code), so that its
behavior can be repeated for any arbitrary input; our semantics is silent about
the predictive nature of OPM graphs.

Missier and Goble [17] address the question of whether, for any OPM graph,
there exists a plausible workflow in the Taverna workflow language, which could
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have generated the graph. To this end, they identify the extra information that
should be captured as part of an OPM graph so that the mapping from OPM to
a workflow representation can be derived. Thus, this work derives an executable
semantics for OPM, obtained by composing their translation and the Taverna
semantics. It however does not tackle OPM in full, ignoring accounts, time
and refinement; their translation should be revisited to leverage the distinction
between precise and imprecise edges, introduced in this paper. Similarly, Kwas-
nikowska and Van den Bussche [10] map the NRC data flow model, a formally
specified data model for workflows, to OPM.

Moreau [18] proposes the reproducibility semantics for OPM, which is a
denotational semantics characterizing how an OPM graph can be used to repro-
duce a past computation; a “re-execution” of such a graph results in a new OPM
graph, and mapping of nodes from the original graph to the new graph. By do-
ing so, he identifies a class of reproducible OPM graphs. The reproducibility
semantics assumes a mapping of each process to a function (taking some in-
puts artifacts, and generating some output artifact), and, like Cheney’s causal
semantics of OPM, sees an OPM graph as a function operating on inputs and
producing outputs. Moreau defines a notion of refinement, corresponding to the
nested execution of procedures. Future work could try to integrate Moreau’s
reproducibility semantics and the temporal semantics presented in this paper.

As part of the W3C Provenance Incubator activity [31], mappings of multiple
provenance ontology’s to OPM were defined [26]. These mappings showed that
concepts such as processes and artifacts mapped quite naturally between models.
The mappings did not take into account the temporal meaning of the various
data models; revisiting these mappings in the light of this temporal semantics
would provide a better correspondence between ontology’s. Likewise, Miles
explains how Dublin Core provenance-related concepts can be translated into
OPM graphs [15]. Given that Dublin Core also introduces time, a finer-grained
mapping could be derived, based on the temporal semantics introduced in this
paper.

Several approaches are specializing OPM to specific application domains
or facets of computing. Groth and Moreau introduce the D-Profile [8], as a
specialization of OPM for distributed systems. Their profile comprises artifact
and process types and graph patterns to describe communications in distributed
systems. Similarly, Freitas et al. introduce types of processes, artifacts and
agents to describe data publication over the Web [6].

Several teams have adopted OPM and implemented inferences, as prescribed
by the reference specification. To this end, many teams have exploited Seman-
tic Web technologies, such as OWL and SWRL, to implement OPM reasoning:
e.g., Tupelo [14], OPMO [22], Provenance Challenge 3 Tetherless [5], or, re-
producibility service [18]; alternatively, some teams used recursive queries in
relational databases: e.g., OPMProv [12]. To the best of our knowledge, none
of these teams support use time-points and patterns introduced in this paper.
In this respect, the inferences they make are incomplete.

9 Future work

According to the OPM reference specification, a process is controlled by an
agent, and this control dependency can be assigned a starting and an ending
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time. This paper provides a temporal semantics for a subset of OPM that
does not include agents. The reason why agents were not incorporated in this
semantics is that this notion is not clearly defined, and novel proposals are
beginning to emerge [23]. The absence of agents has some implication for this
temporal semantics: the starting time-point (resp. ending time-point) of a
process is not preceded (resp. followed) by any other time-point in a graph
temporal theory. Future work would be to extend our temporal semantics to
OPM agents.

Our semantics has introduced the notion of precise edge, which stipulates
that an artifact was used (or generated) within the scope of a process, i.e. after
its starting time, and before its ending time. Imprecise edges are silent about
the position of their time-points with respect to a process beginning and ending
times. Other precise edges could be considered, such as a used-edge known to
precede the beginning of a process, or a generated-by edge known to follow the
ending of a process. Such edges would allow novel inferences to be made, which
would need to be characterized as well.

Adopting Lamport’s definition of parallel events [11], two variables u, v in
Vars(G) could be defined as parallel events if neither u � v nor v � u are logical
consequences of G’s theory. In future work, one could take a parallel perspective
on OPM, and investigate patterns of parallelism in OPM graphs.

This paper, in Section 6, is the first to provide a formal definition of re-
finements in OPM. We see this definition as a starting point for novel research
directions. As already mentioned, it would be useful to explore the existence
of a finite set of graph transformations that could be used to derive all possible
refinements. Also, the notion of refinement could take further constraints into
consideration, such as process nesting (as considered by Moreau [18]).

10 Conclusion

The Open Provenance Model is a data model for provenance that is issued from
requirements from a community of practitioners involved in the Provenance
Challenge activity. This data model, the temporal constraints it identifies, and
the inferences it permits have all been defined informally. As Cheney et al. [4]
argue this may lead to difficulty in understanding what provenance actually
represents, and what kind of reasoning can legitimately be performed with it.
From a practical viewpoint, definitions that are not precisely formulated may
lead to systems that do not inter-operate, which is particularly problematic
for a language aiming at inter-operability. The problem is highlighted by the
misunderstandings and guesses that occurred in the mapping activity between
provenance vocabularies [26].

To address this problem, this paper proposes a temporal semantics for the
OPM data model. The originality of the approach is to leverage the tempo-
ral constraints introduced by OPM and make them a core constituent of the
meaning of OPM graphs: a temporal theory of an OPM graph consists of a
set of such constraints. From this temporal theory, notions of interpretation,
model and logical consequence can be established, within a purely semantic con-
text, which provides us with a reference framework to characterize inferences of
OPM edges. An important contribution of this paper is to identify that OPM
inferences are sound with respect to the temporal theory, but not all logical
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Table 4: Table for Note 11.4.

OPM reference specification This paper
Used Used ! and Used
WasGeneratedBy GeneratedBy ! and GeneratedBy
WasDerivedFrom DerivedFrom! and DerivedFrom
Used∗ (asserted) Used
Used∗ (inferred) 99K
WasGeneratedBy∗ (asserted) GeneratedBy
WasGeneratedBy∗ (inferred) 99K
WasDerivedFrom∗ (asserted) DerivedFrom
WasDerivedFrom∗ (inferred) 99K
WasTriggeredBy (asserted) InformedBy
WasTriggeredBy (inferred) 99K
WasControlledBy n/a

consequences can be derived by means of inferences over OPM graphs. The
paper however identifies a set of graph patterns, which allow a completeness
result to be established. Exploiting this novel semantic framework, the paper
then defines graph operations (such as union and intersection), graph relations
(such as refinement) and accounts in terms of the temporal semantics.

11 OPM-specific notes

Note 11.1. The OPM reference specification also includes agents, which are
entities controlling processes. We do not formalize such a concept here, since it is
the subject of multiple ongoing discussions. However, in future work section, we
discuss ways of introducing them in the model, and their potential implications
on temporal models.

Note 11.2. The OPM reference specification also includes edges of the type
WasControlledBy (from a process to an agent) which are not included in this
paper, because we do not model agents. Furthermore, we prefer to adopt the
term informed-by rather than was-triggered-by since its informal meaning is
more aligned to its formal definition.

Note 11.3. The OPM reference specification does not associate a role with a
was-derived-from edge. It is a contribution of this paper to have identified the
need of this role for defining a temporal semantics of OPM.

Note 11.4. Table 4 maps sets in the OPM reference specification to sets or
notations introduced in this paper.

Note 11.5. The OPM reference specification has a different legality definition.
The first legality requirement of Definition 3.2 is exactly the same as in [20], but
the second requirement was not stated before. Indeed, we have only discovered
during the work reported in this paper that the second requirement is needed in
order to give a clean semantics to precise derived-from edges. Finally, the OPM
specification has an additional condition that we do not need here: there may
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be no cycles in the was-derived-from edges. We discuss further the implications
of cycles in derived-from edges in OPM graphs in Section 5.2.
Note 11.6. OPM introduces an observation interval that we do not formalize
here. Our only assumption about time-points is that they can be ordered par-
tially.
Note 11.7. The OPM reference specification associates the create time-point
with edges of the type WasGeneratedBy, since different accounts can assign
different time-points to a same edge. In the presence of an edge of the type
WasControlledBy, beginning and ending times of a process are associated with
the edge.
Note 11.8. The OPM reference specification defines a used-edge as meaning that
the process required the availability of the artifact to be able to complete its
execution: this is exactly Axiom 6. Likewise, the reference specification defines
a was-generated-by edge as meaning that the process was required to initiate its
execution for the artifact to have been generated: this is exactly Axiom 5. The
OPM reference specification defines a was-triggered-by edge exactly as Axiom 7.

In addition, OPM time constraints indicate that the use time-point follows
the start of the process, and the generate time-point precedes the end of the
process. The OPM reference specification is silent about the time constraints
related to multi-step edges of the types Used* and WasGeneratedBy*. It is a
contribution of this paper to have integrated all these constraints into a single
set of axioms.
Note 11.9. The OPM reference specification is not specific about the difference
between the precise was-derived-from edge A

!→ B and its imprecise version
A → B. First, a precise edge A

!→ B can only exist in the presence of a
generate–use–derive triangle, according to Definition 3.2. Second, both the
create and use time-points (for A and B, respectively) occur within the scope of
the process identified by the triangle. These constraints do not hold for A→ B.
Note 11.10. Technically, the OPM reference specification defines refinement
between two accounts. However, like graph operations, it is useful to define
refinement over OPM graphs. They naturally transpose to accounts introduced
in Section 7.
Note 11.11. The OPM reference specification defines three completion oper-
ations: process and artifact introduction, as in this paper, but also artifact
elimination. Artifact elimination is precisely the inference of informed-by in
Definition 4.3.
Note 11.12. The OPM reference specification defines edges as causal relation-
ships, but does not provide an explanation for this terminology, and the kind
of causality underpinning them. In this paper, we have chosen not to adopt
this terminology to avoid unnecessary technical jargon. However, our temporal
semantics provides a clarification with regard to this notion. Indeed, the kind
of causality underlying OPM relationships is the causality typically defined in
distributed systems. The constraints u � v in our temporal theory are similar in
nature to Tel’s causal order [28, Definition 2.20]. In particular, according to Tel,
a send event precedes the corresponding receive event in a distributed system,
very much like our create time-point precedes a use time-point for the same
artifact. Similar orders were referred to as “causality relation” by Mattern [13]
and “happened before” by Lamport [11].
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