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Abstract

We propose a non-hierarchical decentralized algorithm forthe asymptotic minimization of possibly

time-varying convex functions. In our method, each agent ina network has a private, local (possibly time-

varying) cost function, and the objective is to minimize asymptotically the sum of these local functions

in every agent (this problem appears in many different applications such as, among others, motion

planning, acoustic source localization, and environmental modeling). The algorithm consists of two main

steps. First, to improve the estimate of a minimizer, agentsapply a particular version of the adaptive

projected subgradient method to their local functions. Then the agents exchange and mix their estimates

using a communication model based on recent results of consensus algorithms. We show formally the

convergence of the resulting scheme, which reproduces as particular cases many existing methods such as

gossip consensus algorithms and recent decentralized adaptive subgradient methods (which themselves

include as particular cases many distributed adaptive filtering algorithms). To illustrate two possible

applications, we consider the problems of acoustic source localization and environmental modeling via

network gossiping with mobile agents.

Index Terms

adaptive projected subgradient method, decentralized optimization via network gossiping, gossip al-

gorithms for decentralized adaptive filtering, decentralized estimation and detection via network gossiping
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I. INTRODUCTION

In many applications involving systems of autonomous interacting agents, the objective is to solve an

optimization problem in which the cost function (hereaftertermed the global function) can be decomposed

as the sum of local cost functions, each of which is known by only one agent in a network. Applications

that can be posed as such optimization problems include, among others, motion planning in multiagent

systems [1], [2], acoustic source localization [3]–[5], and distributed adaptive filtering [6]–[8]. Typically,

in these problems centralized approaches are not desirablebecause of physical limitations (the central

agent may not have a direct connection with all other agents)or because of robustness issues (the

system may fail if the central agent collapses). Therefore,a great deal of effort has been devoted to

the development of non-hierarchical distributed optimization algorithms [1]–[7], [9]–[11]. In particular,

here we focus on decentralized subgradient methods where agents can work massively in parallel and

exchange information with point-to-multipoint links [1],[5], [6], [9], [11]. These approaches often give

rise to low-complexity iterative optimization algorithmsthat are suitable for large-scale systems using a

simple communication model among agents.

To date, the majority of distributed subgradient methods have focused on static systems where the cost

function does not change during the iterations of the algorithm [1], [9], [11]. Formally, once these

algorithms start running, agents have to wait until a good estimate of the minimizer of the global

function is obtained in every agent. This process can take many iterations in large-scale systems, and

in several applications agents may need to change frequently the local functions (and, consequently, the

global function) to drop outdated information or to add new information gathered from the environment.

For example, in estimation problems involving mobile sensor networks, agents may need to estimate a

parameter of interest (e.g., the position of a target) by minimizing a global function that is built based

on measurements, obtained at different locations, of a physical phenomenon (e.g., the sound intensity).

As a result, if agents keep taking measurements of the environment after the optimization algorithm

starts running, they may be able to improve the estimate of the parameter of interest by incorporating

the new available information into new local cost functions.1 Unfortunately, most studies on distributed

subgradient methods do not characterize the behavior of thealgorithms in such dynamic systems.

A distributed algorithm that considers time-varying cost functions has been proposed in [5], [6].

The algorithm is based on the adaptive projected subgradient method [12], [13] (which itself is an

extension of Polyak’s algorithm [17] to handle time-varying cost functions), and thus it can be applied

1See [5], [6], [12]–[16] for applications of centralized optimization algorithms involving time-varying functions.
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to problems where the environment is nonstationary or whereincoming data from sensors has to be

processed online and in real time. This algorithm uses a network model in which links are considered

deterministic, but recent results in consensus algorithms[18]–[24] and also in distributed optimization

problems with fixed cost functions [10], [11] have shown thatmodeling the network links among agents

as random links is highly desirable for flexibility purposes. In particular, random links can easily model

wireless networks in which agents communicate asynchronously with simple broadcast channels where

simultaneous information exchange is not possible [20]. Insuch networks, the assumptions used in the

analysis of the algorithm in [5], [6] are not satisfied, and thus the results in [5], [6] cannot be formally

applied to important classes of multiagent-systems systems using wireless networks (in particular, the

algorithms in Sect. IV cannot be derived from the method in [5], [6] owing to the assumptions on the

communication model). An addition limitation of the analysis in [5], [6] is that it only shows conditions

for the asymptotic minimization of the cost functions, which neither guarantees the convergence of the

algorithm nor characterizes the convergence point.

To address the shortcomings of the above-mentioned schemes, we develop an iterative optimization

algorithm that can deal with both time-varying cost functions and random links among agents. In the

first step, as in [6], each agent improves its own local estimate of the minimizer of the (possibly time-

varying) global function by applying a particular version of the adaptive projected subgradient method

[12], [13] to its local cost function. In the second step of the algorithm, unlike [1], [5], [6], [9], agents

communicate through possibly random links. More specifically, here we adopt a general communication

model that includes as particular examples the methods usedin recent algorithms for consensus via

network gossiping [18]–[23]. Our approach has convergenceguarantees in dynamic systems and can

reproduce and extend, within a unified framework, many existing distributed algorithms. We can, for

example, address the limitations of existing batch and adaptive algorithms by changing the cost functions

(e.g., to consider the presence of mobile agents) and/or by choosing a different communication model.

Convergence properties of those modified algorithms followdirectly from the analysis of our general

framework – they do not need to be studied separately for eachpossible scenario. In particular, we show

how to derive, from the general method developed here, adaptive algorithms for environmental modeling

(decentralized adaptive filtering) and for acoustic sourcelocalization with mobile agents. Note, however,

that our algorithm in its most general form is by no means restricted to applications in these particular
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domains.2

The structure of the paper is as follows. Sect. II outlines basic tools in convex analysis and reviews

a class of problems with many applications in multiagent systems. Sect. III introduces and analyzes the

proposed algorithm, which solves the problem in Sect. II. InSect. IV we show two possible applications

of the proposed method: acoustic source localization and environmental modeling. The appendices contain

the proof of lemmas and theorems.

II. PRELIMINARIES

A. Basic tools in convex analysis

In this section we give a number of results and definitions that are extensively used in the discussion that

follows. In particular, we denote by⌊x⌋ the largest integer not exceedingx. The component of theith row

andjth column of a matrixX is given by[X ]ij . For every vectorv ∈ R
N , we define the norm ofv by

‖v‖ :=
√
vTv, which is the norm induced by the Euclidean inner product〈v,y〉 := vTy for everyv,y ∈

R
N . For a matrixX ∈ R

M×N , its spectral norm is‖X‖2 := max{
√

λ| λ is an eigenvalue ofXTX},

which satisfies‖Xy‖ ≤ ‖X‖2‖y‖ for any vectory of compatible size. In the sequel,(Ω,F ,P) always

denotes probability spaces, whereΩ is the sure event,F is theσ-field of events, andP is the probability

measure. To avoid tedious repetition, we often omit the underlying probability spaces. Unless otherwise

stated, we always use the Greek letterω ∈ Ω to denote a particular outcome. Thus, byxω (Xω), we

denote an outcome of the random vectorx (matrixX). We also often drop the qualifier “almost surely”

(or “with probability one”) in equations involving random variables.

A set C is said to beconvexif v = νv1 + (1 − ν)v2 ∈ C for everyv1,v2 ∈ C and 0 ≤ ν ≤ 1. If,

in addition to being convex,C contains all its boundary points, thenC is a closed convex set[26], [27].

The metric projectionPC : R
N → C of a closed convex setC mapsv ∈ R

N to the uniquely existing

vectorPC(v) ∈ C satisfying‖v − PC(v)‖ = miny∈C ‖v − y‖ =: d(v, C).

A function Θ : R
N → R is said to beconvexif ∀x,y ∈ R

N and∀ν ∈ [0, 1], Θ(νx + (1 − ν)y) ≤
νΘ(x) + (1 − ν)Θ(y) (in this caseΘ is continuous at every point inRN ). The c-sublevel setof a

function Θ : R
N → R is defined bylev≤cΘ := {h ∈ R

N | Θ(h) ≤ c}, which is a closed convex set

for everyc ∈ R if Θ is convex [27]. Convex functions are not necessarily differentiable everywhere, so

subgradients play a special role in the results that follow.In more detail, ifΘ : R
N → R is a convex

2A short version of this paper appeared in [25]. Unlike the study in [25], here we show the full proof of our main results,
additional convergence properties of the proposed algorithm, and also new algorithms for acoustic source localization and
environmental modeling.

February 3, 2011 DRAFT



5

function, then thesubdifferentialof Θ at y, denoted by∂Θ(y), is the nonempty closed convex set of all

subgradientsof Θ at y:

∂Θ(y) := {a ∈ R
N |Θ(y) + 〈x− y,a〉 ≤ Θ(x),∀x ∈ R

N}. (1)

In particular, if Θ is differentiable aty, then the only subgradient in the subdifferential is the gradient,

i.e., ∂Θ(y) = {∇Θ(y)}.

We end this subsection with results that we use to simplify the analysis of the proposed algorithm.

Fact 1: ( [13, Claim 2]) Let C ⊂ R
N be a closed convex set having a pointũ ∈ C such that

∅ 6= {h ∈ R
N | ‖h − ũ‖ ≤ ρ} ⊂ C for someρ > 0. If for given v ∈ R

N\C and t ∈ (0, 1) we have

ut := (1 − t)ũ+ tv /∈ C, thend(v, C) > ρ1−t
t = ρ ‖ut−v‖

‖ut−eu‖ > 0.

Theorem 1:Assume that random vectors{x[i]} (i = 0, 1, . . .) with E[‖x[0]‖2] < ∞ are defined on a

probability space(Ω,F ,P). Suppose that, for a given setC ⊂ R
M and for anyx⋆ ∈ C, we have

E
[
‖x[i + 1] − x⋆‖2 | x[i], . . . ,x[0]

]
≤ ‖x[i] − x⋆‖2 − y[i] + z[i],

wherey[i] andz[i] are sequences of non-negative random variables that are functions ofx[0], . . . ,x[i].

If
∑∞

i=0 E[z[i]] < ∞, which also implies that
∑∞

i=0 z[i] < ∞ with probability one [28, p. 60], then we

have the following properties:

1) the sequence{‖x[i]−x⋆‖} converges almost surely (or with probability one) for anyx⋆ ∈ C, and

E[‖x[i] − x⋆‖2] < ∞;

2) the set of accumulation points{xω[i]} is not empty for almost everyω ∈ Ω;

3) if two accumulation pointsx′
ω andx′′

ω of the sequence{xω[i]} are such thatx′
ω,x′′

ω /∈ C, then the

setC lies in a hyperplane equidistant from the pointsx′
ω andx′′

ω, or, in other words,‖x′
ω−x⋆‖2 =

‖x′′
ω − x⋆‖2 for everyx⋆ ∈ C;

4) With probability one,
∑∞

i=0 y[i] < ∞.

See [29, Theorem 1] for the proof of the first three properties. For the last property, see [30, Proposition

4.2] and the references therein.

B. Problem formulation

In this study we consider a multiagent optimization problemrelated to that in [5], [6]. In more detail, at

time i, we represent a network withN agents by a (random) directed graph denoted byG[i] := (N , E [i]),

whereN = {1, . . . , N} is the set of agents andE [i] ⊆ N×N is the edge set [23]. The edges of the graph
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indicate possible communication between two agents. More precisely, if agentk can send information

to agentl at time i, then (k, l) ∈ E [i] (we assume that(k, k) ∈ E [i]). Inward neighbors of agentk are

denoted byNk[i] = {l ∈ N| (l, k) ∈ E [i]} (i.e., l ∈ Nk[i] is an agent that can send information to agent

k at time i).

We assume that each agentk has knowledge of a local convex cost functionΘk[i] : R
M → [0,∞)

(i ∈ N). Note thatΘk[i] is non-negative, possibly time-varying, and not necessarily differentiable. Now,

define the global cost functionΘ[i] : R
M → [0,∞) of the network by

Θ[i](h) =
∑

k∈N

Θk[i](h), (2)

which is the function that the agents try to minimize at everytime instanti. We also assume that each

agent has its own estimatehk[i] (k ∈ N ) of a minimizer of (2) and thatΘk[i] is private information of

agentk. With these assumptions, if we also impose that all agents should reach consensus on a minimizer

of (2), we obtain the following optimization problem at timei:

minimize
∑

k∈N

Θk[i](hk[i])

subject to hk[i] = hl[i], ∀k, l ∈ N . (3)

Unfortunately, solving (3) at every time instanti is difficult if the communication among agents is

limited because in such a case agents have only partial information of the problem. Conventional iterative

decentralized algorithms that are able to find an approximate solution of (3) (for fixedi) may require

many iterations, but in many real-time applications the optimization problem can change as often as every

iteration of the algorithm (c.f. Sect. IV). To handle such dynamic scenarios, we devise an algorithm that

allows the local functions to change during the iterative process and that solves (3) asymptotically (a

precise definition will be given soon). Here we mostly focus on the case where the problem in (3) has

spatially and temporally related local cost functions, as defined below. (This class of problems appears

in many practical applications [6].)

Definition 1: (Spatially related local functions) If, for any time indexi, the sets of minimizers of the

local cost functionsΘk[i] (k ∈ N ) have nonempty intersection, we say that the local functions Θk[i]

(k ∈ N ) arespatially related. More precisely, the time-varying local functionsΘk[i] (k ∈ N ) are spatially
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related if the following holds for everyi ∈ N:

Υ[i] :=
⋂

k∈N

Υk[i] 6= ∅, (4)

where

Υk[i] :=

{
h ∈ R

M | Θk[i](h) = Θ⋆
k[i] := inf

h∈RM
Θk[i](h)

}
(5)

Note that, in particular, if the local functions are spatially related, thenΥ[i] is a set of minimizers of

the global functionΘ[i].

Definition 2: (Temporally related local functions) If the functionsΘk[i] (k ∈ N ) are such that the

resulting global functionsΘ[i] (i ∈ N) have a common set of minimizers, we say that the local functions

Θk[i] (k ∈ N ) are temporally related. In other words, the local functions Θk[i] (k ∈ N ) are temporally

related if
⋂

i∈N
ΥG[i] 6= ∅, whereΥG[i] is the set of minimizers of the global function at timei:

ΥG[i] :=

{
h ∈ R

M | Θ[i](h) = inf
h∈RM

Θ[i](h)

}
.

The optimization problem in (3) can be seen as a sequence of optimization problems indexed byi.

If the local functionsΘk[i] are both spatially and temporally related,3 there is a point inRM that is a

minimizer of every local cost functionΘk[i] and every global functionΘ[i] for everyi ∈ N. As a result,

(3) has at least one solution that does not depend on the time indexi, so we should seek those solutions

that solve (3) for as many time indicesi as possible (ideally, for alli ∈ N). Unfortunately, except in

special cases, computing a time-invariant solution of (3) (a solution that does not depend oni ∈ N) can

be only possible witha priori knowledge ofΘk[i] also for everyi ∈ N andk ∈ N , which is a very strong

assumption in online algorithms because the functionsΘk[i] are dispersed throughout the network and

are constructed as information is obtained. Nonetheless, with some mild additional assumptions, we can

devise a low-complexity algorithm that guarantees mean square asymptotic consensus among agents and

that, with probability one, minimizes asymptotically all local cost functions. (Note: if all local functions

are minimized and agents are in consensus at timei, we have a solution to the problem in (3) at time

i.) In addition, the algorithm also guarantees that, with probability one, all sequences{hk[i]} (k ∈ N )

converge to a (random) vector that, loosely speaking, is “sufficiently” close to the set of points that

minimize all but a finite number of global functionsΘ[i], i ∈ N. This last property shows that the time

structure of the problem in (3) is also exploited. Before showing the algorithm, we need to formalize

3If the cost functions are not spatially related, but the local functions are time-invariant, we can use, for example, thealgorithms
in [1], [9], [11] to solve (approximately) the resulting optimization problem.
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what we mean by “asymptotic minimization of time-varying functions” and by “asymptotic consensus”.

Definition 3: (Asymptotic minimization [13])Let Θ[i] : R
M → [0,∞) be any given time-varying

function, and denote byh[i] ∈ R
M an estimate of a minimizer ofΘ[i], wherei is the time index. Assume

that, for everyi ∈ N, there is a time-invariant scalarΘ⋆ ∈ [0,∞) such thatΘ⋆ = infh∈RM Θ[i](h). We say

that an algorithm minimizes asymptoticallyΘ[i] if the algorithm produces a (not necessarily convergent)

sequence{h[i]} satisfying

lim
i→∞

Θ[i](h[i]) = Θ⋆.

Definition 4: (Asymptotic consensus [6])We say that agents reach asymptotic consensus if the esti-

matesh1[i], · · · ,hN [i] satisfy

lim
i→∞

[(I − J)ψ[i]] = 0, (6)

whereψ[i] := [h1[i]
T . . . hN [i]T ]T , J := BBT ∈ R

MN×MN , B := [b1 . . . bM ] ∈ R
MN×M ,

bk = (1N ⊗ ek)/
√

N ∈ R
MN , 1N ∈ R

N is the vector of ones,ek ∈ R
M (k = 1, . . . , N ) is the standard

basis vector, and⊗ denotes the Kronecker product. (The convergence ofhk[i] is not a requirement.)

In the last definition, note thatJ is the orthogonal projection matrix onto the consensus subspace

C := span{b1, . . . , bM}. (7)

Therefore, ifψ[i] ∈ C, then (I − J)ψ[i] = 0 and all local estimateshk[i] (k ∈ N ) are equal, i.e., we

have consensus at timei: hk[i] = hj [i] for everyk, j ∈ N .

III. PROPOSED ALGORITHM

To find in every agent a common point that minimizes all but finitely many global functionsΘ[i]

(i ∈ N), we use a simple algorithm that consists of two steps, each of which exploits directly the

assumption that the local functions are spatially related.

In the first step of the algorithm, agents use the spatial relation assumption from a local perspective;

each agent exploits the fact that there is a minimizer ofits own local functionthat is also a minimizer

of the global function. In more detail, each agentk improves its estimatehk[i] of the minimizer of

the global function by finding a point that is also an improvedestimate of its own local cost function

Θk[i]. Mathematically, as in [5], [6], each agentk applies a particular version of the adaptive projected
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subgradient method [13] to its local functionΘk[i]:

h′
k[i + 1] = hk[i] − µk[i]

(Θk[i](hk[i]) − Θ⋆
k[i])

(‖Θ′
k[i](hk[i])‖2 + δk[i])

Θ′
k[i](hk[i]), (8)

whereh′
k[i + 1] is the resulting estimate after the subgradient update;Θ′

k[i](hk[i]) ∈ ∂Θk[i](hk[i]) (see

(1)) is a subgradient ofΘk[i] at hk[i]; µk[i] ∈ (0, 2) is a step size;Θ⋆
k[i] := infh∈RM Θk[i](h), k ∈ N ;

δk[i] is arbitrarily chosen from0 < δk[i] ≤ L if Θ′
k[i](hk[i]) = 0 or δk[i] = 0 otherwise;L > 0 is an

arbitrarily chosen upper bound for the choice ofδk[i]; andhk[0] is an arbitrary initial (deterministic)

estimate of a minimizer of the global functionΘ[0].4

In the second step of the algorithm, agents use the spatial relation assumption from a global perspective;

they use the fact that a point that minimizesevery local functionis also a minimizer of the global function.

The main idea is that agents should try to reach consensus on their estimates in the hope that they agree

on a point that minimizes every local function. Mathematically, for a network represented by a graph

G[i], agents exchange information locally with consensus algorithms similar to those in [18]–[23]:

hk[i + 1] =
∑

j∈Nk[i]

W kj[i]h
′
j[i + 1], k = 1, . . . , N, (9)

whereW kj[i] : Ω → R
M×M is a random weight matrix that agentk assigns to the edge(j, k) at time i

(W kj[i] = 0 if (j, k) /∈ E [i]). We can rewrite (9) in the equivalent form[h1[i + 1]T . . . hN [i + 1]T ]T =

P [i][h′
1[i + 1]T . . . h′

N [i + 1]T ]T , whereP [i] : Ω → R
MN×MN is given by

P [i] =




W 11[i] . . . W 1N [i]
...

. . .
...

WN1[i] . . . WNN [i]


 (10)

with W kj[i] being the matrix of zeros if(j, k) /∈ E [i]. Here we assume that, periodically (c.f. Theorem

2), P [i] is anǫ-random consensus matrix conditioned on[h1[i]
T . . .hN [i]T ]T as defined below.

Definition 5: (ǫ-random consensus matrix)For givenǫ ∈ (0, 1] and graphG(N , E [i]), we define an

ǫ-random consensus matrix conditioned on a random vectorψ at time i as a random matrixP [i] : Ω →
R

MN×MN satisfying the following properties:

1)
∥∥E
[
P [i]T (I − J)P [i] | ψ

]∥∥
2
≤ (1 − ǫ);

4Note that (8) requires knowledge of the minimum value attained by the local functions. Although this information may
seem to be a strong assumption, in many practical problems the minimum value attained by functions is available. Examples
of such problems include all those where the objective is to find a point in the intersection of closed convex sets [13], and
they are frequently found in, among other application domains, communication, optics, and signal and image processing[26].
In Sect.IV-A.3 we show two examples of applications.
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2)
∥∥E
[
P [i]TP [i] | ψ

]∥∥
2

= 1;

3) P [i]v = v for everyv ∈ C (see (7)).

4) If P [i] is decomposed as in (10), thenW kj [i] = 0 if (j, k) /∈ E [i].

Note thatǫ-random consensus matrices are a simple extension of conventional consensus matrices

[18]–[23] to the case where consensus has to be reached over vectors. Therefore, we can use many

different techniques [18]–[23] to build these matrices. Sect. IV has one example of such a technique.

Before showing the main properties of the algorithm, we introduce the following lemma, which is used

to simplify the analysis.

Lemma 1:Assume that{a[i]} is a real sequence satisfyinglimi→∞ a[i] = 0. In addition, let{λ[i]} be

a non-negative sequence such that0 ≤ λ[i] ≤ 1 for everyi. If there existI ∈ N andβ ∈ [0, 1) such that,

for every l ∈ N, we have0 ≤ λ[i] ≤ β for at least one time instanti ∈ [l, l + I], then

lim
i→∞

i∑

j=0

i−j∏

n=0

λ[i − n]a[j] = 0.

Proof: The proof is shown in Appendix I.

We now summarize and analyze the proposed algorithm.

Theorem 2:(Broadcast adaptive subgradient method)

Consider the problem in Sect. II-B and assume that, for everyi ∈ N and conditioned onψ[i] =

[h1[i]
T · · · hN [i]T ]T , P [i] : Ω → R

MN×MN satisfies properties 2), 3), and 4) in Definition 5. To solve

the problem described in Sect. II-B, we use the following sequence (which is obtained by combining (8),

(9), and (10) in a single equation):

ψ[i + 1] = P [i]


ψ[i] −




µ1[i]α1[i]Θ
′
1[i](h1[i])

...

µN [i]αN [i]Θ′
N [i](hN [i])





 , (11)

where αk[i] = (Θk[i](hk[i]) − Θ⋆
k[i])/(‖Θ′

k[i](hk[i])‖2 + δk[i]) and ψ[0] is considered deterministic.

(NOTE: other parameters have been defined after (8).) The algorithm satisfies the following:

(a) (Mean square monotone approximation):

Suppose that the local functionsΘk[i] are spatially related, and let the step sizes be within the

interval µk[i] ∈ (0, 2). Then, for everyh⋆[i] ∈ Υ[i] (Υ[i] is defined in (4)),

E[‖ψ[i + 1] −ψ⋆[i]‖2] ≤ E[‖ψ[i] −ψ⋆[i]‖2] (12)
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whereψ⋆[i] := [h⋆[i]T . . . h⋆[i]T ]T ∈ R
MN .

(b) (Almost sure asymptotic minimization of the local cost functions):

Assume the following:

1) The step size in every agent is bounded away from zero and two, i.e., there existǫ1, ǫ2 > 0

such thatµk[i] ∈ [ǫ1, 2 − ǫ2] ⊂ (0, 2);

2) Θ⋆
k[i] =: Θ⋆

k ∈ R, i = 0, 1, . . .;

3) Υ :=
⋂

i≥0 Υ[i] 6= ∅ (i.e., the local functions are spatially and temporally related);

4) There exists someM > 0 satisfying‖Θ′
k[i](hk[i])‖ < M for everyk ∈ N and i = 0, 1, . . .

(Assumption 3 guarantees∅ 6= C⋆ := {[hT · · ·hT ]T ∈ R
MN | h ∈ Υ}.) Then, with probability one

and for anyψ⋆ ∈ C⋆, the sequence{‖ψ[i + 1]−ψ⋆‖2} converges, and the local cost functions are

asymptotically minimized, i.e.,P (limi→∞ Θk[i](hk[i]) = Θ⋆
k) = 1.

(c) (Mean square asymptotic consensus):

In addition to the assumptions above, for some fixedǫ > 0 andI ∈ N, assume that in every interval

[l, l + I] (l ∈ N) there existsi ∈ [l, l + I] such that the matrixP [i] is anǫ-random consensus matrix

conditioned onψ[i]. Then we have asymptotic mean square consensus, i.e.,

lim
i→∞

E[‖(I − J)ψ[i]‖2] = 0. (13)

(d) (Almost sure convergence ofψ[i]):

If the assumptions in part (c) hold andC⋆ does not lie in a hyperplane, then, with probability one,

ψ[i] converges to a random vectorψ̂ that satisfies(I − J)ψ̂ = 0 (i.e., the estimateshk[i] of every

agent converge, and the agents reach consensus asymptotically).

(e) (Characterization ofψ̂) Assume that the conditions of (d) hold. By (b) and (d), for almost every

ω ∈ Ω, we know thatψω[i] = [h1,ω[i]T . . . ĥN,ω[i]T ]T converges to a vector̂ψω = [ĥ
T

ω . . . ĥ
T

ω ]T ∈
R

MN (ĥ
T

ω ∈ R
M ) and thatlimi→∞ Θk(hk,ω[i]) = 0 for every k ∈ N . If, for an interior ũ of Υ

(which has an interior point becauseC⋆ does not line in a hyperplane), we have that

(∀ǫ > 0,∀r > 0,∃ξω > 0) inf
i∈Sω

∑

k∈N

Θk[i](hk,ω[i]) ≥
∑

k∈N

Θ⋆
k + ξω,

whereSω := {i ∈ N | ∑k∈N d(hk,ω[i], lev≤Θ⋆
k
Θk[i]) > ǫ and

∑
k∈N ‖ũ−hk,ω[i]‖ ≤ r}, thenĥω

satisfiesĥω ∈ lim infi→∞ Υ[i], wherelim infi→∞ Υ[i] := ∪∞
i=0 ∩n≥i Υ[n] and the overbar operator

denotes the closure of a set.

Proof: The proof builds on the results in [6], [13], [16] and is givenin Appendix II.
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Recall that, when the local functions are spatially related, the problem in (3) is solved when the

following properties are satisfied: i) every local functionis minimized and ii) the agents are in consensus

(h1[i] = . . . = hN [i]). These two properties are satisfied asymptotically when weapply the proposed

algorithm. More precisely, the local cost functions are asymptotically minimized with probability one

(Theorem 2(b)) and agents reach mean square consensus (Theorem 2(c)). In addition, Theorem 2(d)-(e)

shows that agents reach consensus not only in the mean squaresense, but also with probability one, and

their estimateshk,ω[i] (k ∈ N ) converge to a point inlim infi→∞ Υ[i], which is the closure of the set

of minimizers of all but finitely many global functionsΘ[i] (i ∈ N). This last property shows that the

algorithm exploits the temporal structure of the sequence of optimization problems in (3). (Theorem 2(a)

says that, if the local function is only spatially related attime i, in the mean square sense, the Euclidean

distance of[h1[i]
T . . . hN [i]T ]T to a solution of (3) does not increase.)

Remark 1: (On Theorem 2)

1) The algorithm in Theorem 2 cannot be analyzed with the deterministic approach in [6] because

the mappingT : R
MN → R

MN defined byT (ψ) = P ω[i]ψ is not necessarily nonexpansive, i.e.,

‖T (x)− T (y)‖ ≤ ‖x− y‖ does not necessarily hold. Nonexpansive mappings play a crucial role

in the analysis of the algorithm in [6], and the scheme in Theorem 2 includes as a particular case

the method in [6].

2) (Asynchronous operation) For simplicity, assume that agents want to minimize a time-invariant

global functionΘ(h) =
∑

k∈N Θk(h), whereΘ1, . . . ,ΘN are spatially related. Suppose that agents

are not synchronized and they do not necessarily apply the first step of the algorithm, the subgradient

updates in (8), all at the same time. To model this scenario, we can consider that agentk only

applies the subgradient method at time instantsi ∈ Ik ⊂ N, whereIk is an infinite set. In doing so,

we can consider that agents are using the following sequenceof spatially and temporally related

local functions:

Θ̃k[i](h) =





Θk(h), i ∈ Ik

Θ⋆
k otherwise.

Note that, with the time-varying local functions defined above, for everyl ∈ N, the set of minimizers

of the original functionΘ can be equivalently expressed asΥ = ∩i≥lΥ[i], whereΥ[i] is the set

of minimizers of Θ̃[i]. Likewise, if agents also do not want to exchange information (as in (9))
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whenever a subgradient update is applied, we can use the following sequence of random matrices

P̃ [i] =





P [i], i ∈ IP

I otherwise,

whereIP ⊂ N is an infinite set that shows time instants in which information is exchanged among

agents, andP [i] is the random matrix corresponding to the communication scheme. By applying

Θ̃[i] andP̃ [i] to the algorithm in Theorem 2, we conclude that, with probability one, agents produce

sequences{hk[i]}, k ∈ N , that converge to a common point in∪∞
i=0 ∩n≥i Υ[n] = ∪∞

i=0Υ = Υ,

which, as discussed above, is the set of minimizers of the global functionΘ.

3) (Adding constraints)Constraints can also be easily added by considering time-varying cost func-

tions. For example, with the assumptions in Theorem 2(b), let Θk : R
M → [0,∞) be a (fixed)

cost function known by agentk. Suppose that the agent has knowledge of a setC such that

Υ ⊂ C. Then we can use the following time-varying cost function instead of the original function

Θk : R
M → [0,∞):

Θ̃k[i](h) =





Θk(h), i odd

d(h, C) + Θ⋆
k i even,

Applying the proposed method tõΘk[i] and using similar arguments to those in Remark 1.2, we

conclude that every agents will find a common point that satisfies all constraints and minimizes

every local function.

IV. POSSIBLE APPLICATIONS

In this section, we specialize the scheme in Theorem 2 to derive new distributed algorithms for acoustic

source localization (Sect. IV-A) and for environmental modeling (Sect. IV-B). In the acoustic source

localization problem, we show that batch incremental methods such as those in [3] can be easily modified

to become adaptive, parallel algorithms operating with gossip networks and with mobile sensors. In the

environmental modeling problem, we show that existing distributed set-theoretic adaptive filters can also

be straightforwardly extended to gossip networks. In both applications, in ideal scenarios, the convergence

properties of these particular cases of our general optimization algorithm follow directly from Theorem 2.

(This is in stark contrast with many existing distributed adaptive algorithms, which are typically devised

to solve specific problems, such as, for example, system identification with linear filters.) We also show

that, in practice, these particular cases of our general method can have good performance even when
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many assumptions of Theorem 2 are just rough approximations.

A. Coordinated acoustic source localization

1) Problem description and existing solutions:The objective is to estimate the unknown location

x⋆ ∈ R
2 of an acoustic source withN agents distributed at spatial locationsxk ∈ R

2 (k = 1, . . . , N ).

(We later extend this problem to the case where agents are mobile.) Each agent knows its own position

xk and the acoustic source powerA.5 In addition, agents are equipped with an acoustic sensor, sothey

also know the sound intensity at their position. (With this information, the agents can estimate the range

of the acoustic source from the received volume, but not the direction.) In more detail, the acoustic power

perceived by agentk can be modeled as [31]

yk =
A

‖xk − x⋆‖2
+ nk, (14)

wherenk is a noise sample. For mathematical simplicity, noise is often modeled as Gaussian, even though

this assumption is unrealistic becauseyk should be always positive. Nonetheless, algorithms using this

unrealistic assumption often give good performance when deployed in real-world scenarios [31].

Given the statistical distribution of the noise, we can estimate the position of the target with the

maximum-likelihood approach [31]. However, in this application the likelihood function is not a con-

cave/convex function, so computing a global maximum/minimum may not be an easy task. To devise

simple decentralized algorithms, we can consider the following convex optimization problem [3]:

xopt ∈ arg min
h∈R2

N∑

k=1

d(h,Dk), (15)

whereDk is given byDk := {h ∈ R
2 | ‖h − xk‖ ≤

√
A/yk}. When noise is not present, the solution

set of the optimization problem in (15) is∩N
k=1Dk ∋ x⋆. If the acoustic source positionx⋆ lies in the

convex hull of the agents’ locations, i.e.,x⋆ ∈ H where

H =

{
x ∈ R

2 |x =

N∑

k=1

αkxk, αk ≥ 0,

N∑

k=1

αk = 1

}
, (16)

then the unique point in∩N
k=1Dk, the solution to the problem in (15), isx⋆ = xopt [3]. The incremental

projection-onto-convex-sets (POCS) algorithm [3], a low-complexity, decentralized algorithm, can thus

be used to solve (15) in this scenario (this method has some parameters that can be adjusted to deal with

5We can use the same techniques developed in [3] to extend the proposed algorithm to the case whereA is unknown. For
brevity, we do not consider such extensions here.
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noise). However, this algorithm requires the definition of apath visiting all agents in the system, which

is a difficult task in large-scale networks. Furthermore, during the iteration process, new measurements

can be available to the agents, but the incremental POCS algorithm does not use such information. An

additional limitation of this algorithm is that it does not consider mobile agents.

2) Proposed algorithm:To derive our proposed algorithm, we first start by introducing the time-

varying cost function that we minimize asymptotically. We start by assuming that agents are mobile and

that they constantly take new samples of the acoustic sound intensity. Therefore, to model this dynamic

scenario, we replace the model in (14) by

yk[i] =
A

‖xk[i] − x⋆‖2
+ nk[i], (17)

whereyk[i], xk[i], andnk[i] are, respectively, the acoustic sound intensity, the position of thekth agent,

and the noise sample of agentk, all at time i. Agents take samples of the acoustic sound intensity at

different positions, so they have access to samples with varying signal-to-noise ratio (SNR) (which is

high in positions close to the acoustic source). Therefore,as many samples are available to estimate

the position of the acoustic source in every agent, here we use those with potentially high SNR. In

more detail, we keep in the memory of each agent only the largest observed sampleyk[i] and the

corresponding positionxk[i] (up to timei).6 The index of this sample can be mathematically expressed

by lk[i] = arg maxl∈{0,1,...,i} yk[l]. For notational simplicity, hereafter we denotelk[i] by lk, and the

dependence oflk with i is implicit. Now, consider the following (time-varying) set in agentk:

Dk[i] :=





R
2 if yk[lk] ≤ ck[i],{
h ∈ R

2 | ‖h− xk[lk]‖ ≤
√

A

yk[lk] − ck[i]

}
otherwise,

where ck[i] is a parameter used to increase the reliability of the sphereDk[i] when noise is present.

In the noiseless case, we can use the same arguments used after (15) to conclude that the position of

the acoustic source satisfiesx⋆ ∈ ∩k∈NDk[i] for every i ∈ N and ck[i] ∈ [0,∞). In this scenario, at

time i, the set∩k∈NDk[i] ∋ x⋆ is also the solution set ofarg minh∈R2

∑
k∈N Θk[i](h), where the local

(time-varying) functions are given by

Θk[i](h) = ‖h − PDk[i](h)‖. (18)

6We could easily derive variations where only the largest sample within an interval is used. This idea could be useful to track
mobile acoustic sources.
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Therefore, in ideal scenarios, the local functions in (18) are spatially and temporally related because

Θ[i](x⋆) = 0 for every i ∈ N. In particular, if ck[i] = 0 andx⋆ belongs to the convex hull defined by

the positionsxk[lk] (k ∈ N ), then we also have thatx⋆ is the only point in the intersection∩k∈NDk[i].

If noise is present, we can increase the radius of the spheresDk[i] by increasing the parameterck[i] to

guarantee thatΘ[i](x⋆) = 0 (or, equivalently,x⋆ ∈ ∩k∈NDk[i]) with high probability. However, later we

show that in practice the resulting algorithm works well even with ck[i] = 0 in the presence of noise. The

main idea of the proposed method for acoustic source localization is thus to use the scheme in Theorem

2 to minimize asymptoticallyΘ[i] and to find a fixed point that minimizes as many global functions Θ[i]

as possible. Such a solution is expected to be a good estimateof x⋆ becausex⋆ is a minimizer of every

global function at any time instant, i.e.,Θ[i](x⋆) = 0 for every i ∈ N.

Having defined the sequence of global functions to be minimized asymptotically, we now turn our

attention to the communication model. Owing to the nature ofwireless channels, if agentk broadcasts an

estimatehk[i], all other agents within a certain distance are able to receive this information. To exploit

this physical characteristic of wireless channels, we use the communication model in [20]. In more detail,

we assume that, at each iteration, only agentk, selected uniformly at random, broadcasts its estimate

hk[i]. Then all agents within rangeR, i.e., all agents in the set

Nk[i] := {j ∈ N | ‖xk[i] − xj [i]‖ ≤ R} (19)

mix their estimates with that received from agentk. To be more precise, given that agentk has been

selected at timei in realizationω, we express this communication model as in (9) by using the following

matrixW kj,ω[i]:

W jl,ω[i] =





I, j /∈ Nk[i]\{k} andj = l

γI, j ∈ Nk[i]\{k} andj = l,

I − γI, j ∈ Nk\{k} and l = k,

0, otherwise,

(20)

whereγ ∈ (0, 1) is a mixing parameter. If the communication rangeR is long enough so that the graphs

G[i] with the neighboring rule in (19) are (strongly) connected,then the matricesP [i] (i ∈ N), which

are random block matrices havingW kj[i] as submatrices (see (10)), areǫ-random matrices for some

ǫ > 0. This fact can be proven with the results in [20] and the references therein. We omit the details

for brevity.
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Applying the local cost functions in (18) and the communication model in (20) to the scheme in (11),

we arrive at the following algorithm:7

Algorithm 1: (Proposed algorithm):

1) Initialize the estimateshk[i] with an arbitraryhk[0] ∈ R
2.

2) Move all agents and take new samples of the acoustic sound intensity.

3) Keep in the memory of each agent the largest sample observed so far and its corresponding position

(the sample and position are denoted by, respectively,yk[lk] andxk[lk])

4) Agents apply the subgradient update defined in (8): for allk ∈ N ,

h′
k[i + 1] = hk[i] + µk[i]

(
PDk[i](hk[i]) − hk[i]

)
,

whereµk[i] ∈ (0, 2) is the step size and

PDk[i](h) =





h, if h ∈ Dk[i]

xk[lk] +

√
A

yk[lk] − ck[i]

(h− xk[lk])

‖h − xk[lk]‖
otherwise.

5) Choosem ∈ N uniformly at random.

6) Agentm broadcastsh′
m[i + 1]

7) Agents within distanceR to agentm mix the received estimateh′
m[i+1] with their own estimates

hj[i]:

hj[i + 1] =





γh′
j [i + 1] + (1 − γ)h′

m[i + 1], if j ∈ Nm[i]\{m},

h′
j [i + 1], otherwise

whereγ ∈ (0, 1) is a mixing parameter common to all agents.

8) Incrementi and go to step 2.

Note that Algorithm 1 requires neither simultaneous information exchange nor agents to be aware of

the position or the number of their neighbors. In addition, unlike incremental methods, we also do not

need to define a path visiting all agents.

3) Numerical simulations:In a 100m×100m field, at each realization of the simulation we randomly

distribute36 agents and place an acoustic source withA = 100 at x⋆ = [50 50]T . Each agent measures

the acoustic power at their own locations according to (17).The noise samplesnk[i] are i.i.d. and drawn

7A subgradient ofΘk[i] at h is Θ′

k[i](h) = (h − PDk[i](h))/‖h − PDk[i](h)‖ [13].
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from a Gaussian distribution with varianceσk = 1 and mean zero. For simplicity, to obtain the samples

yk[i] at time i, agents choose positionsxk[i] uniformly at random within the region of interest.

We simulate two different versions of the proposed algorithm (Proposed-1 and Proposed-2) that differ

in the choice of the parameterck[i]. In more detail, Proposed-1 usesck[i] = 0, and Proposed-2 uses

ck[i] = 4σk (this last value guarantees thatx⋆ ∈ Dk[i] with high probability and that the radius of

the sphereDk[i] is not excessively increased when samplesyk[i] are taken close to the acoustic source

location). Other parameters are equal in both Proposed-1 and Proposed-2:µk[i] = 1, R = 30, andγ = 0.5.

We compare the proposed method with the incremental POCS algorithm [3], which is the algorithm we

build on to derive the proposed adaptive method. The incremental POCS algorithm uses fixed agents (i.e.

rk[i] = rk[0] for all i andk) and just a single sample of acoustic sound intensity to estimate the acoustic

source location. In this algorithm agents are activated using a greedy rule: from all agents not previously

selected in a cycle, the next agent in the cycle is the one closest to the current agent.8 To mitigate noise,

we set the step size of the incremental POCS algorithm to0.2.

The performance of interest is the average mean square error(MSE) of the agents:

MSE[i] = E

[
1

N

N∑

k=1

‖hk[i] − x⋆‖2

]
.

We compute expectations by averaging the results of 100 realizations of the simulation. Fig. 1 shows

the simulation results.

We can see that both proposed algorithms greatly decrease the estimation error compared to the

incremental POCS algorithm. The superior performance of the proposed methods is explained by two

facts: (i) agents are mobile, so they can take samples close the acoustic source; and (ii) agents can choose

a suitable cost function as data becomes available.9

An additional good feature of the proposed algorithm is thatit does not require the definition of a

path visiting all agents in the system. Agents are randomly selected, broadcast their estimates, and only

those agents within the communication range mix estimates.No feedback is necessary, so agents can

ignore the position and the number of neighbors. In many applications, this communication model could

be enough to justify the use of the proposed method over incremental methods (even if the performance

8If in the simulation we have thatyk < 0 (not physically possible, but it can happen in the simulation because of the acoustic
model we adopted), then the corresponding agent simply sends the estimate of the previous agent of the cycle to the next agent
in the cycle.

9In contrast, batch methods, such as the incremental POCS algorithms, consider fixed sets/cost functions, so, formally,they
cannot incorporate new information obtained by taking samples at different positions if the algorithm has already started to run.
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Fig. 1. Transient performance of the algorithms.

of the proposed method were inferior to that of incremental methods). The reason is that acquiring a

path visiting all agents is a difficult problem to solve in large-scale networks, and the proposed method

does not need to solve such problems.

The performance of Proposed-2 is better than that of Proposed-1 because the former expands the sets

Dk[i], thus increasing the probability thatx⋆ ∈ ∩k∈NDk[i]. Note that the parameterck[i] in Proposed-2

does not unduly increase the “size” of∩k∈NDk[i]. (Sets∩k∈NDk[i] that are too large can give poor

estimates because not all points in these sets are necessarily close tox⋆.) The jumps and the initial

unsteady behavior shown by the MSE curves of the proposed algorithms are explained by the fact

that agents take samples at random locations. Therefore, until samples with sufficiently high SNR are

obtained in every agent, the setsDk[i] are not reliable, and the subgradient updates can unduly increase

the estimation error. Note that the sets used by Proposed-2 are always more reliable than those used by

Proposed-1 because of the larger expansion factorck[i], and this fact explains why the unsteady behavior

of Proposed-1 lasts longer than that of Proposed-2.

B. Environmental modeling

1) Problem description:Suppose that a physical phenomenon (e.g., temperature, salinity, density of

adversarial agents, etc. [32]) in a region of interestD ⊂ R
D is expressed by a functiong : D → R that

can be well approximated byf : D → R defined below:

f(x) := αT
Φ(x) ≈ g(x), (21)
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wherex ∈ D is a spatial coordinate,Φ(x) := [φ1(x) . . . φL(x)]T ∈ R
L, φn : R

D → R is thenth basis

function (e.g. Fourier series, wavelets, radial basis functions, etc.),α := [α1 . . . αL]T ∈ R
L, andαn

is the coefficient associated with thenth basis function (see also [32]). If, for example, we use a large

enough number of properly selected radial basis functions to build Φ(x), the universal approximation

theorem [33, Sect. 20.6] justifies the approximation in (21). We assume that the basesφn : R
D → R

(n = 1, . . . , L) are fixed and known by all agents, which form a network associated with a graph

G[i] = (N , E [i]) as described in Sect. II-B. In addition, we also assume that agentk can observe noisy

samplesyk[i] ∈ R:

yk[i] := g(xk[i]) + nk[i] ≈ f(x[i]) + nk[i], (22)

wherexk[i] ∈ D andnk[i] ∈ R are, respectively, the position and the noise sample of agent k at time i.

The environmental modeling problem amounts to estimatingα in (21) in all agents from the samplesyk[i]

(k ∈ N ), which are dispersed throughout the network. Note that, byknowingα, agents have complete

information about the physical phenomenon in the region of interest.

Having described the estimation problem, we now turn to the proposed distributed algorithm. In our

method, agents communicate asynchronously and do not have access to the location, number, or samples

yk[i] of their neighbors.

2) Set-theoretic adaptive algorithms for environmental modeling: We start by considering an ideal

scenario; suppose that there existsα ∈ R
L such thatαT

Φ(x) = g(x) for every coordinatex ∈ D, and

no noise is present in the measurementsyk[i] (k ∈ N , i ∈ N). As a result, we have that, for everyk ∈ N ,

i ∈ N, andxk[i] ∈ D,

α ∈ Fk[i] := {h ∈ R
L | hT

Φ(xk[i]) = yk[i]}.

Therefore, ifα is to be estimated in this ideal scenario, a good estimate should also belong toFk[i] for

any k ∈ N , i ∈ N, xk[i] ∈ D. To handle non-ideal scenarios, we can use the following relaxationGk[i]

of Fk[i]:

Gk[i] := {h ∈ R
L | |hT

Φ(xk[i]) − yk[i]| ≤ ξk[i]}, (23)

whereξk[i] ≥ 0 is a suitably chosen relaxation parameter of agentk at time i (to avoid clutter, we omit

the dependence ofGk[i] with ξk[i]). In more detail, the parameterξk[i] serves two purposes. First, it

increases the probability thatα ∈ Gk[i] in noisy environments. Second, it is used to take into account the
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fact that the existence ofα ∈ R
L satisfying the equalityαT

Φ(x) = g(x) for everyx ∈ D is questionable

because, in the domainD, the functiong may not be equivalently expressed by a linear combination of

the basis functionsφ1, . . . , φL. In such a case, we could, for example, redefine the desired estimandα

as any vector inRL such thatf in (21) reproducesg with an uniform toleranceǫ > 0 in the region of

interest, i.e.,α ∈ {h ∈ R
L | − ǫ ≤ hT

Φ(x) − g(x) ≤ ǫ, x ∈ D} (this set is nonempty provided thatǫ

is large enough). Therefore, if the relaxation parameterξk[i] is sufficiently large, we have thatα ∈ Gk[i]

(in the simulations we show that the algorithm can work well even withξk[i] = 0 in non-ideal scenarios).

At time index i, reasonable estimates ofα should then belong to

C[i] :=
⋂

n∈I[i]

⋂

k∈N

Gk[n] ∋ α, (24)

where I[i] is a properly chosen subset of time indices of available measurementsyk[i] (i.e., I[i] ⊂
{0, 1, . . . , i}). Intuitively, C[i] is the set of estimates ofα that are consistent with all measurementsyk[n],

k ∈ N andn ∈ I[i]. The setC[i] can be time-varying becauseI[i] is allowed to change from iteration

to iteration. This time-varying property ofI[i] (and, consequently, ofC[i]) can be used to incorporate

information gained by measurementsyk[i] (represented by setsGk[i]) as they become available. The

choice ofI[i] should take into account the desired complexity of the algorithm and the time in which

the environment, described by the functiong, can be considered approximately static. Having defined

C[i] in (24) as the set of reasonable estimates ofα at time i, we now proceed to construct convex cost

functions havingC[i] as the set of minimizers, and then we apply the scheme in Theorem 2 to derive

low-complexity algorithms that minimize these time-varying cost functions asymptotically.

The parameterα in (21) can be seen as a linear filter [33], [34], so we can use the cost functions

of existing set-theoretic linear adaptive filters (e.g., the affine projection algorithm [13], [35]–[37], the

normalized least-mean-square algorithm [13], [37], [38],etc.) to estimateα. In doing so, we can extend

these approaches to distributed networks with random links. In particular, here we use the following local

cost function [13]:

Θk[i](h) =

q[i]−1∑

j=0

ck[i, j] ‖h− PGk[i−j](h)‖, (25)

whereq[i] ∈ N is the number of the most recent samplesyk[i] used by the agents,ck[i, j] is a constant
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given by 10

ck[i, j] =





wk[i, j]

Lk[i]
‖hk[i] − PGk[i−j](hk[i])‖ if Lk[i] = 0

0 otherwise,

Lk[i] is defined byLk[i] :=
∑q[i]−1

j=0 wk[i, j]‖hk[i] − PGk[i−j](hk[i])‖, andwk[i, j] > 0 is a weighting

factor of the setGk[i − j] and should satisfy
∑q[i]−1

j=0 wk[i, j] = 1. Note that, ifC[i] 6= ∅ with I[i] =

{i − q[i] + 1, . . . , i}, thenΘ[i](α̃) =
∑

k∈N Θk[i](α̃) = 0 for any α̃ ∈ C[i] and for any of the possible

choices of weightswk[i, j]. In particular, in the ideal scenario described above,Θ[i](α) = 0, which shows

that the local functions are both spatially and temporally related. Therefore, we see that good estimates of

α should minimize as many global functionsΘ[i] as possible (ideally, for alli) becauseα is a point that

minimizes every global function. The set of minimizers ofΘ[i] may not depend on the possible choices

of weights in an ideal scenario, so this fact may suggest thatwe should not pay any special attention

to the choice ofwk[i, j]. However, by noticing that the environmentg can be time-varying in real-world

scenarios, in practice we may need to give large weights to sets Gk[i] based on more recent samples

yk[i]. In doing so, by using the scheme in Theorem 2 with the local functionsΘk[i] in (25), agents move

their estimateshk[i] to points closer to sets based on recent measurementsyk[i] (i.e., setsGk[i] with large

weight wk[i, j]) than to sets based on old measurements. In addition, as shown in [6], [14], particular

choices of weightswk[i, j] yield subgradient updates (defined in (8)) that are easy to implement even

when the memory of the algorithm, represented by the parameter q[i], grows unboundedly.

Having defined the cost functions to be minimized asymptotically, we now need to choose a com-

munication model. For this application, we again use the simple communication model applied to the

acoustic sensor localization problem. Briefly, we assume that agents within rangeR from each other are

neighboring agents, and only one agent, selected uniformlyat random, broadcasts its estimatehk[i] to

neighboring agents. Details have already been provided in the discussion before Algorithm 1. Applying

this communication model with the local cost functions in (25) to the scheme in Theorem (2), we arrive

at the algorithm described below.

Algorithm 2:

1) Initialize the estimateshk[i] with an arbitraryhk[0] ∈ R
L. Chooseq[i], which is the number of

setsGk[i] used at each iteration of the algorithm, the expansion parameterξk[i] of Gk[i], and the

10The constantck[i, j] is not necessarily the same at different time instants because ck[i, j] depends on the current estimate
hk[i].
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weightswk[i, j] (j = 0, . . . , q[i] − 1).

2) Move all agents and take new samplesyk[i].

3) Agents apply the subgradient update defined in (8):11 for all k ∈ N ,

h′
k[i + 1] = hk[i] + µ̄k[i]




q[i]−1∑

j=0

ωk[i, j]PGk [i] (hk[i]) − hk[i]


 , (26)

whereµ̄k[i] ∈ [0, 2Mk[i]] is the step size,

Mk[i] :=





∑q[i]−1
j=0 ωk[i, j] ‖PGk [i] (hk[i]) − hk[i]‖2

∥∥∥
∑q[i]−1

j=0 ωk[i, j] PGk[i] (hk[i]) − hk[i]
∥∥∥

2 , if hk[i] /∈ ⋂q[i]−1
j=0 Gk[i − j]

1, otherwise,

(NOTE: Mk[i] ≥ 1) and [26, p. 99]

PGk[i](h) =





h if h ∈ Gk[i]

h+
(yk[i] − ξk[i]) − hT

Φ(xk[i])

‖Φ(xk[i])‖2
Φ(xk[i]) if hT

Φ(xk[i]) < yk[i] − ξk[i]

h+
(yk[i] + ξk[i]) − hT

Φ(xk[i])

‖Φ(xk[i])‖2
Φ(xk[i]) if hT

Φ(xk[i]) > yk[i] + ξk[i].

4) Choosem ∈ N uniformly at random.

5) Agentm broadcastsh′
m[i + 1]

6) Agents within distanceR to agentm mix the received estimateh′
m[i+1] with their own estimates

hj[i]:

hj[i + 1] =





γh′
j [i + 1] + (1 − γ)h′

m[i + 1], if j ∈ Nm[i]\{m},

h′
j [i + 1], otherwise

whereγ ∈ (0, 1) is a mixing parameter common to all agents.

7) Incrementi and go to step 2.

11The details of the derivation of (26), obtained by applying the subgradient update to the local cost function in (25), is shown
in [13, Example 3].
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3) Numerical simulations:In the simulation, we drop the assumption of static environments, and

agents estimate the dynamic environment described by

g[i](x) = sin

(
2π

x1

100
+ 2π

i

2500

)
+ cos

(
2π

x2

100
+ 2π

i

2500

)
,

wherex := [x1 x2]
T ∈ R

2, i ∈ N is the discrete-time index, andx1, x2 ∈ [0, 100] are spatial coordinates

of the region of interest (a100×100 square). (We use this particular functiong[i] to illustrate a scenario

where the approximation in (21) is a rough approximation dueto the choice of basis functions.) Agents

use Gaussian radial basis functions

φj(x) = exp

(
−‖x− cj‖2

2σ2
w

)
, j = 1, . . . , L,

whereL = 16, cj ∈ R
2 (j = 1, . . . , L) are centers distributed in the region of interest, andσw is the

width of the radial basis functions. We subdivide the regionof interest into 16 squares of the same area,

and we place one agent in each subdivision (N = {1, . . . , L}). Each centerck is located at the center of

each subdivision, and we setσw = 30/
√

2, which is a value chosen to avoid basis functions that are too

peaked or too flat in the region of interest. At timei, each agentk takes samplesyk[i] according to (22),

where the noise samplesnk[i] are i.i.d. and drawn from a zero-mean Gaussian distributionwith variance

σk[i]
2 = 0.3, andxk[i] is a position selected uniformly at random in the subdivision into which agentk

is placed.

The parameters of the proposed algorithm are as follows: Proposed-1 (q[i] = 1, µ̄k[i] = 0.2, γ = 0.5,

ξk[i] = 0, wk[i, j] = 1), Proposed-2 (q[i] = 1, µ̄k[i] = 1, γ = 0.5, ξk[i] = σk[i], wk[i, j] = 1), Proposed-3

(q[i] = 8, µ̄k[i] = 0.5, γ = 0.5, ξk[i] = 0, wk[i, j] = 1/8), and Proposed-4 (q[i] = 8, µ̄k[i] = 1, γ = 0.5,

ξk[i] = σk[i], wk[i, j] = 1/8). Proposed-1 and Proposed-3 mitigate the effects of noise and modeling

errors by using a relatively small step sizeµ̄k[i], whereas Proposed-2 and Proposed-3 mitigate those

effects by increasingξk[i] (i.e., by increasing the reliability of the setsGk[i]). Note that, in particular,

Proposed-1 is an extension of the celebrated normalized least-mean-square algorithm [13], [33], [34],

[37], [38] to distributed gossip networks. The communication rangeR of the agents in all proposed

algorithms isR = 50. In these algorithms, agents use the same set of parameters,but such a choice is

not a requirement. Agents using different sets of parameters can be useful in scenarios where the memory

and computational power of the agents are different.

We compare the proposed algorithms with a method where all agents use the solution of the following
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Fig. 2. Tracking performance of the algorithms.

weighted least-squares fit problem:

hLS[i] ∈ arg min
h∈R2

(
i∑

n=1

βi−n
FF

∑

k∈N

(yk[n] − hT
Φ(xk[n]))2 + δR‖h‖2

)
,

whereβFF ∈ (0, 1] is a forgetting factor used to take into account the dynamic nature of the environment,

and δR is a regularization factor. This algorithm, hereafter denominated weighted least-squares (WLS)

algorithm, can be implemented if there is an all-to-all communication among agents in every iteration,

or if all agents have a bi-directional link with a center fusion. Therefore, the WLS algorithm is ignoring

the assumptions of the multiagent system, which we require to be non-hierarchical and to have sparse

communication among agents. In the simulations we use two versions of the WLS algorithm: WLS-1

(βFF = 0.92, δR = 10−6) and WLS-2 (βFF = 0.99, δR = 10−6).

The goal of every agent is to estimate the time-varying function g[i] in the region of interest (the

100 × 100 field), thus, given the estimateshk[i] (k ∈ N ) at time i, we use as the performance metric a

normalized sum of the mean-square error (MSE) of the agents:

∑
k∈N E

[∫ 100
0

∫ 100
0 |g[i](x) − hk[i]

T
Φ(x)|2 dx1 dx2

]

|N | ·
∫ 100
0

∫ 100
0 |g[i](x)|2 dx1 dx2

,

where expectations are computed from ensemble averages of 100 realizations of the simulation, and

integrals are evaluated numerically. (In practice, computing the filter that minimizes the MSE is not

possible because perfect knowledge ofg[i] is required.) Fig. 2 shows the performance of the algorithms.
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The two versions of the WLS algorithm have the best performance because the WLS algorithm can

be considered as a centralized method, and, as such, it should be used only as a reference of the best

performance that can be achieved by the proposed algorithm.The performance of WLS-2 is inferior to

that of WLS-1 because WLS-2 weights heavily old measurements yk[i] (the parameterβFF of WLS-2 is

larger than that of WLS-1) and the environment is dynamic. Proposed-1 and Proposed-2 use only the most

recent measurementyk[i] at every iteration, so it is not surprising that they have theworst performance.

However, these two algorithms have the lowest computational complexity of all compared algorithms. The

computational complexity of Proposed-1 and Proposed-2 isO(L) (per agent), and the better performance

of the latter is due to the larger relaxation parameterξk[i], which mitigates the detrimental effects of noise

and modeling errors. Proposed-3 and Proposed-4 have betterthan Proposed-1 and Proposed-2 because

Proposed-3 and Proposed-4 use more information at each iteration (measurementsyk[i]). The slightly

superior performance of Proposed-4 compared to that of Proposed-3 is again explained by the larger

relaxation parameterξk[i] of Proposed-4. In terms of computational complexity, note that the subgradient

updates in Proposed-3 and Proposed-4 can be parallelized inoperations of complexityO(L) (per agent)

[39].

V. CONCLUSIONS

We have developed a non-hierarchical algorithm that minimizes asymptotically a global function defined

by the sum of convex functions. Each term in this sum is a localcost function known by an agent in a

network, and we assume that the sets of optimizers of the local functions have nonempty intersection.

Unlike existing optimization methods, the local cost functions can be time-varying, and agents exchange

information locally via network gossiping. This mechanismfor information exchange enable us to relax

the assumption of simultaneous exchange information amongagents, a common assumption in the analysis

of multiagent algorithms using subgradient methods. We showed conditions to guarantee almost sure

asymptotic minimization of the local cost functions, consensus among agents, and convergence. We

provided examples of applications where the algorithm in its most general form was specialized to handle

specific problems. In more detail, we applied the proposed method to derive new adaptive algorithms for

acoustic source localization and for environmental modeling. In the former application, agents estimate the

position of the acoustic source directly; in the latter application, agents estimate a physical phenomenon

(temperature, salinity, density of adversarial agents, etc.) by trying to reach consensus on coefficients that

define the environment. These applications show techniquesthat can be applied when the assumptions

of Theorem 2 are rough approximations, and they also show howto extend existing adaptive or batch
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projection-based methods to distributed networks with random links.
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APPENDIX I

PROOF OFLEMMA 1

For i ≥ j with j ∈ N, there are at least⌊(i − j)/(I + 1)⌋ distinct indicesk within the interval[j, i]

where0 ≤ λ[k] ≤ β, hence
∏i−j

n=0 λ[i − n] ≤ β⌊(i−j)/(I+1)⌋. We also know that{∑i
j=0

∏i−j
n=0 λ[i − n]}

is bounded because, for everyi ∈ N,

0 ≤
i∑

j=0

i−j∏

n=0

λ[i − n] ≤
i∑

j=0

β⌊(i−j)/(I+1)⌋ ≤ I + 1

1 − β
=: S. (27)

From this moment the proof resembles that of Mertens’ theorem [40]. The convergence of{a[i]} to zero

implies that, for everyǫ > 0, there existsK ∈ N such that fori ≥ K we have

|a[i]| <
ǫ

2S
, (28)

whereS is as defined in (27). For thisK and anyj ≤ K (j ∈ N), we conclude fromlimi→∞
∏i−j

n=0 λ[i−
n] = 0 that there existsL > K such that, for everyi ≥ L,

i−j∏

n=0

λ[i − n] <
ǫ

2 K B
, (29)

where B > 0 can be any (nonzero) upper bound of the convergent sequence{|a[i]|} (e.g., B =

supi(|a[i]|) + 1). Therefore, fori ≥ L, by (27), (28), (29), and the triangle inequality:
∣∣∣∣∣∣

i∑

j=0

a[j]

i−j∏

n=0

λ[i − n]

∣∣∣∣∣∣
≤

i∑

j=0

∣∣∣∣∣a[j]

i−j∏

n=0

λ[i − n]

∣∣∣∣∣

=

K−1∑

j=0

|a[j]|
i−j∏

n=0

λ[i − n] +

i∑

j=K

|a[j]|
i−j∏

n=0

λ[i − n]

< ǫ

∑K−1
j=0 |a[j]|
2 K B

+ ǫ

∑i
j=K

∏i−j
n=0 λ[i − n]

2S
< ǫ,

which concludes the proof.
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APPENDIX II

PROOF OFTHEOREM 2

(Proof of Part (a)) The initial part of the proof builds on results in [6], [13], with the main difference

that we now have to deal with random matricesP [i]. For notational simplicity define

Φ[i] :=




µ1[i]
(Θ1[i](h1[i]) − Θ⋆

1[i])

‖Θ′
1[i](h1[i])‖2 + δ1[i]

Θ′
1[i](h1[i])

...

µN [i]
(ΘN [i](hN [i]) − Θ⋆

N [i])

‖Θ′
N [i](hN [i])‖2 + δN [i]

Θ′
N [i](hN [i])




. (30)

From the properties of the matrixP [i], we can verify that‖ψ[i+1]−ψ⋆[i]‖2 = ‖P [i] (ψ[i] − Φ[i] −ψ⋆[i])‖2.

Taking conditional expectation with respect withψ[i] in this last equality, we deduce:

E
[
‖ψ[i + 1] −ψ⋆[i]‖2 | ψ[i]

]
= E

[
‖P [i] (ψ[i] − Φ[i] −ψ⋆[i])‖2 | ψ[i]

]

= (ψ[i] − Φ[i] −ψ⋆[i])T E
[
P [i]TP [i]|ψ[i]

]
(ψ[i] − Φ[i] −ψ⋆[i])

≤
∥∥E
[
P [i]TP [i]|ψ[i]

]∥∥
2
‖ψ[i] − Φ[i] −ψ⋆[i]‖2.

We can now use Definition 5.2 to get

E
[
‖ψ[i + 1] −ψ⋆[i]‖2 | ψ[i]

]

≤ ‖ψ[i] − Φ[i] −ψ⋆[i]‖2

= ‖ψ[i] −ψ⋆[i]‖2 − 2Φ[i]T (ψ[i] −ψ⋆[i]) + ‖Φ[i]‖2

≤ ‖ψ[i] −ψ⋆[i]‖2 − 2
∑

k∈N

µk[i]

(
Θk[i](hk[i]) − Θ⋆

k[i]

‖Θ′
k[i](hk[i])‖2 + δk[i]

)[
Θ′

k[i](hk[i])
T (hk[i] − h⋆[i])

]

+
∑

k∈N

µk[i]
2 (Θk[i](hk[i]) − Θ⋆

k[i])
2

‖Θ′
k[i](hk[i])‖2 + δk[i]

,

where the last inequality comes from the definition ofΦ[i] and the fact that‖Θ′
k[i](hk[i])‖2/(‖Θ′

k[i](hk[i])‖2+

δk[i])
2 ≤ 1. By the definition of subgradients given in (1), we haveΘ′

k[i](hk[i])
T (hk[i] − h⋆[i]) ≥
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Θk[i](hk[i]) − Θ⋆
k[i] ≥ 0 for everyk ∈ N ; therefore,

E[‖ψ[i + 1] −ψ⋆[i]‖2 | ψ[i]]

≤ ‖ψ[i] −ψ⋆[i]‖2 − 2
∑

k∈N

µk[i]
(Θk[i](hk[i]) − Θ⋆

k[i])
2

‖Θ′
k[i](hk[i])‖2 + δk[i]

+
∑

k∈N

µk[i]
2 (Θk[i](hk[i]) − Θ⋆

k[i])
2

‖Θ′
k[i](hk[i])‖2 + δk[i]

= ‖ψ[i] −ψ⋆[i]‖2 −
∑

k∈N

µk[i](2 − µk[i])

[
(Θk[i](hk[i]) − Θ⋆

k[i])
2

‖Θ′
k[i](hk[i])‖2 + δk[i]

]
. (31)

By recalling thatE[x] = Ey[Ex[x|y]] for any two random variablesx andy [41, p. 105], it holds that

E[‖ψ[i+1]−ψ⋆[i]‖2] = E[E[‖ψ[i+1]−ψ⋆[i]‖2 | ψ[i]]]. Applying this result to (31) and using the fact

that µk[i] ∈ (0, 2), we arrive at the desired inequalityE[‖ψ[i] −ψ⋆[i]‖2]− E[‖ψ[i + 1] −ψ⋆[i]‖2] ≥ 0.

(Proof of Part (b)) By (31) and the allowed range of the step size range, we get the supermartingale

E
[
‖ψ[i + 1] −ψ⋆‖2 | ψ[i]

]
≤ ‖ψ[i] −ψ⋆‖2 −

∑

k∈N

ǫ1ǫ2

[
(Θk[i](hk[i]) − Θ⋆

k[i])
2

‖Θ′
k[i](hk[i])‖2 + δk[i]

]
, (32)

whereψ⋆ ∈ C⋆. Applying Theorem 1 to (32) withz[i] = 0 andy[i] being the series in the right hand

side of (32), we verify that, with probability one,{‖ψ[i + 1] −ψ⋆‖2} converges and

∞∑

j=0

∑

k∈N

(Θk[j](hk[j]) − Θ⋆
k)

2

‖Θ′
k[j](hk[j])‖2 + δk[j]

< ∞. (33)

In particular, the convergence of the series in (33) implies, that, with probability 1,

lim
j→∞

(Θk[j](hk[j]) − Θ⋆
k)

2

(‖Θ′
k[j](hk[j])‖2 + δk[j])

= 0, k ∈ N .

The above limit, together with the assumption that the sequence{‖Θ′
k[i](hk[i])‖2 + δk[i]} is bounded,

shows thatP (limi→∞ Θk[i](hk[i]) = Θ⋆
k) = 1.

(Proof of Part (c)) Before proceeding with the proof of mean square consensus,we list some simple

properties that will ease the analysis.

Claim 1: Consider the vectorsψ[i], Φ[i], ψ̃[i] := (I−J)ψ[i], andΦ̃[i] := (I−J)Φ[i]. The following

holds:

1) E[‖ψ[i]‖2] is bounded (also implying the boundedness ofE[‖ψ̃[i]‖2]);

2) limi→∞ E[‖Φ[i]‖2] = 0 (thus limi→∞ E[‖Φ̃[i]‖2] = 0);

3) limi→∞ E
[
ψ̃[i]T Φ̃[i]

]
= 0;

Proof:

1) We know that the sequence{E[‖ψ[i]−ψ⋆‖2]} is monotone non-increasing (thus bounded) for every
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ψ⋆ ∈ C⋆ (this result follows from part (a) of Theorem 2 and the assumptions in part (b)). Since

E[‖ψ[i]‖2] = E[‖ψ⋆‖2] + E[‖ψ[i] −ψ⋆‖2] + 2 E[(ψ⋆)T (ψ[i] −ψ⋆)],

we only need to show that the last term in the previous equation is bounded to prove our claim, and this

result follows from the Cauchy-Schwartz inequality applied to the inner product〈x,y〉 := E[xTy]:

(E[(ψ⋆)T (ψ[i] −ψ⋆)])2 ≤ E[‖ψ⋆‖2] E[‖ψ[i] −ψ⋆‖2].

2) Taking expectation in both sides of (32) and after some simple manipulations, we obtain

E[‖Φ[i]‖2] =
∑

k∈N

µk[i]
2E

[
(Θk[i](hk[i]) − Θ⋆

k[i])
2‖Θ′

k[i](hk[i])‖2

(‖Θ′
k[i](hk[i])‖2 + δk[i])2

]

≤ (2 − ǫ2)
2
∑

k∈N

E

[
(Θk[i](hk[i]) − Θ⋆

k[i])
2

‖Θ′
k[i](hk[i])‖2 + δk[i]

]

≤ (2 − ǫ2)
2

ǫ1ǫ2
(E[‖ψ[i] −ψ⋆‖2] − E[‖ψ[i + 1] −ψ⋆‖2]) → 0 (34)

as i → ∞ becauseE[‖ψ[i] −ψ⋆‖2] ≥ 0 converges.

3) By parts (1) and (2) of the claim and the Cauchy-Schwartz inequality applied once again to the inner

product〈x,y〉 := E[xTy], we obtain(E[ψ̃[i]T Φ̃[i]])2 ≤ E[‖ψ̃[i]‖2] E[‖Φ̃[i]‖2] ≤ Beψ
E[‖Φ̃[i]‖2] → 0

as i → ∞, whereBeψ
< ∞ is an upper bound of the sequence{E[‖ψ̃[i]‖2]} (which is well defined

because of Claim 1.1).

Now we proceed with the main proof. Left-multiplying both sides of the iterationψ[i] = P [i](ψ[i]−
Φ[i]) by (I − J) and using the fact that(I − J)J = 0 andP [i]J = J (property 3 in Definition 5), we

have(I − J)ψ[i + 1] = (I − J)P [i](ψ[i] − Φ[i]) = (P [i] − JP [i])(I − J)(ψ[i] − Φ[i]). We can use

this property to verify that

‖(I − J)ψ[i + 1]‖2 = (ψ̃[i] − Φ̃[i])TY [i]TY [i](ψ̃[i] − Φ̃[i]),

whereY [i] := P [i]− JP [i], ψ̃[i] := (I −J)ψ[i], andΦ̃[i] := (I −J)Φ[i]. Taking expectation on both
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sides, we obtain

E
[
‖ψ̃[i + 1]‖2

]
= E

[
(ψ̃[i] − Φ̃[i])T E

[
Y [i]TY [i] | ψ[i]

]
(ψ̃[i] − Φ̃[i])

]

≤ E

[∥∥E
[
Y [i]TY [i]|ψ[i]

]∥∥
2

∥∥∥ψ̃[i] − Φ̃[i]
∥∥∥

2
]

≤ λ[i]
(
E[‖ψ̃[i]‖2] − 2E[ψ̃[i]T Φ̃[i]] + E[‖Φ̃[i]‖2]

)
, (35)

whereλ[i] = (1 − ǫ) if i is a time index where anǫ-random consensus matrix is present orλ[i] = 1

otherwise. Expanding recursively the resulting inequality, we get

E[‖ψ̃[i + 1]‖2] ≤
i∏

n=0

λ[i − n]‖ψ̃[0]‖2 − 2

i∑

j=0

i−j∏

n=0

λ[i − n]a[j] +

i∑

j=0

i−j∏

n=0

λ[i − n]b[j], (36)

wherea[i] := E[ψ̃[i]T Φ̃[i]] andb[i] := E[‖Φ̃[i]‖2] for i > 0 (a[0] := ψ̃[0]T Φ̃[0] andb[0] := ‖Φ̃[0]‖2 are

deterministic becauseψ[0] is deterministic). The first term of the right-hand side of (36) in the second

inequality converges to zero because
∏i−j

n=0 λ[i−n] ≤ (1− ǫ)⌊(i−j)/(I+1)⌋ (there is at least oneǫ-random

consensus matrix in every interval in the form[l, l + I], l ∈ N). Using Claim 1.2 and 1.3 together with

Lemma 1, we verify that the last two terms of the right-hand side of (36) also converge to zero, and thus

limi→∞ E[‖ψ̃[i]‖2] = 0.

(Proof of Part (d)) The proof of almost sure convergence is essentially a rephrasing of the proof of

Theorem 1.3 (see [29] and the references therein). First apply Theorem 1 to (32) to conclude that{ψω[i]}
is bounded and has an accumulation point for almost everyω ∈ Ω. Therefore, to prove convergence, we

only need to show that the accumulation point is unique. Assume the contrary, and suppose thatψ′
ω and

ψ′′
ω are distinct accumulation points whenC⋆ does not lie in a hyperplane. The sequence{‖ψ[i]−ψ⋆‖2}

converges with probability one for everyψ⋆ ∈ C⋆ (proved in part (b) of the theorem), and thus, for

almost everyω ∈ Ω, 0 = ‖ψ′
ω − ψ⋆‖2 − ‖ψ′′

ω − ψ⋆‖2 = ‖ψ′
ω‖ − ‖ψ′′

ω‖ − 2(ψ′
ω − ψ′′

ω)Tψ⋆, which

contradicts the fact thatC⋆ does not lie in a hyperplane. Therefore,ψ[i] converges with probability one

to a random vector̂ψ.

Consensus follows from part (c) of the theorem because, by Mann-Wald’s theorem and Fatou’s lemma

[41], E[‖(I − J)ψ̂‖2] = E
[
limi→∞ ‖(I − J)ψ[i]‖2

]
≤ lim infi→∞ E[‖(I − J)ψ[i]‖2] = 0, which

implies that‖(I − J)ψ̂‖ = 0 with probability one, i.e., the agents reach consensus.

(Proof of Part (e)) Now that we know that the sequence{ψ[i]} converges with probability one to a

point in the consensus subspaceC defined in (7), we can mimic the proof of [13, Theorem 2(d)] or that

of [16, Theorem 3.1.4] to finish ours.
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Assume the contrary of the statement we want to prove; suppose that, for almost everyω ∈ Ω, ĥω

satisfieŝhω /∈ lim infi→∞ Υ[i]. Sinceũ is an interior point ofΥ, there existsρ such that{v ∈ R
M | ‖v−

ũ‖ ≤ ρ} ∈ Υ. In addition, there existstω ∈ [0, 1] such thatutω
:= tωĥω +(1−tω)ũ /∈ lim infi→∞ Υ[i] ⊃

lim infi→∞ Υ[i]. By limi→∞ hk,ω[i] = ĥω (k ∈ N ), we know that for someN1,ω ∈ N it holds that

‖hk,ω[i]−ĥω‖ ≤ ρ(1−tω)/(2tω) for everyi ≥ N1,ω andk ∈ N . Therefore, byutω
/∈ lim infi→∞ Υ[i], for

any L1,ω > N1,ω, there existsi1 = i1(L1,ω) ≥ L1,ω satisfyingutω
/∈ Υ[i1] =

⋂
k∈N

(
lev≤Θ⋆

k
Θk[i1]

)
. As

a result, there existsjω ∈ N such thatutω
/∈ lev≤Θ⋆

jω
Θjω

[i1]. For thisjω, by Υ ⊂ Υ[i] ⊂ lev≤Θ⋆
jω

Θjω
[i1]

and Fact 1,

d(hjω,ω[i1], lev≤Θ⋆
jω

Θjω
[i1]) ≥ d(ĥω, lev≤Θ⋆

jω
Θjω

[i1]) − ‖hjω,ω[i1] − ĥω‖

≥ ρ
1 − tω

tω
− ρ

2

1 − tω
tω

=
ρ

2

1 − tω
tω

=: ǫω > 0,

which shows that
∑

k∈N d(hk,ω[i1], lev≤Θ⋆
k
Θk[i1]) ≥ ǫω. By the triangle inequality, we obtain

‖ũ− hk,ω[i]‖ ≤ ‖ũ− ĥω‖ + ‖hk,ω[i] − ĥω‖ ≤ ‖ũ− ĥω‖ +
ρ

2

1 − tω
tω

(k ∈ N ),

and thus

∑

k∈N

‖ũ− hk,ω[i1]‖ ≤ N‖ũ− ĥω‖ + N
ρ

2

1 − tω
tω

=: rω > 0.

We can now fix L2,ω > i1 and repeat the above to findi2 = i2(L2,ω) ≥ L2,ω such that
∑

k∈N d(hk,ω[i2], lev≤Θ⋆
k
Θk[i2]) ≥ ǫω and

∑
k∈N ‖ũ−hk,ω[i2]‖ ≤ rω, which shows that we can construct

a subsequence{il} (l ≥ 1) satisfying

∑

k∈N

d(hk,ω[il], lev≤Θ⋆
k
Θk[il]) ≥ ǫω and

∑

k∈N

‖ũ− hk,ω[il]‖ ≤ rω.

As a result, for almost everyω ∈ Ω, we can construct a subsequence{il} as above and, using the

assumptions of the theorem, we can findξω > 0 such that
∑

k∈N Θk[il](hk,ω[il]) ≥
∑

k∈N Θ⋆
k + ξω for

every l ≥ 1. This contradictslimi→∞ Θk[i](hk,ω[i]) = Θ⋆
k, which is proved in part (b) of the theorem.

Therefore,ĥω ∈ lim infi→∞ Υ[i], and the proof is complete.
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