
Dynamical systems and control mindstorms

Ivan Markovsky

Abstract— An unorthodox programme for teaching systems
and control is developed and tested at the School of Electronics
and Computer Science of the University of Southampton. Mo-
tivation for the employed teaching methods is Moore’s method
and S. Papert’s book “Mindstorms: children, computers, and
powerful ideas”. The teaching is shifted from lecture instruction
to independent work on computer based projects and physical
models. Our experience shows that involvement with projects
is more effective in stimulating curiosity in systems and control
related concepts and in achieving understanding of these
concepts. The programme consists of two parts: 1) analytical
and computational exercises, using Matlab/Octave, and 2)
laboratory exercises, using programmable Lego mindstorms
models. Both activities cut across several disciplines—physics,
mathematics, computer programming, as well as the subject of
the programme—systems and control theory.

I. I NTRODUCTION

What kind of curve is the trajectory of a stone
thrown in the air?
How should one throw a stone in order to reach as
far as possible?

These are curiosity driven questions, which can be an-
swered by first turning them into well defined mathemati-
cal problems (using high school physics) and then solving
the mathematical problems (using analytical and numerical
methods, studied in school as well as in the university).
Solving mathematical problems is part of the exercises and
the laboratory, described in the paper, but it is not the main
part and not the most important part either. More important
than finding answers to math problems is the habit of asking
questions,i.e., aiming for open enquiry rather than following
of authority, and the ability to turn vague questions into well
defined problems. Only in combination with these skills,
the ability to reason rigorously in the search for solutions
becomes a powerful tool for solving real-life problems.

The philosophy of “mindstorms”, described by Seymour
Papert in his books [1], [2], [3], is that

the only way to acquire any type of knowledge is
to immerse in an environment that offers ample
possibilities to practice this knowledge.

Using Papert’s analogy, in the same way as a student needs
France for learning french, the student needs “systems and
control land” for learning dynamical systems and control
theory. The exercises and laboratory described in the paper
aim to serve this role.

This work is supported by ERC grant number 258581.
I. Markovsky is with School of Electronics and Computer Science,

University of Southampton, Southampton, SO17 1BJ, UK.
im@ecs.soton.ac.uk

One needs motivation in order to pursue the search for
answers to difficult questions. Such motivation comes only
through personal interest and involvement with the questions.
Unfortunately, the formal educational system reverses this
causal relation—everyone is expected to acquire certain
“pure” knowledge (the curriculum of one’s education) in
order to be prepared for solving “real-life” problems (or just
for beginning an educated person). The “real-life” problems
are usually not encountered until the education is over.

Our aim is to give the students an opportunity to practice
systems and control knowledge by working on a series of
exercises which are formulated as vague questions rather than
well defined problems. These questions are curiosity driven,
so that the student should be motivated to find answers. The
students have full freedom to choose the problem formulation
and solution method that they deem relevant for the question
at hand. Moreover, the students are encouraged to find their
own style in dealing with the assignments and ask questions
that are not part of the assignments.

Given such freedom, the students may come up with
different answers to the original questions (as well as answers
to questions that were never asked). As long as the answers
are correct solutions to relevant problems, related to the
original question, they are “valid answers”.

II. SETUP OF THE EXERCISES

In the exercises the students are dealing with questions
related to free and controlled flight of an object in a gravi-
tational field. For example, throwing a stone, we apply for a
(short) period of time a force on the stone, which net effect
is to give the stone an initial velocity. The magnitude and
direction of the initial velocity determine the subsequentfree
fall. How they are achieved is not important for the purpose
of studying the free fall. From the moment of departing from
the hand, the stone is falling freely; the forces that act on the
stone are the gravitational force and a force from the impact
with the air (friction and wind). Initially the simplifying
assumption that the object is flying in vacuum is made, so
that the the only force acting on the stone is the gravitational
force.

Throughout its free falling flight the object remains in the
plane determined by the initial velocity and the gravitational
force. Therefore, although the object is flying in a three
dimensional space, its motion can be described in a plane.
Let p(t) be the position of the object at timet. We choose a
reference moment of timet = 0 to be the moment when the
object starts its free fall and an orthogonal coordinate system
in the plane of motion with vertical axis along the negative

of the gravitational force and a perpendicular horizontal axis
at the ground level, see Figure 1.

y

z

y(t)

z(t) ·
p(t)

v(t)

Fig. 1. Problem setup.

The horizontal displacement of the object at timet with
respect to the origin is denoted byy(t) and the vertical
displacement byz(t). More notation, used in the exercises is:

p(t) =

[
y(t)
z(t)

]

— object’s position and its coordinates at timet

v(t) — object’s velocity at timet
pini , vini — initial (time t = 0) position and velocity
x(t) — state (position and velocity) at timet
m — object’s mass
g — gravitational constant
mg — gravitational force (g is a vector in the

“negative vertical” direction with norm equal tog)

By the second law of Newton, for anyt > 0, the position
of the object is described by the differential equation

mp̈= mg, where p(0) = pini and ṗ(0) = vini . (1)

Here pini is the initial position (the place from where the
object is thrown) andvini is the initial velocity (by which
the object is thrown). Note the following facts about (1). It
is

• a linear differential equation with constant coefficients;
• a second order, vector equation;
• the right hand side is constant; and
• does not depend on the massm.

The last item implies that any object falling in a gravitational
field without friction has the same trajectory. The fact that
the trajectory does not depend on the mass may be surprising
and counter intuitive for some students. This is a welcome
instance when physics and mathematics reveal something
that is not obvious.

Equation (1) described completely the motion of the
object. It is a concise and unambiguous description of
any object falling in a gravitational field, starting from
an arbitrary initial conditions—position and velocity. The
equation, however, is not as clear as an explicit solution
that exhibits the nature of the trajectory (p as a function
of time). Therefore, the first task in the series of exercisesis
to find the solution explicitly; both analytically (by hand)and
numerically (using the computer). The subsequent exercises
are studying

• free fall with friction,
• bungee jumping,

• hitting a stationary object,
• throwing an object as far as possible,
• deducing the initial state from observed trajectory,
• hitting a moving object,
• effect of disturbances,
• use of feedback control to reduce the effect of the

disturbances, and
• optimal open loop control.

Description of the selected exercises and indicative solutions
are given in the Appendix.

III. L ABORATORY

The aim of the laboratory is to expose the students to a
complete control system design cycle, starting with modeling
of the plant, proceeding to design of a controller based on the
model, implementation of the controller on a microprocessor,
and finishing by experimental verification of the designed
control system. Significant part of the work is on a computer
and involves Matlab and C programming. Matlab is used
for the parameter estimation and controller design and C
is used for implementation of the control algorithm on the
microcontroller.

The assignment is to design a controller for a cart, build
from an Lego Mindstorms NXT constructor, see Figure 2.
The cart includes a micro controller that is connected to an
ultrasonic distance sensor and two electrical motors — one
for the left wheels and one for the right wheels.

Fig. 2. Test platform: a cart build from Lego Mindstorms NXT constructor.

The control objective is to keep the cart at a constant
distance from a moving object. For simplicity the cart and the
object are assumed to move along a line, so that the problem
has one degree of freedom (back-forth motion). Therefore,
the same power is applied to both motors (resulting in the
cart moving back-forth).

The first task of the laboratory is to identify a model for
the relation between the power level applied to the motors
(the control signalu) and the distance of the cart to the object
(the controlled signaly). A parameterized model structure

H(s) =
1
s

b
s+a

is postulated from physical considerations and the parameters
a andb are estimated from a measured response of the cart to
a step input. The objective of the parameter estimation is to
obtain a model that accurately reproduces the actual dynam-
ical relation. This is validated by independent measurements
and simulation of the model.

The controller design is initially carried out in Matlab
(second task), where the controller is tested on the plant’s
model. Then, the designed controller is tested on the physical
plant (third task) and the behaviour of the actual closed-loop
system is compared to this observed in simulation.

Different programming languages can be used for imple-
menting the discrete-time controller on the LEGO Mind-
storms NXT microcontroller. In this laboratory, the students
are given a program written in a C-like language, called Not
eXactly C (NXC) [4]. NXC is specially created for develop-
ment of Lego Mindstorms NXT applications and is supported
by a powerful integrated programming environment, called
the Bricx Command Center.

The skills learnt/practised in the laboratory are:
• data preprocessing by a moving average filter,
• parameter estimation (least squares optimization),
• PID controller tuning,
• discretization of a continuous-time plant,
• programming of a microcontroller in C,
• use of multitasking and concurency in C, and
• use of Matlab, Simulink, and the Control Toolbox.

An up-to-date description of the laboratory and related files
are available from:

www.ecs.soton.ac.uk/~im/lego.html

IV. CONCLUSION, DISCUSSION, AND OUTLOOK

A dynamical systems and control programme was pre-
sented that departs from the traditional lecture style and
employs curiosity driven, discovery based, learning. The
medium for doing this is a series of exercises with loosely
defined questions that leave freedom for the students to
formulate precise problems and choose the relevant tools or
methods for solving the problems. Our experience shows that
this teaching method is more enjoyable and engaging for
both students and teachers than the standard lecture based
instruction. A negative side of the new method is that it
requires more teachers and teaching assistants per student
than the standard lecture based instruction and covers less
material in a given period of time. We believe, however, that
these shortcomings are far surpassed by the advantage of
increasing the interest in the subject and achieving deeper
understating for students of all abilities by the new method.

In future we aim to extend the exercises with more
curiosity driven questions of diverse engineering nature and
to add laboratories with different test models, comparing
different control methods. The challenge that we faced in
the reported preliminary work and expect to have in the
future development is that inevitably the subject matter grows
beyond the topic of systems and control. Indeed free enquiry
is not limited to one subjects but cuts across many related
and (seemingly) unrelated subjects.

V. ACKNOWLEDGMENTS

Mark French encouraged me to revise the second year
control laboratories and pointed out the use of Lego Mind-
storms models by Glenn Vinnicombe in Cambridge. Mark
and Chris Freeman contributed with suggestions about the
development of the Lego lab presented in the paper.

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement number 258581 “Structured low-rank
approximation: Theory, algorithms, and applications”.

REFERENCES

[1] S. Papert,Mindstorms: Children, Computers, And Powerful Ideas.
Basic Books, 1993.

[2] ——, The Children’s Machine: Rethinking School In The Age Of The
Computer. Basic Books, 1994.

[3] ——, The Connected Family: Bridging the Digital Generation Gap.
Longstreet Press, 1996.

[4] J. Hansen,LEGO Mindstorms NXT Power Programming: Robotics in
C. Variant Press, 2007.

[5] F. Jones, “The Moore method,”American Mathematical Monthly,
vol. 84, pp. 273–277, 1977.

[6] J. Parker,R. L. Moore: Mathematician and Teacher. Mathematical
Association of America, 2005.

[7] M. Mansour and W. Schaufelberger, “Software and laboratory exper-
iments using computers in control education,”IEEE Control Systems
Magazine, vol. 9, pp. 19–24, 1989.

[8] S. Skelton and T. Iwasaki, “Increased roles of linear algebra in control
education,”IEEE Control Systems Magazine, vol. 15, pp. 76–90, 1995.

[9] M. Smith, “United Kingdom control education,”IEEE Control Systems
Magazine, vol. 16, pp. 51–56, 1989.

[10] D. Bernstein, “Enhancing undergraduate control education,” IEEE
Control Systems Magazine, vol. 19, pp. 40–43, 1999.

APPENDIX

Exercise 1: Trajectory of a freely falling object

In this exercise, we consider the trajectory of an object
with initial conditionx(0) = xini (position and velocity) when
no external forcef is applied,i.e., a freely falling object,
thrown from some locationp(0) = pini with some initial
velocityv(0)= vini. Using any method you deem appropriate,
find an analytic expression for the resulting trajectory. Then,
write a function in your favourite programming language
that takes as an input the initial condition and returns as
an output samples of the trajectory and a time vector of the
corresponding moments of time. Test your function for some
initial conditions and plot the resulting trajectories.

Solution:The second order vector differential equation (1)
can be written as a first order equation

ẋ= Ax, p=Cx, x(0) = xini , (2)

where

x :=









y
ẏ
z
ż
x5









, xini :=









yini

vini,1

zini

vini,2

−g









, A :=









0 1
0 0

0 1
0 0 1

0









and C :=

[
1 0 0 0 0
0 0 1 0 0

]

.

(3)

We have taken into account the constant inputg in (1) by
defining an extra state variablex5, with equation ˙x5(t) = 0
and initial conditionx5(0) = −g. In system theoretic terms,
this turns the inhomogeneous equation (1) into an au-
tonomous state space model.

The following code chunk defines theA andC matrices,
which specify the state space model (2) (up to unknown
initial conditions).
〈State-space model4a〉≡
a1 = [0 1; 0 0];
a = blkdiag(a1, a1, 0); a(4, 5) = 1;
c = zeros(2, 5); c(1, 1) = 1; c(2, 3) = 1;

Using the material in Lecture 3, we know that the trajec-
tory p of (2) is

p(t) =CeAtxini . (4)

This is an explicit formula (a closed form solution) for the
trajectoryp resulting from the initial conditionxini , however,
for the particular model, given by (3), it can be further
simplified.

The matrix exponential is by definition the series

eAt =
∞

∑
i=0

Ait i

i!
.

Note that

A2 =









0 0
0 0

0 0 1
0 0 0

0









andAi = 0, for all i greater than two. Therefore,

eAt =









1 t
0 1

1 t 1
2t2

0 1 t
1









. (5)

Note that the dynamics along they and z axis is indepen-
dent (decoupled). Using the explicit formula for the matrix
exponential, we obtain explicit formulae for the solution (4):

y(t) = vini,1t + yini and z(t) =
(
vini,2−

1
2

gt
)
t + zini .

(6)
which shows that alongy, the motion is linear with the initial
speed and alongz, the motion is quadratic.

In the numerical implementation, we use (4) rather than
the explicit formulae (6), because it is applicable for any lin-
ear time-invariant model. In order to do the computation, we
discretize the continuous-time equation. If the discretization
time is ts,
〈Definets 4b〉≡
ts = 0.01;

the corresponding discrete-time equation is

p(tsk) =CAk
dxini , where Ad := eAts. (7)

〈Discretization4c〉≡
〈Definets 4b〉

ad = expm(a * ts);

The simulation is continued till the object falls on the
ground,i.e., z(t)> 0,
〈Simulation4d〉≡

〈Defineg 4e〉
x = [xini; -g];
while x(3,end) >= -eps

x = [x ad * x(:,end)];
end
p = c * x;
T = size(x, 2); t = 0:ts:(T - 1) * ts;

where the gravitational constantg is defined as follows
〈Defineg 4e〉≡
g = 9.81;

Putting everything together, we have the following func-
tion for simulation of a freely falling object with a given
initial condition.
〈sim_ini 4f〉≡
function [p, t, x] = sim_ini(xini)
〈State-space model4a〉
〈Discretization4c〉
〈Simulation4d〉

The function is tested with the following script
〈test_sim_ini 4g〉≡
xini = [0 1 0 2]’;
[p, t] = sim_ini(xini);
plot(p(1,:), p(2,:)), hold on

comparing the numerical solution with the solution ob-
tained by the analytic expression (6)
〈test_sim_ini 4g〉+≡

〈Defineg 4e〉
plot(xini(1) + xini(2) * t, ...
xini(3) + xini(4) * t - 0.5 * g * t .^2, ’-r’)
print_figure(1)

The test script produces the plot shown in Figure 3.

0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y

z

Fig. 3. Example of a simulated trajectory with initial condition xini =
(0,1,0,2). (Solid blue line — numerical solution,Dashed red line—
analytic solution.)

Exercise 2: Free fall with friction

In this exercise, we relax the assumption that the object is
in vacuum. The net effect of the air on the object is a forcef ,
acting on the object. The model equation (1) becomes

mp̈= mg+ f , where p(0) = pini and ṗ(0) = vini . (8)

Without wind and turbulence, the forcef is due to friction
with the air and can be approximated by a linear function of
the velocity,i.e., we take

f =−γv, (9)

whereγ is a constant depending on the physical properties of
the environment as well as the size and shape of the object.
Repeat exercise for the case when a friction force (9) is
present. Experiment with different values for the massm
and the friction constantγ.

Solution: The modified equations (8) and (9) result in
a modified autonomous state space model (2). The only
difference between the model in Exercise () and the model
in this exercise is theA matrix

A :=









0 1
0 −γ/m

0 1
0 −γ/m 1

0









. (10)

〈State-space model with friction5a〉≡
a1 = [0 1; 0 -gamma/m];
a = blkdiag(a1, a1, 0); a(4, 5) = 1;
c = zeros(2, 5); c(1, 1) = 1; c(2, 3) = 1;

Note that now the dynamics depends on the mass of the
object, which is consistent with our experience. It is still
possible but more involved to find the matrix exponential
and the trajectoryp in closed form. The trajectory turns
out to be qualitatively different — the horizontal motion is
a decaying exponential (converging to a constant) and the
vertical motion is a decaying exponential, converging to a
linear function.

Contrary to the analytical approach that gets more com-
plicated, the numerical approach needs only trivial modifica-
tions. The only difference in the simulation function of the
model with friction and the simulation functionsim_ini,
defined in Exercise , is that the state space model is different:
〈sim_ini_friction 5b〉≡
function [p, t, x] = sim_ini(xini, m, gamma)
〈State-space model with friction5a〉
〈Discretization4c〉
〈Simulation4d〉

The function is tested by comparing the trajectory with
and without fiction
〈test_sim_ini 4g〉+≡
[p, t] = sim_ini_friction(xini, 1, 1);
plot(p(1,:), p(2,:))
print_figure(6)

The result is shown in Figure 4. The free fall with friction
indeed does not reach as far as the corresponding one without
friction and has the expected ballistic shape and rather than
the symmetric shape of a parabola.

Exercise 3: Bungee jumping

The object now is attached to one end of an elastic rope.
The other end of the rope is fixed at a given locationpr, see
Figure 5. The force exerted on the object from the rope is

0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y

z

Fig. 4. Example of a simulated trajectories with (solid blue) and without
(dashed red) friction. The initial condition isxini = (0,1,0,2), the mass is
m= 1, and the friction coefficient isγ = 1.

y

z

y(t)

z(t) ·
p(t)

v(t)

• pr

rope

Fig. 5. Setup for Exercise 3.

e(t) = γ
(
pr − p(t)

)
, (11)

whereγ is a positive constant. Find the trajectory resulting
from an initial conditionxini . Compare the trajectories with
and without friction in the air.

In order to make the setup more realistic, modify the
elastic force (11) taking into account the rope’s lengthr,
i.e., the force is zero before the rope gets stretched. Can
you still find the trajectoryp in closed form? Revise the
numerical simulation function for this case and observe how
the trajectory differs from before.

Exercise 4: Hitting a stationary object

Knowing what the trajectory of a freely falling object
is and being able to simulate it on a computer, our next
objective is to choose the initial velocityvini , so that the
object starting from initial positionpini = 0 reaches a given
position pdes at a given moment of timet = T, i.e., p(T) =
pdes. Solve the problem analytically in the case of no friction.
Then write a function that takes as an inputpdes andT and
returns as an output the initial velocityvini that achieves a
trajectory, such thatp(T) = pdes. Test your function for some
pdes andT. Modify your solution for the case when there is
friction in the air.

Exercise 5: Throwing an object as far as possible

How far can you throw an object? In order to formulate
the question mathematically, assume (which is a reasonable
assumption) that you can give a maximal initial velocity
to the object (by accelerating it for a period of time, after
which period the object is freely falling). The question then
is what direction should the initial velocity have in order for
the object to reach as far as possible when it lands on the

ground. The problem is considerably simpler whenzini = 0,
i.e., the object is thrown from the ground and there is no
friction. Assume that this is the case. Once you come up
with an answer, use your free falling simulation function
to compute and plot the trajectory. Try some alternative
admissible trajectories to make sure that your solution gives
the best result.

Solution: Without loss of generality, we can assume that
the initial velocity has unit magnitude,i.e.,

vini =

[
cosθ
sinθ

]

, (12)

whereθ is the to-be-determined parameter. The problem is

minimize (overθ ∈ (−π ,π]) |y(T)| subject to

z(T) = 0 andp= (y,z) satisfies (1)

with pini = 0 andvini =
[

cosθ
sinθ

]
.

From (6) and (12), we have

z(T) = 0 ⇐⇒ vini,2−
1
2

gT = 0 ⇐⇒ T =
2
g

cosθ

and

|y(T)|= |vini,1T|=
2
g
|sinθ cosθ |=

4
g
|sin 2θ |.

Therefore, the maximum is achieved for sin 2θ =±1 or θ1 =
π/4 andθ2 = 3π/4.

The test script
〈test_opt_sol 6a〉≡
xini = zeros(4, 1);
th = pi/4; xini([2, 4]) = [cos(th); sin(th)];
[p, t] = sim_ini(xini);
plot(p(1,:), p(2,:), ’-b’), hold on
th = pi/3; xini([2, 4]) = [cos(th); sin(th)];
[p, t] = sim_ini(xini);
plot(p(1,:), p(2,:), ’-r’)
th = pi/5; xini([2, 4]) = [cos(th); sin(th)];
[p, t] = sim_ini(xini);
plot(p(1,:), p(2,:), ’-r’)
print_figure(3)

produces the plots shown in Figure 6.

0 0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

y

z

Fig. 6. Optimal (solid blue) and suboptimal (dashed red) throws.

Exercise 6: Deducing initial state from trajectory

Suppose you observe a free falling object for a period of
time. More precisely, you are given the positions at given
moments of time

p(t1), p(t2), . . . , p(tN), where 0< t1 ≤ t2 ≤ ·· · ≤ tN.
(13)

Can you find from this data the initial positionp(0) and
the initial velocityv(0)? If so, write a function that accepts
as an input data the positions (13) and returns as an output
the initial statex(0). Test your function for some simulated
trajectories.

Solution: The basic equation (4), gives us a system of
equations for the relation between the observed data and the
initial state 






p(t1)
p(t2)
...

p(tN)







=








CeAt1

CeAt2

...
CeAtN








︸ ︷︷ ︸

O

xini .

A solution for xini is unique if the matrixO is full column
rank. Under this condition, which depends on both(C,A)
and t1, . . . , tN, the problem is solvable. Since the pair(A,C)
is observable

>> rank([c; c * a; c * a^2; c * a^3; c * a^4])

ans = 5

the only condition is thatN > 3.) The above solution can
be improved by taking into account the fact thatxini,5 =−g
is known. (This implies thatN = 2 exact observations are
enough to deduce the initial state.)

The following function estimates the initial condition from
given data.
〈est_xini 6b〉≡
function xini = est_xini(p, t)
〈State-space model4a〉
〈Defineg 4e〉
N = length(t); O = [];
for i = 1:N

O = [O; c * expm(a * t(i))];
end
xini = O(:, 1:4) \ (p(:) + g * O(:, 5));

The function is illustrated with the following script
〈test_est_xini 6c〉≡
[p, t] = sim_ini([1 2 3 4]’);
est_xini(p(:, 1:4), t(1:4))

