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Abstract— An unorthodox programme for teaching systems
and control is developed and tested at the School of Electrics
and Computer Science of the University of Southampton. Mo-
tivation for the employed teaching methods is Moore’s methd
and S. Papert’s book “Mindstorms: children, computers, and
powerful ideas”. The teaching is shifted from lecture instiuction
to independent work on computer based projects and physical
models. Our experience shows that involvement with projest
is more effective in stimulating curiosity in systems and cotrol
related concepts and in achieving understanding of these
concepts. The programme consists of two parts: 1) analytita
and computational exercises, using Matlab/Octave, and 2)
laboratory exercises, using programmable Lego mindstorms
models. Both activities cut across several disciplines—psics,
mathematics, computer programming, as well as the subjectfo
the programme—systems and control theory.

I. INTRODUCTION

What kind of curve is the trajectory of a stone
thrown in the air?

How should one throw a stone in order to reach as
far as possible?

These are curiosity driven questions, which can be a
swered by first turning them into well defined mathemati

cal problems (using high school physics) and then solvi
the mathematical problems (using analytical and numerical.

n_

One needs motivation in order to pursue the search for
answers to difficult questions. Such motivation comes only
through personal interest and involvement with the quastio
Unfortunately, the formal educational system reverses thi
causal relation—everyone is expected to acquire certain
“pure” knowledge (the curriculum of one’s education) in
order to be prepared for solving “real-life” problems (ostju
for beginning an educated person). The “real-life” protdem
are usually not encountered until the education is over.

Our aim is to give the students an opportunity to practice
systems and control knowledge by working on a series of
exercises which are formulated as vague questions ratéer th
well defined problems. These questions are curiosity driven
so that the student should be motivated to find answers. The
students have full freedom to choose the problem formuiatio
and solution method that they deem relevant for the question
at hand. Moreover, the students are encouraged to find their
own style in dealing with the assignments and ask questions
that are not part of the assignments.

Given such freedom, the students may come up with
different answers to the original questions (as well as answ

to questions that were never asked). As long as the answers

n )
gre correct solutions to relevant problems, related to the

riginal question, they are “valid answers”.

methods, studied in school as well as in the universityf
Solving mathematical problems is part of the exercises and Il. SETUP OF THE EXERCISES
the laboratory, described in the paper, but it is not the main | the exercises the students are dealing with questions
part and not the most important part either. More importantateq to free and controlled flight of an object in a gravi-
than finding answers to math problems is the habit of askingional field. For example, throwing a stone, we apply for a
questionsi.e., aiming for open enquiry rather than following (short) period of time a force on the stone, which net effect
of authority, and the ability to turn vague questions intdlwe i 1, give the stone an initial velocity. The magnitude and
defined problems. Only in combination with these skillsyjrection of the initial velocity determine the subsequieee
the ability to reason rigorously in the search for solutiongy ow they are achieved is not important for the purpose
becomes a powerful tool for solving real-life problems. ¢ g4,qying the free fall. From the moment of departing from
The philosophy of “mindstorms”, described by Seymougyg hang, the stone is falling freely; the forces that acthen t
Papert in his books [1], [2], [3], is that stone are the gravitational force and a force from the impact
the only way to acquire any type of knowledge is  with the air (friction and wind). Initially the simplifying
to immerse in an environment that offers ample  assumption that the object is flying in vacuum is made, so
possibilities to practice this knowledge. that the the only force acting on the stone is the gravitafion
Using Papert’'s analogy, in the same way as a student neddsce.
France for learning french, the student needs “systems andThroughout its free falling flight the object remains in the
control land” for learning dynamical systems and controplane determined by the initial velocity and the gravitasib
theory. The exercises and laboratory described in the paderce. Therefore, although the object is flying in a three
aim to serve this role. dimensional space, its motion can be described in a plane.
Let p(t) be the position of the object at tinteWe choose a
reference moment of time= 0 to be the moment when the
object starts its free fall and an orthogonal coordinatéesys
in the plane of motion with vertical axis along the negative
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of the gravitational force and a perpendicular horizonxida  « hitting a stationary object,
at the ground level, see Figure 1. « throwing an object as far as possible,
« deducing the initial state from observed trajectory,
z « hitting a moving object,
« effect of disturbances,
v(t) » use of feedback control to reduce the effect of the

disturbances, and
Z(t) « optimal open loop control.

p(t) : Description of the selected exercises and indicative gwigt
: y are given in the Appendix.

y(t) l1l. L ABORATORY
Fig. 1. Problem setup. . .
The aim of the laboratory is to expose the students to a
The horizontal displacement of the object at timwith ~ COMPplete control system design cycle, starting with maxgli
respect to the origin is denoted byft) and the vertical of the plant, proceeding to design of a controller based en th

displacement by(t). More notation, used in the exercises is:M0del, implementation of the controller on a microprocesso
and finishing by experimental verification of the designed

control system. Significant part of the work is on a computer

pt) = Zgﬂ —  object’s position and its coordinates at time and involves Matlab and C programming. Matlab is used
v(t) _ object's velocity at time for the para}meter estlmatlon and controller d(_aS|gn and C
Pini» Vini — initial (time t = 0) position and velocity is used for implementation of the control algorithm on the
X(t) — state (position and velocity) at tinte microcontroller.

m _ O?ajl?/ﬁgiio?aallssconstant The assignment is to design a controller for a cart, build
ﬁg _ gra\,itationa| force ¢ is a vector in the from an Lego Mindstorms NXT constructor, see Figure 2.

“negative vertical” direction with norm equal @ The cart includes a micro controller that is connected to an
ultrasonic distance sensor and two electrical motors — one

By the second law of Newton, for arty> 0, the position for the left wheels and one for the right wheels.
of the object is described by the differential equation

mp = mg, where p(0) = pini and p(0) = vini. (1)

Here pini is the initial position (the place from where the
object is thrown) andsy; is the initial velocity (by which
the object is thrown). Note the following facts about (1). It
is

« a linear differential equation with constant coefficients;

« a second order, vector equation;

« the right hand side is constant; and

« does not depend on the mass
The last item implies that any object falling in a gravitatd
field without friction has the same trajectory. The fact that
the trajectory does not depend on the mass may be surprising
and counter intuitive for some students. This is a welcome
mstapce When. physics and mathematics reveal Somethlﬁg. 2. Test platform: a cart build from Lego Mindstorms NXdnstructor.
that is not obvious.

Equation (1) described completely the motion of the The control objective is to keep the cart at a constant
object. It is a concise and unambiguous description Gfistance from a moving object. For simplicity the cart anel th
any object falling in a gravitational field, starting from gpject are assumed to move along a line, so that the problem
an arbitrary initial conditions—position and velocity. &h pha5 one degree of freedom (back-forth motion). Therefore,
equation, however, is not as clear as an explicit solutiofhe same power is applied to both motors (resulting in the
that exhibits the nature of the trajectorp @s a function cart moving back-forth).
of time). Therefore, the first task in the series of exercises  Tne first task of the laboratory is to identify a model for
to find the solution explicitly; both analytically (by hanaild the relation between the power level applied to the motors
numerically (using the computer). The subsequent exesCisghe control signall) and the distance of the cart to the object

are studying (the controlled signay). A parameterized model structure
« free fall with friction, 1 b
. bungee jumping, H(s) = - —

" ss+a



is postulated from physical considerations and the pamet V. ACKNOWLEDGMENTS
aandb are estimated from a measured response of the cart toyjark French encouraged me to revise the second year

a step input. The objective of the parameter estimation is {ntrol laboratories and pointed out the use of Lego Mind-
obtain a model that accurately reproduces the actual dynagiprms models by Glenn Vinnicombe in Cambridge. Mark
ical relation. This is validated by independent measuréseryng Chris Freeman contributed with suggestions about the
and simulation of the model. development of the Lego lab presented in the paper.

The controller design is initially carried out in Matlab  The research leading to these results has received funding
(second task), where the controller is tested on the planfgm the European Research Council under the European
model. Then, the designed controller is tested on the palysiqynion’s Seventh Framework Programme (FP7/2007-2013) /
plant (third task) and the behaviour of the actual closeblo ERC Grant agreement number 258581 “Structured low-rank

system is compared to this observed in simulation.  approximation: Theory, algorithms, and applications”.
Different programming languages can be used for imple-

menting the discrete-time controller on the LEGO Mind-
storms NXT microcontroller. In this laboratory, the stuthen [1] S. Papert,Mindstorms: Children, Computers, And Powerful Ideas
are given a program written in a C-like language, called Not,, B2Si¢ Books, 1993.
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IV. CONCLUSION, DISCUSSION AND OUTLOOK Exercise 1: Trajectory of a freely falling object

A dynamical systems and control programme was pre- |, this exercise, we consider the trajectory of an object
sented that departs from the traditional lecture style ang, injtial conditionx(0) = i (position and velocity) when
employs curiosity driven, discovery based, learning. Thg, external forcef is applied,i.e., a freely falling object,
medium for doing this is a series of exercises with 100sely,.qwn from some locatiorp(0) = pii with some initial

defined questions that leave freedom for the students \tiélocityv(O) — Vini. Using any method you deem appropriate,
formulate precise problems and choose the relevant tools @44 an analytic expression for the resulting trajectoryefih
methods for solving the problems. Our experience shows th@tite g function in your favourite programming language
this teaching method is more enjoyable and engaging fha¢ takes as an input the initial condition and returns as
both students and teachers than the standard lecture baggad, oyt samples of the trajectory and a time vector of the
instruction. A negative side of the new method is that it responding moments of time. Test your function for some
requires more teachers and teaching assistants per studgifa) conditions and plot the resulting trajectories.

than the standard lecture based instruction and covers less ] ] ) )
material in a given period of time. We believe, however, that Solution:The second order vector differential equation (1)
these shortcomings are far surpassed by the advantageC8ft P€ written as a first order equation

increasing the interest in the subject and achieving deeper X = AX, p=Cx, X(0) = Xini, 2)
understating for students of all abilities by the new method

In future we aim to extend the exercises with moré’"here

curiosity driven questions of diverse engineering nature a y Yini 01

to add laboratories with different test models, comparing y Vini,1 0 0

different control methods. The challenge that we faced in X'= | Z |, Xini := | Zni |, Al= 0 1
the reported preliminary work and expect to have in the z Vini,2 0 01
future development is that inevitably the subject mattemngr X5 -9 0
beyond the topic of systems and control. Indeed free enquiry 1 0 0O

is not limited to one subjects but cuts across many related and C:= [o 0 1 0 g :

and (seemingly) unrelated subjects. 3)



We have taken into account the constant inguh (1) by ad = expm(a * ts);
defining an extra state variabie, with equationxs(t) =0 The simulation is continued till the object falls on the
and initial conditionxs(0) = —g. In system theoretic terms, ground,i.e., z(t) >0,
this turns the inhomogeneous equation (1) into an aUsimulationad)=
tonomous state space model. (Defineg 4e)
The following code chunk defines the and C matrices, X = [xini; -g];
which specify the state space model (2) (up to unknown While x(3,end) >= -eps
initial conditions). x =[x ad * x(:,end)];

end
(State-space modeh)= p=c* X
al = [0 1; 0 0]; T:size(;<, 2); t =0:ts: (T - 1) = ts;
a = bl kdi ag(al, a1, 0); a(4, 5 = 1; oL . .
c =zeros(2, 5); c(1, 1) =1; c(2, 3) = 1; where the gravitational constagtis defined as follows
Using the material in Lecture 3, we know that the trajecheﬁrle%“glE_
tory p of (2) is 9 T _ _
p(t) — Cefxi,i. 4) Putting everything together, we have the following func-

tion for simulation of a freely falling object with a given
This is an explicit formula (a closed form solution) for thejnitial condition.

trajectoryp resulting from the initial conditionii, however, sj m i nj an=
for the particular model, given by (3), it can be further function [p, t, Xx] = sim.ini(xini)

simplified. (State-space modeb)
The matrix exponential is by definition the series (Discretization4c)
o (Simulation4d)
o 141
M — A_'t The function is tested with the following script
i<o I (test_sim.ini 4g)=
Note that xini =[0102]";
00 [p, t] = simini(xini);
00 plot(p(1,:), p(2,:)), hold on
AZ — 0 0 1 comparing the numerical solution with the solution ob-
0 0O tained by the analytic expression (6)
0 (test_simini 4g)+=

i . (Defineg 4e)
andA' =0, for all i greater than two. Therefore, plot(xini (1) + xini(2) * t, )
Xini(3) +xini(4) »t - 0.5 g=*1t .72 '"-r")

é ';_ print_figure(1)
A 1t %tz . ) The test script produces the plot shown in Figure 31
0 1 t
1 0.:

Note that the dynamics along theand z axis is indepen-
dent (decoupled). Using the explicit formula for the matrix
exponential, we obtain explicit formulae for the solutia):(

1
y(t) =Viniit+yini  and  z(t) = (Vini2— égt)t + Zni.-
(6)
which shows that along, the motion is linear with the initial
speed and along the motion is quadratic. 0% o1 02 0z oa o5
In the numerical implementation, we use (4) rather than y

the explicit formulae (6), because it is applicable for @iny | Fig. 3. Example of a simulated trajectory with initial cotii X =
ear time-invariant model. In order to do the computation, wé102)- (Solid blue line — numerical solution,Dashed red line—

. . . . . . . analytic solution.)
discretize the continuous-time equation. If the discegitn

time ists,
(Definet s 4b)= Exercise 2: Free fall with friction
ts = 0.01,
the corresponding discrete-time equation is In this exercise, we relax the assumption that the object is
in vacuum. The net effect of the air on the object is a fdrce
p(tsk) = CAXini, where Ag:=e's. (7)  acting on the object. The model equation (1) becomes

(Discretization4c)=

(Definet s 4b) mp=mg+f,  where p(0)= pini and p(0) = Vini. (8)



Without wind and turbulence, the fordeis due to friction o
with the air and can be approximated by a linear function of 025
the velocity,i.e., we take

f=-w 9)

wherey is a constant depending on the physical properties of
the environment as well as the size and shape of the object.
Repeat exercise for the case when a friction force (9) is
present. Experiment with different values for the mass

and the friction constany. ’ omy oo

Solution: The modified equations (8) and (9) result inFig. 4. Example of a simulated trajectories witpd blug and without
a modified autonomous state space model (2). The onlgeshed rejfriction. The initial condition isxini = (0,1,0,2), the mass is
. . . (r_:‘nI: 1, and the friction coefficient iy = 1.
difference between the model in Exercise () and the mod

in this exercise is thé& matrix z o Pr
0 1
0 —y/m
A= 0 1 . (20)
0 —-y/m 1
0 .
(State-space model with frictiose)= , y
al = [0 1; 0 -ganma/ni; y(t)
a = bl kdiag(al, al, 0); a(4, 5) = 1; Fig. 5. Setup for Exercise 3.

c = zeros(2, 5); c(1, 1) =1; c(2, 3) = 1;
Note that now the dynamics depends on the mass of the
object, which is consigtent with oF:Jr experience. It is still e(t) = y(pr—p(t)), (11)
possible but more involved to find the matrix exponentialvherey is a positive constant. Find the trajectory resulting
and the trajectoryp in closed form. The trajectory turns from an initial conditionx,j. Compare the trajectories with
out to be qualitatively different — the horizontal motion isand without friction in the air.
a decaying exponential (converging to a constant) and theln order to make the setup more realistic, modify the
vertical motion is a decaying exponential, converging to &lastic force (11) taking into account the rope’s length
linear function. i.e, the force is zero before the rope gets stretched. Can
Contrary to the analytical approach that gets more conyou still find the trajectoryp in closed form? Revise the
plicated, the numerical approach needs only trivial moaific numerical simulation function for this case and observe how
tions. The only difference in the simulation function of thethe trajectory differs from before.
model with friction and the simulation functiosi m_i ni , Exercise 4: Hitting a stationary object
defined in Exercise , is that the state space model is differen '

(sim.ini_frictionsh= Knowing what the trajectory of a freely falling object
function [p, t, x] = simini(xini, m ganma) is and being able to simulate it on a computer, our next
(State-space model with frictiose) objective is to choose the initial velocityi,i, so that the

(Discretization4c)

(Simulationad) object starting from initial positiomi,j = 0 reaches a given

L . . __position pges at a given moment of time=T, i.e, p(T) =
The_ f“”C“‘?”_'S tested by comparing the trajectory W'thpdes, Solve the problem analytically in the case of no friction.
and without fiction Then write a function that takes as an inpdtsand T and

(t eSt_fi m.ini 4g)+= A L returns as an output the initial velocity, that achieves a
|[olo'ot (L(I S') m—:o?'z—. )r') ction(xini, 1, 1); trajectory, such thap(T) = pges Test your function for some
print fi gur ’e( 6) . Pges @and T. Modify your solution for the case when there is

The result is shown in Figure 4. The free fall with frictionf”CtIon in the air.

indeed does not reach as far as the corresponding one with&xercise 5: Throwing an object as far as possible
friction and has the expected ballistic shape and rather tha

iect?
the symmetric shape of a parabola. O How far can you throw an object? In order to formulate

the question mathematically, assume (which is a reasonable
assumption) that you can give a maximal initial velocity
to the object (by accelerating it for a period of time, after
The object now is attached to one end of an elastic ropahich period the object is freely falling). The questionrhe
The other end of the rope is fixed at a given locatpnsee is what direction should the initial velocity have in order f
Figure 5. The force exerted on the object from the rope isthe object to reach as far as possible when it lands on the

Exercise 3: Bungee jumping



ground. The problem is considerably simpler wiamh= 0,

i.e,, the object is thrown from the ground and there is no
friction. Assume that this is the case. Once you come up
with an answer, use your free falling simulation function

: .m
to compute and plot the trajectory. Try some alternative
admissible trajectories to make sure that your solutioegjiv p(ty), p(tp),..

the best result.

Solution: Without loss of generality, we can assume thap

the initial velocity has unit magnitudég.,

Vini = {cos@] ; (12)

sin@

Exercise 6: Deducing initial state from trajectory

Suppose you observe a free falling object for a period of
me. More precisely, you are given the positions at given
oments of time

., p(ty),  where O0<t;<tr<---<ty.

(13)
an you find from this data the initial positiop(0) and
the initial velocityv(0)? If so, write a function that accepts
as an input data the positions (13) and returns as an output
the initial statex(0). Test your function for some simulated
trajectories.

where0 is the to-be-determined parameter. The problem is gpjution: The basic equation (4), gives us a system of

minimize (overf € (—m,m) |y(T)| subjectto
z(T)=0 andp = (y,z) satisfies (1)
with pipi = 0 andvin = [59].

sin@
From (6) and (12), we have

1 2
2(T)=0 <= Vini,z_égTZO — T:acose

IV(T)| = [ViniaT| = §|sin fcosh| = g|sin 2.

Therefore, the maximum is achieved for sih2 +1 or 6, =
/4 and 6, = 3r1/4.

The test script
(test _opt_sol 6a=

xini = zeros(4, 1);
th = pi/4; xini([2, 4) = [cos(th); sin(th)];
[p, t] = simini(xini);
plOt(p(lv:)v p(zv:)v "b’), hol d on
th = pi/3; xini([2, 4) = [cos(th); sin(th)];
[p, t] = simini(xini);
plot(p(l,:), p(Z,I), "r’)
th = pi/5; xini([2, 4]) = [cos(th); sin(th)];
[p, t] = simini(xini);
plOt(p(lv:)v p(zv:)v "r,)
print_figure(3)
produces the plots shown in Figure 6. O
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equations for the relation between the observed data and the
initial state

p(tl) Cefu
p('[z) Cete
: = : Xini -
ptn) | |cerw
1%

A solution for X, is unique if the matrix2 is full column
rank. Under this condition, which depends on b¢@ A
andty,...,ty, the problem is solvable. Since the p ,C;
is observable

>> rank([c; ¢ * a; ¢ * a2; ¢ * a"3; c * ar])

ans = 5

the only condition is thaN > 3.) The above solution can

be improved by taking into account the fact thats = —g

is known. (This implies thalN = 2 exact observations are

enough to deduce the initial state.)

The following function estimates the initial condition fro
given data.

(est _xini 6=
function xini =
(State-space modék)
(Defineg 4e)

N = length(t); O=1[1;

est_xini(p, t)

for i = 1:N
O=[Q c * expmla * t(i))];
end
Xini = O, 1:4) \ (p(:) +g=* O, 5));

The function is illustrated with the following script
(test_est_xini 6=

[p, t] =simini([1 2 3 4]");

est_xini(p(:, 1:4), t(1l:4))



