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a b s t r a c t

We illustrate procedures to identify a state-space representation of a lossless or dissipative system from
a given noise-free trajectory; important special cases are passive systems and bounded-real systems.
Computing a rank-revealing factorization of a Gramian-like matrix constructed from the data, a state
sequence can be obtained; the state-space equations are then computed by solving a system of linear
equations. This idea is also applied to performmodel reduction by obtaining a balanced realization directly
from data and truncating it to obtain a reduced-order model.
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1. Introduction

We are given a noise-free discrete-time w-dimensional trajec-
tory w, and a real w × w symmetric matrix Σ . We assume that w
is produced by a linear finite-dimensional time-invariant system
which is half-line lossless or dissipative with respect to the supply
rate induced by Σ (passive systems and bounded-real systems are
special cases of such a situation, depending on the specific choice
of Σ). We also assume certain identifiability conditions, described
in detail later. The problem is to find a state-space description of
the system from w.

To solve this problem, we could use deterministic subspace
identification methods (see Moonen, De Moor, Vandenberghe,
and Vandewalle (1989) and Van Overschee and De Moor (1996))
to compute a state sequence from w. One of the fundamental
contributions of this paper is that a state sequence x can be
alternatively computed from any rank-revealing factorization of a
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Gramian-likematrix computed from thedataw and the supply rate
Σ; the matrices corresponding to a state-space representation of
the system can then be computed by solving for (E, F ,G) in the
equations

[E F G]


σ x
x
w


= 0, (1)

where σ is the forward shift defined by (σ x)(k) := x(k + 1); or, if
a partition w = (u, y) of the variable w in inputs u and outputs y
is known, by solving for (A, B, C,D) in[

σ x
y

]
=

[
A B
C D

] [
x
u

]
. (2)

We also show that special rank-revealing factorizations of the
Gramian-like matrix can be used to obtain balanced state-space
representations from data. In a balanced state representation the
matrices corresponding to the maximal and the minimal storage
function are diagonal and the inverse of each other; for passive
systems and for bounded-real systems, this definition coincides
with the classical one (see Desai and Pal (1984) and Opdenacker
and Jonckheere (1988)). The possibility of obtaining balanced
state-space representations directly fromdatamakes our approach
interesting for the data-driven model order reduction problem, that
of obtaining a reduced-ordermodel directly frommeasurements of
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a system,whichwe consider in the last part of thiswork. Structure-
preserving model reduction is usually considered starting from a
given state representation; recently, some authors (see Antoulas
(2005), Antoulas (2004), Gugerçin and Antoulas (2004), Polyuga
and van der Schaft (2010), Sorensen (2005), and Trentelman,
Ha, and Rapisarda (2009)) have investigated the computation of
reduced-order models from data. However, the data considered in
theseworks are often of a special type, e.g. exponential trajectories
associated with the spectral zeros of the system; a novel aspect of
our work is that we use general measurements of the system.

The data available for identification are assumed to be noise
free; we believe that, before trying to solve problems involving
stochastics such as those arising in identification from noisy
measurements, it makes sense to solve the simpler problem of
identification from noise-free data. The results presented are
consequently preliminary to an exhaustive investigation on the
identification of lossless and dissipative systems in a realistic
setting; in the conclusions section of this paper we discuss some
of the open issues (finite data, noise, and consistency).

In this paper, we use the behavioral approach and quadratic
difference forms. The former distinguishes between the external
properties of a system and its representation; it is consequently
appropriate for finding a state-space representation of a system
through the intermediate construction of a state sequence from
external measurements. Of course it is possible to postulate the
existence of a state representation actually producing the data,
but this assumption is unnecessary in the context of our problem.
Moreover, choosing not to commit ourselves earlier on to a specific
state representation allows us to obtain from the computed state
sequence any required representation. The formalism of quadratic
difference forms offers the possibility of a representation-free
approach to the study of lossless and dissipative systems.

The reader unfamiliar with the behavioral approach is referred
to Willems (1991) and Kaneko and Fujii (2000) for a thorough
exposition; in Section 2, we only briefly review the necessary
material. In Section 3.1, we consider lossless identification, and the
version with dissipativity in Section 3.2. Our data-driven model
reduction procedure is illustrated in Section 4. The paper endswith
some concluding remarks in Section 5.
Notation. We denote the ring of integers with Z, and the set {z ∈

Z | z ≥ 0} with Z+. The space of n-dimensional real vectors is
denoted by Rn, and the space of m× n real matrices by Rm×n. Rm×•

denotes the space of real matrices with m rows and an unspecified
finite number of columns, and R•×• the space of real matrices
with a finite but unspecified number of rows and columns. The
symbol Rm×∞ denotes the set of real matrices with m rows and an
infinite number of columns. The linear space of all sequences from
Z to Rw is denoted with (Rw)Z. ℓw2(Z) denotes the linear subspace
of all square-summable sequences on Z. The ring of polynomials
with real coefficients in the indeterminate ξ is denoted by R[ξ ];
the ring of two-variable polynomials with real coefficients in the
indeterminates ζ and η is denoted by R[ζ , η]. Rr×w

[ξ ] denotes
the space of all r × w matrices with entries in R[ξ ]. We denote
with Rn×m

[ζ , η] the space of n × m polynomial matrices in the
indeterminates ζ and η.

2. Background material

In this paper, we consider linear, shift-invariant and ‘complete’
(see Definition II.4, p. 262 of Willems (1991)) subspaces B of
(Rw)Z. We call them behaviors and denote the set consisting of all
behaviors with w variables with Lw. B ∈ Lw admits several types
of representation; particularly important in this paper are hybrid
ones, in which besides the external variable w a latent variable ℓ is
also present:

R(σ )w = M(σ )ℓ. (3)
This has associated a full behavior Bf := {(w, ℓ) | (w, ℓ) satisfies
(3)} and an external behavior B := {w | ∃ℓ s.t. (w, ℓ)satisfies (3)}.

An important special type of hybrid representation is when the
latent variable ℓ has the state property (see Definition VII.1, p. 268
ofWillems (1991)); then the latent variable is denoted by x, and (3)
is called a state representation ofB. In this case it can be shown that
(3) allows an alternative hybrid representation (1) of first order
in x and zeroth order in w. If, in addition, an input–output (i/o)
partition w = (u, y) of the external variable w is given, then
B allows an input–state–output representation (i/s/o) (2) with
state variable x. A state representation of B is called minimal if
the number of components of the state variable x is minimal over
all state representations of B. This number is called the McMillan
degree of B, denoted by n(B). If for a given B an i/o partition
w = (u, y) is given, thenwedefinem(B) := m, wheremdenotes the
number of components of the input variable u, and m(B) is called
the input cardinality of B. m(B) is an invariant for B, since every
i/o partition of the external variable w yields the same number of
input variables.

We do not define explicitly what a controllable behavior is; for
more details, see sectionV ofWillems (1991). For our purposes, it is
important to mention that a controllable behavior always contains
nonzero ℓw2(Z)-trajectories, in particular finite support ones. In the
following, we denote the subset of Lw consisting of all controllable
behaviors with Lw

cont.
We now review the basic concepts regarding bilinear and

quadratic difference forms. Let Φ ∈ Rw1×w2 [ζ , η]; then Φ(ζ , η) =∑N
h,k=0 Φh,kζ

hηk, where Φh,k ∈ Rw1×w2 and N is a nonnegative
integer. Φ(ζ , η) induces the bilinear difference form (BdF )

LΦ : (Rw1)Z
× (Rw2)Z

−→ RZ

LΦ(w1, w2)(t) :=

N−
h,k=0

w1(t + h)⊤Φh,kw2(t + k).

If w1 = w2, then Φ ∈ Rw×w
[ζ , η] also induces a quadratic difference

form (QdF )

QΦ : (Rw)Z
−→ RZ

QΦ(w)(t) :=

N−
h,k=0

w(t + h)⊤Φh,kw(t + k).

When considering QdFs, without loss of generality, we assume
the two-variable polynomial matrix Φ(ζ , η) to be symmetric,
i.e. Φ(ζ , η) = Φ(η, ζ )⊤.

The rate of change of a QdF QΦ is the QdF ∇QΦ defined by
∇QΦ(w)(k) := QΦ(w)(k + 1) − QΦ(w)(k); note that the two-
variable polynomial matrix associated with this QdF is given by
∇Φ(ζ , η) = (ζη − 1)Φ(ζ , η).

A controllable behavior B ∈ Lw is dissipative with respect to
the supply rate QΦ if there exists a QdF QΨ , called a storage function,
such that

∇QΨ (w) ≤ QΦ(w) for all w ∈ B. (4)

Inequality (4) is equivalent (see Proposition 3.3 of Kaneko and Fujii
(2000)) to the existence of a dissipation function, i.e. a QdF Q∆ ≥ 0
such that

+∞−
k=−∞

Q∆(w)(k) =

+∞−
k=−∞

QΦ(w)(k) for all w ∈ B ∩ ℓw2(Z). (5)

Moreover, there is a one-to-one correspondence between storage
and dissipation functions, in the sense that for every dissipation
function Q∆ there exists a unique storage function QΨ , and
for every storage function QΨ there exists a unique dissipation
function Q∆, such that, for all w ∈ B,

∇QΨ (w) + Q∆(w) = QΦ(w). (6)
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This translates in two-variable polynomial terms as

(ζη − 1)Ψ (ζ , η) + ∆(ζ , η) = Φ(ζ , η). (7)

If (4) is an equality, or equivalently if ∆(ζ , η) = 0 in (7), then B

is called lossless with respect to QΦ . If
∑0

k=−∞
QΦ(w)(k) ≥ 0 for all

w ∈ B|(−∞,0] ∩ ℓw2(Z−), then B is called half-line dissipative; and
if

∑0
k=−∞

QΦ(w)(k) = 0 for all w ∈ B|(−∞,0] ∩ ℓw2(Z−), then B is
called half-line lossless.

In this paper, we will restrict ourselves to supply rates QΦ with
Φ constant, i.e. Φ(ζ , η) = Σ , for some real symmetric w × w
matrix Σ . Obviously, in that case we have QΦ(w) = w⊤Σw.
Two prominent special cases of this situation are passive systems
and bounded-real systems. In both cases, the external variable is
partitioned asw = (u, y), with u input and y output. In the passive
case, we have m = p, i.e. the number of inputs and outputs are
equal, and

Σ =

[
0 Im
Im 0

]
, (8)

and for bounded-real systems, we have

Σ =

[
Im 0
0 −Ip

]
. (9)

Generalizing Proposition 2 in Trentelman and Willems (2002) to
the discrete-time case, it can be shown that a behavior B with i/o
partitionw = (u, y) and m = p is passive if and only ifB isΣ-half-
line dissipative, with Σ given by (8). The same holds for bounded-
real systems and Σ given by (9); this can be shown generalizing
Proposition 1 in Trentelman and Willems (2002) to the discrete-
time case.

In this paper, the fact that under suitable conditions storage
functions for discrete-time systems are quadratic functions of the
state plays an essential role. We say that a storage function QΨ is
a quadratic function of the state if, given a state representation
for B with state variable x, there exists K = K⊤

∈ R•×• such
that for every trajectory (x, w) ∈ Bf it holds that QΨ (w) =

x⊤Kx. Every storage function is a quadratic function of the state
for continuous-time systems (see Theorem 5.5 of Willems and
Trentelman (1998)); however, this is not true in discrete-time
cases; see Kaneko and Fujii (2003): additional assumptions are
needed. It can be shown that this is the case when the system is
lossless (see Theorem 5.3 of Kaneko and Fujii (2003)) or when the
storage function is nonnegative (see Theorem 5.1 of Kaneko and
Fujii (2003)). Another sufficient condition is given in Theorem 5.2
of Kaneko and Fujii (2003), and a necessary and sufficient condition
is given in Proposition 2 of Kojima, Takaba, Kaneko, and Rapisarda
(2006).

3. Noise-free identification

In the rest of the paper, we deal with trajectories w defined
on Z+. Given B ∈ Lw, we denote with B+ := {w|Z+

| w ∈

B}, and with ℓw2(Z+) the set of w-dimensional square-summable
trajectories on Z+.

We first introduce the notion of persistency of excitation. A
sequence f : Z+ → Rf is said to be persistently exciting of order
L (abbreviated as p.e. of order L) if

rank


f (0) f (1) f (2) · · ·

f (1) f (2) f (3) · · ·

...
... · · ·

f (L − 1) f (L) f (L + 1) · · ·

 = Lf.
In Corollary 2 of Willems, Rapisarda, Markovsky, and De Moor
(2005), it has been shown that, for every trajectory (u, x) of a state-
space system σ x = Ax+ Buwith n-dimensional state vector x and
m-dimensional input u, it holds that

u p.e. of order n H⇒ rank
[
u(0) · · · u(T )
x(0) · · · x(T )

]
= n + m (10)

for T is ‘‘sufficiently large’’, i.e. T ≥ nm. It follows that, for such T ,

[u p.e. of order n] H⇒ [rank [x(0) · · · x(T )] = n].

The result expressed in (10), referred to in Katayama (2005) as the
‘fundamental lemma’, is the only identifiability condition required
by our algorithms.

3.1. The lossless case

We first define the S-matrix associated with a trajectory and a
BdF.

Definition 1. Let B ∈ Lw
cont, w ∈ B+ ∩ ℓw2(Z+), and let Φ ∈

Rw×w
[ζ , η] be symmetric. The S-matrix is the infinite matrix S(w)

whose (i, j)-th entry is

[S(w)]i,j=0,... :=

∞−
k=0

LΦ(σ iw, σ jw)(k). (11)

Since w ∈ ℓw2(Z+), S(w) is a well-defined real matrix. Note that
if Φ(ζ , η) = Σ , with Σ ∈ Rw×w a symmetric matrix, then
S(w)i,j=0,... =

∑
∞

k=0 w(i + k)⊤Σw(k + j).
The most important result of this section is the following.

Proposition 2. Let B ∈ Lw
cont, and let Bf be a minimal state

representation of B with state variable x. Let Σ = Σ⊤
∈ Rw×w and

assume that B is Σ-half-line lossless. Then there exists K = K⊤
∈

R•×• such that, for every w ∈ B+ ∩ ℓw2(Z+) with associated state
trajectory x, i.e. (x, w) ∈ Bf , the following equality holds:

S(w) =

x(0)⊤

x(1)⊤
...

 K [x(0) x(1) · · ·]. (12)

Proof. Since w ∈ ℓw2(Z+), limk→∞ w(k) = 0. From the
losslessness of B and Theorem 5.3 of Kaneko and Fujii (2003),
it follows that every storage function is a quadratic function
of the state. Consequently, there exists K ′

= K ′⊤
∈ R•×•

such that, for every (xi, wi), i = 1, 2, in the full behavior Bf ,∑
+∞

k=0 w1(k)⊤Σw2(k) equals

−x1(0)⊤K ′x2(0) + x1(1)⊤K ′x2(1)
− x1(1)⊤K ′x2(1) + x1(2)⊤K ′x2(2) − · · ·

= −x1(0)⊤K ′x2(0) + ( lim
k→∞

x1(k))⊤K ′( lim
k→∞

x2(k))

= −x1(0)⊤K ′x2(0),

where we have used the fact that, by minimality of the state
representation, since limk→∞ w(k) = 0, also limk→∞ x(k) = 0.
This implies that

∑
+∞

k=0 w(k + i)⊤Σw(k + j) = −x(i)⊤K ′x(j) for
i, j = 0, . . ., and proves Eq. (12), with K := −K ′. �

To use Proposition 2 for identifying a state representation of B, we
need the S-matrix appearing on the left-hand side of Eq. (12) to
contain all the information needed to construct a (minimal) state
sequence. This amounts to requiring that rank(S(w)) = n(B),
the McMillan degree of B. There are many sufficient conditions
ensuring this; a realistic one in an identification context, since
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it requires a minimal amount of a priori knowledge about the
system, is to assume that the system is half-line lossless, and that
the number m(B) of input variables equals the number σ+(Σ)
of positive eigenvalues of the supply rate matrix Σ . Indeed, in
this case, using Theorem 5.3 of Kaneko and Fujii (2003) and
the same argument of the proof of Theorem 6.4 of Willems and
Trentelman (1998) for the continuous-time case, it can be shown
that all storage functions are positive, in the sense that, if a storage
function is given by x⊤Kx, with x a minimal state, then K > 0. Note
that the condition m(B) = σ+(Σ) holds both for passive systems
and for bounded-real systems.

The following result holds.

Proposition 3. Let B ∈ Lw
cont, and assume that w = (u, y) is an

i/o partition of the external variable w. Let Bf be a minimal state
representation of B with state variable x. Assume that B is Σ-half-
line lossless, where Σ = Σ⊤

∈ Rw×w. Assume that m(B) = σ+(Σ).
Let w = (u, y) ∈ B+ ∩ lw2(Z+) be a given sequence, and assume that
u is p.e. of order n(B). Then the S-matrix has rank n(B).

Proof. Recall that, in the lossless case, every storage function is
a quadratic function of the state. Now, apply the same argument
used to prove the equivalence of (1) and (6) in Theorem 6.4
of Willems and Trentelman (1998) to conclude that, under the
assumptions of Σ-losslessness of B and m(B) = σ+(Σ), the
matrixK ′

∈ Rn(B)×n(B) used in the proof of Proposition 2 is positive
definite. Then, use the persistency of excitation of u to conclude
that rank [x(0) x(1) · · ·] = n(B). Finally, use (12). �

It follows from Propositions 2 and 3 that, to compute a minimal
state sequence corresponding to the data w, one can proceed as
follows. Define a rank-revealing factorization of S(w) to be any
factorization S(w) = UΛU⊤ with U ∈ R∞×n(B) and Λ ∈

Rn(B)×n(B) both having full rank, equal to n(B) = rank S(w).
It follows from (12) that a state sequence x(0), x(1), . . . can be
obtained from such a rank-revealing factorization as

[x(0) x(1) . . .] := U⊤.

Once a state sequence is known, one can readily compute the
matrices E, F , and G in a state representation (1) or, if an i/o
partition of w is known, the matrices A,B, C , and D corresponding
to a minimal i/s/o representation (2) of B by solving systems of
linear equations. Note that solutions (A, B, C,D) and (E, F ,G) to
such systems of equations always exist, since x is a state variable;
see, for example, Proposition VII.3 of Willems (1991).

We now illustrate our identification procedure with an
example.

Example 4. Consider the controllable system B ∈ L2 with i/o-
partitioned external variable w = (u, y), described by the transfer

function G(z) =
1
8 z

2
−

3
4 z+1

z2− 3
4 z+

1
8
. B is bounded-real lossless. We

generate a system trajectory using the Matlab
©

lsim command;
we choose a zero initial state and an input sequence u whose first
100 samples are a pseudo-random sequence, and whose last 200
are zero. The corresponding y is for practical purposes zero after a
finite number of instants; in this way, we can treat the finite data
at our disposal as if theywere the truncation of a (half-line) infinite
trajectory w vanishing at infinity.

It is easy to see that, since w has finite support, the S-matrix
S(w) corresponding to this data is zero apart from its 100 × 100
principal submatrix:

S(w) =


0 0 0 0 · · ·

0 −0.5462 −0.6997 −0.1983 · · ·

0 −0.6997 −1.2000 −0.8451 · · ·

...
...

...
...

. . .

 .
Note that the first row and column of S(w) are zero since from
Proposition 2 and Eq. (12) it follows that S1,j = −x(0)⊤K ′x(j) =

−x(j)⊤K ′x(0), with K ′ the matrix associated with the storage
function, and since x(0) = 0.

Define S to be the 100 × 100 submatrix of S(w); factorize S =

UΛU⊤ with Λ = diag(−2.2947, −0.6747) and

U⊤
=

[
0 −0.3513 −0.7024 −0.6190 · · ·

0 0.6243 0.3170 −0.7140 · · ·

]
;

note that S(w) has rank 2, as expected. From this, we obtain the
state trajectory

[x(0) x(1) x(2) · · ·] := U⊤.

Solving Eq. (2) in the least-squares sense yields

A =

[
0.6901 −0.0627
1.3330 0.0599

]
, B =

[
−0.4716
0.8381

]
C = [−0.0558 − 0.8144], D = [0.125].

It can be verified that C(zI − A)−1B + D =
0.125z2−0.75z+1
z2−0.75z+0.125

.

Remark 5. The data of Example 4 is of finite support; conse-
quently, for computational purposes, we were able to use a
finite submatrix of S(w) without loss of information about the
system. However, in real applications only a finite number of mea-
surements of w are available. In such cases, only an approximation
of the entries of the S-matrix can be computed; consequently, a
rank-revealing factorization of this approximate S-matrix only cor-
responds to an approximation of an actual state sequence of the
data-producing system. An easy way out of this problem is to as-
sume that a ‘‘sufficiently large’’ time window of the data is given,
so that these approximation issues are negligible; given that w ∈

ℓw2(Z+), for ‘‘large enough’’ T ,w(T ) is approximately zero. Note that
this is exactly the approach taken in Moonen et al. (1989). This ex-
pedient solution, however, cannot be considered satisfactory, and
a thorough investigation on the generalization of the above proce-
dure to the finite-time case is required; we will pursue this else-
where.

Different rank-revealing factorizations of the Gramian-like matrix
produce different state sequences, in their turn corresponding to
different state representations; this can be exploited to obtain
balanced state-space representations, defined as follows. Assume
Σ = Σ⊤

∈ Rw×w given, and σ+(Σ) = m(B); then, if x is a minimal
state variable, the matrix K associated to a storage function x⊤Kx
is positive definite. A minimal state-space representation of B is
balanced if the matrices K− and K+ corresponding to the minimal
and the maximal storage functions x⊤K−x and x⊤K+x are diagonal
and the inverse of each other. In the case of Σ given by (8),
respectively (9), this definition of balanced state representation
coincides with the classical one. Note that, in the lossless case, the
maximal andminimal storage functions coincide, and a realization
is balanced if the matrix K corresponding to the unique storage
function is the identity.

If an i/o partition w = (u, y) of w is known, then, by choosing
appropriately the rank-revealing factorization (12) and solving (2),
a balanced i/s/o representation can be obtained.

Proposition 6. Let B ∈ Lw
cont with external variable w i/o-

partitioned as w = (u, y). Let Σ = Σ⊤
∈ Rw×w, and partition

accordingly

Σ =

[
Σuu Σuy

Σ⊤

uy Σyy

]
∈ R(m+p)×(m+p). (13)

Assume that B is Σ-half-line lossless, and assume that σ+(Σ) =

m(B). Let Bf be a minimal i/s/o representation of B with state
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variable x, associated with the matrices A, B, C, and D. Let w =

(u, y) ∈ B+∩ℓw2(Z+) be a given sequence. Then thematrix K = K⊤
∈

Rn(B)×n(B) satisfying Eq. (12) is equal to the unique real symmetric
solution of the equations

B(−K)B⊤
− Σuu − D⊤Σ⊤

uy − ΣuyD − D⊤ΣyyD = 0

A⊤(−K)B − ΣuyC − D⊤ΣyyC = 0

A⊤(−K)A − (−K) − C⊤ΣyyC = 0. (14)

Proof. Use the Σ-losslessness of B in order to conclude that the
system with external variable (u, x) described by x(k + 1) =

Ax(k) + Bu(k) is Σ ′-lossless, where

QΣ ′(u, x) := [u⊤ x⊤
]

[
Σ ′

uu Σ ′

ux
Σ ′⊤

ux Σ ′

xx

] [
u
x

]
, (15)

with Σ ′
uu := Σuu + D⊤Σ⊤

uy + ΣuyD + D⊤ΣyyD, Σ ′
ux := ΣuyC +

D⊤ΣyyC , Σ ′
xx := C⊤ΣyyC .

If x⊤K ′x is the storage function, then (15) equals

σ x⊤K ′σ x − x⊤K ′x = (Ax + Bu)⊤K ′(Ax + Bu) − x⊤K ′x.

To conclude the proof, use the fact that K = −K ′. �

Now, assume that u is an input sequence which is p.e. of order
n(B), and that σ+(Σ) = m(B); then Proposition 6 implies that,
if the matrix K satisfying (12) is −In(B), i.e. if the factorization
of the S-matrix is of the form S(w) = −UU⊤, then the i/s/o
representation obtained by solving (2) is balanced.

Example 7. We consider the system of Example 4. If we choose a
factorization S = −UI2U⊤, with

U⊤
=

[
0 −0.5322 −1.0640 −0.9377 · · ·

0 0.5128 0.2604 −0.5865 · · ·

]
we obtain the (classically) balanced realization

A′
=

[
0.6901 −0.1157
0.7228 0.0599

]
, B′

=

[
−0.7144
0.6884

]
C ′

= [−0.0369 − 0.9915], D′
= [0.1250].

Remark 8. Approaches to the identification of balanced state
models in the deterministic case similar to the one presented
in this paper are studied in Moonen and Ramos (1993) and
in Chapter 5 of Van Overschee and De Moor (1996); and in a
combined deterministic–stochastic setting in Van Overschee and
De Moor (1995). On the related topic of stochastic balancing of
autoregressive systems, see Dahlén and Scherrer (2004). See also
the discussion in Remark 14 of this paper.

We conclude with the statement of an algorithm for the
identification of a state representation of a lossless system from
noise-free data. If U is a matrix, we denote with U(1 : j, :) its
submatrix consisting of the first j rows.

Algorithm 1. Input: w ∈ B+ ∩ ℓw2(Z+), with B ∈ Lw
cont Σ-half-

line lossless, with σ+(Σ) = m(B).
Output: A minimal state representation of B.

Step 1: Compute the S-matrix (11).
Step 2: Compute n := rank S(w).
Step 3: Factor S(w) = UΛU⊤, U ∈ R∞×n, Λ ∈ Rn×n.
Comment: For balancing, do Step 3 with Λ = −In.
Step 4: Let x := U(1 : ∞, :)⊤, σ x := U(2 : ∞, :)⊤.
Step 5: Solve (1) or (2) if an i/o partition is known.
3.2. The dissipative case

If a dissipation function is known, or if the dataw is a trajectory
of zero dissipation, i.e. the dissipation function is identically zero
along it, it makes sense to consider the extension of the approach
illustrated in Section 3 to the case of dissipative systems. This is
straightforward: if a system is dissipative with respect to a supply
rate QΣ := w⊤Σw, then it is lossless with respect to the supply
rate QΣ − Q∆, with Q∆ a dissipation function. We now formalize
this intuition.

Let B ∈ Lw
cont be Σ-half-line dissipative, and assume that

a dissipation function induced by ∆ ∈ Rw×w
[ζ , η] is known.

Moreover, assume that the storage function QΨ associated with
Q∆ is a quadratic function of the state; see Section 2 for several
sufficient conditions.

From (7), it follows that for every w1, w2 ∈ B we have
LΣ (w1, w2) = L∆(w1, w2) + ∇LΨ (w1, w2), where LΣ (w1, w2) =

w⊤

1 Σw2, and where L∆ and LΨ are the bilinear difference forms
induced by Ψ (ζ , η), and ∆(ζ , η), respectively. Now, let Bf be a
minimal state representation of B with state variable x; if w1,
w2 ∈ B+ ∩ ℓw2(Z+), with associated full trajectories (wi, xi) ∈

Bf , i = 1, 2, then
∑

∞

k=0 w1(k)⊤Σw2(k) =
∑

∞

k=0 L∆(w1, w2)

(k) − x1(0)⊤K ′x2(0), where K ′
= K ′⊤

∈ R•×• is the matrix
corresponding to the storage function QΨ and the state variable x.
Define the generalized S-matrix S(w) as

S(w)i,j=0,1,... :=

∞−
k=0

LΣ (σ iw, σ jw)(k)

−

∞−
k=0

L∆(σ iw, σ jw)(k), (16)

and note that

S(w) =

x(0)⊤

x(1)⊤
...

 (−K ′)  
=:K

[x(0) x(1) · · ·]. (17)

This argument proves the following result, analogous to Proposi-
tion 2 of Section 3.1.

Proposition 9. Let B ∈ Lw
cont, and let Bf be a minimal state

representation of B with state variable x. Assume that B is Σ-half-
line dissipative, and let ∆ ∈ Rw×w

[ζ , η] induce a dissipation function
for B. Assume that the storage function associated with Q∆ is a
quadratic function of the state. Then there exists K = K⊤

∈ R•×•

such that, for all w ∈ B+ ∩ ℓw2(Z+), with associated state trajectory
x, i.e. (x, w) ∈ Bf , the generalized S-matrix (16) satisfies (17).

If, in addition, an i/o partitionw = (u, y)ofw is known, then, under
the assumption of persistency of excitation of the input sequence
u, from the factorization (17) of the generalized S-matrix (16) it
follows that, if K is non-singular, then S(w) has rank n(B). These
considerations lead us to the following result, proven analogously
to Proposition 3.

Proposition 10. Let B ∈ Lw
cont, and assume that w = (u, y) is

an i/o partition. Let Bf be a minimal state representation of B with
state variable x. Assume that B is Σ-half-line dissipative, and let
∆ ∈ Rw×w

[ζ , η] induce a dissipation function for B. Assume that
the storage function associated with Q∆ is a quadratic function of
the state, and that m(B) = σ+(Σ). Then the matrix K = K⊤

∈

Rn(B)×n(B) corresponding to the storage function is positive definite.
Moreover, let w = (u, y) ∈ B+ ∩ ℓw2(Z+) be a given sequence, and
assume that u is p.e. of order n(B). Then rank S(w) = n(B).
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Remark 11. From Propositions 9 and 10, it follows that Algo-
rithm 1 can be modified to identify also dissipative systems; the
only change is in Step 1, where the generalized S-matrix (16) is
used in place of the S-matrix (11).

We now discuss the computation of balanced realizations from
data, assuming that an i/o partition of w is known.

Proposition 12. Let B ∈ Lw
cont with external variable w i/o-

partitioned as w = (u, y). Let Σ = Σ⊤
∈ Rw×w, and partition

Σ as in (13). Assume that B is Σ-half-line dissipative, and let ∆ ∈

Rw×w
[ζ , η] induce a dissipation function for B. Let Bf be a minimal

i/s/o representation of B with state variable x associated with the
matrices (A, B, C,D). Assume that the storage function associated
with Q∆ is a quadratic function of the state, and moreover that
m(B) = σ+(Σ). Let w = (u, y) ∈ B ∩ ℓw2(Z+) be a given sequence,
and let S(w) be defined as in (16). Define R := Σuu + D⊤Σ⊤

uy +

ΣuyD + D⊤ΣyyD, S⊤
:= ΣuyC + D⊤ΣyyC, Q := C⊤ΣyyC. Let K

be such that (17) holds, and assume that R − B⊤KB > 0; then,
the matrix K ′

:= −K satisfies the algebraic Riccati equation (ARE)
0 = A⊤K ′A − K ′

+ Q − (A⊤K ′B + S)(B⊤K ′B + R)−1(B⊤K ′A + S⊤).

Proof. The proof follows from the well-known relationship
between storage functions and solutions of the ARE. �

Now assume that the dissipation functions ∆+ and ∆− corre-
sponding to the maximal and the minimal storage functions Ψ+

and Ψ− (see Section 4 of Kaneko and Fujii (2000) and Section 3
of Kojima et al. (2006) for details) are known, and that the cor-
responding storage functions are quadratic functions of the state.
Assume also that m(B) = σ+(Σ), so that, if x⊤Kx is a storage func-
tion, then K > 0. Assume also that u is a p.e. input sequence of
order n(B). We compute two generalized S-matrices:

S−(w)i,j := [LΣ (σ iw, σ jw) − L∆−
(σ iw, σ jw)]i,j

S+(w)i,j := [LΣ (σ iw, σ jw) − L∆+
(σ iw, σ jw)]i,j.

We then compute a rank-revealing factorization of S−(w) as
S−(w) = −V⊤V . Since the columns of V form a minimal state
sequence, there exists K+ = K⊤

+
∈ Rn(B)×n(B), K+ > 0, such

that S+(w) = V⊤(−K+)V . It is immediate to verify that K+ =

−(VV⊤)−1VS+(w)V⊤(VV⊤)−1. Make a spectral decomposition
UΛU⊤ of −(VV⊤)−1VS+(w)V⊤(VV⊤)−1, with U an orthogonal
matrix. Observe that Λ is positive definite. Now, define T :=

UΛ−
1
4 ; then S−(w) = −V ′⊤Λ−

1
2 V ′ and S+(w) = −V ′⊤Λ

1
2 V ′,

where V ′
:= T−1V = Λ

1
4 U⊤V . Since T is non-singular and the

columns of V form a (minimal) state sequence, the columns of V ′

also forma (minimal) state sequence;moreover, the corresponding
state representation is such that the matrices associated with the
minimal and the maximal storage functions are respectively Λ−

1
2

and Λ
1
2 , and consequently is a balanced i/s/o representation of B.

Remark 13. An algorithm analogous to Algorithm 1 for the
computation of a balanced state representation can be derived
from the results of this section. We will not enter into the details
here.

Remark 14. The approach described in this paper is based on the
same idea as subspace identification: first, a state sequence is
computed from the data, and then the statematrices are computed
by solving a system of linear equations. We now briefly compare
the two approaches.

Most algorithms for subspace identification use orthogonal or
oblique projections for the computation of a state sequence, that
require the (pseudo-)inversion of matrices derived from the data.
Our procedures to compute a state sequence instead require the
computation of the S-matrices (amounting to the multiplication
of structured matrices) and of a rank-revealing factorization
thereof; consequently, they offer computational advantages over
the (deterministic) subspace identification ofMoonen et al. (1989).

If stochastically balanced realizations (see Desai and Pal
(1984) and Opdenacker and Jonckheere (1988)) are to be
identified, further computations are required. One possibility is
to first identify the system matrices via (stochastic) subspace
identification, compute the extremal solutions of the ARE, and
balance them through standard linear algebra methods. This
approach does not assume a priori knowledge of the dissipation
functions, but requires the pseudo-inversion of large matrices
to obtain a state sequence; the solution of a system of linear
equations to obtain (A, B, C,D); the solution of two AREs to obtain
the extremal solutions; and, finally, balancing. If the dissipation
functions are known, our approach can be used, requiring one
rank-revealing factorization (of S−(w)); the inversion of matrices
of size n(B) (i.e. of VV⊤); the balancing of n(B)-sized matrices
(i.e. computation of the matrix T ); and, finally, the computation
of (A, B, C,D). The a priori knowledge of ∆+ and ∆− thus allows
one to replace the pseudo-inversion of large matrices and the
solution of two AREs by the inversion of a n(B)-sized matrix and
the computation of one rank-revealing factorization.

It is fair to mention that there exist techniques for stochastic
balancing in a subspace identification setting alternative to the
direct one considered above; see, for example, Lindquist and Picci
(1996) and Tanaka and Katayama (2006). These techniques are
grounded in a stochastic framework, and consequently a direct
comparison between them and our method is impossible. It is a
matter for future research to investigatewhether these approaches
suggest a way of eliminating the need for a priori knowledge of∆−

and∆+ in order to compute a balanced state-space representation.

4. Data-driven model reduction

Wedescribe a data-driven balancedmodel reduction procedure
based on the factorization result of Proposition 2; we focus our
attention on the lossless case. Our algorithm takes as inputs the
measurements w = (u, y) ∈ B+ ∩ ℓw2(Z+), where u ∈ (Rm)N is a
p.e. input sequence of order n(B), and an integer k ≤ n(B). The
output is an i/s/o representation of a system of McMillan degree k
obtained from the original by balanced truncation.

In the following,we assume that the storage function is positive,
and consequently S(w) is negative definite, for example because
one of the conditions of Proposition 3 is satisfied. This implies that
rank(S(w)) = n(B).

The following result will be useful.

Lemma 15. Let B ∈ Lw
cont and assume that w = (u, y) is an i/o

partition of w. Let Σ = Σ⊤
∈ Rw×w. Assume that B is Σ-half-

line lossless and that m(B) = σ+(Σ). Let w = (u, y) ∈ B+ ∩

lw2(Z+), and assume that the input sequence u is p.e. of order n(B).
Factorize S(w) = −V⊤V for some V ∈ Rn(B)×∞, and define U :=

[u(0) u(1) · · ·]; then

V
U


[V⊤ U⊤

] is invertible. Moreover, define

∆ := UU⊤
− UV⊤(VV⊤)−1VU⊤ and R :=


In −(VV⊤)−1VU⊤

0m×n Im


;

then[
V
U

]
[V⊤ U⊤

]

−1

= R
[
(VV⊤)−1 0n×m

0m×n ∆−1

]
R⊤.

Proof. The first claim follows from the fundamental lemma, see
(10); the second one is immediate. �

Now, define σV := V (:, 2 : ∞) and Y := [y(0) y(1) · · ·]; the
following result can be verified in a straightforward way.
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Lemma 16. Under the same assumptions and notation of Lemma 15,
the matrices A, B, C, and D solving


σV
Y


=


A B
C D

 
V
U


are unique,

and

A B
C D


=


σVV⊤ σVU⊤

YV⊤ YU⊤

 
VV⊤ VU⊤

UV⊤ UU⊤

−1

  
=:F

.

The matrix F defined in Lemma 16 is computed directly from the
factorization of S(w) and from the data.We are now ready to prove
the main result of this section.

Theorem 17. Under the same assumptions and notation of Lem-
mas 15 and 16, define

A′
:= [Ik 0k×(n+p−k)]F

[
Ik

0k×(n+p−k)

]
B′

:= [Ik 0k×(n+p−k)]F
[
0n×m
Im

]
C ′

:= [0p×n Ip]F
[

Ik
0(n+m−k)×k

]
D′

:= [0p×n Ip]F
[
0n×m
Im

]
.

Then A′, B′, C ′,D′ induce a k-th order balanced truncation of the
system represented by A, B, C,D.

Proof. The state sequence corresponding to the columns ofV gives
rise to a balanced i/s/o representation A, B, C,D, since the fact that
S(w) = −V⊤V implies that the storage function equals In(B). The
claim then follows immediately by observing that A′, B′, C ′ are the
truncations of A, B, C , respectively. �

We now make the formulas for (A′, B′, C ′,D′) more explicit;
this formulation has the advantage that matrices of reduced
dimensions are used, and is especially interesting in model
reduction.

Theorem 18. Under the assumptions and notation of Lemma 15,
define Π := VV⊤, Π1 to be the principal k × k submatrix of Π ,
and V1 to be the matrix consisting of the first k rows of V . Then

A′
:= σV1V⊤

1 Π−1
1 + σV1V⊤Π−1VU⊤∆−1UV⊤

1 Π−1
1

− σV1U⊤∆−1UV⊤

1

B′
:= −σV1V⊤Π−1VU⊤∆−1

+ σV1U⊤∆−1

C ′
:= YV⊤

1 Π−1
1 + YV⊤Π−1VU⊤∆−1UV⊤

1 Π−1
1

− YU⊤∆−1UV⊤

1 Σ−1
1

D′
:= −YV⊤Π−1VU⊤

+ YU⊤∆−1

induce a k-th order balanced truncation of the system represented in
state-space form by A, B, C,D.

Proof. The proof consists of straightforwardmanipulations, and is
omitted. �

On the basis of the formulas obtained in Theorem 18, we can now
state an algorithm for data-driven model reduction.

Algorithm 2. Input: w = (u, y) ∈ B+ ∩ ℓw2(Z+), with B ∈ Lw

Σ-half-line-lossless, and m(B) = σ+(Σ); and k ∈ N,
k ≤ n(B).

Output: A balanced-truncated i/s/o representation of B.
Steps 1–3: As in Algorithm 1.
Step 4: Factor S(w) = −V⊤V , V ∈ Rn×∞.
Step 5: Define σV := V (:, 2 : ∞), V1 := V (1 : k, :),

σV1 := V (1 : k, 2 : ∞), U := [u(0) · · ·]; Y :=

[y(0) · · ·]; Π := VV⊤; Π1 := Σ(1 : k, 1 : k);
∆ := UU⊤

− UV⊤Π−1VU⊤.
Step 6: Return A′, B′, C ′,D′ as in Theorem 18.

We conclude this section with some remarks.

Remark 19. An argument analogous to that used to prove Lemma
21.31 of Zhou et al. (1996) shows that the reduced-order model
obtained from our procedure is Σ-half-line dissipative; in the
bounded-real and positive-real cases, it is also asymptotically
stable.

Remark 20. Using the approach outlined at the end of Section 3.2,
it is possible to obtain from the data w = (u, y) a balanced re-
alization also for measurements coming from dissipative systems.
Analogous results to Theorems 17 and 18 can be formulated and
used in order to obtain a reduced-order model.

Remark 21. Algorithm 2 amounts to truncating the balanced
matrices A, B, C , and D. These matrices are also obtained by
solving a system of linear equations; it is worthwhile to consider
then whether other possibilities exist for obtaining reduced-order
models from data. We are currently investigating the possibility
of approximating S(w) by means of a lower-rank matrix S ′, and
of using a rank-revealing factorization of S ′ in order to obtain a
reduced-order lossless/dissipative approximation of the original
system.

5. Conclusions

A rank-revealing factorization of a ‘‘Gramian’’ matrix associated
with noise-free data provides a state sequence, from which a
state representation is readily obtained. For lossless systems, this
technique does not require any knowledge about the system
except the supply rate; in the dissipative case, we must know also
the dissipation function, or that the data is of zero dissipation.
Our procedure yields in a straightforward manner balanced state
representations; from this stems a data-driven model reduction
technique.

Current research is aimed in several directions. First, we
need to carry out a detailed analysis of the computational costs,
and to investigate efficient and numerically accurate algorithms.
Second, the generalization of our approach to the case of finite
measurements must be pursued. Third, we aim to explore the
research area described in Remark 21.

The most pressing issue to investigate is whether the approach
illustrated in this paper can be generalized to the situation
of measurements corrupted by noise. A number of preliminary
remarks about this problem can be made at this early stage.

First, it is evident that a direct extension of the methods
illustrated in this paper is impossible. For example, the definition of
the S-matrix (11) requires the trajectoryw to be square summable,
an assumption not satisfied when w (or a component thereof, for
example the output variable) is corrupted by noise. Consequently,
the first step towards a generalization of our approach to the noisy
case requires that a suitable stochastic analogue of S(w) be found.

Second, considering the crucial importance of property (12)
in Proposition 2, it is necessary that this stochastic version of
the S-matrix contains enough information to extract from it (for
example through a rank-revealing factorization) a state sequence
to be used in order to compute the matrices A, B, C,D of a state
representation of the system.

Third, another issue to consider when choosing a definition
of the S-matrix in the stochastic case is that, under suitable
assumptions on the statistical properties of the noise, the passivity
of the underlying system producing the data be preserved in
the model identified through the stochastic analogous of our
procedure. Ideally, the stochastic procedure should exhibit the
same inherent robustness to noise as subspace identification
methods.

Finally, the extension of the model reduction procedure of
Section 4 to the case of noisy data must be investigated.
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