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Abstract—We propose a non-hierarchical decentralized algo-
rithm for the asymptotic minimization of possibly time-varying
convex functions. In our method, each agent in a network has
a private, local (possibly time-varying) cost function, and the
objective is to minimize asymptotically the sum of these local
functions in every agent (this problem appears in many different
applications such as, among others, motion planning, acoustic
source localization, and environmental modeling). The algorithm
consists of two main steps. First, to improve the estimate of a
minimizer, agents apply a particular version of the adaptive
projected subgradient method to their local functions. Then the
agents exchange and mix their estimates using a communication
model based on recent results of consensus algorithms. We show
formally the convergence of the resulting scheme, which repro-
duces as particular cases many existing methods such as gossip
consensus algorithms and recent decentralized adaptive sub-
gradient methods (which themselves include as particular cases
many distributed adaptive filtering algorithms). To illustrate two
possible applications, we consider the problems of acoustic source
localization and environmental modeling via network gossiping
with mobile agents.

Index Terms—Adaptive projected subgradient method, decen-
tralized estimation and detection via network gossiping, decentral-
ized optimization via network gossiping, gossip algorithms for de-
centralized adaptive filtering.

I. INTRODUCTION

I N many applications involving systems of autonomous in-
teracting agents, the objective is to solve an optimization

problem in which the cost function (hereafter termed the global
function) can be decomposed as the sum of local cost functions,
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each of which is known by only one agent in a network. Ap-
plications that can be posed as such optimization problems in-
clude, among others, motion planning in multiagent systems [1],
[2], acoustic source localization [3]–[5], and distributed adap-
tive filtering [6]–[8]. Typically, in these problems centralized ap-
proaches are not desirable because of physical limitations (the
central agent may not have a direct connection with all other
agents) or because of robustness issues (the system may fail
if the central agent collapses). Therefore, a great deal of ef-
fort has been devoted to the development of non-hierarchical
distributed optimization algorithms [1]–[7], [9]–[11]. In partic-
ular, here we focus on decentralized subgradient methods where
agents can work massively in parallel and exchange information
with point-to-multipoint links [1], [5], [6], [9], [11]. These ap-
proaches often give rise to low-complexity iterative optimiza-
tion algorithms that are suitable for large-scale systems using a
simple communication model among agents.

To date, the majority of distributed subgradient methods
have focused on static systems where the cost function does
not change during the iterations of the algorithm [1], [9], [11].
Formally, once these algorithms start running, agents have
to wait until a good estimate of the minimizer of the global
function is obtained in every agent. This process can take many
iterations in large-scale systems, and in several applications
agents may need to change frequently the local functions (and,
consequently, the global function) to drop outdated information
or to add new information gathered from the environment.
For example, in estimation problems involving mobile sensor
networks, agents may need to estimate a parameter of interest
(e.g., the position of a target) by minimizing a global function
that is built based on measurements, obtained at different loca-
tions, of a physical phenomenon (e.g., the sound intensity). As
a result, if agents keep taking measurements of the environment
after the optimization algorithm starts running, they may be
able to improve the estimate of the parameter of interest by
incorporating the new available information into new local
cost functions.1 Unfortunately, most studies on distributed
subgradient methods do not characterize the behavior of the
algorithms in such dynamic systems.

A distributed algorithm that considers time-varying cost func-
tions has been proposed in [5], [6]. The algorithm is based on the
adaptive projected subgradient method [12], [13] (which itself is
an extension of Polyak’s algorithm [17] to handle time-varying

1See [5], [6], [12]–[16] for applications of centralized optimization algo-
rithms involving time-varying functions.
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cost functions), and thus it can be applied to problems where
the environment is nonstationary or where incoming data from
sensors has to be processed online and in real time. This algo-
rithm uses a network model in which links are considered de-
terministic, but recent results in consensus algorithms [18]–[24]
and also in distributed optimization problems with fixed cost
functions [10], [11] have shown that modeling the network links
among agents as random links is highly desirable for flexibility
purposes. In particular, random links can easily model wireless
networks in which agents communicate asynchronously with
simple broadcast channels where simultaneous information ex-
change is not possible [20]. In such networks, the assumptions
used in the analysis of the algorithm in [5], [6] are not satis-
fied, and thus the results in [5], [6] cannot be formally applied
to important classes of multiagent-systems systems using wire-
less networks (in particular, the algorithms in Section IV cannot
be derived from the method in [5] and [6] owing to the assump-
tions on the communication model). An addition limitation of
the analysis in [5] and [6] is that it only shows conditions for
the asymptotic minimization of the cost functions, which nei-
ther guarantees the convergence of the algorithm nor character-
izes the convergence point.

To address the shortcomings of the above-mentioned
schemes, we develop an iterative optimization algorithm that
can deal with both time-varying cost functions and random
links among agents. In the first step, as in [6], each agent im-
proves its own local estimate of the minimizer of the (possibly
time-varying) global function by applying a particular version
of the adaptive projected subgradient method [12], [13] to its
local cost function. In the second step of the algorithm, unlike
[1], [5], [6], [9], agents communicate through possibly random
links. More specifically, here we adopt a general communica-
tion model that includes as particular examples the methods
used in recent algorithms for consensus via network gossiping
[18]–[23]. Our approach has convergence guarantees in dy-
namic systems and can reproduce and extend, within a unified
framework, many existing distributed algorithms. We can, for
example, address the limitations of existing batch and adaptive
algorithms by changing the cost functions (e.g., to consider
the presence of mobile agents) and/or by choosing a different
communication model. Convergence properties of those modi-
fied algorithms follow directly from the analysis of our general
framework—they do not need to be studied separately for
each possible scenario. In particular, we show how to derive,
from the general method developed here, adaptive algorithms
for environmental modeling (decentralized adaptive filtering)
and for acoustic source localization with mobile agents. Note,
however, that our algorithm in its most general form is by no
means restricted to applications in these particular domains.2

The structure of the paper is as follows. Section II outlines
basic tools in convex analysis and reviews a class of problems
with many applications in multiagent systems. Section III in-
troduces and analyzes the proposed algorithm, which solves the

2A short version of this paper appeared in [25]. Unlike the study in [25], here
we show the full proof of our main results, additional convergence properties of
the proposed algorithm, and also new algorithms for acoustic source localization
and environmental modeling.

problem in Section II. In Section IV, we show two possible ap-
plications of the proposed method: acoustic source localization
and environmental modeling. The appendices contain the proof
of lemmas and theorems.

II. PRELIMINARIES

A. Basic Tools in Convex Analysis

In this section we give a number of results and definitions
that are extensively used in the discussion that follows. In
particular, we denote by the largest integer not exceeding

. The component of the th row and th column of a matrix
is given by . For every vector , we define

the norm of by , which is the norm induced
by the Euclidean inner product for every

. For a matrix , its spectral norm is
is an eigenvalue of , which satis-

fies for any vector of compatible size. In
the sequel, always denotes probability spaces, where

is the sure event, is the -field of events, and is the
probability measure. To avoid tedious repetition, we often omit
the underlying probability spaces. Unless otherwise stated, we
always use the Greek letter to denote a particular out-
come. Thus, by , we denote an outcome of the random
vector (matrix ). We also often drop the qualifier “almost
surely” (or “with probability one”) in equations involving
random variables.

A set is said to be convex if for
every and . If, in addition to being convex,

contains all its boundary points, then is a closed convex set
[26], [27]. The metric projection of a closed
convex set maps to the uniquely existing vector

satisfying
.

A function is said to be convex if
and

(in this case is continuous at every point in ).
The -sublevel set of a function is defined by

, which is a closed convex
set for every if is convex [27]. Convex functions are
not necessarily differentiable everywhere, so subgradients play
a special role in the results that follow. In more detail, if

is a convex function, then the subdifferential of at
, denoted by , is the nonempty closed convex set of all

subgradients of at :

(1)
In particular, if is differentiable at , then the only subgradient
in the subdifferential is the gradient, i.e., .

We end this subsection with results that we use to simplify
the analysis of the proposed algorithm.

Fact 1 ([13], Claim 2): Let be a closed convex set
having a point such that

for some . If for given and we
have , then

.



CAVALCANTE et al.: DISTRIBUTED ASYMPTOTIC MINIMIZATION OF SEQUENCES OF CONVEX FUNCTIONS 741

Theorem 1: Assume that random vectors
with are defined on a probability

space . Suppose that, for a given set and for
any , we have

where and are sequences of non-negative random vari-
ables that are functions of . If ,
which also implies that with probability one
[28, p. 60], then we have the following properties:

1) the sequence converges almost surely (or
with probability one) for any , and

;
2) the set of accumulation points is not empty for

almost every ;
3) if two accumulation points and of the sequence

are such that , then the set lies in
a hyperplane equidistant from the points and , or, in
other words, for every ;

4) with probability one, .
See [29, Theorem 1] for the proof of the first three proper-
ties. For the last property, see [30, Prop. 4.2] and the references
therein.

B. Problem Formulation

In this paper, we consider a multiagent optimization problem
related to that in [5] and [6]. In more detail, at time , we rep-
resent a network with agents by a (random) directed graph
denoted by , where is the set
of agents and is the edge set [23]. The edges of
the graph indicate possible communication between two agents.
More precisely, if agent can send information to agent at
time , then (we assume that ). Inward
neighbors of agent are denoted by

(i.e., is an agent that can send information to
agent at time ).

We assume that each agent has knowledge of a local convex
cost function . Note that
is non-negative, possibly time-varying, and not necessarily dif-
ferentiable. Now, define the global cost function

of the network by

(2)

which is the function that the agents try to minimize at every
time instant . We also assume that each agent has its own es-
timate of a minimizer of (2) and that is
private information of agent . With these assumptions, if we
also impose that all agents should reach consensus on a mini-
mizer of (2), we obtain the following optimization problem at
time :

minimize

subject to (3)

Unfortunately, solving (3) at every time instant is difficult if
the communication among agents is limited because in such a

case agents have only partial information of the problem. Con-
ventional iterative decentralized algorithms that are able to find
an approximate solution of (3) (for fixed ) may require many
iterations, but in many real-time applications the optimization
problem can change as often as every iteration of the algorithm
(cf. Section IV). To handle such dynamic scenarios, we devise
an algorithm that allows the local functions to change during
the iterative process and that solves (3) asymptotically (a pre-
cise definition will be given soon). Here we mostly focus on the
case where the problem in (3) has spatially and temporally re-
lated local cost functions, as defined below. (This class of prob-
lems appears in many practical applications [6].)

Definition 1: (Spatially related local functions) If, for any
time index , the sets of minimizers of the local cost functions

have nonempty intersection, we say that the local
functions are spatially related. More precisely,
the time-varying local functions are spatially
related if the following holds for every :

(4)

where

(5)

Note that, in particular, if the local functions are spatially re-
lated, then is a set of minimizers of the global function .

Definition 2: (Temporally related local functions) If the func-
tions are such that the resulting global functions

have a common set of minimizers, we say that the
local functions are temporally related. In other
words, the local functions are temporally related
if , where is the set of minimizers of the
global function at time :

The optimization problem in (3) can be seen as a sequence of
optimization problems indexed by . If the local functions
are both spatially and temporally related,3 there is a point in
that is a minimizer of every local cost function and every
global function for every . As a result, (3) has at
least one solution that does not depend on the time index , so
we should seek those solutions that solve (3) for as many time
indices as possible (ideally, for all ). Unfortunately, ex-
cept in special cases, computing a time-invariant solution of (3)
(a solution that does not depend on ) can be only pos-
sible with a priori knowledge of also for every and

, which is a very strong assumption in online algorithms
because the functions are dispersed throughout the net-
work and are constructed as information is obtained. Nonethe-
less, with some mild additional assumptions, we can devise a
low-complexity algorithm that guarantees mean square asymp-
totic consensus among agents and that, with probability one,
minimizes asymptotically all local cost functions. (Note: if all

3If the cost functions are not spatially related, but the local functions are
time-invariant, we can use, for example, the algorithms in [1], [9], [11] to solve
(approximately) the resulting optimization problem.
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local functions are minimized and agents are in consensus at
time , we have a solution to the problem in (3) at time .) In ad-
dition, the algorithm also guarantees that, with probability one,
all sequences converge to a (random) vector
that, loosely speaking, is “sufficiently” close to the set of points
that minimize all but a finite number of global functions

. This last property shows that the time structure of the
problem in (3) is also exploited. Before showing the algorithm,
we need to formalize what we mean by “asymptotic minimiza-
tion of time-varying functions” and by “asymptotic consensus.”

Definition 3: (Asymptotic minimization [13]) Let
be any given time-varying func-

tion, and denote by an estimate of a minimizer
of , where is the time index. Assume that, for every

, there is a time-invariant scalar such that
. We say that an algorithm minimizes

asymptotically if the algorithm produces a (not necessarily
convergent) sequence satisfying

Definition 4: (Asymptotic consensus [6]) We say that agents
reach asymptotic consensus if the estimates sat-
isfy

(6)

where

is the vector of ones, is
the standard basis vector, and denotes the Kronecker product.
(The convergence of is not a requirement.)

In the last definition, note that is the orthogonal projection
matrix onto the consensus subspace

(7)

Therefore, if , then and all local
estimates are equal, i.e., we have consensus at
time for every .

III. PROPOSED ALGORITHM

To find in every agent a common point that minimizes all but
finitely many global functions , we use a simple
algorithm that consists of two steps, each of which exploits di-
rectly the assumption that the local functions are spatially re-
lated.

In the first step of the algorithm, agents use the spatial relation
assumption from a local perspective; each agent exploits the fact
that there is a minimizer of its own local function that is also a
minimizer of the global function. In more detail, each agent
improves its estimate of the minimizer of the global func-
tion by finding a point that is also an improved estimate of its
own local cost function . Mathematically, as in [5], [6],
each agent applies a particular version of the adaptive pro-
jected subgradient method [13] to its local function :

(8)

where is the resulting estimate after the subgra-
dient update; [see (1)] is a
subgradient of at is a step size;

is arbitrarily chosen
from if or otherwise;

is an arbitrarily chosen upper bound for the choice of
; and is an arbitrary initial (deterministic) estimate of

a minimizer of the global function .4

In the second step of the algorithm, agents use the spatial rela-
tion assumption from a global perspective; they use the fact that
a point that minimizes every local function is also a minimizer
of the global function. The main idea is that agents should try
to reach consensus on their estimates in the hope that they agree
on a point that minimizes every local function. Mathematically,
for a network represented by a graph , agents exchange in-
formation locally with consensus algorithms similar to those in
[18]–[23]

(9)

where is a random weight matrix that
agent assigns to the edge at time ( if

). We can rewrite (9) in the equivalent form
, where

is given by

...
. . .

... (10)

Here we assume that, periodically (cf. Theorem 2), is an
-random consensus matrix conditioned on

as defined below.
Definition 5: ( -random consensus matrix) For given

and graph , we define an -random consensus
matrix conditioned on a random vector at time as a random
matrix satisfying the following proper-
ties:

1) ;
2) ;
3) for every [see (7)].
4) If is decomposed as in (10), then if

.
Note that -random consensus matrices are a simple extension

of conventional consensus matrices [18]–[23] to the case where
consensus has to be reached over vectors. Therefore, we can
use many different techniques [18]–[23] to build these matrices.
Section IV has one example of such a technique.

Before showing the main properties of the algorithm, we in-
troduce the following lemma, which is used to simplify the anal-
ysis.

4Note that (8) requires knowledge of the minimum value attained by the local
functions. Although this information may seem to be a strong assumption, in
many practical problems the minimum value attained by functions is available.
Examples of such problems include all those where the objective is to find a
point in the intersection of closed convex sets [13], and they are frequently found
in, among other application domains, communication, optics, and signal and
image processing [26]. In Section IV, we show two examples of applications.
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Lemma 1: Assume that is a real sequence satisfying
. In addition, let be a non-negative se-

quence such that for every . If there exist
and such that, for every , we have
for at least one time instant , then

Proof: The proof is shown in Appendix I.
We now summarize and analyze the proposed algorithm.
Theorem 2 (Broadcast Adaptive Subgradient Method): Con-

sider the problem in Section II-B and assume that, for every
and conditioned on

satisfies properties 2), 3), and 4) in Definition
5. To solve the problem described in Section II-B, we use the
following sequence (which is obtained by combining (8), (9),
and (10) in a single equation):

... (11)

where
and is considered deterministic. (NOTE: other parameters
have been defined after (8).) The algorithm satisfies the fol-
lowing:

1) (Mean square monotone approximation):
Suppose that the local functions are spatially related,
and let the step sizes be within the interval .
Then, for every [ is defined in (4)]

(12)

where .
2) (Almost sure asymptotic minimization of the local cost

functions):
Assume the following.

a) The step size in every agent is bounded away from
zero and two, i.e., there exist such that

.
b) .
c) (i.e., the local functions are

spatially and temporally related).
d) There exists some satisfying

for every and
.

(Assumption c) guarantees
.) Then, with probability one and for any

, the sequence converges, and
the local cost functions are asymptotically minimized, i.e.,

.
3) (Mean square asymptotic consensus):

In addition to the assumptions above, for some fixed
and , assume that in every interval
there exists such that the matrix is an

-random consensus matrix conditioned on . Then we
have asymptotic mean square consensus, i.e.,

(13)

4) (Almost sure convergence of ):
If the assumptions in part 3) hold and does not lie in
a hyperplane, then, with probability one, converges
to a random vector that satisfies (i.e.,
the estimates of every agent converge, and the agents
reach consensus asymptotically).

5) (Characterization of ):
Assume that the conditions of 4) hold. By 2)
and 4), for almost every , we know that

converges to a vector

and that
for every . If, for an

interior of (which has an interior point because
does not line in a hyperplane), we have that

where
and , then satisfies

, where
and the overbar operator denotes the

closure of a set.
Proof: The proof builds on the results in [6], [13], [16] and

is given in Appendix II.
Recall that, when the local functions are spatially related, the

problem in (3) is solved when the following properties are satis-
fied: 1) every local function is minimized and 2) the agents are
in consensus . These two properties are
satisfied asymptotically when we apply the proposed algorithm.
More precisely, the local cost functions are asymptotically min-
imized with probability one [Theorem 2(b)] and agents reach
mean square consensus [Theorem 2(c)]. In addition, Theorem
2(d)–(e) shows that agents reach consensus not only in the mean
square sense, but also with probability one, and their estimates

converge to a point in , which
is the closure of the set of minimizers of all but finitely many
global functions . This last property shows that the
algorithm exploits the temporal structure of the sequence of op-
timization problems in (3). (Theorem 2(a) says that, if the local
function is only spatially related at time , in the mean square
sense, the Euclidean distance of to a solu-
tion of (3) does not increase.)

Remark 1 (On Theorem 2):
1) The algorithm in Theorem 2 cannot be analyzed with the

deterministic approach in [6] because the mapping
defined by is not nec-

essarily nonexpansive, i.e.,
does not necessarily hold. Nonexpansive mappings play
a crucial role in the analysis of the algorithm in [6], and
the scheme in Theorem 2 includes as a particular case the
method in [6].
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2) (Asynchronous operation) For simplicity, assume that
agents want to minimize a time-invariant global function

, where are spatially
related. Suppose that agents are not synchronized and they
do not necessarily apply the first step of the algorithm, the
subgradient updates in (8), all at the same time. To model
this scenario, we can consider that agent only applies
the subgradient method at time instants ,
where is an infinite set. In doing so, we can consider
that agents are using the following sequence of spatially
and temporally related local functions:

otherwise.

Note that, with the time-varying local functions defined
above, for every , the set of minimizers of the orig-
inal function can be equivalently expressed as

, where is the set of minimizers of . Like-
wise, if agents also do not want to exchange information
[as in (9)] whenever a subgradient update is applied, we
can use the following sequence of random matrices:

otherwise

where is an infinite set that shows time instants in
which information is exchanged among agents, and
is the random matrix corresponding to the communica-
tion scheme. By applying and to the algorithm in
Theorem 2, we conclude that, with probability one, agents
produce sequences , that converge to a
common point in , which,
as discussed above, is the set of minimizers of the global
function .

3) (Adding constraints) Constraints can also be easily added
by considering time-varying cost functions. For example,
with the assumptions in Theorem 2(b), let

be a (fixed) cost function known by agent . Sup-
pose that the agent has knowledge of a set such that

. Then we can use the following time-varying cost func-
tion instead of the original function

odd
even

Applying the proposed method to and using similar
arguments to those in Remark 1.2, we conclude that every
agents will find a common point that satisfies all constraints
and minimizes every local function.

IV. POSSIBLE APPLICATIONS

In this section, we specialize the scheme in Theorem 2 to de-
rive new distributed algorithms for acoustic source localization
(Section IV-A) and for environmental modeling (Section IV-B).
In the acoustic source localization problem, we show that batch
incremental methods such as those in [3] can be easily modified
to become adaptive, parallel algorithms operating with gossip
networks and with mobile sensors. In the environmental mod-
eling problem, we show that existing distributed set-theoretic
adaptive filters can also be straightforwardly extended to gossip

networks. In both applications, in ideal scenarios, the conver-
gence properties of these particular cases of our general opti-
mization algorithm follow directly from Theorem 2. (This is
in stark contrast with many existing distributed adaptive algo-
rithms, which are typically devised to solve specific problems,
such as, for example, system identification with linear filters.)
We also show that, in practice, these particular cases of our gen-
eral method can have good performance even when many as-
sumptions of Theorem 2 are just rough approximations.

A. Coordinated Acoustic Source Localization

1) Problem Description and Existing Solutions: The objec-
tive is to estimate the unknown location of an acoustic
source with agents distributed at spatial locations

. (We later extend this problem to the case where
agents are mobile.) Each agent knows its own position and
the acoustic source power .5 In addition, agents are equipped
with an acoustic sensor, so they also know the sound intensity
at their position. (With this information, the agents can estimate
the range of the acoustic source from the received volume, but
not the direction.) In more detail, the acoustic power perceived
by agent can be modeled as [31]

(14)

where is a noise sample. For mathematical simplicity, noise
is often modeled as Gaussian, even though this assumption is
unrealistic because should be always positive. Nonetheless,
algorithms using this unrealistic assumption often give good
performance when deployed in real-world scenarios [31].

Given the statistical distribution of the noise, we can esti-
mate the position of the target with the maximum-likelihood
approach [31]. However, in this application the likelihood func-
tion is not a concave/convex function, so computing a global
maximum/minimum may not be an easy task. To devise simple
decentralized algorithms, we can consider the following convex
optimization problem [3]:

(15)

where is given by .
When noise is not present, the solution set of the optimization
problem in (15) is . If the acoustic source position

lies in the convex hull of the agents’ locations, i.e.,
where

(16)

then the unique point in , the solution to the problem
in (15), is [3]. The incremental projection-onto-
convex-sets (POCS) algorithm [3], a low-complexity, decentral-
ized algorithm, can thus be used to solve (15) in this scenario
(this method has some parameters that can be adjusted to deal
with noise). However, this algorithm requires the definition of a
path visiting all agents in the system, which is a difficult task in

5We can use the same techniques developed in [3] to extend the proposed
algorithm to the case where� is unknown. For brevity, we do not consider such
extensions here.
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large-scale networks. Furthermore, during the iteration process,
new measurements can be available to the agents, but the in-
cremental POCS algorithm does not use such information. An
additional limitation of this algorithm is that it does not consider
mobile agents.

2) Proposed Algorithm: To derive our proposed algorithm,
we first start by introducing the time-varying cost function that
we minimize asymptotically. We start by assuming that agents
are mobile and that they constantly take new samples of the
acoustic sound intensity. Therefore, to model this dynamic sce-
nario, we replace the model in (14) by

(17)

where , and are, respectively, the acoustic sound
intensity, the position of the th agent, and the noise sample of
agent , all at time . Agents take samples of the acoustic sound
intensity at different positions, so they have access to samples
with varying signal-to-noise ratio (SNR) (which is high in po-
sitions close to the acoustic source). Therefore, as many sam-
ples are available to estimate the position of the acoustic source
in every agent, here we use those with potentially high SNR.
In more detail, we keep in the memory of each agent only the
largest observed sample and the corresponding position

(up to time ).6 The index of this sample can be math-
ematically expressed by . For
notational simplicity, hereafter we denote by , and the
dependence of with is implicit. Now, consider the following
(time-varying) set in agent :

if

otherwise

where is a parameter used to increase the reliability of the
sphere when noise is present. In the noiseless case, we
can use the same arguments used after (15) to conclude that
the position of the acoustic source satisfies
for every and . In this scenario, at
time , the set is also the solution set of

, where the local (time-varying)
functions are given by

(18)

Therefore, in ideal scenarios, the local functions in (18) are spa-
tially and temporally related because for every

. In particular, if and belongs to the convex
hull defined by the positions , then we also have
that is the only point in the intersection . If noise
is present, we can increase the radius of the spheres by in-
creasing the parameter to guarantee that (or,
equivalently, ) with high probability. However,
later we show that in practice the resulting algorithm works well
even with in the presence of noise. The main idea of
the proposed method for acoustic source localization is thus to

6We could easily derive variations where only the largest sample within an
interval is used. This idea could be useful to track mobile acoustic sources.

use the scheme in Theorem 2 to minimize asymptotically
and to find a fixed point that minimizes as many global func-
tions as possible. Such a solution is expected to be a good
estimate of because is a minimizer of every global func-
tion at any time instant, i.e., for every .

Having defined the sequence of global functions to be min-
imized asymptotically, we now turn our attention to the com-
munication model. Owing to the nature of wireless channels,
if agent broadcasts an estimate , all other agents within
a certain distance are able to receive this information. To ex-
ploit this physical characteristic of wireless channels, we use the
communication model in [20]. In more detail, we assume that,
at each iteration, only agent , selected uniformly at random,
broadcasts its estimate . Then all agents within range ,
i.e., all agents in the set

(19)

mix their estimates with that received from agent . To be more
precise, given that agent has been selected at time in realiza-
tion , we express this communication model as in (9) by using
the following matrix :

and
and

and
otherwise

(20)

where is a mixing parameter. If the communication
range is long enough so that the graphs with the neigh-
boring rule in (19) are (strongly) connected, then the matrices

, which are random block matrices having
as submatrices [see (10)], are -random matrices for some .
This fact can be proven with the results in [20] and the references
therein. We omit the details for brevity.

Applying the local cost functions in (18) and the communi-
cation model in (20) to the scheme in (11), we arrive at the fol-
lowing algorithm:7

Algorithm 1: (Proposed algorithm):

1) Initialize the estimates with an arbitrary
.

2) Move all agents and take new samples of the acoustic
sound intensity.

3) Keep in the memory of each agent the largest sample
observed so far and its corresponding position (the
sample and position are denoted by, respectively,
and ).

4) Agents apply the subgradient update defined in (8):
for all

where is the step size and

if

otherwise.

5) Choose uniformly at random.
6) Agent broadcasts .

7A subgradient of � ��� at ��� is � �������� �
����� � ������������ � ������ [13].
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7) Agents within distance to agent mix the received
estimate with their own estimates :

if
otherwise

where is a mixing parameter common to
all agents.

8) Increment and go to step 2.

Note that Algorithm 1 requires neither simultaneous infor-
mation exchange nor agents to be aware of the position or
the number of their neighbors. In addition, unlike incremental
methods, we also do not need to define a path visiting all agents.

3) Numerical Simulations: In a 100 m 100 m field, at each
realization of the simulation we randomly distribute 36 agents
and place an acoustic source with at .
Each agent measures the acoustic power at their own locations
according to (17). The noise samples are i.i.d. and drawn
from a Gaussian distribution with variance and mean
zero. For simplicity, to obtain the samples at time , agents
choose positions uniformly at random within the region of
interest.

We simulate two different versions of the proposed algorithm
(Proposed-1 and Proposed-2) that differ in the choice of the pa-
rameter . In more detail, Proposed-1 uses , and
Proposed-2 uses (this last value guarantees that

with high probability and that the radius of the
sphere is not excessively increased when samples
are taken close to the acoustic source location). Other parame-
ters are equal in both Proposed-1 and Proposed-2:

, and . We compare the proposed method with
the incremental POCS algorithm [3], which is the algorithm we
build on to derive the proposed adaptive method. The incre-
mental POCS algorithm uses fixed agents (i.e.,
for all and ) and just a single sample of acoustic sound inten-
sity to estimate the acoustic source location. In this algorithm,
agents are activated using a greedy rule: from all agents not pre-
viously selected in a cycle, the next agent in the cycle is the one
closest to the current agent.8 To mitigate noise, we set the step
size of the incremental POCS algorithm to 0.2.

The performance of interest is the average mean square error
(MSE) of the agents

We compute expectations by averaging the results of 100 re-
alizations of the simulation. Fig. 1 shows the simulation results.

We can see that both proposed algorithms greatly decrease the
estimation error compared to the incremental POCS algorithm.
The superior performance of the proposed methods is explained
by two facts: 1) agents are mobile, so they can take samples

8If in the simulation we have that � � � (not physically possible, but it can
happen in the simulation because of the acoustic model we adopted), then the
corresponding agent simply sends the estimate of the previous agent of the cycle
to the next agent in the cycle.

Fig. 1. Transient performance of the algorithms.

close the acoustic source; and 2) agents can choose a suitable
cost function as data becomes available.9

An additional good feature of the proposed algorithm is that
it does not require the definition of a path visiting all agents in
the system. Agents are randomly selected, broadcast their esti-
mates, and only those agents within the communication range
mix estimates. No feedback is necessary, so agents can ignore
the position and the number of neighbors. In many applications,
this communication model could be enough to justify the use
of the proposed method over incremental methods (even if the
performance of the proposed method were inferior to that of in-
cremental methods). The reason is that acquiring a path visiting
all agents is a difficult problem to solve in large-scale networks,
and the proposed method does not need to solve such problems.

The performance of Proposed-2 is better than that of Pro-
posed-1 because the former expands the sets , thus in-
creasing the probability that . Note that the pa-
rameter in Proposed-2 does not unduly increase the “size”
of . (Sets that are too large can give poor
estimates because not all points in these sets are necessarily
close to .) The jumps and the initial unsteady behavior shown
by the MSE curves of the proposed algorithms are explained by
the fact that agents take samples at random locations. Therefore,
until samples with sufficiently high SNR are obtained in every
agent, the sets are not reliable, and the subgradient updates
can unduly increase the estimation error. Note that the sets used
by Proposed-2 are always more reliable than those used by Pro-
posed-1 because of the larger expansion factor , and this fact
explains why the unsteady behavior of Proposed-1 lasts longer
than that of Proposed-2.

B. Environmental Modeling

1) Problem Description: Suppose that a physical phenom-
enon (e.g., temperature, salinity, density of adversarial agents,

9In contrast, batch methods, such as the incremental POCS algorithms, con-
sider fixed sets/cost functions, so, formally, they cannot incorporate new infor-
mation obtained by taking samples at different positions if the algorithm has
already started to run.
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etc. [32]) in a region of interest is expressed by a func-
tion that can be well approximated by
defined as follows:

(21)

where is a spatial coordinate,
is the th

basis function (e.g., Fourier series, wavelets, radial basis
functions, etc.), , and is the
coefficient associated with the th basis function (see also
[32]). If, for example, we use a large enough number of
properly selected radial basis functions to build , the
universal approximation theorem [33, Sec. 20.6] justifies the
approximation in (21). We assume that the bases

are fixed and known by all agents, which
form a network associated with a graph as
described in Section II-B. In addition, we also assume that
agent can observe noisy samples

(22)

where and are, respectively, the posi-
tion and the noise sample of agent at time . The environ-
mental modeling problem amounts to estimating in (21) in all
agents from the samples , which are dispersed
throughout the network. Note that, by knowing , agents have
complete information about the physical phenomenon in the re-
gion of interest.

Having described the estimation problem, we now turn to the
proposed distributed algorithm. In our method, agents commu-
nicate asynchronously and do not have access to the location,
number, or samples of their neighbors.

2) Set-Theoretic Adaptive Algorithms for Environmental
Modeling: We start by considering an ideal scenario; suppose
that there exists such that for every
coordinate , and no noise is present in the measurements

. As a result, we have that, for every
, and

Therefore, if is to be estimated in this ideal scenario, a good
estimate should also belong to for any

. To handle non-ideal scenarios, we can use the fol-
lowing relaxation of :

(23)

where is a suitably chosen relaxation parameter of
agent at time (to avoid clutter, we omit the dependence
of with ). In more detail, the parameter serves
two purposes. First, it increases the probability that
in noisy environments. Second, it is used to take into account
the fact that the existence of satisfying the equality

for every is questionable because, in
the domain , the function may not be equivalently expressed
by a linear combination of the basis functions . In
such a case, we could, for example, redefine the desired esti-
mand as any vector in such that in (21) reproduces

with an uniform tolerance in the region of interest, i.e.,
(this

set is nonempty provided that is large enough). Therefore, if
the relaxation parameter is sufficiently large, we have that

(in the simulations we show that the algorithm can
work well even with in non-ideal scenarios). At time
index , reasonable estimates of should then belong to

(24)

where is a properly chosen subset of time indices of avail-
able measurements (i.e., ). Intuitively,

is the set of estimates of that are consistent with all mea-
surements and . The set can be time-
varying because is allowed to change from iteration to iter-
ation. This time-varying property of (and, consequently, of

) can be used to incorporate information gained by measure-
ments (represented by sets ) as they become avail-
able. The choice of should take into account the desired
complexity of the algorithm and the time in which the environ-
ment, described by the function , can be considered approxi-
mately static. Having defined in (24) as the set of reasonable
estimates of at time , we now proceed to construct convex
cost functions having as the set of minimizers, and then we
apply the scheme in Theorem 2 to derive low-complexity algo-
rithms that minimize these time-varying cost functions asymp-
totically.

The parameter in (21) can be seen as a linear filter [33],
[34], so we can use the cost functions of existing set-theoretic
linear adaptive filters (e.g., the affine projection algorithm
[13], [35]–[37], the normalized least-mean-square algorithm
[13], [37], [38], etc.) to estimate . In doing so, we can extend
these approaches to distributed networks with random links. In
particular, here we use the following local cost function [13]:

(25)

where is the number of the most recent samples
used by the agents, is a constant given by10

if
otherwise

is defined by
, and is a weighting factor

of the set and should satisfy .
Note that, if with , then

for any and for any
of the possible choices of weights . In particular, in the
ideal scenario described above, , which shows that
the local functions are both spatially and temporally related.
Therefore, we see that good estimates of should minimize
as many global functions as possible (ideally, for all )
because is a point that minimizes every global function.

10The constant � ��� �� is not necessarily the same at different time instants
because � ��� �� depends on the current estimate ��� ���.
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The set of minimizers of may not depend on the possible
choices of weights in an ideal scenario, so this fact may suggest
that we should not pay any special attention to the choice of

. However, by noticing that the environment can be
time-varying in real-world scenarios, in practice we may need
to give large weights to sets based on more recent samples

. In doing so, by using the scheme in Theorem 2 with the
local functions in (25), agents move their estimates
to points closer to sets based on recent measurements
(i.e., sets with large weight ) than to sets based on
old measurements. In addition, as shown in [6], [14], particular
choices of weights yield subgradient updates [defined
in (8)] that are easy to implement even when the memory
of the algorithm, represented by the parameter , grows
unboundedly.

Having defined the cost functions to be minimized asymp-
totically, we now need to choose a communication model. For
this application, we again use the simple communication model
applied to the acoustic sensor localization problem. Briefly,
we assume that agents within range from each other are
neighboring agents, and only one agent, selected uniformly at
random, broadcasts its estimate to neighboring agents.
Details have already been provided in the discussion before
Algorithm 1. Applying this communication model with the
local cost functions in (25) to the scheme in Theorem (2), we
arrive at the algorithm described below.

Algorithm 2:

1) Initialize the estimates with an arbitrary
. Choose , which is the number of

sets used at each iteration of the algorithm, the
expansion parameter of , and the weights

.
2) Move all agents and take new samples .
3) Agents apply the subgradient update defined in (8):11

for all

(26)

where is the step size

if
otherwise

(NOTE: ) and ([26, p. 99]

if

if

if

11The details of the derivation of (26), obtained by applying the subgradient
update to the local cost function in (25), is shown in ([13], Example 3).

4) Choose uniformly at random.
5) Agent broadcasts .
6) Agents within distance to agent mix the received

estimate with their own estimates

if
otherwise

where is a mixing parameter common to
all agents.

7) Increment and go to step 2.

3) Numerical Simulations: In the simulation, we drop the
assumption of static environments, and agents estimate the dy-
namic environment described by

where is the discrete-time index, and
are spatial coordinates of the region of interest

(a 100 100 square). (We use this particular function to
illustrate a scenario where the approximation in (21) is a rough
approximation due to the choice of basis functions.) Agents use
Gaussian radial basis functions

where are centers distributed
in the region of interest, and is the width of the radial basis
functions. We subdivide the region of interest into 16 squares
of the same area, and we place one agent in each subdivision

. Each center is located at the center of
each subdivision, and we set , which is a value
chosen to avoid basis functions that are too peaked or too flat
in the region of interest. At time , each agent takes samples

according to (22), where the noise samples are i.i.d.
and drawn from a zero-mean Gaussian distribution with vari-
ance , and is a position selected uniformly at
random in the subdivision into which agent is placed.

The parameters of the proposed algorithm are as fol-
lows: Proposed-1

, Proposed-2
, Proposed-3

, and Proposed-4
.

Proposed-1 and Proposed-3 mitigate the effects of noise and
modeling errors by using a relatively small step size ,
whereas Proposed-2 and Proposed-4 mitigate those effects by
increasing (i.e., by increasing the reliability of the sets

). Note that, in particular, Proposed-1 is an extension of
the celebrated normalized least-mean-square algorithm [13],
[33], [34], [37], [38] to distributed gossip networks. The com-
munication range of the agents in all proposed algorithms
is . In these algorithms, agents use the same set of
parameters, but such a choice is not a requirement. Agents
using different sets of parameters can be useful in scenarios
where the memory and computational power of the agents are
different.
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Fig. 2. Tracking performance of the algorithms.

We compare the proposed algorithms with a method where all
agents use the solution of the following weighted least-squares
fit problem:

where is a forgetting factor used to take into
account the dynamic nature of the environment, and is a
regularization factor. This algorithm, hereafter denominated
weighted least-squares (WLS) algorithm, can be implemented
if there is an all-to-all communication among agents in every
iteration, or if all agents have a bi-directional link with a
center fusion. Therefore, the WLS algorithm is ignoring the
assumptions of the multiagent system, which we require to
be non-hierarchical and to have sparse communication among
agents. In the simulations we use two versions of the WLS
algorithm: WLS-1 and WLS-2

.
The goal of every agent is to estimate the time-varying func-

tion in the region of interest (the 100 100 field); thus,
given the estimates at time , we use as the perfor-
mance metric a normalized sum of the mean-square error (MSE)
of the agents

where expectations are computed from ensemble averages of
100 realizations of the simulation, and integrals are evaluated
numerically. (In practice, computing the filter that minimizes
the MSE is not possible because perfect knowledge of is
required.) Fig. 2 shows the performance of the algorithms.

The two versions of the WLS algorithm have the best per-
formance because the WLS algorithm can be considered as a

centralized method, and, as such, it should be used only as a
reference of the best performance that can be achieved by the
proposed algorithm. The performance of WLS-2 is inferior to
that of WLS-1 because WLS-2 weights heavily old measure-
ments (the parameter of WLS-2 is larger than that of
WLS-1) and the environment is dynamic. Proposed-1 and Pro-
posed-2 use only the most recent measurement at every
iteration, so it is not surprising that they have the worst perfor-
mance. However, these two algorithms have the lowest com-
putational complexity of all compared algorithms. The com-
putational complexity of Proposed-1 and Proposed-2 is
(per agent), and the better performance of the latter is due to
the larger relaxation parameter , which mitigates the detri-
mental effects of noise and modeling errors. Proposed-3 and
Proposed-4 have better performance than Proposed-1 and Pro-
posed-2 because Proposed-3 and Proposed-4 use more informa-
tion at each iteration (measurements ). The slightly supe-
rior performance of Proposed-4 compared to that of Proposed-3
is again explained by the larger relaxation parameter of
Proposed-4. In terms of computational complexity, note that the
subgradient updates in Proposed-3 and Proposed-4 can be par-
allelized in operations of complexity (per agent) [39].

V. CONCLUSION

We have developed a non-hierarchical algorithm that mini-
mizes asymptotically a global function defined by the sum of
convex functions. Each term in this sum is a local cost function
known by an agent in a network, and we assume that the sets of
optimizers of the local functions have nonempty intersection.
Unlike existing optimization methods, the local cost func-
tions can be time-varying, and agents exchange information
locally via network gossiping. This mechanism for information
exchange enable us to relax the assumption of simultaneous
information exchange among agents, a common assumption
in the analysis of multiagent algorithms using subgradient
methods. We showed conditions to guarantee almost sure
asymptotic minimization of the local cost functions, consensus
among agents, and convergence. We provided examples of
applications where the algorithm in its most general form was
specialized to handle specific problems. In more detail, we
applied the proposed method to derive new adaptive algorithms
for acoustic source localization and for environmental mod-
eling. In the former application, agents estimate the position
of the acoustic source directly; in the latter application, agents
estimate a physical phenomenon (temperature, salinity, density
of adversarial agents, etc.) by trying to reach consensus on
coefficients that define the environment. These applications
show techniques that can be applied when the assumptions of
Theorem 2 are rough approximations, and they also show how
to extend existing adaptive or batch projection-based methods
to distributed networks with random links.

APPENDIX I
PROOF OF LEMMA 1

For with , there are at least
distinct indices within the interval , where ;
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hence, . We also know that
is bounded because, for every

(27)

From this moment the proof resembles that of Mertens’ theorem
[40]. The convergence of to zero implies that, for every

, there exists such that for we have

(28)

where is as defined in (27). For this and any
, we conclude from that there

exists such that, for every

(29)

where can be any (nonzero) upper bound of the conver-
gent sequence (e.g., ). Therefore,
for , by (27), (28), (29), and the triangle inequality

which concludes the proof.

APPENDIX II
PROOF OF THEOREM 2

(Proof of Part (a)): The initial part of the proof builds on
results in [6], [13], with the main difference that we now have to
deal with random matrices . For notational simplicity define

... (30)

From the properties of the matrix , we can verify that
. Taking conditional

expectation with respect to in this last equality, we deduce

We can now use Definition 5.2 to get

where the last inequality comes from the definition of and
the fact that .
By the definition of subgradients given in (1), we have

for
every ; therefore,

(31)

By recalling that for any two random vari-
ables and [41, p. 105], it holds that

. Applying this result to (31) and
using the fact that , we arrive at the desired in-
equality .

[Proof of Part (b)]: By (31) and the allowed range of the
step size, we get the supermartingale

(32)

where . Applying Theorem 1 to (32) with
and being the series in the right-hand side of (32), we verify
that, with probability one, converges and

(33)



CAVALCANTE et al.: DISTRIBUTED ASYMPTOTIC MINIMIZATION OF SEQUENCES OF CONVEX FUNCTIONS 751

In particular, the convergence of the series in (33) implies,
that, with probability 1

The above limit, together with the assumption that the
sequence is bounded, shows that

.
[Proof of Part (c)]: Before proceeding with the proof of

mean square consensus, we list some simple properties that will
ease the analysis.

Claim 1: Consider the vectors ,
and . The following holds:

1) is bounded (also implying the boundedness of
);

2) (thus );
3) .

Proof:
1) We know that the sequence is mono-

tone non-increasing (thus bounded) for every
[this result follows from part (a) of Theorem 2 and the as-
sumptions in part (b)]. Since

we only need to show that the last term in the previous
equation is bounded to prove our claim, and this result fol-
lows from the Cauchy–Schwartz inequality applied to the
inner product :

2) Taking expectation on both sides of (32) and after some
simple manipulations, we obtain

(34)

as because converges.
3) By parts 1) and 2) of the claim and the Cauchy–Schwartz

inequality applied once again to the inner product
, we obtain

as ,

where is an upper bound of the sequence

(which is well defined because of Claim
1.1).

Now we proceed with the main proof. Left-multiplying both
sides of the iteration by and
using the fact that and (property 3 in
Definition 5), we have

. We can use this
property to verify that

where , and
. Taking expectation on both sides, we obtain

(35)

where if is a time index where an -random
consensus matrix is present or otherwise. Expanding
recursively the resulting inequality, we get

(36)

where and for
( and are deterministic

because is deterministic). The first term of the right-hand
side of (36) in the second inequality converges to zero because

(there is at least one
-random consensus matrix in every interval in the form

). Using Claim 1.2 and 1.3 together with Lemma 1, we
verify that the last two terms of the right-hand side of (36) also
converge to zero, and thus .

[Proof of Part (d)]: The proof of almost sure convergence
is essentially a rephrasing of the proof of Theorem 1.3 (see [29]
and the references therein). First apply Theorem 1 to (32) to con-
clude that is bounded and has an accumulation point
for almost every . Therefore, to prove convergence, we
only need to show that the accumulation point is unique. As-
sume the contrary, and suppose that and are distinct ac-
cumulation points when does not lie in a hyperplane. The
sequence converges with probability one for
every (proved in part (b) of the theorem), and thus,
for almost every

which contradicts the fact that
does not lie in a hyperplane. Therefore, converges with

probability one to a random vector .
Consensus follows from part (c) of the theorem be-

cause, by Mann–Wald’s theorem and Fatou’s lemma
[41],

which implies that
with probability one, i.e., the agents reach

consensus.
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[Proof of Part (e)]: Now that we know that the sequence
converges with probability one to a point in the consensus

subspace defined in (7), we can mimic the proof of [[13],
Theorem 2(d)] or that of ([16], Theorem 3.1.4) to finish ours.

Assume the contrary of the statement we want to prove;
suppose that, for almost every satisfies

. Since is an interior point of , there
exists such that . In addition,
there exists such that

. By
, we know that for some it holds that

for every
and . Therefore, by , for any

, there exists satisfying
. As a result, there exists

such that . For this , by
and Fact 1,

which shows that . By
the triangle inequality, we obtain

and thus

We can now fix and repeat the above to find
such that

and , which shows that we can
construct a subsequence satisfying

and

As a result, for almost every , we can con-
struct a subsequence as above and, using the as-
sumptions of the theorem, we can find such that

for every .
This contradicts , which is proved
in part (b) of the theorem. Therefore, ,
and the proof is complete.
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