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Abstract—A unified bit-based probabilistic data association
(B-PDA) detection approach is proposed for multiple-input–
multiple-output (MIMO) systems employing high-order rectangu-
lar quadrature amplitude modulation (QAM). The new approach
transforms the symbol detection process of QAM to a bit-based
process by introducing a unified matrix representation (UMR) of
QAM. Both linear natural and nonlinear binary reflected Gray
bit-to-symbol mappings are considered. With the aid of simulation
results, we demonstrate that the linear-natural-mapping-based
B-PDA approach typically attained an improved detection per-
formance [measured in terms of both bit error ratio (BER) and
symbol error ratio (SER)] in comparison with the conventional
symbol-based probabilistic data association (PDA)-aided MIMO
detector, despite its dramatically reduced computational complex-
ity. The only exception is that, at low SNRs, the linear-natural-
mapping-based B-PDA is slightly inferior in terms of its BER
to the conventional symbol-based PDA using binary reflected
Gray mapping. Furthermore, the simulation results show that the
linear-natural-mapping-based B-PDA MIMO detector may ap-
proach the best-case performance provided by the nonlinear
binary reflected Gray-mapping-based B-PDA MIMO detector
under ideal conditions. Additionally, the implementation of the
B-PDA MIMO detector is shown to be much simpler in the
case of the linear natural mapping. Based on these two points,
we conclude that, in the context of the uncoded B-PDA MIMO
detector, it is preferable to use the linear natural bit-to-symbol
mapping, rather than the nonlinear Gray mapping.

Index Terms—High-order quadrature amplitude modulation
(QAM), low complexity, probabilistic data association (PDA), uni-
fied matrix representation (UMR), vector detection.

I. INTRODUCTION

THE SUBSTANTIAL spectral efficiency gains promised by
multiple-input–multiple-output (MIMO) [1] techniques

have stimulated substantial research activities, particularly as
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far as their detection is concerned. The optimum maximum-
likelihood (ML) detector [2] exhibits an exponentially increas-
ing complexity upon increasing the number of jointly detected
symbols, which generally precludes its application in practical
MIMO systems. The ML detector can also be implemented
using more efficient1 algorithms, such as sphere decoding (SD)
[3]. However, SD cannot always efficiently limit the complexity
of high-dimensional problems associated with a large number
of transmit antennas or high-order modulation (HOM), partic-
ularly when aiming for using soft decisions at low SNRs [4].
There are dozens of other suboptimal MIMO detectors ranging
from the most common zero forcing (ZF), minimum mean
square error (MMSE), and successive interference cancellation
(SIC) to expectation maximization (EM) and semidefinite re-
laxation (SDR), etc. (See [5]–[9] and the references within.)
However, they either have a modest performance (ZF, MMSE,
and SIC) or might have a computational complexity that is
exponential in the number of sources (EM) [7] or impose con-
siderably increased computational complexity, which increases
at a rate spanning from at least O(N3.5) [9] to O(K6.5N6.5)
[10] for high-order quadrature amplitude modulation (QAM),
where N = O(NT ), NT is the size of the transmitted QAM
symbol vector, and K is the square root of the constellation
size (SDR). Since MIMO-aided HOM will play a pivotal role
in next-generation wireless systems, there is a need to develop
low-complexity MIMO detectors that are appropriate for HOM.

The probabilistic data association (PDA) method [11], which
was originally conceived for target tracking [12], may also
be developed into a reduced-complexity design alternative to
maximum a posteriori (MAP) probability decoders/detectors/
equalizers, which are known to constitute the optimal soft-
decision approach. Hence, the PDA algorithm constitutes a
promising detection technique. First, it may achieve a near-
optimal detection performance, particularly in the context of
code-division multiple-access (CDMA) systems [11], [13].
Second, it has a low complexity that increases no faster than
O(L3), where L is either the number of users in CDMA
[11] or the number of transmit antennas in the MIMO system
[17]. Third, it is inherently a soft-input–soft-output (SISO)
algorithm, which is eminently applicable in combination with

1This efficiency is quantified in terms of the average computational cost at
reasonable signal-to-noise ratios (SNRs), as shown in [4].
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forward error control (FEC) coding.2 Furthermore, the higher
the number of transmit antennas or users, the better its perfor-
mance, provided that the channel is not rank deficient [14]. The
PDA approach was recently extended to the symbol detection
of MIMO systems [15]–[17], striking an excellent tradeoff
between the attainable performance and the complexity im-
posed. The pseudocovariance [18] was employed to fully spec-
ify its complex Gaussian input distribution, and the resultant
Complex-valued formulation of the PDA (CPDA) [17] was
shown to outperform both the real-valued vector formulation
of the Generalized PDA (GPDA) [15] and the Complex-valued
PDA using an approximately matched mean and covariance
(CPDA-apx) [16]. However, it may be readily shown that the
performance versus complexity benefits of the conventional
symbol-based PDA-aided MIMO detectors [15]–[17] are not
as convincing as those of their CDMA-based counterpart [11].
According to the results in [14], one of the reasons is that the
number of transmit antennas in a MIMO system is typically
lower than that of the users in CDMA. A second reason is that,
typically, QAM is used in MIMO systems, rather than BPSK.
In addition, it is also because the equivalent “channel” matrix
in CDMA systems is more likely to be well conditioned than
the channel matrix of MIMO systems.3 As argued in [11], a
key feature of PDA is the repeated conversion of a multimodal
Gaussian mixture probability to a single Gaussian distribution
having a matched mean and covariance. Hence, the accuracy
of the Gaussian approximation dominates the attainable perfor-
mance. In fact, it has been demonstrated in [14] that the quality
of the Gaussian approximation in PDA is the best for a large
number of transmit antennas and a small number of modulation
constellation points. Therefore, the symbol-based PDA-aided
MIMO detectors’ performance significantly degrades for high-
order QAM, compared with that of the ML/MAP detector,
whereas its complexity substantially increases, owing to the
increased number of symbol probabilities to be computed.

The aim of this paper is to develop an efficient PDA-based
MIMO detector for high-order rectangular QAM constellations.
Inspired by the conclusions of [14], we intend to find a method
that may equivalently increase the length of the effective trans-
mitted signal vector and/or reduce the effective constellation
size for PDA MIMO detectors.

The main contributions in this paper are given as follows.

1) We present an explicit unified matrix representation
(UMR) of both linear natural mapping [8], [20] and
nonlinear binary reflected Gray-mapping-based rectangu-

2Note that, however, in this paper, we intend to focus our attention on the
hard detection of uncoded transmissions using PDA. The in-depth investigation
of the iterative decoding based on PDA is somewhat out of context in this paper,
and it will be heeded in our future work.

3The equivalent “channel” matrix in CDMA systems is usually constituted
by the convolution of the channel impulse response and the cross-correlation
matrix of the well-designed spreading codes, which is typically well condi-
tioned. However, in MIMO systems, it is possible that the channel matrix for
some channel realizations becomes rather ill conditioned. According to the
central limit theorem, having fewer independent random variables imposed by
the ill-conditioned matrices may result in poor Gaussian approximations, the
quality of which is the principal determining factor of the PDA-based detectors’
performance.

lar QAM employed in MIMO systems, including BPSK
modulation as a special case.

2) Based on the UMR, we first propose a bit-based PDA
(B-PDA) MIMO detector for high-order rectangular
QAM. In contrast to the conventional symbol-based PDA
MIMO detectors of [15]–[17], the B-PDA transforms
the symbol-based QAM detection of MIMO systems to
a BPSK-like binary scenario, thus eliminating symbol-
based decisions, and directly operates at the bit level.
While a similar mathematical representation of the linear-
natural-mapping-based rectangular QAM was also used
in the context of the SDR technique of [8] and in the
multilevel bit-interleaved coded modulation scheme of
[20], its extension to the nonlinear binary reflected Gray
mapping and its application to improving the PDA-based
MIMO detectors have not been suggested before.

3) We investigate the complexity of the proposed B-PDA
MIMO detector both analytically and by simulations.
It is demonstrated that the linear-natural-mapping-based
B-PDA substantially reduces the computational com-
plexity, compared with the conventional symbol-based
PDA MIMO detector in uncoded VBLAST systems using
high-order QAM.

4) In addition to a beneficial complexity reduction, the
simulation results show that the linear-natural-mapping-
based B-PDA has a slightly improved performance in
comparison with the conventional symbol-based PDA.
Furthermore, it approaches the lower bound performance
provided by the binary reflected Gray-mapping-based
B-PDA under the idealized perfect modulation matrix
estimation assumption.

5) Considering the additional complexity and the potential
performance degradation entailed by the modulation ma-
trix estimation for binary reflected Gray-mapping-based
B-PDA, we argue that the binary reflected Gray mapping
is not the best choice of labeling scheme for B-PDA. In
fact, it is preferable to use the simpler and more practica-
ble linear natural mapping for the B-PDA detector in the
context of the uncoded VBLAST system considered.

II. PROBLEM STATEMENT

Consider a spatial-multiplexing MIMO system using NT

transmit and NR receive antennas. The received baseband
signal at each symbol instant is given by

y = Hs + n (1)

where H is the (NR × NT )-element complex channel matrix,
s is the length-NT vector of transmitted symbols from a mod-
ulation constellation A = {a1, a2, . . . , aM} with cardinality
M , and n represents the length-NR complex-valued circularly
symmetric Gaussian noise vector with zero mean and a covari-
ance matrix of N0I, where I is an (NR × NR)-element identity
matrix.

Assume that the components of the transmitted symbol vec-
tor s are obtained using the bit-to-symbol mapping function
sj = map(dj), j = 1, 2, . . . , NT , where dj = [dj,1, dj,2, . . . ,
dj,Mc

]T ∈ {+1,−1}Mc is the vector of data bits, and
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Mc = log2 M is the number of bits per M -QAM symbol. The
vector of bits corresponding to s is denoted as b, which sat-
isfies s = map(b) and is formed by concatenating the NT an-
tennas’ bits d1,d2, . . . ,dNT

, yielding b = [b1, b2, . . . , bk, . . . ,
bMcNT

] = [dT
1 ,dT

2 , . . . ,dT
NT

]T ∈ {+1,−1}McNT .
At the receiver, the task of the conventional symbol-based

PDA MIMO detector is to seek a small bit error ratio (BER)
or symbol error ratio (SER) by estimating the a posteriori
symbol probabilities P (sj = am|y) = Pm(sj |y), without an
exhaustive search in the space of all possible M -QAM MIMO
symbol combinations. In this paper, our goal is to attain a
high detection performance by estimating the a posteriori bit
probabilities P (dj,q = ±1|y), q = 1, 2, . . . ,Mc.

III. UNIFIED MATRIX REPRESENTATION OF QUADRATURE

AMPLITUDE MODULATION: LINEAR NATURAL

BIT-TO-SYMBOL MAPPING

The conventional description of the bit-to-symbol mapping
process of QAM is based on a lookup table method complying
with the specific mapping rules [19]. To some extent, this
method conceals the mathematical characteristics of a specific
bit-to-symbol mapping process.

In MIMO systems employing rectangular QAM, the map-
ping from bits to symbols may be compactly and explicitly
formulated by a unified matrix transformation [8], [20] to be
derived here. Consider a QAM constellation symbol am =
x + iy ∀m ∈ {1, 2, . . . ,M}, where x and y are taken from the
real alphabets Areal and Aimag, respectively. For simplicity,
we assume that each transmit antenna uses the same mod-
ulation scheme of Areal = Aimag = Ā = {α1, α2, . . . , α√

M}
for square QAM, although our approach may be generalized
to different alphabets for the real and imaginary parts. Let us
now rewrite the bit-to-symbol mapping function sj = map(dj)
defined in Section II as

sj =s�j + is�j =map
(
d�j,1, . . . , d

�
j,Mc/2, d

�
j,Mc/2+1, . . . , d

�
j,Mc

)
(2)

where � and � indicate the real and imaginary parts of sj ,
respectively, and s�j , s�j ∈ Ā.

Since square QAM constellations having symmetric real and
imaginary parts are considered here, it is sufficient to consider
the real part only in the following derivation of the matrix
representation without any loss of generality.

Let us assume that the elements of Ā are placed in ascending
order for constructing the vector a = [α1, α2, . . . , α√

M ]T and

denote the corresponding bit strings as the (
√

M × (Mc/2))-
element matrix B, in which the kth row is the bit string cor-
responding to αk, k = 1, 2, . . . ,

√
M . Then, the bit-to-symbol

mapping rule is described as

Bx = a (3)

where we would like to express x, i.e., the “subgenerating
unit,” which maps the bits to the real part of a QAM symbol.
Furthermore, the vector g = [xT , ixT ] is defined as the “gen-
erating unit” of the M -QAM, and it maps the bits to a QAM
symbol.

Here, we consider the linear-natural-mapping-based square
64QAM as an example to elaborate on how to find the sub-
generating unit x. The alphabet Ā of square 64QAM is given
by A64QAM = {−7,−5,−3,−1,+1,+3,+5,+7}, Mc = 6,
B = [−1,−1,−1;−1,−1,+1;−1,+1,−1;−1,+1,+1;+1,
−1,−1;+1,−1,+1;+1,+1,−1;+1,+1,+1] (we use semi-
colon “;” to distinguish the different rows in B), and a = [−7,
−5,−3,−1,+1,+3,+5,+7]T ; thus, we have x = [4, 2, 1]T in
the light of (3). The Hamming distances between neighboring
constellation points in this case are either 1 or 2.

Similarly, we have x = [2, 1]T for 16QAM and x = 1 for
4QAM. It should be pointed out that the linear natural map-
ping presented here is the same as the binary reflected Gray
mapping4 for 4QAM. This observation will be beneficial for
understanding the implications behind the matrix representation
of Gray-mapping-based rectangular QAM in Section IV.

From the subgenerating units previously presented for
4QAM, 16QAM, and 64QAM, we can infer that, for general
rectangular QAM, the UMR is given by

W =

⎛
⎝g · · · 0

...
. . .

...
0 · · · g

⎞
⎠

NT ×McNT

(4)

where g = [2(Mc/2)−1, 2(Mc/2)−2, . . . , 1, 2(Mc/2)−1i,
2(Mc/2)−2i, . . . , i] for square QAM. While, for the odd
rectangular QAM (8QAM, 32QAM, etc.), if we assume that
the real alphabet of the odd rectangular QAM is the same as that
of its double-sized square QAM counterpart, we obtain g =
[2(Mc−1)/2, 2((Mc−1)/2)−1, . . . , 1, 2((Mc−1)/2)−1i, . . . , i], in-
cluding BPSK as a special case of a rectangular QAM signal,
with its imaginary part being 0.

Consequently, the mapping function s = map(b) in Section II
may be characterized by s = Wb for MIMO systems using the
linear-natural-mapping-based rectangular QAM.

IV. UNIFIED MATRIX REPRESENTATION OF QUADRATURE

AMPLITUDE MODULATION: NONLINEAR GRAY

BIT-TO-SYMBOL MAPPING

In Section III, we presented a UMR of general rectangular
QAM constellations using linear natural mapping for MIMO
systems. The limitation of this matrix representation is, how-
ever, that it did not provide the nonlinear Gray mapping for rec-
tangular QAM constellations having cardinality larger than 4.
(For 4QAM, the linear natural and the Gray bit-to-symbol map-
pings are identical.) Consequently, since the binary reflected
Gray mapping was shown to be the optimal labeling scheme
[21] in the sense of the lowest possible average probability of
bit errors, two interesting questions arise: 1) Would the linear-
natural-mapping-based B-PDA detector’s performance degrade
for high-order QAM, owing to the lack of Gray mapping in

4Although there may be distinct Gray labelings that result in different bit-
error probabilities, particularly in high-order constellations, the binary reflected
Gray mapping has been shown to give the lowest possible average probability
of bit errors for conventional symbol-based detection under certain assumptions
on the channel [21] We will simply use “Gray mapping” to refer to the “binary
reflected Gray mapping” in the rest of the paper.
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Fig. 1. Signal space diagram for 64QAM under Gray mapping.

the context of uncoded systems? 2) Is the Gray mapping still
the best labeling scheme for the B-PDA MIMO detector? To
answer these questions, in this section, we extend the previ-
ous linear-natural-mapping-based results to the nonlinear Gray
mapping case. In contrast to the linear natural bit-to-symbol
mapping scenario, the matrix representation of Gray mapping
depends on the bits to be transmitted, as detailed here.

A. Example With 64QAM

According to (3) and the Gray mapping rule shown in
Fig. 1, we have a = [−7,−5,−3,−1,+1,+3 + 5,+7]T , x =
[a, b, c]T , and the original Gray-mapping-based bits 000, 001,
011, 010, 110, 111, 101, and 100 are converted into the bipolar
representation of B = [−1,−1,−1;−1,−1,+1;−1,+1,+1;
−1,+1,−1;+1,+1,−1;+1,+1,+1;+1,−1,+1;+1,−1,−1]
under the rule of 2bi − 1, where bi, i = 1, 2, is a binary digit
of 0 or 1. Upon substituting a, B, and x into (3), we find that
x does not have a unique solution, owing to the nonlinearity of
Gray mapping. However, each of the following four subsystems
of equations has a unique solution:⎧⎪⎨

⎪⎩
(i)

{−a − b − c = −7
−a − b + c = −5

⇒ [a, b, c] = [4, 2, 1]

(ii)
{−a + b + c = −3
−a + b − c = −1

⇒ [a, b, c] = [4, 2,−1]
(5)

⎧⎪⎨
⎪⎩

(iii)
{

a + b − c = 1
a + b + c = 3

⇒ [a, b, c] = [4,−2, 1]

(iv)
{

a − b + c = 5
a − b − c = 7

⇒ [a, b, c] = [4,−2,−1].
(6)

We can observe in (5) and (6) that there are four possible
solution vectors, i.e., x1 = [4, 2, 1]T , x2 = [4, 2,−1]T , x3 =
[4,−2, 1]T , and x4 = [4,−2,−1]T corresponding to four 3-bit
tuples (every three adjacent bits as a unit) in which (−1,−1),
(−1,+1), (+1,+1), and (+1,−1) are the first two bits, re-
spectively. Hence, for Gray mapping, the subgenerating unit
has the aforementioned four legitimate values of (a, b, c). For

example, if the 3-bit tuple to be transmitted is (−1,−1, x), then
its corresponding subgenerating unit is (a = 4, b = 2, c = 1),
and if the 3-bit tuple is (+1,−1, x), then we have (a = 4, b =
−2, c = −1), where x is −1 or 1.

By jointly considering Fig. 1 and the subgenerating units
of 64QAM previously derived, we may infer several pieces of
useful information for 64QAM: 1) First, the component having
the largest modulus in the generating unit remains the same as
that of its counterpart in linear natural mapping, but the signs
of the smaller components may change. 2) Second, the set of
constellation points that dwell in the same four-point block
within the dashed box of Fig. 1 share the same generating unit.
Therefore, 64QAM is divided into 16 four-point blocks and
has 16 different generating units constructed by four different
subgenerating units. 3) Furthermore, the constellation points in
the same half-plane are explicitly described by (5) (the left half-
plane) and (6) (the right half-plane), each of which is composed
by two further sets of equations, as seen in (i)–(iv) of (5) and
(6), respectively. 4) Additionally, it is plausible that the solution
of (a, b, c) for each of (i)–(iv) is unique under the constraint
that (i) and (ii) constituting the left half-plane share the same
values of (a, b), and so do (iii) and (iv), constituting the right
half-plane.

B. General QAM

Based on the aforementioned insights drawn from 64QAM,
the UMR of the most commonly used Gray mapping may be
obtained by appropriately alternating the sign of certain entries
in the preceding static UMR of the linear-natural-mapping-
based QAM, which, in fact, serves as the basis matrix for
Gray-mapping-aided QAM and may be prestored for memory-
based access. The corresponding procedures are summarized as
follows.

1) Generate the UMR of the linear natural bit mapping, i.e.,
W according to (4).

2) Check the sign of the bipolar bits in b, and adjust the
sign of the corresponding entries in W to get W(b)
accordingly. The sign of the first element of the real and
imaginary parts in g is always positive, whereas the signs
of the remaining elements should be changed according
to the various combinations of the residue bits. When
taking into account the symmetry of the real and imagi-
nary parts of the QAM constellation points and excluding
the specific combination where each element is positive
as in linear natural mapping, the number of additional
different subgenerating units is (2(Mc/2)−1 − 1) for the
square QAM and (2(Mc−1)/2 − 1) for the rectangular
QAM representing an odd number of bits per symbol. The
selection of the appropriate generating unit is illuminated
using 16QAM and 64QAM as our examples in Table I.
For ease of exposition, Matlab-style pseudocode is used.
Based on the rules of Table I, the complete set of gener-
ating units of Gray-mapping-based 16QAM is presented
in Table II as an example.

Therefore, the mapping function s = map(b) in Section II
may be formulated as s = W(b)b for MIMO systems using
the nonlinear Gray-mapping-based rectangular QAM.
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TABLE I
UMR RULE OF GRAY MAPPING

TABLE II
GENERATING UNITS OF 16QAM USING GRAY MAPPING

V. BIT-BASED PROBABILISTIC DATA ASSOCIATION

MULTIPLE-INPUT–MULTIPLE-OUTPUT DETECTION

BASED ON UNIFIED MATRIX REPRESENTATION

We have provided a UMR of the rectangular M -QAM. Given
the UMR, diverse MIMO signal processing problems involving
high-order QAM may be simplified to a BPSK-like scenario.
Here, we will further develop the conventional symbol-based
PDA MIMO detector of [17] to a reduced-complexity bit-based
approach.

A. Basic Detection Algorithm

Based on the UMR of QAM, we have s = Wb and s =
W(b)b for the linear natural mapping and nonlinear Gray map-
ping, respectively. We will first consider the linear-mapping-
based rectangular QAM to elaborate on the B-PDA detector and
then discuss the nonlinear Gray mapping scenario at the end of
Section IV-B.

The original system model of (1) may be rewritten as

y = HWb + n = Qb + n (7)

where Q = HW captures the combined effect of both the
channel matrix and the bit-to-symbol mapping matrix. We can

see from (7) that the original QAM detection problem has been
transformed into an equivalent BPSK-like detection model.

Adopting the nondecorrelated signal model of [14], (7) can
be further reformulated as

y = qlbl +
∑
k �=l

qkbk + n Δ= qlbl + vl (8)

where ql denotes the lth column of Q, and bl is the lth bit of b,
whereas vl is the interference and noise term contaminating bit
bl, l, k = 1, 2, . . . , McNT .

For each bit bl, we define an two-element bit probability vec-
tor P(l), whose mth element Pm(bl|y) is the current estimate
of the a posteriori probability that bl = am, where m = 1, 2,
and a1 = +1, a2 = −1. The key idea of the PDA algorithm
[11] is to approximate the interference plus noise term vl as an
NR-variate colored Gaussian distributed random variable with
a mean of

μl =
∑
k �=l

b̄kqk (9)

covariance of

Vl =
∑
k �=l

Vbk
qkqH

k + N0I (10)
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and pseudocovariance [18] of

Ul =
∑
k �=l

Ubk
qkqT

k (11)

where

b̄k =
2∑

m=1

amPm(bk|y) (12)

Vbk
=

2∑
m=1

(am − b̄k)(am − b̄k)∗Pm(bk|y) (13)

Ubk
=

2∑
m=1

(am − b̄k)(am − b̄k)T Pm(bk|y). (14)

Here, Pm(bk|y) is initialized as a uniform distribution and
will be replaced with an updated bit-probability at each iteration
of the B-PDA detector.

Let

w =y − blql −
∑
k �=l

b̄kqk (15)

ϕm(bl)
Δ= exp

(
−

(
�(w)
�(w)

)T

Λl

(
�(w)
�(w)

))
(16)

where we have

Λl
Δ=

(
�(Vl + Ul) −�(Vl − Ul)
�(Vl + Ul) �(Vl − Ul)

)−1

(17)

while �(·) and �(·) represent the real and imaginary parts of a
complex variable, respectively.

Since it is assumed that all the transmitted bits have equal
a priori probabilities, the a posteriori bit probability is given as

Pm(bl|y) =
pm(y|bl)P (bl = am)

2∑
m=1

pm(y|bl)P (bl = am)

≈ ϕm(bl)
2∑

m=1
ϕm(bl)

. (18)

In summary, the algorithm proceeds as follows.

1) Initialization: Set the initial values of the bit proba-
bilities Pm(bl|y) using a uniform distribution for ∀l =
1, 2, . . . ,McNT ∀m = 1, 2, i.e., Pm(bl|y) = 0.5. Set the
iteration counter to z = 1.

2) Set the bit index to l = 1.
3) Based on the current values of {P(k)}k �=l, compute

Pm(bl|y) using (9)–(18), which will replace the value of
the corresponding element of P(l).

4) If l < McNT , let l = l + 1, and go to step 3). Otherwise,
go to step 5).

5) If P(l) has converged ∀l or the iteration index has reached
its maximum, go to step 6). Otherwise, let z = z + 1, and
return to step 2).

6) For l = 1, 2, . . . ,McNT , make a decision concerning b̂l

using b̂l = ad, d = arg maxm′=1,2{Pm′(bl|y)}, yielding
b̂ = {b̂l|l = 1, 2, . . . ,McNT }.

B. Discussions

From the preceding procedures, we can see that the size of
the detected vector is extended from NT symbols to McNT

bits, and the number of constellation points is reduced from
M ≥ 4 to 2. It was demonstrated in [14] that the quality of
“Gaussian approximation” and, therefore, of the soft outputs,
is the best for a large number of transmit antennas and a
small number of constellation points [14]. In this context, the
question arises as to how the UMR of QAM will influence
the achievable performance of the proposed B-PDA. This
may not be an easy dilemma to resolve since the theoretical
performance bound of PDA-based algorithms is still an open
problem, and the UMR transformation may have both a positive
and a negative impact on the achievable performance. First,
based on the observations in [14], we intuitively infer that our
approach may be interpreted as virtually increasing the number
of transmit antennas while reducing the QAM constellation to a
binary constellation. This approach improves the quality of the
Gaussian approximation and reduces the decision ambiguity
concerning the symbols of high-order QAM since it leads to
binary decisions. Hence, the performance of B-PDA is expected
to be enhanced. On the other hand, the UMR transformation
may result into a degraded composite channel of HW, which
may deteriorate the achievable performance of B-PDA. We will
demonstrate that, in fact, the composite effect of the UMR is
positive, as it will be evidenced in Section VI.

To elaborate a little further, the design and choice of con-
stellation labeling may have a significant impact on the BER
performance of symbol-based detectors. This explains why our
research community has been keen on investigating various
labeling schemes in the context of different communication
systems. However, the specific bit assignment within a symbol
does not affect the SER performance, because the SER perfor-
mance is determined by the minimum Euclidean distance of the
constellation employed. However, since the proposed B-PDA
skips the symbol-detection stage and directly operates at the bit
level, where the bits are separately and independently treated,
the correlation between bits may not affect the achievable BER
performance, as seen from the simulation results in Section VI.

Note that, if Gray-mapping-based rectangular QAM is used
in the preceding B-PDA-aided MIMO systems, it may be diffi-
cult to perfectly determine in advance the specific modulation
matrix W(b) used at the receiver, because the modulation
matrix depends on the transmitted bit vector. This implies that
either a realistic detector should be used to first estimate the
W(b) at the receiver or a flag containing the index of the mod-
ulation matrix used should be sent to the receiver via the
signaling channel. Aside from the additional complexity, there
would be a performance degradation, which is determined by
the quality of the corresponding estimation algorithm. How-
ever, to provide a lower bound performance for the linear-
natural-mapping-based B-PDA, we assume that the modulation
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TABLE III
PROBABILITIES COMPUTED IN ONE ITERATION FOR CPDA

matrix W(b) of the Gray-mapping scenario is perfectly known
at the receiver in the simulations of Section VI. In fact, ob-
serve in Figs. 4–7 that the linear-natural-mapping-based B-PDA
achieves almost the same performance as the Gray-mapping-
based B-PDA under the idealized perfect modulation matrix
estimation assumption.

C. Complexity Analysis

It was shown in [17] that the conventional symbol-based
CPDA MIMO detector has to update an (M × NT )-element
probability matrix at each iteration, until all the entries in the
matrix converge or the maximum iteration index is reached.
For the sake of clarity and compactness, this probability matrix
is explicitly provided in the form of Table III. Consequently,
the number of probabilities to be computed may be as high as
MNT Nit for each symbol vector s, where Nit is the average
number of iterations required for convergence in the process of
detecting each M -QAM NT -symbol vector.

By comparison, it may be readily observed from the afore-
mentioned B-PDA procedures that, provided that the UMR
of QAM is employed, the corresponding probability matrix
for B-PDA has McNT rows and two columns, as seen in
Table IV. Thus, the number of probabilities to be computed
reduces to 2McNT at each iteration. Hence, the total number of
probabilities to be computed becomes 2McNT N ′

it, where N ′
it

is the average number of iterations required for detecting each
corresponding bit vector. Additionally, the complexity imposed
by computing a single probability is denoted as Cp and C ′

p for
CPDA and B-PDA, respectively.

Then, the achievable complexity ratio of the B-PDA MIMO
detector over the conventional PDA MIMO detector required
for decoding a single symbol vector becomes

Rc(M)=
2McNT N ′

itC
′
p

MNT NitCp
=

2 log2(M)
M

· N ′
it

Nit
·
C ′

p(M)
Cp(M)

(19)

where 2 log2(M)C ′
p(M) and MCp(M) are the per-iteration

complexity for B-PDA and CPDA, respectively, whereas
2 log2(M)N ′

itC
′
p(M) and MNitCp(M) are the complexity per

symbol vector for B-PDA and CPDA, respectively. Equation
(19) is a monotonically decreasing function of the modulation
order M , because the ratio of the number of iterations N ′

it/Nit

is typically close to 1, where C ′
p(M)/Cp(M) is less than 1

TABLE IV
PROBABILITIES COMPUTED IN ONE ITERATION FOR B-PDA

and decreases upon increasing M , as it will be demonstrated
in Fig. 2.5 Consequently, we have Rc(M) 
 1 for M � 4. We
provide a demonstrative example in Fig. 2 for the complexity
comparison between the conventional CPDA and the proposed
B-PDA quantified in terms of the number of FLoating point
OPerations (FLOPs) per iteration and per symbol vector for
different QAM constellations. It may be readily seen in Fig. 2
that the complexity of B-PDA using the linear natural bit
mapping is reduced by about 80% for the system configuration
of 64QAM, NT = NR = 2, and SNR = 20 dB.

VI. SIMULATION RESULTS

In this section, we characterize the achievable performance
of the B-PDA algorithm using Monte Carlo (MC) simu-
lations in the context of the VBLAST system [1] as a

function of the average SNR per receive antenna (SNR
Δ=

10 log10(E{‖Hs‖2/NR}/N0) = 10 log10(NT /N0)) for trans-
mission over flat Rayleigh fading channels, where the entries of
the MIMO channel are independent and identically distributed
(i.i.d.) zero-mean unit-variance complex-valued Gaussian ran-
dom variables. A new independent channel realization is drawn
for each transmitted symbol vector. The noise vector n is i.i.d.
CN (0, N0). No optimal ordering of the bits is performed before

5The average number of iterations of the conventional PDA MIMO detector
is typically 3–5, as seen in [11] and [15], as well as in Figs. 2 and 3. In addition,
the computational cost in terms of FLOPs for estimating the a posteriori
probability of a BPSK-like signal is lower than that of a complex-valued
multilevel QAM signal.
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Fig. 2. Complexity comparison in FLOPs per iteration and per symbol vector
for B-PDA with natural bit mapping and CPDA with Gray bit mapping using
BPSK (Mc = 1), 4QAM (Mc = 2), 16QAM (Mc = 4), 64QAM (Mc = 6),
SNR = 20 dB, and NT = NR = 2.

Fig. 3. Impact of the number of iterations on the achievable performance of
CPDA and B-PDA in VBLAST using 16QAM (NT = NR = 2).

detection in the following PDA-related simulations for the sake
of fair comparison with the results of [17]. The convergence
threshold is set to ε = |P z+1

i,j − P z
i,j | = 0.001, where P z

i,j rep-
resents the (i, j)th value of the probability matrix of CPDA or
B-PDA at the zth iteration.

To choose the appropriate number of iterations for the PDA-
aided MIMO detectors, Fig. 3 evaluates the impact of the
number of iterations on both the performance of the conven-
tional symbol-based CPDA of [17] using Gray-mapping-based
16QAM and the proposed B-PDA using linear-natural-
mapping-based 16QAM in the context of (2 × 2)-antenna aided
VBLAST systems. The maximum number of iterations Imax is
set to 1, 3, and 5, respectively. It can be seen from Fig. 3 that
both the CPDA and B-PDA exhibit quite a good convergence

Fig. 4. BER Comparison of B-PDA and CPDA, MMSE-OSIC, and ML in
VBLAST with 16QAM, Imax = 5, and NT = NR = 2.

Fig. 5. BER Comparison of B-PDA and CPDA, MMSE-OSIC, and ML in
VBLAST with 64QAM, Imax = 5, and NT = NR = 2.

since the performance loss is modest, even when the maximum
number of iterations is set to be as low as Imax = 3.

Based on the preceding observation, we set the maximum
number of iterations to Imax = 5 in the following investiga-
tions, where B-PDA is compared with the conventional symbol-
based CPDA, MMSE-ordered-SIC (MMSE-OSIC), and ML
while using both the linear natural bit mapping and the
nonlinear Gray mapping.6 The pairs of Figs. 4–7 evaluate
the attainable BER and SER performances, respectively, for
both 16QAM and 64QAM constellations.7 In general, the

6We treat the matrix W(b) as being perfectly known at the receiver, which is
merely an idealized assumption for the nonlinear Gray-mapping-based B-PDA.
Based on this assumption, the performance curve of the B-PDA plotted for the
Gray-mapping scenario serves as a lower bound of the B-PDA performance in
the linear natural mapping case.

7As pointed out in [22], for HOM, multiple bit errors occurring close to each
other will probably create only one symbol error. In this situation, the SER is
a useful metric that is widely adopted in the literature of the high-order M -ary
detection in MIMO systems, as seen in [8], [10], and [15].
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Fig. 6. SER Comparison of B-PDA and CPDA, MMSE-OSIC, and ML in
VBLAST with 16QAM, Imax = 5, and NT = NR = 2.

Fig. 7. SER Comparison of B-PDA and CPDA, MMSE-OSIC, and ML in
VBLAST with 64QAM, Imax = 5, and NT = NR = 2.

performance of B-PDA is superior to that of CPDA, and the at-
tainable gain is more substantial in terms of SER. For the linear-
natural-mapping-based 16QAM, B-PDA outperforms CPDA
by approximately 2 dB at both BER = 10−3 and SER = 10−3.
Similarly, for the linear-natural-bit-mapping-based 64QAM,
the corresponding gains are up to 3 dB at BER = 10−2 and
SER = 10−2. When the conventional symbol-based CPDA uses
the nonlinear Gray mapping, it can be seen by comparing the
results of Figs. 4 and 5 with those of Figs. 6 and 7 that the
BER performance of the linear-natural-mapping-based B-PDA
slightly erodes at low SNRs but still has an advantage over that
of CPDA at high SNRs. Furthermore, observe from the SER
curves of Figs. 6 and 7 that the SNR gain of the linear-natural-
mapping-based B-PDA remains superior to that of CPDA at
all the SNR values considered. This is because Gray mapping
is efficient in terms of reducing the BER through the binary
labeling gain, but it is unable to improve the SER since the
SER is determined by the minimum Euclidean distance of the

constellation points (a single constellation may have various
labeling schemes).

It is also interesting to observe that the performance of
the linear-natural-mapping-aided QAM approaches that of the
Gray-mapping-aided QAM for the proposed B-PDA, whereas
the latter represents a lower bound performance valid under
the assumption of perfect knowledge of W(b) at the receiver.
In other words, B-PDA is insensitive to the specific choice
between the nonlinear binary reflected Gray mapping and the
linear natural mapping considered, as long as the matrix W
or W(b) is known at the receiver. This is because it directly
operates on the basis of the separate bits, i.e., in a bit-by-
bit fashion, which independently treats each bit and remains
unaffected by the specific correlation between the bits within a
symbol. By comparison, the conventional PDA generally makes
the decision at the symbol level using the estimated a posteriori
symbol probabilities, and if necessary, the bits are recovered
according to the inverse bit-to-symbol mapping, which retains
the better BER of Gray mapping but has no advantage in SER.
Therefore, it may be concluded that it is not necessary to
design complex bit-to-symbol mapping rules for the proposed
B-PDA, because it is capable of approaching the lower bound
performance provided by the Gray-mapping-based B-PDA in
ideal conditions, even upon using the simplest linear natural bit-
to-symbol mapping.

It can also be seen from Figs. 4–7 that the linear-natural-
mapping-based B-PDA significantly outperforms MMSE-
OSIC but remains inferior in comparison to the ML detector.
This indicates that the proposed B-PDA may not be able to
achieve the full diversity in the specific context considered.8 To
the best our knowledge, the theoretical performance analysis
and the diversity order analysis of the PDA algorithm in the
MIMO detection context still remain open questions. The chal-
lenge is that it proceeds in an iterative fashion, and the accuracy
of approximating a multimodal Gaussian mixture probability
structure with the aid of a single multivariate Gaussian distri-
bution in PDA-based detectors may not always guarantee that
the global optimum is achieved. We will investigate this issue
in our future research.

VII. CONCLUSION

We have proposed a unified B-PDA detection scheme
for spatial-multiplexing-based VBLAST-style MIMO systems.
Based on the UMR of rectangular QAM, the B-PDA transforms
the symbol detection process of QAM to that of a BPSK-like
scenario with the aid of a composite channel matrix combining
the effect of modulation and of the original channel matrix.
Simulations and complexity analysis have demonstrated that
the proposed B-PDA typically outperforms the conventional
CPDA, despite its dramatically reduced complexity, partic-
ularly in the context of high-order QAM constellations. In

8Some other reduced-complexity MIMO detectors, such as, for example,
the fixed-complexity sphere decoder and the SDR detector derived for binary
signaling have been shown to be capable of achieving the full diversity [23],
[24] under certain conditions, whereas the partial equalization approach of [25]
achieves a diversity order between that of the ML and ZF solutions.
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addition, the simulation results have shown that the linear-
natural-mapping-based B-PDA is insensitive to the specific
choice of the linear natural and the binary-reflected Gray la-
beling schemes considered and approaches the best-case per-
formance provided by the Gray-mapping-based B-PDA with
perfect modulation matrix assumption. Finally, we have con-
cluded that it is preferable to use the simpler and more prac-
ticable linear natural bit-to-symbol mapping rather than Gray
mapping for the B-PDA-aided MIMO detector in the uncoded
VBLAST-style systems considered.
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