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Abstract. Event-B is a formal method, based on set theory and first-
order logic, for specification and verification of reactive systems sup-
ported by the Rodin tool kit. Feature modelling is a well-known technique
for managing variability and configuring products within software prod-
uct lines (SPLs). Our objective is to explore whether we can use existing
Event-B composition techniques and tooling for feature-based product
line development. If case-study experiments reveal these mechanisms to
be inadequate, then they also should suggest further research directions.
The main objective is to maximise the amount of reuse. This includes
avoiding as far as possible having to reprove a composed specification
when the models being composed have already been proven. We have
modelled two case-studies in Event-B using both horizontal and vertical
refinements. This work contributes by analysing existing tools and tech-
niques in Event-B for feature-based development, exploring composition
related issues by modelling example case-studies and suggesting further
tooling requirements.

1 Introduction

Event-B [1] is a formal modelling language, a successor of Abrial’s classical B [2].
It was developed as part of the RODIN1 and earlier EU projects. The DEPLOY2

project, along with industrial partners, is currently focused on deploying this
work into industry. Event-B, a state-based language, is based on set theory and
first-order logic and allows the specification and verification of reactive systems.
The correctness of a model is defined by invariant properties on its state which
must be preserved by all transitions in a system, called events. An event is
enabled when certain pre-conditions on the event, called guards, become true.
Verification conditions (known as proof obligations or POs), concerned with
model consistency, i.e., invariant preservation, are generated and discharged by
proof support tools. Event-B is further supported by the integrated Rodin toolkit
comprising editors, theorem provers, animator and model checker.

A Software Product Line (SPL) refers to a set of related products built from
a shared set of resources with a common base while having significant variability

1 RODIN: EU Project IST-511599. http://rodin.cs.ncl.ac.uk
2 DEPLOY: EU Project IST-214158. http://www.deploy-project.eu



to meet the user requirements [3]. SPLs provide the benefits of reusability in
reducing the time to market, lower cost and reduce effort involved in product
development. Feature modelling [4] is a well-known technique for building SPLs.
The feature has been defined as “a logical unit of behaviour specified by a set of
functional and non-functional requirements”[5] and usually referred as a property
of the system that is of some value to the stakeholders. A feature model is drawn
using tree structured feature diagrams to describe variability among the product
line members, and the valid ways in which these features can be instantiated to
generate various products.

Our objective is to explore how we can devise a feature-oriented approach
for reuse, and ultimately for modelling product lines in Event-B. This will allow
the reuse of existing specifications for a product line to build further products
of the family without redoing all the modelling and proof effort. In the feature-
oriented software development (FOSD) community, a feature is in general made
up of different modules or classes. In Event-B, a feature is a well-formed model,
the basic modular unit in the Rodin tool. Eventually, we will consider a feature
to be a partial Event-B model; this will require further research and tooling de-
velopment. In a state-machine semantics, a feature can add or remove states and
transformations. Also, we are specifying features in the problem space (abstract
requirements) compared to the features in solution space (concrete implementa-
tion, e.g., java classes) as considered by the FOSD community. In order to build a
product, we must compose various features and that brings us to the core issue of
composing specifications. The real benefit of the product line modelling can not
be achieved without automatically proving composed specifications. At present,
there are three types of composition for Event-B which guarantee refinement
preservation.

We present two case-studies to investigate whether the existing composition
techniques are adequate for feature-oriented modelling in Event-B and suggest
further tooling requirements for such development. We call this formal mod-
elling of a system to produce reusable specifications “Domain Modelling” which
corresponds to domain engineering activity within SPL engineering. Also, we
seek to find some composition patterns that can be applied to automate the
composition process to save time and effort. This work can be encouraging for
SPL community to use formal methods as we have adapted and extended ex-
isting feature modelling notations. This paper focuses on the application of our
feature modelling and composition methodologies to the case-study work. This
work builds on the methodology of Snook et al. [6] for the formal verification
of product lines. We want to explore how their methodology can be developed
by experimenting with the case-studies using Event-B and suggesting further
research.

Section 2 gives a brief introduction of the Event-B language and the (de)com-
position techniques for Event-B are presented in Section 3. Section 4 summarises
our feature-oriented modelling support for Event-B. Section 5 describes the two
case-studies we have modelled using Event-B. Related work is given in Section
6. Section 7 concludes the paper and suggests directions for the future work.



2 Event-B Introduction

An Event-B model consists of a machine and multiple contexts. The machine
specifies the behavioural or dynamic part of the system and the context contains
static data which includes sets, constants, axioms and theorems. The sets define
types whereas the axioms give properties of the constants such as typing etc.
Theorems must be proved to follow from axioms. The machine sees context(s).
State is expressed by machine variables. Invariant predicates provide the typing
for the variables and also specify correctness properties that must always hold.
The state transition mechanism is accomplished through events which modify
the variables. An event can have conditions known as event guards which must
be true in order for the event to take place. It can also have parameters (also
known as local variables). The variables are initialized using a special event called
Initialization which is unguarded. An event has the following syntax:

e = Any t where G(t,v) then A(v,t) end

An event e having parameters t can perform actions A on variables v if the
guards G on t and v are true. A model is said to be consistent if all events pre-
serve the invariants. These invariant preservation properties, called proof obliga-
tions (POs), are the verification conditions automatically generated by the tool
and then discharged using theorem provers to verify correctness of the model.
Figure 1 shows an example of a complete Event-B model with a machine and
its seen context. It has a variable bal , typed by the invariant inv1 and ini-
tialized in the Initialization event. The set ACCOUNT is given in the context.
There are two events, i.e., transfer and deposit , which update the variable
bal when their respective guards become true. This example is taken from our
ATM case-study which is explained in Section 5.2.

Refinement is a top-down development method and is at the core of Event-B
modelling. We start by specifying the system at an abstract level and gradually
refine by adding further details in each refinement step until the concrete model
is achieved. A refinement is a development step guaranteeing every behaviour
in the concrete model is one specified in the abstract model. It usually reduces
non-determinism and each refinement step must be proved to be the correct
refinement of the abstract model by discharging suitable refinement POs. Typ-
ically, we classify the refinement into horizontal and vertical refinements [1]. In
horizontal refinement, we add more details to the abstract model to elaborate
the existing specification or introduce further requirements of the system being
modelled. In vertical refinement (also known as data refinement), the focus is on
design decisions, i.e., transforming and enriching data types and the elaboration
of algorithms. In vertical refinement, the state of a concrete model is linked to the
abstract model using gluing invariants. It is usually harder to prove vertical re-
finements compared to horizontal refinements since the gluing invariants increase
PO complexity. A model is vertically refined after the horizontal refinement has
been performed to introduce all the requirements of the system.



Fig. 1. Integral ATM abstract model

3 Decomposition & Composition in Event-B

Decomposition: When a model becomes too big to be easily refined, we need
to decompose it into various sub-models (components) which can then be re-
fined independently. In effect, this is complexity management by reducing the
size of models, which keeps them understandable and reduces the number of
POs to be proved for each model. This also allows the refinement of compo-
nents in parallel by different teams. There are two types of decomposition in
Event-B known as shared-variable decomposition (SVD) [7] and shared-event [8]
decomposition (SED). Like Event-B language, these techniques are influenced
by earlier formalizms such as CSP [9] and Action Systems [10]. The refinement
preserving nature of these decomposition techniques differentiates these from the
feature-based decomposition with in the FOSD community.

In shared-variable style, shared variables are kept in all the components, and
events are partitioned between components. Each shared variable v in each com-
ponent C is affected by - i.e. has possible transitions defined by - every event E
in every other component acting on that variable. To model this, for each such
E, an external event Eext is added to C. When a component is refined, shared
variables and external events must not be refined. This type of decomposition
corresponds to asynchronous shared-memory communication between compo-
nents. Figure 2 (left) is an example of SVD where machine M is decomposed,
with shared variable v2, by partitioning events into machines M1 and M2. Thus
event E3′, a new external event in M1, models the effect on v2 of E3 in M2.
Similarly, E2′ is an external event in M2 modelling the effect on v2 in M2 of E2.



Fig. 2. Decomposition types in Event-B

The shared-event style is based on shared events rather than shared variables.
During the decomposition, the independent events are kept in each decomposed
component and the shared events are split. Figure 2 (right) is an example of SED
where machine N is decomposed by partitioning variables into machines N1 (with
v1) and N2 (with v2). Since event E2 works on variables v1 and v2, it will be
split between N1 and N2. So, part of event E2 (E2a) that deals with variable
v1 becomes an event of N1 and its other part (E2b) that deals with v2 becomes
event of N2. Event splitting is achieved by decomposing its parameters, guards
and actions into two. This type of decomposition is considered appropriate for
systems based on synchronous message passing.

Both the SVD and SED approaches have semantic support for modular re-
finement. This means that it has been shown for both approaches that decom-
position preserves refinement: if we were to recompose components, even after
further refinement steps, the composite would refine the single abstract model.

In practice the designer might choose to recompose - e.g. all code to run on
a single processor - or might not - e.g. where component models are deployed
on separate physical devices. The key point is that the final model is ‘correct by
construction’. A decomposition plug-in [11] has been developed for the Rodin
tool which can be used to demonstrate both styles of decomposition.

Composition: Since we are interested in composition, we would like to use
the decomposition styles discussed above by inverting the decomposition method.
For the shared-event style this is straightforward, whether one is composing all,
or just a subset of components, provided these do not have any shared state.
For shared variable, composition is straightforward provided all components are
included; if not, remaining external events are a problem. So, this brings up a
tooling requirement to automatically generate external events for the compo-
nents being composed. We could manually do this but it will be cumbersome



and even more difficult when composing large number of components with many
events. We will discuss this further in our example case-studies later.

Fusion [12] is another style of composition which allows the fusion of events
when composing Event-B models having shared variables. During the fusion
of two events, guards are conjoined and actions are concatenated. This style
of composition, inspired by the above two decomposition styles, promises the
support for reuse of models through composition as envisaged in feature-based
development. The refinement preservation is also guaranteed as each of the ab-
stract input feature events is refined by the concrete fused event. A prototype
feature composition tool [13] has been developed which allows the composition
of models using this style. Since the tool is not restrictive, it does not enforce
the correct fusion style composition. This means that the user needs to make
sure that the composition is performed correctly. Also, the tool does not auto-
matically discharge proof obligations for the composite model at the moment
but our case-study results will provide some directions to deal with proof reuse
as mentioned in future work (Section 7).

4 Feature-orientation for Reuse with Event-B

We have adapted and extended the cardinality-based feature modelling nota-
tions [14]. Apart from our prototype tool (discussed below), there are no feature
modelling tools specifically for Event-B. Tooling specific to Event-B is required
because standard feature modelling tools are not enough to provide Event-B se-
mantics and all the modelling, proving, animation and model checking facilities
provided by the Rodin toolkit.

We define an Event-B feature as an Event-B model which consists of a ma-
chine and one or more contexts. An Event-B feature model - except for its leaf
nodes - supports all the usual feature modelling constructs and constraints [14],
subject to some syntactic customization [15]. The leaf level nodes in the tree de-
note Event-B features. So, a leaf feature could be a whole Event-B development
modelling various refinement levels3. We have also developed a prototype feature
modelling tool [15] that can be used to build feature models of product lines.
These feature models can be configured by selecting a set of features, resolving
any conflicts and composing these to model an instance of the product line.

5 Approach to Experimental Case-Study Work

We have modelled two well-known case-studies in Event-B using different mod-
elling styles to explore composition related issues that may arise when we try to
model product lines in Event-B. Our focus has been the feature-oriented devel-
opment approach while modelling these systems and to maximise the amount of
reuse that can be achieved. We have used the different types of decompositions

3 This notion of feature has evolved over the time and is slightly different to what we
have published previously.



available in Event-B (see Section 3) to decompose each system into a number of
features which can be independently refined. These features can then be com-
posed later to build a particular product of the product line. So, we have used
the top-down methodology of Event-B in order to build an asset of reusable
features to experiment with. This case-study work should also suggest further
guidelines for feature modelling, should one needs to do so using the existing
techniques and tool. Following is a brief overview of each of the case-studies.

5.1 Production Cell Case-Study

The Production Cell (PC ) [16] is an example of a reactive system, which has
been specified in a number of formal modelling languages. The PC is a metal
processing plant where metal blanks enter into the system through the feed belt
and are dropped on to the elevating-rotary table. The table elevates and rotates
to a position so that the first robot arm can pick up the blanks. The robot rotates
anti-clockwise to drop the blanks in the press. The press forges the blanks which
are then picked up by the second robot arm dropping on to the deposit belt. A
moving crane then picks the blanks from the deposit belt, that have not been
forged properly, and brings them back to the feed belt for reprocessing. Figure
3 shows the top view of the production cell plant.

Fig. 3. Production Cell Plant [16]

The production cell was modelled in two ways, (i) based on the physical com-
ponents and (ii) the controllers of the system. We will refer to these as component
or control based modelling of PC. This allows us to use two different methods
of modelling the same system in Event-B and analysing our methodologies for
the feature-based modelling framework using existing tools and techniques in
Event-B.



PC Component-based: We started with an abstract model of the pro-
duction cell where we only model the processing of metal blanks from unforged
to forged state. We then introduced further requirements in the next three levels
of refinements. These were all horizontal refinements. At this stage we found it
reasonable to decompose this integral model into separate models for each of the
physical components of the PC. Each of these components can then be refined
vertically to include sensors and actuators bringing it closer to implementa-
tion. We tried both the shared-event (SED) and shared-variable decomposition
(SVD). Since there were shared-variables in the model (e.g. blanks shared by
all components), it was not possible to use the SED technique without further
refinement. The decomposition of the integral model using SVD resulted in six
sub-models (components), i.e., feed belt, table, robot, press, deposit belt and
crane. We could then refine each of these sub-models of PC independently while
maintaining the restrictions of the SVD style, i.e., not to refine shared state and
the external events. For example, we vertically refined the ‘press’ component up
to three refinement levels by introducing actuators and sensors for handling the
press using the refinement patterns for control systems [17].

We can build more variants of PC by selecting a different configuration of
these reusable physical components. For example, if we need to increase produc-
tivity, we can model a production cell with two press components for forging
the blanks and two robots. We can build another product of PC by modelling a
different kind of press and reusing existing models where a second robot picks a
blank processed by press1 to be processed differently by press2.

PC Controller-based: The control-based modelling of Production Cell
was done by grouping the requirements for various controllers of the system.
Each group of requirements was modelled as a controller. This was not just
decomposing the PC system into controllers but also generalized these controllers
so that these can be specialized and reused for modelling various PC components.
Hence, the control-based modelling of PC was a result of decomposition plus
generalization. The control-based PC models consisted of loader, movement,
rotation and magnet controllers. These models were generic so that these can be
used later on for modelling a particular physical component of PC. A complete
PC model could also be modelled by instantiating and composing these control-
based reusable features. We only discuss the magnet and movement controllers
here. We refined these using the sensing and actuation patterns for refining
control systems as suggested in [17]. Following is the detail of modelling and
refining the magnet and movement features respectively.

Magnet Controller: At the abstract level, we have events for picking
and dropping of blanks by a component. A component which has not already
picked a blank can do so and a component which has picked a blank can drop
it. The feature will be instantiated to a specific component such as a crane or
a robot arm. The model is quite abstract and the details are added later in the
refinements and during specialization. In the first refinement, we added sensor
for magnet which informs the controller whether a blank has been picked up or
dropped off. An electromagnet switch acts as an actuator for the magnet which
performs the pick and drop of blanks. We have events for starting and stopping



the magnet and switching the sensor on and off. In the second refinement, we
differentiate between the actual and sensed values of the sensors. This is done
to model the system closer to reality, as the actual value of the sensors at some
point in time will be different from the sensed values. Similarly, in the third
refinement, we refine the actuation where controller sets the actuation of the
motor before the motor can be actuated. Here we split the actuation events into
two, i.e., an event for setting the actuation of magnet by the controller and the
event for magnet to actuate accordingly.

Fig. 4. Crane Instantiation

Movement Controller: At the abstract level, we have events for moving
a physical component forward and backward between two positions. The feature
will be instantiated to a specific component such as a press or a crane. During
the first refinement, we added sensors for the two positions and a motor for
moving backward and forward. Events were added for starting and stopping the
motor at different positions and switching the sensors on and off. In the second
refinement, we differentiate between the actual and sensed values of the sensors
as discussed earlier. Using the same refinement style, at third level of refinement,
we differentiate between setting the motor’s actuation by the controller from its
actual movement.

Instantation & Composition: The Magnet and Movement controllers
provide us refinement chains of generic Event-B models for the two features. In
order to model any component of the PC, we need to instantiate and compose
these chains of models. For example, if we want to model the crane component,
we have to specialize one instance of the magnet controller to pick and drop
blanks and two instances of movement controllers for moving the crane horizon-
tally and vertically, as shown in Figure 4. Figure 5 shows a simple example where
event PickBlank of Magnet controller is specialized for the crane component.



Here the generic model parameter X comp X is replaced by crane provided both
of these are of the same type. For now, we use X ... X as a syntactic convention
to model a generic parameter, given that current Rodin tool does not support
generics.

Fig. 5. Event Specialization for Crane

The composition of abstract level models from each refinement chain would
give us an abstract specification for the crane. We also had to do some guard
strengthening and add some invariants during the composition. The composition
of implementation level models for each refinement would provide us with the
implementation of the crane. Again extra guards for events and invariants were
needed. Figure 6 shows two events from crane and movement controllers for
picking up blanks by crane and the movement of crane to feed belt (before
composition). Figure 7 (after composition) shows these events with extra guards
added during the composition. For example, grd3 of CranePickBlank event
specifies that the crane can only pick a blank when it is positioned on the deposit
belt. Similarly, grd2 of moveToFB event in Figure 7 specifies that the crane
can only move to feed belt if it has picked up a blank. The guard grd2 of
CranePickBlank event means it can pick any blank in the system. When we
finally model the entire PC model, we will need to strengthen this guard to say
that the crane can only pick a blank from the deposit belt.

We call this style of composition ‘feature composition’ which extends the
fusion composition where additional predicates can be added during the compo-
sition. As of yet, this style of composition does not guarantee refinement preser-
vation between the composed abstract and implementation models. In order to
deal with this kind of composition, we need support for proof reuse. By this we
mean to find a way of automatically discharging composite POs with the help
of already discharged POs of the components being composed. This requires
further work. In comparison to the component-based approach discussed ear-
lier, this style of modelling SPLs in Event-B seems more appropriate because it
provides more reuse opportunities.

The shared-event composition could not be applied here due to the shared
state between the components being composed. The shared-variable composi-
tion approach is too constraining and could only be used here if we start with an
abstract model containing the functionality of both the Magnet and Movement



Fig. 6. Events of Magnet and Movement Controllers

Fig. 7. Guard strengthening of events during composition

features. We could then decompose these into two, refine each of these, instan-
tiate for the crane and compose to build the crane model. The ATM case-study
discussed in Section 5.2 further explores these issues and suggests the modelling
style through which we could use existing techniques of Event-B to achieve par-
tial reuse of existing specifications, when modelling variants of a product line.

Evaluation: By modelling the PC in two different ways, we can argue that
the amount of reusable assets can be increased by modelling the system from
a reuse perspective. If we model features by generalizing, as in control-based
modelling, then this increases the amount of reuse. For example, a PC model
can be built by composing six physical components. If we want to model the
same PC model using control-based features, we need to specialize and compose
many generic features, e.g., a crane component would require the instantiation
and composition of three features. In fact, we are modelling coarse-grained fea-
tures in component-based PC where as the features in control-based PC are
fine-grained. The top-down development of component-based PC resulting in
coarse-grained features provides the communication between various physical
components. Where as the bottom-up development of control-based PC result-
ing in fine-grained features provides more reuse opportunities. We could only
utilise the potential benefits of reuse if we can automate this process of special-
ization and composition.

We could further explore reusability of component-based features by mod-
elling them completely independent of each other, unlike we did for the component-
based PC by decomposing horizontally refined integral model to get these. Then
again there will be a question of how these components will communicate for



passing blanks to each other when composing these to build a PC? Another
option is to decompose horizontally refined integral model using SED where
the components would communicate by synchronising their shared-events. This
means that the individual components are not completely independent of each
other and their reuse must be constrained by the topology of the PC. We could
also have generic predicates in each component which must be specialized during
the composition. For example, the table receives a blank from the feed belt (fb).
So, a predicate position(b) = XinputCompX could be used which must be spe-
cialized to position(b) = fb . In this way we can model the static variability
represented by the connection topology of the physical components of PC. For
instance, the input component for table is feed belt and the output component
is robot which picks blanks from the table. It would be useful to have a tool that
reads product configuration from a file to instantiate a product line, i.e., the
XinputCompX is instantiated to fb in the above example. So, our objective is
to prototype some mechanism (e.g., syntactic definitions or patterns) that could
be used for generic instantiation and composition of Event-B specifications.

We also found that the process of vertically refining the features to include
sensors and actuators is quite similar in both the modelling styles. This is because
we used the patterns for refining control systems [17]. This refinement process
can also be automated where features can be refined vertically to model actuators
and sensors. This requires further work.

5.2 ATM Case-Study

The auto teller machine (ATM ) provides services to bank customers using their
ATM cards issued by the bank. There are some basic services provided by an
ATM such as cash withdrawal, view account balance and card pin related ser-
vices. Other services can also be provided by ATMs which vary for different
banks and ATM locations, e.g., mobile top up and cash deposit etc. In this Sec-
tion, we will only discuss balance transfer, deposit and withdrawal features of
the ATM.

We can build a product line of ATMs to manage variability and benefit from
reuse while building various ATMs providing different features from a shared set
of available features. A different configuration of features will result in a variant
of an ATM. We have modelled some ATM features in Event-B to see if existing
tools and techniques are capable enough for our feature-oriented modelling in
Event-B or whether we can find other patterns where these existing approaches
fall short. Hence, we can propose ways to handle those situations and suggest any
requirements for the tools and techniques to be built in the future to compliment
the feature-based development in Event-B.

We started with an integral model of the ATM that allows cash deposit and
balance transfer between two accounts. This abstract model is shown in Figure
1. We then decomposed this model into deposit and balance transfer features
using shared-variable decomposition (SVD). The event deposit goes into the
deposit feature and the transfer event goes to the transfer feature - see Figure
8. Both features will have shared variable bal and external events, e.g., deposit
feature will have transfer event as external event which must not be refined



along with the shared variable. These features were then refined horizontally and
vertically.

Fig. 8. Refinement & (de)composition architecture for ATM features

The first refinement of the balance transfer feature refines the transfer

event for a successful transfer of money and another event is introduced when the
transfer fails due to the account balance being less than the transfer amount. The
second level of refinement introduce request and response mechanism between
the ATM and the Bank. Here the ATM sends a balance transfer request to the
bank, which responds after a successful or failed transfer event takes place and
then the ATM displays the transfer status. The third level of refinement further
refines the request and response mechanisms by partitioning the request event for
sending and receiving the request and similarly for the response event. The fourth
refinement introduces the middleware (MW ) between the ATM and the Bank.
This allow us to make an architectural decomposition of the balance transfer
feature into ATM, MW and the Bank where MW is used for communicating
between the two. The recomposition of these (ATM, MW, Bank) would refine
the feature being decomposed (fourth refinement).

An ATM sends a balance transfer request through the MW which is re-
ceived by the bank. The bank then sends a response for a successful or failed
transfer through the middleware. The ATM finally displays the transfer sta-
tus accordingly. We used SED here and the components synchronise using the
shared-events. Each of these three components can be further refined. Similarly,
we refined the deposit feature resulting in three components, i.e., ATM, MW



and the Bank. Figure 8 shows the development and composition structure for
the deposit and balance transfer features of the ATM. In the figure, asterisk (*)
denotes a model with external events, and /bal indicates the model’s shared
variable. Note that in this case study, the shared variable bal and its corre-
sponding external events are localized in the Bank component.

Now that we have the same architectural decomposition (ATM, MW, Bank)
for each feature, we would like to compose these models pairwise (i.e Bankt+d =
Bankt + Bankd, etc.) for implementation purposes. In general, the task would
of course be more complex, involving more than two features. In our case, where
the shared variable bal is localized into the two architectural Bank components,
intuition suggests that these can be composed, with the composite Bank refining
each component Bank. This is because each Bank’s external events are exactly
“cancelled out”, or implemented, by the other Bank’s actual events. This asser-
tion remains to be proved in general for this pattern of mixed decomposition-
recomposition. There is to date no shared-variable composition (SVC ) tool sup-
port.

Evaluation: Consider generalizing the above approach. For example, after
building an ATM with two features, we want another ATM product having a cash
withdrawal feature as well (as shown by dotted lines in Figure 8). We elaborate
the top-level integral model to include withdrawal feature and decompose it into
three components (i.e., deposit, balance transfer and withdrawal). Provided the
new feature is separable - in the sense that in the SVD refinement the other two
feature models remain unchanged - then all we have to do is refine the withdrawal
component. Since the deposit and balance transfer components have already
been proven, new POs will only be generated for the newly added external events
corresponding to events of the withdrawal component acting on bal . Hence, we
will only have to discharge these small number of POs when reusing existing
models. So, If we can have a tool for analysing and automatically generating
external events in the existing components for the newly added components,
then we could reduce the amount of POs needed to be discharged.

Recall that in SVD the shared-variable (SV ) may not be refined - this is very
restrictive, and further investigation is required to establish whether after archi-
tectural recomposition, it is possible to then refine the SV for implementation
purposes.

We have examined a specific pattern of mixed decomposition-recomposition
- SVD followed by SED and then SVC in a single development. It appears pos-
sible to do this provided shared variables and their associated external events
become localized in one of the shared-event components. Should this pattern be
validated theoretically, other architectural possibilities should emerge: e.g., an
ATM-specific shared variable as well as a Bank-specific one in the same devel-
opment. Interesting avenues of future work are indicated.

6 Related Work

Formal modelling of SPLs is not a new area and work has been done to formally
specify requirements and reusing these to produce variants of a product line
[18]. HATS [19] provides a methodology for applying formal methods at differ-



ent stages of SPL development cycle. This seems to be a promising work to bring
together the domains of formal methods and SPL. All the existing techniques
for composing Event-B specifications have been discussed in this paper and we
have not seen any work being done for modelling SPLs in Event-B. Lau et al.
[20] proposed component-based verification approach which allows the compo-
sition of existing verified components and support proof reuse. This is different
to our approach because an Event-B component is not a single model but a
chain of refinements. We need to compose models at different refinement levels
and also preserve the refinement relationship between the abstract and concrete
composite models. Some work has been done by Sorge et al. [21] which deals
with invariant proof obligations for composing features. This does not support
feature refinement and event fusion which is required to complement our feature
modelling framework. FEATUREHOUSE [22] is another tool that allows the
composition of artefacts and supports various languages with option to include
more. It would be very useful to see if Event-B can be included in this framework
and whether the composition of Event-B refinement chains can be achieved with
proof reuse.

7 Conclusion & Future Work

We have given an overview of the two case-studies that we have modelled to ex-
plore existing capability for feature-based development in Event-B. We sought
to identify patterns of refinement, generic instantiation, decomposition and com-
position that could be exploited for reuse. Further, we sought to identify further
requirements for tooling, and further research - both experimental and theoret-
ical - to develop a feature-based reuse capability for Event-B/Rodin.

In the component-based PC model we explored SVD. Then considering the
option of modelling physical components as features, it appeared that generic
elements defining the connection of these features could be instantiated from
contextual data about the topology/connectivity of the cell. This idea is close to
the shared-event composition of such features and needs further examination.

In the controller-based modelling approach to the PC we found a finer-grained
set of generic template models which could be instantiated and composed into
physical features, which could then be further composed as above. However,
this freer form of composition (which we call feature composition) carries no
“correct-by-construction” guarantee, and thus a full reproof burden. It may be
that this is an opportunity for fusion composition, which remains to be investi-
gated. Investigation is also needed to find modelling and composition patterns
that will give partial PO reuse, thus partial “reproof-for-free”. For example,
guard-strengthening of events preserves simple refinement, but can introduce
deadlock problems.

In the ATM case, we explored one specific pattern of mixed decomposition-
recomposition - SVD followed by SED and then SVC. This looks like a promis-
ing pattern for composition of abstract features followed by architectural design,
subject to structural constraints about shared variables. Future work will re-
veal exactly what those constraints are, and will explore other such patterns of



refinement and (de)composition for feature-based modelling. It would also be
interesting to explore how to deal with feature interactions using our case-study
work.
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