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Abstract

We propose a non-hierarchical decentralized algorithntterasymptotic minimization of possibly
time-varying convex functions. In our method, each agemtimetwork has a private, local (possibly time-
varying) cost function, and the objective is to minimize mgyotically the sum of these local functions
in every agent (this problem appears in many different apfibns such as, among others, motion
planning, acoustic source localization, and environmentaleling). The algorithm consists of two main
steps. First, to improve the estimate of a minimizer, agepisly a particular version of the adaptive
projected subgradient method to their local functions.nTtiee agents exchange and mix their estimates
using a communication model based on recent results of nensealgorithms. We show formally the
convergence of the resulting scheme, which reproducesrisytar cases many existing methods such as
gossip consensus algorithms and recent decentralizediaglapbgradient methods (which themselves
include as particular cases many distributed adaptiverifiiealgorithms). To illustrate two possible
applications, we consider the problems of acoustic sowrcalization and environmental modeling via

network gossiping with mobile agents.

Index Terms

adaptive projected subgradient method, decentralizeichigattion via network gossiping, gossip al-

gorithms for decentralized adaptive filtering, decentegdiestimation and detection via network gossiping
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. INTRODUCTION

In many applications involving systems of autonomous axténg agents, the objective is to solve an
optimization problem in which the cost function (hereaftamed the global function) can be decomposed
as the sum of local cost functions, each of which is known by one agent in a network. Applications
that can be posed as such optimization problems includengrathers, motion planning in multiagent
systems [1], [2], acoustic source localization [3]-[5]datistributed adaptive filtering [6]-[8]. Typically,
in these problems centralized approaches are not deshabkuse of physical limitations (the central
agent may not have a direct connection with all other agemtshecause of robustness issues (the
system may fail if the central agent collapses). Therefargreat deal of effort has been devoted to
the development of non-hierarchical distributed optiriara algorithms [1]-[7], [9]-[11]. In particular,
here we focus on decentralized subgradient methods whemtsagan work massively in parallel and
exchange information with point-to-multipoint links [1B], [6], [9], [11]. These approaches often give
rise to low-complexity iterative optimization algorithntisat are suitable for large-scale systems using a
simple communication model among agents.

To date, the majority of distributed subgradient method&eHacused on static systems where the cost
function does not change during the iterations of the allgori[1], [9], [11]. Formally, once these
algorithms start running, agents have to wait until a gootimede of the minimizer of the global
function is obtained in every agent. This process can takeynitarations in large-scale systems, and
in several applications agents may need to change frequthetllocal functions (and, consequently, the
global function) to drop outdated information or to add nefoimation gathered from the environment.
For example, in estimation problems involving mobile sensetworks, agents may need to estimate a
parameter of interest (e.g., the position of a target) byimizing a global function that is built based
on measurements, obtained at different locations, of aiphlyphenomenon (e.g., the sound intensity).
As a result, if agents keep taking measurements of the eammieat after the optimization algorithm
starts running, they may be able to improve the estimate efptdrameter of interest by incorporating
the new available information into new local cost functidrignfortunately, most studies on distributed
subgradient methods do not characterize the behavior adlgwithms in such dynamic systems.

A distributed algorithm that considers time-varying coshdtions has been proposed in [5], [6].
The algorithm is based on the adaptive projected subgradiethod [12], [13] (which itself is an

extension of Polyak’s algorithm [17] to handle time-vaxgyioost functions), and thus it can be applied
1See [5], [6], [12]-[16] for applications of centralized opization algorithms involving time-varying functions.
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to problems where the environment is nonstationary or wimreming data from sensors has to be
processed online and in real time. This algorithm uses aarktwodel in which links are considered
deterministic, but recent results in consensus algoritfiB$-[24] and also in distributed optimization
problems with fixed cost functions [10], [11] have shown thmideling the network links among agents
as random links is highly desirable for flexibility purposés particular, random links can easily model
wireless networks in which agents communicate asynchslpawith simple broadcast channels where
simultaneous information exchange is not possible [20}sunh networks, the assumptions used in the
analysis of the algorithm in [5], [6] are not satisfied, andgshhe results in [5], [6] cannot be formally
applied to important classes of multiagent-systems systesing wireless networks (in particular, the
algorithms in Sect. IV cannot be derived from the method i [6] owing to the assumptions on the
communication model). An addition limitation of the anasym [5], [6] is that it only shows conditions
for the asymptotic minimization of the cost functions, whiceither guarantees the convergence of the
algorithm nor characterizes the convergence point.

To address the shortcomings of the above-mentioned scheveedevelop an iterative optimization
algorithm that can deal with both time-varying cost funocand random links among agents. In the
first step, as in [6], each agent improves its own local eg@nad the minimizer of the (possibly time-
varying) global function by applying a particular versiohtbe adaptive projected subgradient method
[12], [13] to its local cost function. In the second step of thigorithm, unlike [1], [5], [6], [9], agents
communicate through possibly random links. More speclficakere we adopt a general communication
model that includes as particular examples the methods usseecent algorithms for consensus via
network gossiping [18]-[23]. Our approach has convergegic@rantees in dynamic systems and can
reproduce and extend, within a unified framework, many mgstlistributed algorithms. We can, for
example, address the limitations of existing batch and @daplgorithms by changing the cost functions
(e.g., to consider the presence of mobile agents) and/ohbgsing a different communication model.
Convergence properties of those modified algorithms foltbivectly from the analysis of our general
framework — they do not need to be studied separately for paskible scenario. In particular, we show
how to derive, from the general method developed here, agagigorithms for environmental modeling
(decentralized adaptive filtering) and for acoustic solmcalization with mobile agents. Note, however,

that our algorithm in its most general form is by no meansrictet! to applications in these particular
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domains’

The structure of the paper is as follows. Sect. Il outlinesid#ools in convex analysis and reviews
a class of problems with many applications in multiagenteys. Sect. lll introduces and analyzes the
proposed algorithm, which solves the problem in Sect. lISétt. IV we show two possible applications
of the proposed method: acoustic source localization angdagmmental modeling. The appendices contain

the proof of lemmas and theorems.

[I. PRELIMINARIES
A. Basic tools in convex analysis

In this section we give a number of results and definitions dina extensively used in the discussion that
follows. In particular, we denote bly: | the largest integer not exceedimgThe component of théh row
and jth column of a matrixX is given by[X];;. For every vectow € RY, we define the norm ob by
|lv]| := vvTv, which is the norm induced by the Euclidean inner producty) := v’y for everyv, y €
RY. For a matrixX € RM*¥ its spectral norm ig X || := max{+v/\| A is an eigenvalue oX7 X},
which satisfieq| Xy|| < || X||2|ly|| for any vectory of compatible size. In the sequéf), 7, P) always
denotes probability spaces, wheids the sure eventF is theo-field of events, an® is the probability
measure. To avoid tedious repetition, we often omit the tipitg probability spaces. Unless otherwise
stated, we always use the Greek lettee () to denote a particular outcome. Thus, by (X)), we
denote an outcome of the random vectofmatrix X). We also often drop the qualifier “almost surely”
(or “with probability one”) in equations involving randonasiables.

A setC is said to beconvexif v = vv; + (1 — v)ve € C for everyv;,vs € C and0 < v < 1. If,
in addition to being convex;’ contains all its boundary points, thénis aclosed convex s¢p6], [27].
The metric projectionPs : RY — C of a closed convex se&f’ mapsv € R to the uniquely existing
vector Po(v) € C satisfying||lv — Po(v)|| = mingec |v — y|| =: d(v, C).

A function © : RV — R is said to beconvexif Vz,y € RY andVv € [0,1], O(vx + (1 — v)y) <
vO(z) + (1 — v)O(y) (in this case® is continuous at every point iiR"). The c-sublevel sebf a
function © : RV — R is defined bylev<.© := {h € RY | ©(h) < ¢}, which is a closed convex set
for everyc € R if © is convex [27]. Convex functions are not necessarily diffdiable everywhere, so

subgradients play a special role in the results that followmore detail, if© : RN — R is a convex

2A short version of this paper appeared in [25]. Unlike thedgtin [25], here we show the full proof of our main results,
additional convergence properties of the proposed alguritand also new algorithms for acoustic source localiratiod
environmental modeling.
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function, then thesubdifferentialof © aty, denoted byO(y), is the nonempty closed convex set of all

subgradientof © at y:
99(y) := {a e RN|O(y) + (x — y,a) < O(z),Vx € RV} €y

In particular, if © is differentiable aty, then the only subgradient in the subdifferential is thedgrat,
i.e., 00(y) = {VO(y)}.

We end this subsection with results that we use to simplié/dhalysis of the proposed algorithm.

Fact 1: ( [13, Claim 2]) LetC c RY be a closed convex set having a potate C such that
) #{hcRYN |||h—al <p}c C for somep > 0. If for given v € R¥\C andt € (0,1) we have
w = (1 -t +tv ¢ C, thend(v, ) > pi5t = pl=ti > 0.

Theorem 1:Assume that random vectofg[i]} (i = 0, 1,...) with E[||=[0]]|?] < oo are defined on a

probability spac€(2, F,P). Suppose that, for a given s€tc R and for anyz* < C, we have
E (llafi + 1] —a&*|* | fi), ..., 2[0] < ||2[i] —2*(]* - y[i] + 2[d),

wherey[i] and z[i] are sequences of non-negative random variables that acédns of z[0], . .., z[i].
If 72, E[2[i]] < oo, which also implies thad _° z[i] < co with probability one [28, p. 60], then we
have the following properties:
1) the sequencé||x[i] — x*||} converges almost surely (or with probability one) for antye C, and
El|=[i] — =*%] < oo;
2) the set of accumulation poinfs,[i]} is not empty for almost every € Q;
3) if two accumulation points:/, andx!, of the sequencéx,[i|} are such thak!,, !’ ¢ C, then the
setC lies in a hyperplane equidistant from the poisfs and=”, or, in other words|x! —x*||?> =
" — || for everyx* € C;

4) With probability one,y > y[i] < oco.

[

See [29, Theorem 1] for the proof of the first three properfies the last property, see [30, Proposition

4.2] and the references therein.

B. Problem formulation

In this study we consider a multiagent optimization probketated to that in [5], [6]. In more detalil, at
time ¢, we represent a network witN agents by a (random) directed graph denoted by:= (N, £[i]),

whereN = {1,..., N} is the set of agents arttfi| C NV x N is the edge set [23]. The edges of the graph
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indicate possible communication between two agents. Moeeigely, if agentt can send information
to agent! at timei, then(k,1) € £[i] (we assume thatk, k) € £[i]). Inward neighbors of agerit are
denoted byVNy[i] = {l e N| (I, k) € E[i]} (i.e.,l € Ni[i] is an agent that can send information to agent
k at timej).

We assume that each agenhas knowledge of a local convex cost functién|i] : RM — [0, 00)
(@ € N). Note that©y[:] is non-negative, possibly time-varying, and not necelysdifferentiable. Now,

define the global cost functioB[i] : RM — [0, ) of the network by

Olil(h) = Y _ xlil(h), 2)

keN
which is the function that the agents try to minimize at eviéime instant;. We also assume that each
agent has its own estimate,[i| (k € N)) of a minimizer of (2) and tha®y[i] is private information of
agentk. With these assumptions, if we also impose that all agemsldhreach consensus on a minimizer

of (2), we obtain the following optimization problem at time

minimize Z O[] (P i])
keN

subject to  hy[i] = hy[i], Vk,leN. (3)

Unfortunately, solving (3) at every time instaints difficult if the communication among agents is
limited because in such a case agents have only partiahiation of the problem. Conventional iterative
decentralized algorithms that are able to find an approximsatution of (3) (for fixedi) may require
many iterations, but in many real-time applications therojiation problem can change as often as every
iteration of the algorithm (c.f. Sect. IV). To handle suchdynic scenarios, we devise an algorithm that
allows the local functions to change during the iterativecesss and that solves (3) asymptotically (a
precise definition will be given soon). Here we mostly focurstbe case where the problem in (3) has
spatially and temporally related local cost functions, afinld below. (This class of problems appears
in many practical applications [6].)

Definition 1: (Spatially related local functiondf, for any time index:, the sets of minimizers of the
local cost function®9[i] (k € N) have nonempty intersection, we say that the local funsti®gp:]

(k € N) arespatially related More precisely, the time-varying local functiofig [i] (k € ) are spatially
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related if the following holds for every e N:

T[] = () Yuld] # 90, @)
keN
where
Tuli = e RY | 040ih) = O3l = int, @4 11(h) ©

Note that, in particular, if the local functions are spadyiaklated, therY'[i] is a set of minimizers of
the global function®[i].

Definition 2: (Temporally related local functiopdf the functions©[i] (k € N) are such that the
resulting global function®[:] (: € N) have a common set of minimizers, we say that the local fansti
Okli] (k € N) are temporally related. In other words, the local funciién.[i] (k € N) are temporally

related if("),. Yali] # 0, whereYg[i] is the set of minimizers of the global function at tirite

Yol = {h e B | 6fi(h) = inf, Ofi(h) |

The optimization problem in (3) can be seen as a sequencetifiipgtion problems indexed by
If the local functions©,[i] are both spatially and temporally relatédthere is a point iR that is a
minimizer of every local cost functio®;[i:] and every global functio®]:] for everyi € N. As a result,
(3) has at least one solution that does not depend on the tidexi, so we should seek those solutions
that solve (3) for as many time indicésas possible (ideally, for all € N). Unfortunately, except in
special cases, computing a time-invariant solution of é3%@lution that does not depend g N) can
be only possible witla priori knowledge of©[:] also for everyi € N andk € A/, which is a very strong
assumption in online algorithms because the functi®pg] are dispersed throughout the network and
are constructed as information is obtained. Nonethelettls,ssme mild additional assumptions, we can
devise a low-complexity algorithm that guarantees meamusgasymptotic consensus among agents and
that, with probability one, minimizes asymptotically adichl cost functions. (Note: if all local functions
are minimized and agents are in consensus at finvee have a solution to the problem in (3) at time
i.) In addition, the algorithm also guarantees that, withbptality one, all sequenceid[i]} (k € N)
converge to a (random) vector that, loosely speaking, idfitsently” close to the set of points that
minimize all but a finite number of global functiord[i|, : € N. This last property shows that the time

structure of the problem in (3) is also exploited. Beforevging the algorithm, we need to formalize

3|f the cost functions are not spatially related, but the Ideactions are time-invariant, we can use, for example algerithms
in [1], [9], [11] to solve (approximately) the resulting apization problem.
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what we mean by “asymptotic minimization of time-varyingqhfitions” and by “asymptotic consensus”.
Definition 3: (Asymptotic minimization [13]het O[i] : RM — [0,00) be any given time-varying
function, and denote bk[i] € RM an estimate of a minimizer @]i], wherei is the time index. Assume
that, for everyi € N, there is a time-invariant scal@r* € [0, co) such that®* = infp g O[i](h). We say
that an algorithm minimizes asymptotical/:| if the algorithm produces a (not necessarily convergent)

sequence hli]} satisfying

lim O[] (i) = ©*.

Definition 4: (Asymptotic consensus [B]ye say that agents reach asymptotic consensus if the esti-

mateshq[i],- - - , hy[i] satisfy
Tim [(1 = T)li]] = o, (6)
where ¥[i] := [hi[i]" ... hy[i]T]T, J := BBT ¢ RMNXMN B .— (b, ... by € RMNXM

b, = (1x ®e)/VN € RMN 15 € RV is the vector of onesg;, € RM (k = 1,..., N) is the standard
basis vector, and denotes the Kronecker product. (The convergenckff] is not a requirement.)

In the last definition, note thal is the orthogonal projection matrix onto the consensuspates
C :=span{by,...,by}. @)

Therefore, ify|i] € C, then(I — J)w[i] = 0 and all local estimate&y[i| (k € N) are equal, i.e., we

have consensus at time hy[i] = h;[i] for everyk,j € N.

Ill. PROPOSED ALGORITHM

To find in every agent a common point that minimizes all buttdigi many global function®|i]

( € N), we use a simple algorithm that consists of two steps, edclhich exploits directly the
assumption that the local functions are spatially related.

In the first step of the algorithm, agents use the spatiatioelaassumption from a local perspective;
each agent exploits the fact that there is a minimizeit©obwn local functionthat is also a minimizer
of the global function. In more detail, each agénimproves its estimatév;[i| of the minimizer of
the global function by finding a point that is also an improwdimate of its own local cost function

©[i]. Mathematically, as in [5], [6], each agehtapplies a particular version of the adaptive projected
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subgradient method [13] to its local functi@y,|i]:
(O] (h&]) — OFli])
(105 [il (R[> + 6 [i])
whereh [i + 1] is the resulting estimate after the subgradient updatei](hy[i]) € 00[i](hli]) (see
(1)) is a subgradient 0®y[i] at hy[i]; uili] € (0,2) is a step size@j[i] := infperm Olil(h), k € N;
dr[i] is arbitrarily chosen fromd < ox[i] < L if ©1[i](hy[i]) = 0 or &;[i] = 0 otherwise;L > 0 is an

hipli + 1] = hyli] — pueli] O} [i] (P[], (8)

arbitrarily chosen upper bound for the choice &fi]; and hy[0] is an arbitrary initial (deterministic)
estimate of a minimizer of the global functig®[0].*

In the second step of the algorithm, agents use the spdtsibreassumption from a global perspective;
they use the fact that a point that minimizmeery local functions also a minimizer of the global function.
The main idea is that agents should try to reach consensuseanestimates in the hope that they agree
on a point that minimizes every local function. Mathemdlycdor a network represented by a graph

Gli], agents exchange information locally with consensus délgos similar to those in [18]-[23]:

heli+1] = > Wylihjli+1], k=1,...,N, 9)
JEN:]
where W ;[i] : Q — RM>M js a random weight matrix that agehtassigns to the edgg, k) at time:
(W;lil = 0 if (4, k) ¢ £[i]). We can rewrite (9) in the equivalent forfh[i +1]7 ... hy[i+1])7]T =
PR+ 17 ... hy[i + 177, where P[i] : Q — RMNXMN i given by

Wl ... Wiyl
Plij=| &+ : (10)
Wil ... Wnli]

with W ,;[i] being the matrix of zeros ifj, k) ¢ £[i]. Here we assume that, periodically (c.f. Theorem

2), PJi] is ane-random consensus matrix conditioned [@n[i]” ... hy[i]7]" as defined below.
Definition 5: (-random consensus matri¥jor givene € (0,1] and graphG(N, £]i]), we define an

e-random consensus matrix conditioned on a random vegtat timei as a random matri¥P[i] : Q@ —

RMN*MN satisfying the following properties:

1) B [PET - )P | )], < (0o

“Note that (8) requires knowledge of the minimum value attdity the local functions. Although this information may
seem to be a strong assumption, in many practical problemsnthimum value attained by functions is available. Exammple
of such problems include all those where the objective isrid & point in the intersection of closed convex sets [13], and
they are frequently found in, among other application desiacommunication, optics, and signal and image proceg2itig
In Sect.IV-A.3 we show two examples of applications.
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2) |[B[PUTPI | ¥]], =1

3) PJiJv = v for everyv € C (see (7)).

4) If P[i] is decomposed as in (10), thé¥# ;[i] = 0 if (j,k) ¢ E[i].

Note thate-random consensus matrices are a simple extension of ciowahconsensus matrices
[18]-[23] to the case where consensus has to be reached ewtors. Therefore, we can use many
different techniques [18]-[23] to build these matricesctS&/ has one example of such a technique.

Before showing the main properties of the algorithm, weoidtice the following lemma, which is used
to simplify the analysis.

Lemma 1:Assume thafa[i]} is a real sequence satisfyitign; .~ a[i] = 0. In addition, let{\[i]} be
a non-negative sequence such that A\[;] < 1 for everyi. If there exist/ € N andg € [0, 1) such that,

for everyl € N, we haved < \[i] < 3 for at least one time instante [I,[ + I], then

i

ig&E:IIAﬁ—MQﬂ:o.

j=0n=0
Proof: The proof is shown in Appendix I. |

We now summarize and analyze the proposed algorithm.

Theorem 2:(Broadcast adaptive subgradient method)
Consider the problem in Sect. 1I-B and assume that, for every N and conditioned or[i] =
[(hi[i)T - hy[i]T)T, Pli] : Q — RMN*XMN gatisfies properties 2), 3), and 4) in Definition 5. To solve
the problem described in Sect. II-B, we use the followingusggre (which is obtained by combining (8),
(9), and (10) in a single equation):

pua[i]en []O1 [i] (ha [i])
Yli +1] = Pli] | li] - : : (11)
pn [ilan 110 i (hxli])

where ai[i] = (Ok[i](hi[i]) — O%[i])/(|O4[i](Re[i])||* + 0k[i]) and 1[0] is considered deterministic.
(NOTE: other parameters have been defined after (8).) Thaitiigh satisfies the following:

(&) (Mean square monotone approximation)
Suppose that the local functior®y[i| are spatially related, and let the step sizes be within the

interval ux[é] € (0,2). Then, for everyh*[i] € Y[i] (Y[¢] is defined in (4)),

Elllyli+ 1] = »*[i1%) < Elllid — 4[] (12)
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where*[i] := [p*[i|]T ... h*[i]T]T € RMNV,

(b) (Almost sure asymptotic minimization of the local cost fioms):

(€)

(d)

(e)

Assume the following:

1) The step size in every agent is bounded away from zero aadit, there existy,e; > 0
such thatu[i] € [e1,2 — €] C (0,2);

2) Of[il =05 €R, i=0,1,...;

3) T =[50 Yli] # () (i.e., the local functions are spatially and temporallyated));

4) There exists somé1 > 0 satisfying||©/ [i](h.[i])|| < M for everyk € N andi =0,1,...
(Assumption 3 guaranteds# C* := {[h” --- hT]T ¢ RMN | h € T1.) Then, with probability one
and for anyyy* € C*, the sequencé||+[i + 1] —1*||*} converges, and the local cost functions are
asymptotically minimized, i.eP (lim; .o O4[i](h[i]) = ©}) =1
(Mean square asymptotic consensus):

In addition to the assumptions above, for some fixed 0 and/ € N, assume that in every interval
[[,1+ 1] (I € N) there exists € [l,]+ I] such that the matri¥P[i] is ane-random consensus matrix

conditioned om[7]. Then we have asymptotic mean square consensus, i.e.,

Tim B[|(I = J)l]|?) = 0. (13)
(Almost sure convergence ¢f]i]):

If the assumptions in part (c) hold ad* does not lie in a hyperplane, then, with probability one,
[i] converges to a random vectgr that satisfiegI — J)z,Ab = 0 (i.e., the estimated[i| of every
agent converge, and the agents reach consensus asynilyiotica

(Characterization ofi)) Assume that the conditions of (d) hold. By (b) and (d), famast every

w € Q, we know thate[i] = [h1[i]7 ... hyo[i]T]T converges to a vectap,, = [flf e EZ]T €
RMN (ﬁf € RM) and thatlim; .« O (h [i]) = 0 for everyk € N. If, for an interiora of T

(which has an interior point becaué®& does not line in a hyperplane), we have that

. . . *
(ve>0,¥r > 0,36 > 0) inf > Oulil(hrwli) = D OF + &,
keN keN

whereS,, == {i e N| >, oy d(hpoli], levee:Okfi]) > € and Y, - [u—hg[i]|| <7}, thenﬁw
satisfiesﬁw € liminf; . Y[i], whereliminf; .., T[i] := U2, N,>; T[n] and the overbar operator
denotes the closure of a set.

Proof: The proof builds on the results in [6], [13], [16] and is givenAppendix II.
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[

Recall that, when the local functions are spatially relatdhd problem in (3) is solved when the
following properties are satisfied: i) every local functisrminimized and ii) the agents are in consensus
(h1]i] = ... = hyli]). These two properties are satisfied asymptotically wherapg@y the proposed
algorithm. More precisely, the local cost functions arenagitpotically minimized with probability one
(Theorem 2(b)) and agents reach mean square consensusgith2¢)). In addition, Theorem 2(d)-(e)
shows that agents reach consensus not only in the mean sprese, but also with probability one, and
their estimateshy, . [i] (k € N) converge to a point ifim inf; ., Y[i], which is the closure of the set
of minimizers of all but finitely many global function®[i] (i € N). This last property shows that the
algorithm exploits the temporal structure of the sequeriagmtimization problems in (3). (Theorem 2(a)
says that, if the local function is only spatially relatediate i, in the mean square sense, the Euclidean
distance oflh{[i]7 ... hy[i]T]" to a solution of (3) does not increase.)

Remark 1. (On Theorem 2)

1) The algorithm in Theorem 2 cannot be analyzed with therdetéstic approach in [6] because
the mappingl’ : RMY — RMN defined byT'(y) = P,li]y is not necessarily nonexpansive, i.e.,
|T(x) —T(y)|| < ||x — y|| does not necessarily hold. Nonexpansive mappings play @atmole
in the analysis of the algorithm in [6], and the scheme in TaeD2 includes as a particular case
the method in [6].

2) (Asynchronous operatigrFor simplicity, assume that agents want to minimize a tinvariant
global function©(h) = >, .- Ox(h), where©y, ..., O are spatially related. Suppose that agents
are not synchronized and they do not necessarily apply stesfep of the algorithm, the subgradient
updates in (8), all at the same time. To model this scenareocan consider that agehtonly
applies the subgradient method at time instardszZ, C N, whereZ, is an infinite set. In doing so,
we can consider that agents are using the following sequehspatially and temporally related
local functions:

Suliny — 4 e

Sh otherwise.

Note that, with the time-varying local functions defined aeddor everyl € N, the set of minimizers
of the original function® can be equivalently expressed fis= N;>;Y[i], whereY[i] is the set

of minimizers ofé[z‘]. Likewise, if agents also do not want to exchange infornmagas in (9))
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whenever a subgradient update is applied, we can use tlmsviog sequence of random matrices

Bl Pli], ieIp

I otherwise,
whereZp C N is an infinite set that shows time instants in which informiatis exchanged among
agents, andP[i] is the random matrix corresponding to the communicatioreseh By applying

é[i] and1~3[z’] to the algorithm in Theorem 2, we conclude that, with prolitgtone, agents produce

sequenceshy;fil}, k € N, that converge to a common point WF°, N,,>; Tn] = UX,T = T,
which, as discussed above, is the set of minimizers of theaglfunction®©.

3) (Adding constraintsConstraints can also be easily added by considering timgngacost func-
tions. For example, with the assumptions in Theorem 2()Ele : R — [0,00) be a (fixed)
cost function known by agent. Suppose that the agent has knowledge of a(setuch that
T c C. Then we can use the following time-varying cost functiost@ad of the original function
O : RM — [0, 00):

. Or(h), 3 odd
Selih) — M °

d(h,C)+ O} i even,
Applying the proposed method @k[z’] and using similar arguments to those in Remark 1.2, we

conclude that every agents will find a common point that Batisall constraints and minimizes

every local function.

IV. POSSIBLE APPLICATIONS

In this section, we specialize the scheme in Theorem 2 teeleew distributed algorithms for acoustic
source localization (Sect. IV-A) and for environmental raligg (Sect. 1V-B). In the acoustic source
localization problem, we show that batch incremental mashsuich as those in [3] can be easily modified
to become adaptive, parallel algorithms operating withsgogaetworks and with mobile sensors. In the
environmental modeling problem, we show that existingritisted set-theoretic adaptive filters can also
be straightforwardly extended to gossip networks. In betbliaations, in ideal scenarios, the convergence
properties of these particular cases of our general opmitioiz algorithm follow directly from Theorem 2.
(This is in stark contrast with many existing distributechptive algorithms, which are typically devised
to solve specific problems, such as, for example, systentifdation with linear filters.) We also show

that, in practice, these particular cases of our generahadetan have good performance even when
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many assumptions of Theorem 2 are just rough approximations

A. Coordinated acoustic source localization

1) Problem description and existing solution¥he objective is to estimate the unknown location
x* € R? of an acoustic source withi agents distributed at spatial locatioas € R? (k = 1,..., N).
(We later extend this problem to the case where agents ardendbach agent knows its own position
x;, and the acoustic source powdr® In addition, agents are equipped with an acoustic sensdheso
also know the sound intensity at their position. (With thiformation, the agents can estimate the range
of the acoustic source from the received volume, but not tleetion.) In more detail, the acoustic power

perceived by agert can be modeled as [31]

A

=3 T " (14)
@ — |2

Yk

whereny, is a noise sample. For mathematical simplicity, noise isrofodeled as Gaussian, even though
this assumption is unrealistic becaugeshould be always positive. Nonetheless, algorithms ugiig t
unrealistic assumption often give good performance wheogled in real-world scenarios [31].

Given the statistical distribution of the noise, we canreate the position of the target with the
maximum-likelihood approach [31]. However, in this apption the likelihood function is not a con-
cave/convex function, so computing a global maximum/minimmay not be an easy task. To devise
simple decentralized algorithms, we can consider theiatig convex optimization problem [3]:

N
Topy € arg frlnin d(h, Dy,), (15)

€R?
k=1

where Dy, is given by Dy, := {h € R? | ||h — xx|| < /A/yr}. When noise is not present, the solution
set of the optimization problem in (15) isy_, D, > =*. If the acoustic source position* lies in the

convex hull of the agents’ locations, i.ec7 € H where

N N
H:{ZCERQ |m:Zakxk, OékZO, Zak:1}, (16)

k=1 k=1
then the unique point im{’_, Dy, the solution to the problem in (15), i6* = x. [3]. The incremental

projection-onto-convex-sets (POCS) algorithm [3], a loowplexity, decentralized algorithm, can thus
be used to solve (15) in this scenario (this method has somaengders that can be adjusted to deal with

*We can use the same techniques developed in [3] to extendrtpeged algorithm to the case whe#eis unknown. For
brevity, we do not consider such extensions here.
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noise). However, this algorithm requires the definition qdadh visiting all agents in the system, which
is a difficult task in large-scale networks. Furthermorerirtly the iteration process, new measurements
can be available to the agents, but the incremental POCSitalgodoes not use such information. An
additional limitation of this algorithm is that it does natresider mobile agents.

2) Proposed algorithm:To derive our proposed algorithm, we first start by introdgcthe time-
varying cost function that we minimize asymptotically. Wars by assuming that agents are mobile and
that they constantly take new samples of the acoustic smtedsdity. Therefore, to model this dynamic

scenario, we replace the model in (14) by

A

= Tl e+ -

Y [1]

whereyy[i], x[i], andn[i] are, respectively, the acoustic sound intensity, the jposdf the kth agent,
and the noise sample of agemnt all at time i. Agents take samples of the acoustic sound intensity at
different positions, so they have access to samples within@signal-to-noise ratio (SNR) (which is
high in positions close to the acoustic source). Therefasemany samples are available to estimate
the position of the acoustic source in every agent, here veetlisse with potentially high SNR. In
more detail, we keep in the memory of each agent only the $argbserved samplg,[i] and the
corresponding positior[i] (up to timei).6 The index of this sample can be mathematically expressed
by lx[i] = argmaxcqo,.. 5y y[l]. FOr notational simplicity, hereafter we dendigi] by [, and the

dependence of, with ¢ is implicit. Now, consider the following (time-varying) & agentk:

Rz if yk[lk] S Ck[i],

{h € R? | |h—xi[li]] < , } otherwise,

Yellk] — cxli]
where ¢, [7] is a parameter used to increase the reliability of the spligré] when noise is present.
In the noiseless case, we can use the same arguments use(laftéo conclude that the position of
the acoustic source satisfie@s € Ny Dy [i] for everyi € N and ¢i[i] € [0,00). In this scenario, at
time i, the setN,cn D[] > «* is also the solution set afrg minpere Yo nr Okli](R), Where the local

(time-varying) functions are given by

Oklil(h) = [h = Pp, (b (18)

®We could easily derive variations where only the largestgarwithin an interval is used. This idea could be useful &mkr
mobile acoustic sources.
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Therefore, in ideal scenarios, the local functions in (18 spatially and temporally related because
Oli](x*) = 0 for everyi € N. In particular, ifc;[i] = 0 andx* belongs to the convex hull defined by
the positionsey[lx] (k € N), then we also have that* is the only point in the intersectioNgen Dx[i].

If noise is present, we can increase the radius of the spliggg$ by increasing the parameteg[i| to
guarantee tha®[i](x*) = 0 (or, equivalentlyx* € Nk Dg[i]) with high probability. However, later we
show that in practice the resulting algorithm works wellrevéth ¢, [i] = 0 in the presence of noise. The
main idea of the proposed method for acoustic source |I@tadiz is thus to use the scheme in Theorem
2 to minimize asymptotically9[i] and to find a fixed point that minimizes as many global function]

as possible. Such a solution is expected to be a good estohatebecausec* is a minimizer of every
global function at any time instant, i.e]:](«*) = 0 for everyi € N.

Having defined the sequence of global functions to be mirgchiasymptotically, we now turn our
attention to the communication model. Owing to the natureiogless channels, if agektbroadcasts an
estimatehy[i], all other agents within a certain distance are able to vediis information. To exploit
this physical characteristic of wireless channels, we heecommunication model in [20]. In more detail,
we assume that, at each iteration, only agenselected uniformly at random, broadcasts its estimate

h[i]. Then all agents within rangB, i.e., all agents in the set
Nili] == {j € N | Jwx[i] — z;[i]|| < R} (19)

mix their estimates with that received from agéntTo be more precise, given that agénthas been
selected at time in realizationw, we express this communication model as in (9) by using thewng
matrix W, ., [i]:

(

L j¢ NNk} andj =1

] 7 dj =
W o] = 71, J € Nili]\{k} andj =, (20)

I—~I, je N \{k} andl =k,

0, otherwise,

wherey € (0,1) is a mixing parameter. If the communication rangés long enough so that the graphs
Gli] with the neighboring rule in (19) are (strongly) connectéen the matricedP[i] (i € N), which

are random block matrices haviid ,;[i| as submatrices (see (10)), argandom matrices for some
e > 0. This fact can be proven with the results in [20] and the mfees therein. We omit the details

for brevity.
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Applying the local cost functions in (18) and the commur@atmodel in (20) to the scheme in (11),
we arrive at the following algorithm:
Algorithm 1: (Proposed algorithm
1) Initialize the estimates,[i] with an arbitraryh;[0] € R2.
2) Move all agents and take new samples of the acoustic souedsity.
3) Keep in the memory of each agent the largest sample olibso/far and its corresponding position
(the sample and position are denoted by, respectivg[¥,] andx[lx])

4) Agents apply the subgradient update defined in (8): fok alN,
hili + 1] = hy[i] + prli] (Pp, o (heli]) — heli])
wherep[i] € (0,2) is the step size and
h, if  h € Dygli]

Pp,ji(h) = A (h — x[lx])

xrle] + - otherwise.
el S = TR = walil]

5) Choosemn € N uniformly at random.

6) Agentm broadcasts,,[i + 1]

7) Agents within distancék to agentn mix the received estimatk/, [i + 1] with their own estimates

h;li]:
hfi 1] = ’yh}[z’ + 1]+ (1 =)k [i +1], if je Nyli]\{m},
hli +1], otherwise
wherev € (0,1) is a mixing parameter common to all agents.

8) Increment; and go to step 2.

Note that Algorithm 1 requires neither simultaneous infation exchange nor agents to be aware of
the position or the number of their neighbors. In additionljke incremental methods, we also do not
need to define a path visiting all agents.

3) Numerical simulationsin a 100m x 100m field, at each realization of the simulation we randomly
distribute 36 agents and place an acoustic source with- 100 at =* = [50 50]7. Each agent measures

the acoustic power at their own locations according to (Ife noise samplesy[i] are i.i.d. and drawn

’A subgradient 00, [i] at k is ©}[i](h) = (h — Pp,;y(h))/|h — Pp, i (h)]| [13].
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from a Gaussian distribution with varianeg = 1 and mean zero. For simplicity, to obtain the samples
yx[i] at time+, agents choose positions;[i] uniformly at random within the region of interest.

We simulate two different versions of the proposed algariffroposed-1 and Proposed-2) that differ
in the choice of the parametef.[i]. In more detail, Proposed-1 usegli] = 0, and Proposed-2 uses
ckli] = 4oy (this last value guarantees that € D;[i] with high probability and that the radius of
the sphereDy[i] is not excessively increased when sampjgig] are taken close to the acoustic source
location). Other parameters are equal in both Proposedt Pesposed-2u[i] = 1, R = 30, andy = 0.5.

We compare the proposed method with the incremental POGSitalap [3], which is the algorithm we
build on to derive the proposed adaptive method. The incnesh®OCS algorithm uses fixed agents (i.e.
ri[i] = r[0] for all i andk) and just a single sample of acoustic sound intensity tonesé the acoustic
source location. In this algorithm agents are activatedguaigreedy rule: from all agents not previously
selected in a cycle, the next agent in the cycle is the onestds the current agedtTo mitigate noise,
we set the step size of the incremental POCS algorithim2o

The performance of interest is the average mean square (M&E) of the agents:

1 al . * |12
N;Hhk[l]—fﬂ | ]

We compute expectations by averaging the results of 10xatiains of the simulation. Fig. 1 shows

MSE[i] = E

the simulation results.

We can see that both proposed algorithms greatly decreasestimation error compared to the
incremental POCS algorithm. The superior performance efpgitoposed methods is explained by two
facts: (i) agents are mobile, so they can take samples dhesacoustic source; and (ii) agents can choose
a suitable cost function as data becomes avaifable.

An additional good feature of the proposed algorithm is thatoes not require the definition of a
path visiting all agents in the system. Agents are randormlgcted, broadcast their estimates, and only
those agents within the communication range mix estimadesfeedback is necessary, so agents can
ignore the position and the number of neighbors. In manyiegins, this communication model could

be enough to justify the use of the proposed method overrmental methods (even if the performance

8If in the simulation we have thaf, < 0 (not physically possible, but it can happen in the simutatiecause of the acoustic
model we adopted), then the corresponding agent simplyssiedestimate of the previous agent of the cycle to the nexttag
in the cycle.

%In contrast, batch methods, such as the incremental POQ@&thigs, consider fixed sets/cost functions, so, formahgy
cannot incorporate new information obtained by taking dampt different positions if the algorithm has alreadytsthto run.
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Fig. 1. Transient performance of the algorithms.

of the proposed method were inferior to that of incrementathods). The reason is that acquiring a
path visiting all agents is a difficult problem to solve indarscale networks, and the proposed method
does not need to solve such problems.

The performance of Proposed-2 is better than that of Prapbd®ecause the former expands the sets
Dy|i], thus increasing the probability that € NicaDx[i]. Note that the parametey,[i] in Proposed-2
does not unduly increase the “size” of.cnrDx[i]. (SetsNigen Di[i] that are too large can give poor
estimates because not all points in these sets are netesdase tox*.) The jumps and the initial
unsteady behavior shown by the MSE curves of the proposeafiflgns are explained by the fact
that agents take samples at random locations. Therefoti#,samples with sufficiently high SNR are
obtained in every agent, the sdtg [i] are not reliable, and the subgradient updates can undulgase
the estimation error. Note that the sets used by Proposed-2haays more reliable than those used by
Proposed-1 because of the larger expansion fag{dl; and this fact explains why the unsteady behavior

of Proposed-1 lasts longer than that of Proposed-2.

B. Environmental modeling

1) Problem description:Suppose that a physical phenomenon (e.g., temperatuireifysadensity of
adversarial agents, etc. [32]) in a region of interBst R” is expressed by a function: D — R that

can be well approximated by : D — R defined below:

f(x) = o' ®(x) ~ g(x), (21)
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wherez € D is a spatial coordinatep(x) := [¢1(x) ... ¢r(x)]" € RE, ¢, : RP — R is thenth basis
function (e.g. Fourier series, wavelets, radial basis tions, etc.),a := [ag ... aL]T e REL, anda,
is the coefficient associated with theh basis function (see also [32]). If, for example, we usergda
enough number of properly selected radial basis functionisuild ®(x), the universal approximation
theorem [33, Sect. 20.6] justifies the approximation in (2% assume that the basgs : R — R
(n = 1,...,L) are fixed and known by all agents, which form a network asdedi with a graph
gli] = (NV,£&Ji]) as described in Sect. 1I-B. In addition, we also assume thahtd: can observe noisy

samplesy;[i] € R:
yili] = g(xrli]) + nkli] = f(2[]) + ngli, (22)

wherex[i] € D andng[i] € R are, respectively, the position and the noise sample oftagan time.
The environmental modeling problem amounts to estimading (21) in all agents from the sampleg|:]

(k € N), which are dispersed throughout the network. Note thatkioywing «, agents have complete
information about the physical phenomenon in the regiomtdrest.

Having described the estimation problem, we now turn to ttop@sed distributed algorithm. In our
method, agents communicate asynchronously and do not lcaessto the location, number, or samples
y|t] of their neighbors.

2) Set-theoretic adaptive algorithms for environmentaldeling: We start by considering an ideal
scenario; suppose that there exists R” such thata? ®(x) = g(z) for every coordinater € D, and
no noise is present in the measurements (k € AV, i € N). As a result, we have that, for evekye N,

i € N, andxy[i] € D,
a € Fili] == {h € RL | AT ®(x[i]) = yi[i]}-

Therefore, ifa is to be estimated in this ideal scenario, a good estimateldladso belong tay[i] for
anyk € N, i € N, z[:] € D. To handle non-ideal scenarios, we can use the followinaxegion Gy[i]
of Fy[i]:

Gili] == {h € R" | |R" @(ay[i]) — yxld]| < &li]}, (23)

where&,[i] > 0 is a suitably chosen relaxation parameter of ageat timei (to avoid clutter, we omit
the dependence dfy[:] with £ [i]). In more detalil, the parameté[i] serves two purposes. First, it

increases the probability that € Gy [i] in noisy environments. Second, it is used to take into actctien
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fact that the existence ef ¢ R” satisfying the equalitye” ®(x) = g(x) for everyz € D is questionable
because, in the domain, the functiong may not be equivalently expressed by a linear combination of
the basis function®, ..., ¢;. In such a case, we could, for example, redefine the desitedarsl o

as any vector ifR” such thatf in (21) reproduceg with an uniform tolerance > 0 in the region of
interest, i.e.a € {h e RY | —e < hT®(x) — g(x) < ¢, x € D} (this set is nonempty provided that

is large enough). Therefore, if the relaxation paramgtér is sufficiently large, we have that € G[i]

(in the simulations we show that the algorithm can work weérewith £, [:] = 0 in non-ideal scenarios).

At time indexi, reasonable estimates af should then belong to

Clil== () ) Gkl 3 e, (24)

nezli| keN
where Z[i] is a properly chosen subset of time indices of available oreasentsyy[i] (i.e., Z[i] C
{0,1,...,4}). Intuitively, C[7] is the set of estimates af that are consistent with all measuremeys:|,
k € N andn € Z[i]. The setC[i] can be time-varying becaudgi| is allowed to change from iteration
to iteration. This time-varying property dof[i] (and, consequently, af[i]) can be used to incorporate
information gained by measuremenigli| (represented by set§y[:]) as they become available. The
choice ofZ[i] should take into account the desired complexity of the @gor and the time in which
the environment, described by the functigncan be considered approximately static. Having defined
C[i] in (24) as the set of reasonable estimatesxadt time i, we now proceed to construct convex cost
functions havingC[i| as the set of minimizers, and then we apply the scheme in €hea@rto derive
low-complexity algorithms that minimize these time-vamyicost functions asymptotically.

The parametery in (21) can be seen as a linear filter [33], [34], sO we can usectist functions
of existing set-theoretic linear adaptive filters (e.ge #ffine projection algorithm [13], [35]-[37], the
normalized least-mean-square algorithm [13], [37], [38%.) to estimatex. In doing so, we can extend
these approaches to distributed networks with random .limkparticular, here we use the following local
cost function [13]:

qli]—1

Oxlil(h) = > eli,j] b — Pa, (R, (25)
7=0

wheregq[i] € N is the number of the most recent sampig§|] used by the agentsy|i, j] is a constant
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given by 10

» il ~ Pogio gl it Luli =0
CklL ] =

0 otherwise,
Lyii] is defined byLy[i] := Zg[jo_lwk[i,j]nhk[i] — Pa,ji—j)(h[i])]l, andwy[i, j] > 0 is a weighting
factor of the setGy[i — j] and should satisfij[jglwk[i,j] = 1. Note that, ifC[i] # 0 with Z[i] =
{i —qli] +1,...,i}, thenO[i](a) = >, .\ Orli](a) = 0 for any a € Cli] and for any of the possible
choices of weightsu, [i, 7]. In particular, in the ideal scenario described ab®/g}(a) = 0, which shows
that the local functions are both spatially and temporalated. Therefore, we see that good estimates of
a should minimize as many global functiofgi] as possible (ideally, for afl) becausex is a point that
minimizes every global function. The set of minimizers@jfiji may not depend on the possible choices
of weights in an ideal scenario, so this fact may suggestuwlashould not pay any special attention
to the choice ofwy[i, j]. However, by noticing that the environmeptan be time-varying in real-world
scenarios, in practice we may need to give large weights t®@gli] based on more recent samples
yk[i]. In doing so, by using the scheme in Theorem 2 with the locattions©y[:] in (25), agents move
their estimates,[:] to points closer to sets based on recent measuremghitgi.e., sets[:] with large
weight w4, j]) than to sets based on old measurements. In addition, asnsimo{@], [14], particular
choices of weightsu[i, j] yield subgradient updates (defined in (8)) that are easy fieiment even
when the memory of the algorithm, represented by the pammgt, grows unboundedly.

Having defined the cost functions to be minimized asympadificwe now need to choose a com-
munication model. For this application, we again use thepEntommunication model applied to the
acoustic sensor localization problem. Briefly, we assuraé digents within rang®& from each other are
neighboring agents, and only one agent, selected unifoahiandom, broadcasts its estimaitgli| to
neighboring agents. Details have already been providedamdiscussion before Algorithm 1. Applying
this communication model with the local cost functions iB)(80 the scheme in Theorem (2), we arrive
at the algorithm described below.

Algorithm 2:

1) Initialize the estimatedy[i] with an arbitraryh;[0] € R”. Chooseq[i], which is the number of

setsGy[i] used at each iteration of the algorithm, the expansion petenty,[i| of Gy[i], and the

The constanty][i, j] is not necessarily the same at different time instants kscayji, j] depends on the current estimate
h[i].
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weightswy[i, 7] ( =0,...,q[i] — 1).

Move all agents and take new samplg§i].
Agents apply the subgradient update defined int8yr all & € NV,
qli]—1
hili + 1] = hyi] + fgd] Z wili, j1Pa, [ (heli]) — heli] | (26)
=0

where i [i] € [0,2My]i]] is the step size,

M0 i, 4] 1Py (Rali]) — Rl

[i] 5, if Py H¢ﬂq[z] L Gyli - )
Mfi] = [ S8 il ] Py (hali) — Pl

1, otherwise,

(NOTE: M[i] > 1) and [26, p. 99]

h if he Gylil

(yli] — &kli]) — R @ (@4[i)) o _ -
H‘I’(ﬂﬁ'k[l])u? ®(z.[i]) if h' ®(xkli]) < yrli] — &[]
(yrli] + &li]) — h' ®(

1@ (@ [i])[|?

Choosemn € N uniformly at random.

Pg,ij(h) = h+

Bt DD @ (agli)) it BTB(@al]) > pali) + €l

Agentm broadcastd!, [i + 1]

Agents within distancé? to agentn mix the received estimate/, [i + 1] with their own estimates

hj [’L]

yhili + 1]+ (1L =yhili+ 1, if j € Nnli\{m},

h;li+1] =
h[i + 1], otherwise

where~ € (0,1) is a mixing parameter common to all agents.

Increment; and go to step 2.

1The details of the derivation of (26), obtained by applyihg subgradient update to the local cost function in (25)ha&

in [13,

Example 3].
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3) Numerical simulations:In the simulation, we drop the assumption of static envirents, and
agents estimate the dynamic environment described by

gli](x) = sin ot 4 or— ) 4 cos | 2m—2 4 2r—— ,
100 2500 100 2500

wherex := [z1 z2]7 € R?, i € N is the discrete-time index, and , x> € [0,100] are spatial coordinates
of the region of interest (2400 x 100 square). (We use this particular functigfi| to illustrate a scenario
where the approximation in (21) is a rough approximation guthe choice of basis functions.) Agents
use Gaussian radial basis functions

pj(x) = exp <—%) , j=1,...,L,
where L = 16, ¢; € R? (j = 1,..., L) are centers distributed in the region of interest, andis the
width of the radial basis functions. We subdivide the regibinterest into 16 squares of the same area,
and we place one agent in each subdivisiéh=£ {1, ..., L}). Each centee; is located at the center of
each subdivision, and we set, = 30/+/2, which is a value chosen to avoid basis functions that are too
peaked or too flat in the region of interest. At timeeach agent takes sampleg;[i] according to (22),
where the noise samples [i] are i.i.d. and drawn from a zero-mean Gaussian distribwtitin variance
or[i]? = 0.3, andx,[i] is a position selected uniformly at random in the subdivisitto which agent:
is placed.

The parameters of the proposed algorithm are as followgpd3ed-1 ¢[i| = 1, jx[i] = 0.2, v = 0.5,
&kli] = 0, wii, 7] = 1), Proposed-2¢(i] = 1, fxli] = 1, v = 0.5, &[] = ok[i], wi[i, j] = 1), Proposed-3
(q[¢] = 8, pli] = 0.5, v = 0.5, &[] = 0, wy[i, j] = 1/8), and Proposed-4[i] = 8, fx[i] =1, v = 0.5,
&kli] = oxli], wgli,j] = 1/8). Proposed-1 and Proposed-3 mitigate the effects of naisensodeling
errors by using a relatively small step sizg[i], whereas Proposed-2 and Proposed-3 mitigate those
effects by increasingy[i] (i.e., by increasing the reliability of the sef$[i]). Note that, in particular,
Proposed-1 is an extension of the celebrated normalizesi-te@an-square algorithm [13], [33], [34],
[37], [38] to distributed gossip networks. The communicatrangeR of the agents in all proposed
algorithms isR = 50. In these algorithms, agents use the same set of parametérsiich a choice is
not a requirement. Agents using different sets of pararmei@n be useful in scenarios where the memory
and computational power of the agents are different.

We compare the proposed algorithms with a method where atitagise the solution of the following
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Fig. 2. Tracking performance of the algorithms.

weighted least-squares fit problem:

husli] € arg min (Z O Y (uiln) — h" @ (i [n)))? + 5RHh!!2> ,

n=1 keN

wheregpr € (0,1] is a forgetting factor used to take into account the dynaratane of the environment,
anddy is a regularization factor. This algorithm, hereafter daimated weighted least-squares (WLS)
algorithm, can be implemented if there is an all-to-all commication among agents in every iteration,
or if all agents have a bi-directional link with a center fusi Therefore, the WLS algorithm is ignoring
the assumptions of the multiagent system, which we requireet non-hierarchical and to have sparse
communication among agents. In the simulations we use twsiores of the WLS algorithm: WLS-1
(Brr = 0.92, 6r = 107%) and WLS-2 (rr = 0.99, 6 = 107).

The goal of every agent is to estimate the time-varying floncy[i] in the region of interest (the
100 x 100 field), thus, given the estimatés.[:] (k € N) at timei, we use as the performance metric a

normalized sum of the mean-square error (MSE) of the agents:

Sren B[ 1% o 19li)(@) — hili]T @ ()2 day da]

VT 1 [ gli) ()| day das ’

where expectations are computed from ensemble averageB8Oofehlizations of the simulation, and
integrals are evaluated numerically. (In practice, conmguthe filter that minimizes the MSE is not

possible because perfect knowledgeyif is required.) Fig. 2 shows the performance of the algorithms
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The two versions of the WLS algorithm have the best perfooadrecause the WLS algorithm can
be considered as a centralized method, and, as such, itdsheulised only as a reference of the best
performance that can be achieved by the proposed algorithen.performance of WLS-2 is inferior to
that of WLS-1 because WLS-2 weights heavily old measuresgiit] (the parametefrr of WLS-2 is
larger than that of WLS-1) and the environment is dynamiopBsed-1 and Proposed-2 use only the most
recent measuremenpt}[i] at every iteration, so it is not surprising that they havewhest performance.
However, these two algorithms have the lowest computdtimoraplexity of all compared algorithms. The
computational complexity of Proposed-1 and Proposed¢2(i5) (per agent), and the better performance
of the latter is due to the larger relaxation paramétéi, which mitigates the detrimental effects of noise
and modeling errors. Proposed-3 and Proposed-4 have tiedterProposed-1 and Proposed-2 because
Proposed-3 and Proposed-4 use more information at eacttiorer(measurementg,[i|). The slightly
superior performance of Proposed-4 compared to that ofd3eap3 is again explained by the larger
relaxation parametef;[i| of Proposed-4. In terms of computational complexity, nbtet the subgradient
updates in Proposed-3 and Proposed-4 can be parallelizggenations of complexity) (L) (per agent)
[39].

V. CONCLUSIONS

We have developed a non-hierarchical algorithm that mirémiasymptotically a global function defined
by the sum of convex functions. Each term in this sum is a leoal function known by an agent in a
network, and we assume that the sets of optimizers of thd fanations have nonempty intersection.
Unlike existing optimization methods, the local cost fuoes can be time-varying, and agents exchange
information locally via network gossiping. This mechanifmm information exchange enable us to relax
the assumption of simultaneous exchange information aragegts, a common assumption in the analysis
of multiagent algorithms using subgradient methods. Wewgldoconditions to guarantee almost sure
asymptotic minimization of the local cost functions, comsgs among agents, and convergence. We
provided examples of applications where the algorithmdmibst general form was specialized to handle
specific problems. In more detail, we applied the proposetthadeto derive new adaptive algorithms for
acoustic source localization and for environmental maodelin the former application, agents estimate the
position of the acoustic source directly; in the latter &ggilon, agents estimate a physical phenomenon
(temperature, salinity, density of adversarial agents) &l trying to reach consensus on coefficients that
define the environment. These applications show technithatscan be applied when the assumptions

of Theorem 2 are rough approximations, and they also show thoextend existing adaptive or batch
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projection-based methods to distributed networks withdcam links.
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APPENDIX |

PROOF OFLEMMA 1

Fori > j with j € N, there are at leadt(i — 5)/({ + 1)| distinct indicesk within the interval[ j, 1]
where0 < A[k] < 3, hence[ [, %) Ali — n] < BLE=9/U+D] We also know tha{ >’ _, [T, Ali — n]}

is bounded because, for everg N,

O<ZZ:HAz—n<Zﬁ“3/(1+1”§—ﬁ:.5. (27)

j=0n=0

From this moment the proof resembles that of Mertens’ thedé]. The convergence dfu[i|} to zero

implies that, for every > 0, there existsk € N such that fori > K we have

lald] < (28)

ﬁ’
whereS is as defined in (27). For thi& and anyj < K (5 € N), we conclude fromim;_, Hf;ﬂb AP —
n| = 0 that there existd. > K such that, for every > L,

i—j

}_I())\[z'—n] < ﬁ, (29)

where B > 0 can be any (nonzero) upper bound of the convergent sequin@g} (e.g., B =

sup;(|ali]|) + 1). Therefore, fori > L, by (27), (28), (29), and the triangle inequality:

Za[j]H i—n] <Z H [i —n]
=0  n=0 =0 n=0
= S Jali)l Tl + S Jalill T M- )
=0 n=0 j=K n=0
Siotlalill o Y T2 Ali — n]
9 2( B € - 250 <6

which concludes the proof.
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APPENDIX I

PROOF OFTHEOREM 2

(Proof of Part (a)) The initial part of the proof builds on results in [6], [13]ittv the main difference

that we now have to deal with random matricd@§]. For notational simplicity define
2 (©1[i](ha[i]) — O7[]
”WW@M<[mW+&m@[W””
®[i] .= : . (30)

(Ox[i(hxli) ~ O3]
g AT + o] O N N T

From the properties of the matri[i], we can verify thafy[i-+1]—v*[i]||2 = || P[i] ([i] — ®[i] — ¥*[i])||>.
Taking conditional expectation with respect wigh:] in this last equality, we deduce:
E [|lpli + 1] = o [i]|* | ¥li)] = B [IIP[Z'] (9li) — @[] — 91| | wm]

= (li] — @[] — ¢*l))" E[PL]" P[] (0] — @[i] - *[i])

< || B [PUT PR, ¢l - @l - [

We can now use Definition 5.2 to get

E [Il9li +1] = 4" [il* | (]
< |9l — ®[i] — y*[i]|I”
= [l9[d] — 9 [il* — 2@ ([i] - 9*[a]) + | @[

< i w*ukng%M (oot ) [k el (el — )
|

il(hsli)) — ©71i)?
2 el |@" DT+ 0uli]”

where the last inequality comes from the definitionfgf] and the fact that©;, [: ]( k[ |12/ (11044 (R[] 1>+
6k[i])? < 1. By the definition of subgradients given in (1), we ha®&[i](hx[i])T (hi[i] — R*[i]) >
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Orli](hy[i]) — ©%[i] > 0 for everyk € N; therefore,

Elllgpli+ 1] = *[i]]1* | ]

-~ ) o 1) oii
: (©uli)(hili) — O}11)°
= I =9I = 3 nl2 =l | T, e+ 6ul | (D

By recalling thatE[x] = E,[E,[z|y]] for any two random variables andy [41, p. 105], it holds that

E[||v]i+ 1] —*[i]||?] = E[E[||v[i+ 1] —*[i]||? | ¥[:]]]. Applying this result to (31) and using the fact

that 111 [i] € (0,2), we arrive at the desired inequalify[||1[i] — ¥*[i]||?] — E]||lv[i + 1] — 4*[i][|?] > 0
(Proof of Part (b)) By (31) and the allowed range of the step size range, we gesupermartingale

w12 L] < sl g S oo, | ©elil(RaL]) — O[]
Bl 1= |9 < Il -1 = 3 e | e g @2

where* € C*. Applying Theorem 1 to (32) with[:] = 0 andy]:] being the series in the right hand
side of (32), we verify that, with probability oné||+[i + 1] — v*||?>} converges and

b oy’
IPIRT P+ 6] < 33)

=0 keN 1917

In particular, the convergence of the series in (33) implibat, with probability 1,

lim (Okls](hels]) — ©F)°
j—oo (|01 (he[FDII? + okl5])

The above limit, together with the assumption that the sece€l|©), [i](hk[i])||* + dx[i]} is bounded,
shows thatP (lim;_. O[i|(h[i]) = ©F) = 1.

(Proof of Part (c)) Before proceeding with the proof of mean square consemngaidist some simple

=0, keN.

properties that will ease the analysis.
Claim 1: Consider the vectors[i], ®[i], [i] := (I — J)v[i], and®[i] := (I —J)®[i]. The following
holds:
1) E[|%[i]||?] is bounded (also implying the boundednessifi«[i]||2]);
2) limy—oo E[|®[i]|2] = 0 (thuslim;_. E[|S[i]]2] = 0);
3) limi oo I | $1i]7 B[] = 0;
Proof:

1) We know that the sequené&|||1[i] —1*||?]} is monotone non-increasing (thus bounded) for every
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¥ € C* (this result follows from part (a) of Theorem 2 and the asstimng in part (b)). Since

Elll[i]1*) = Ellw*1?] + Ellwli] - ¢*1°] + 2 El(¢*) ([ - %),

we only need to show that the last term in the previous equagithounded to prove our claim, and this

result follows from the Cauchy-Schwartz inequality apglte the inner productz,y) := E[z"y]:

(Bl (] — 9 0)? < Elly*|°] B9[] — ")
2) Taking expectation in both sides of (32) and after someplEirmanipulations, we obtain

([ (l]) — ©F (1) O (i) P
PUREIT = 3 el S = o

o (O i) (h[i]) — OF[i])
<(2-e) k;f {H ;ﬁ[@'](hk[l])HQ—i-(;k[J

(Ellwli) = *1I”) = Elllpli + 1] = 9*[I*)) — 0 (34)

(2 — €2)?

€1€2

<

asi — oo becauseb([||[i] — *||?] > 0 converges.

3) By parts (1) and (2) of the claim and the Cauchy-Schwasdgurmlity applied once again to the inner
product(z, y) := Ela"y], we obtain(E[¢[i]” ®[i))*> < E[|$[iI?] E[|®[I) < By E[l®[|* —
asi — oo, where By < oo is an upper bound of the sequentE[||y[i]|[2]} (which is well defined
because of Claim 1.1).

[

Now we proceed with the main proof. Left-multiplying botliss of the iterationp[i] = P[i](¢[i] —

®[i]) by (I —J) and using the fact thatf — J)J = 0 and P[:;]J = J (property 3 in Definition 5), we
have (I — J)ili + 1] = (I = J)P[i](spli] — @[i]) = (P[i] = JP[))(I — J)([i] — ®[i]). We can use
this property to verify that

I = T)pli + 1| = (1] - ()Y ] Y [i] ([i] - 2[1),

whereY [i] := Pli] — JP[i], ¥[i] := (I — J)%|i], and®[i] := (I — J)®[i]. Taking expectation on both
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sides, we obtain
B (119l + 1I2] = B |l - @67 E YOI YT] | wlil] (1] - 21i)]
<E [HE[ 7Y [, || - [z‘]m
< Al (Bl - 2B B[] + ENI@[I]) . (35)

where \[i] = (1 —¢) if ¢ is a time index where as-random consensus matrix is present\df = 1

otherwise. Expanding recursively the resulting ineqyalite get

i i i
E[ly[i + 1]1%) HM—nHw ||2—2ZHM—n J+ > [T A —nipli), (36)
7=0n=0 7=0n=0

whereali] := E[sp[i|T ®[i]] andb[i] := E[||®[i]||?] for i > 0 (a[0] := [0]T®[0] andd[0] := ||®[0]||* are
deterministic becaus#|0] is deterministic). The first term of the right-hand side o8)3 the second
inequality converges to zero becal§é_?, Ali — n] < (1 — €)L0=9)/U+1] (there is at least onerandom
consensus matrix in every interval in the fofinl + I], [ € N). Using Claim 1.2 and 1.3 together with
Lemma 1, we verify that the last two terms of the right-harteif (36) also converge to zero, and thus
lim; 0 E[|9[d][%] =

(Proof of Part (d)) The proof of almost sure convergence is essentially a rgptgaf the proof of
Theorem 1.3 (see [29] and the references therein). Firdy ditygorem 1 to (32) to conclude th&tp, [:] }
is bounded and has an accumulation point for almost ewery(2. Therefore, to prove convergence, we
only need to show that the accumulation point is unique. Assthe contrary, and suppose thst and

"’ are distinct accumulation points whéi does not lie in a hyperplane. The sequefite[i] — *||*}
converges with probability one for every* € C* (proved in part (b) of the theorem), and thus, for
almost everyw € Q, 0 = |lob, — ¢ — |9, — ¥*[I* = [[vi]l — Wil — 2%l — )" %", which
contradicts the fact that™ does not lie in a hyperplane. Therefogg]i:] converges with probability one
to a random vectofl:.

Consensus follows from part (c) of the theorem because, hynMéald’s theorem and Fatou’s lemma
[41], BT — NP2 = B [lim o [|(T — D)li]|2] < liminfi oo B[|(T — J)#[i)]2] = 0, which
implies that||(I — J)z,Ab|| = 0 with probability one, i.e., the agents reach consensus.

(Proof of Part (€)) Now that we know that the sequenge[i|} converges with probability one to a
point in the consensus subspatedefined in (7), we can mimic the proof of [13, Theorem 2(d)] oatt

of [16, Theorem 3.1.4] to finish ours.
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~

Assume the contrary of the statement we want to prove; s@ptiad, for almost every € Q, h,,
satisfiesh,, ¢ lim inf;_.., Y [i]. Sincew is an interior point of(, there existy such that{v € RM| ||lv —
@| < p} € Y. In addition, there exists, € [0, 1] such thatu; = t,hey+ (1—t,) ¢ Iminf;_oo T[i] D
liminf; o Y[i]. By lim;_o0 by i) = h., (k € N), we know that for someV; ,, € N it holds that
||hk7w[z']—ﬁw|| < p(1—-t,)/(2t,) for everyi > N; , andk € N. Therefore, by, ¢ liminf; ., Y[d], for
any L1, > Ny, there exists; = i;(L1,,) > Ly, satisfyingu,, ¢ Y[i1] = Nyep (lev<o: Oklir]). As
a result, there existg, € NV such thatu,, ¢ lev<e: ©;,[i1]. For thisj,, by T C T[i] C lev<e: 0, [i1]
and Fact 1,

d(hj, wlir] levee: ©; [i]) > d(hy,lev<e: ©;, li1]) — [[hj, wli1] — ho

1-1¢ 1-1¢ 1-1¢
> p w P w_P Y =i¢, >0,
t, 2 t, 2 t,

which shows thad _, - d(hrwi1], lev<e: Orli1]) > €,. By the triangle inequality, we obtain

- . ~ . ~ - =~ 1-—t¢
[ — hy il < [lw—hol + [[hroli] — holl < |lw = holl +§ " = (keN),
w
and thus
~ . ~ 1% 1—-+t,
> 11E = e fid]ll < N — ho || + NG—— =1, > 0.
w
keN
We can now fixLy,, > i; and repeat the above to find = iy(L2,) > Lo, such that

Y ken Ahpuliz],lev<e: Oliz]) > e, and} ", \- [[u—hy [iz]|| < 7., which shows that we can construct

a subsequencg;} (I > 1) satisfying

> d(hioli) levee; Oklil]) > e, and Y ||t — hy[il]]| < ..
keN keN

As a result, for almost every € 2, we can construct a subsequer{¢g as above and, using the
assumptions of the theorem, we can fifad> 0 such thatd >, - - Ox[it] (b o[i]) > D pen OF + & for
every! > 1. This contradictdim; .., O[i](h o [i]) = ©%, which is proved in part (b) of the theorem.

Thereforeﬁw € liminf; . Y[i], and the proof is complete.
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