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The term Linked Data is used to describe ubiquitous and emerging semi-structured data formats
on the Web. URIs in Linked Data allow diverse data sources to link to each other, forming a Web
of Data. A calculus which models concurrent queries and updates over Linked Data is presented.
The calculus exhibits operations essential for declaring rich atomic actions. The operations recover
emergent structure in the loosely structured Web of Data. The calculus is executable due to its
operational semantics. A light type system ensures that URIs with a distinguished role are used
consistently. The main theorem verifies that the light type system and operational semantics work

at the same level of granularity, so are compatible.
Examples show that a range of existing and emerging standards are captured. Data formats include
RDF, named graphs and feeds. The primitives of the calculus model SPARQL Query and the
Atom Publishing Protocol. The subtype system is based on RDFS, which improves interoperability.
Examples focus on the SPARQL Update proposal for which a fine grained operational semantics is

developed. Further potential high level languages are outlined for exploiting Linked Data.
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1. INTRODUCTION

The View is one component in the Model-View-Controller
architecture, which is widely adopted for application
development. Another component, the Model, provides data
which forms the subject of the application. The Controller
coordinates interactions with the Model to achieve some
objective. Having successfully moved the View onto the
Web, standards bodies are tackling the problem of moving
the Model onto the Web. The claim is that moving the
Model onto the Web allows common subject matter to be
shared between applications. Evidence of the potential of
sharing data on the Web is the ubiquity of feeds, e.g., RSS
and Atom [1], which deliver data on demand between news
sources and consumers.

Making data available on the Web gives the potential for
data to link across traditional boundaries. This is enabled by
using the URI as a standardised naming system. By naming
a resource with a URI the resource can be referred to from
any other location. Efforts to exploit these links between
data sources have resulted in several proposed standards.
The common aim of proposed standards is often referred to
as establishing a Web of Data [2]. Data which exploits the
link structure of the Web is distinguished as Linked Data.
Linked Data is supported by W3C recommendations and
working drafts, which reflect a consensus on the aims of the
initiative [3, 4, 5]. This work draws from key standards for
Linked Data and presents an executable model in which the
standards coexist.

At a low level, Linked Data is delivered as messages in
a semi-structured data format. The Resource Description
Format (RDF) is the standardised semi-structured data
format for Linked Data [3]. At this level, an HTTP request
to a URI produces some RDF which describes the resource

represented by the URI. No requirements are enforced on
how the RDF is produced or what is done with the RDF.
Message passing on channels is modelled by many process
calculi [6, 7, 8, 9].

At a higher level, Linked Data can be gathered in stores
which are accessed using queries. A store responds to
queries as prescribed by the SPARQL Query standard [10].
Rich data sources are now published as stores, notably the
UK Government Data and DBpedia [11, 12, 13]. These
examples gather data, from UK Government Databases and
Wikipedia respectively, then prepare the data for queries.
No requirements are placed on the method of preparation.
SPARQL Query has been modelled as a graph query
language and using relational algebra [14, 15].

The executable model presented here is tailored to
problems introduced by an update mechanism. Challenges
associated with updates are highlighted by Tim Berners-
Lee in a note on Read-Write Linked Data. Updates
are considered at several levels of granularity. At a
coarse granularity of update the contents of a store are
replaced periodically. Periodic updates are adequate when
data changes infrequently. An intermediate granularity is
achieved by dividing a store into regions, where each region
is updated independently. This idea is captured by named
graphs for RDF [16]. A protocol for updating named graphs
is under development [17]. Feeds and standardised protocols
for feeds also work at a similar level of granularity [18, 19].

The primary challenge is to model fine grained updates
at the level of triples. Triples are the basic components of
RDF which resemble simple sentences in natural language
of the form subject–verb–object. Fine grained updates
account for exactly the triples required to perform an update.
Updates which use disjoint triples may occur concurrently.
By using minimal resources, an update causes minimal
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interruption to a store. This approach avoids regions, which
are difficult to design when the long term behaviour cannot
be predicted. Fine grained updates are known to present
conceptual difficulties, as highlighted by Reynolds in the
traditional setting of shared memory [20]. The model is a
contribution to the understanding of fined grained updates
for Linked Data.

Implementing Read-Write Linked Data is necessary for
using Linked Data in modern applications. For instance,
in wikis or social media users increasingly write data. In
contrast, existing Linked Data applications are limited to
reading data. Furthermore, without an update mechanism
for the Model, the Model and the Controller in the modern
application architecture cannot be decoupled. A Controller
instead requires lower level access to the Model to perform
updates. This work therefore supports efforts towards a
standardised approach to Read–Write Linked Data [21].

The structure of the paper. In Section 2, a core untyped
calculus is presented. The core calculus motivates the basic
unit of semi-structured data as resembling a simple sentence
in natural language. A high level language for queries and
updates recovers expressive power. Both the data format
and the language are specified using an abstract syntax and
operational semantics.

In Section 3, the untyped calculus is extended with key
features. The motivation for the extensions are greater
interoperability with existing semi-structured data formats
and common uses cases such as provenance and syndication.
The extra features are specified by extending the syntax and
semantics of the core calculus.

In Section 4, light types for URIs and literals are
introduced. The role of each type is explained and a subtype
system specifies a partial order over types. A distinction
between static and dynamic classes is highlighted.

In Section 5, the types and the calculus are combined. The
type system specifies a type checker for data, queries and
updates. A theorem verifies that the subtype system and the
type system are compatible.

In Section 6, the operational semantics and the type
system are combined. The typed operational semantics
enable a feasible type system, by minimising runtime type
checks. The type preservation theorem verifies that the type
system and typed operational semantics are compatible.

In Section 7, further contributions enabled by the calculus
are outlined. The type system forms a foundation for type
inference. The operational semantics forms a foundation for
an algebra of updates. Further features suggest high level
languages for Linked Data. The demand is a more subtle
notion of logic than first envisioned for the Web of Data.

2. THE CORE SYNTAX AND SEMANTICS

This section focuses the core of the key standards for
Linked Data. In particular, the core of the semi-structured
data format RDF and the core of the SPARQL Update
language are captured. The approach is that of structural
operational semantics. An abstract syntax is defined, then

the operational semantics are defined by relations over the
abstract syntax. Operational semantics specifies the runtime
behaviour of a language.

The role of the abstract syntax differs from the role of
common concrete syntaxes for RDF [16]. A concrete syntax
is intended for human readability or message exchange. In
contrast, the abstract syntax is for the purpose of compiler
engineering. It captures the essence of the language, without
redundancies. Connectives are chosen to highlight close
connections to connectives in constructive logics. Brief
examples of the concrete syntax are provided, then the
abstract syntax is fully defined.

2.1. A Syntax for the Resource Description Framework

The Web is based on documents, represented by one URI,
which link to other documents, represented by another URI.
The link structure of the Web can therefore be represented
by pairs of URIs. This link structure has been exploited by
organisations such as Google [22]. The source and target
URIs are the subject and the object of the link, respectively.

RDF extends the link structure of the Web to the power
of simple sentences. In natural languages, a verb indicates
how a subject is related to an object. In English for instance
the structure of a simple sentence is subject–verb–object e.g.
“Kleinberg writes Authoritative Sources in a Hyperlinked
Environment.” RDF extends the link structure of the Web
to include a predicate. The predicate serves the same role as
a verb, by indicating the nature of the connection between a
subject and an object.

Like the subject and the object, the predicate is also
a URI. A URI is a standardised global identifier for any
resource, so need not identify a document. Thus the URI of
a predicate is just a global identifier from some vocabulary.
Similarly, the URI of the subject and the object need not
refer to a document. Instead the URI could provide a global
reference to some resource which, in a traditional setting,
would normally be a local identifier in a database. The
following is an example of two triples.

soton:24123 foaf:knows soton:10511 .

soton:doc1 dc:creator soton:10511.

Note that soton:, foaf: and dc: represent URI prefixes
http://ecs.soton.ac.uk/rdf/, http://xmlns.com/
foaf/0.1/ and http://purl.org/dc/elements/1.1/
respectively. The first is a namespace used by Southampton
University. The second and third are namespaces used
for terminology in the Friend-of-a-Friend and Dublin Core
metadata vocabularies.

Another notion generalised by RDF is the idea that a URI
is associated with a document on the Web. RDF allows
several pieces of traditional data to be associated with a
URI. As with links between resources a predicate indicates
how a URI is related to a piece of traditional data. Again
this resembles simple sentences in natural language. The
following is an example of two triples.

soton:doc1 dc:title "Tae a Link" .

soton:doc1 dc:description "Some poem."

University of Southampton



A TypedModel for Linked Data 3

oF v literal
| x variable
| a name

C F (a a o) triple
| C O C par
| ⊥ nothing

FIGURE 1. A syntax for objects and RDF content.

C O ⊥ ≡ C C O D ≡ D O C

C O (D O E) ≡ (C O D) O E

FIGURE 2. The structural congruence for RDF content.

The examples above are written using the Turtle syntax
for RDF. Turtle is one of several concrete languages
for presenting RDF. Here an abstract syntax captures the
essence of these formats, without redundancy.

2.1.1. An Abstract Syntax for RDF.
For the purpose of defining operational semantics, an
abstract syntax for RDF is defined. The abstract syntax
captures the idea that RDF is a collection of triples of the
form subject–predicate–object, as presented in Fig. 1.

The atoms of the syntax are names, variables and literals.
Names represent URIs. For simplicity of examples, names
are any identifier in italics, e.g. 24123, knows. Names bound
by quantifiers represent place holders for URIs. Literals
represent traditional data such as a string of characters or
an integer, such as ‘Authoritative Sources’ or ‘7’.
Traditional data is well understood so, the technicalities of
literals are left to the XML datatypes specification [23].
Variables are explicit place holders for literals.

A triple consists of a subject, a predicate and an object.
The subject and predicate are names. The object is either a
name, a literal or a variable. A URI as an object generalises
the notion of a link between Web pages. Similarly, the use of
a literal as an object generalises the notion of the document
associated with a link. Triples are composed in parallel using
the par operator. The following demonstrates two triples
composed in parallel.

(doc1 creator Burns) O (doc1 title ‘Links’)

Par is associative and commutative, so brackets and the
order of triples can be ignored. The unit of par is nothing,
which represents the absence of data. Content therefore
forms a commutative monoid, as defined by the structural
congruence in Fig. 2.

Note that the W3C recommendation describes how to
obtain labelled directed graphs from the syntax of RDF [3].
This provides a denotational semantics, which is used by
graph query languages [14]. In contrast, this work remains
strictly at the level of syntax. Denotational semantics for
concurrency are notoriously difficult [24].

2.2. A Syntax and Semantics for Queries and Updates

When data is published openly it is rarely possible to
predict how it might be used. It is therefore difficult
to decide a suitable format in which to publish the data.
Preferably, the application which consumes the data should
decide. For this reason RDF is a simple semi-structured data
format. Power is regained from this minimal structure by
an expressive query language. The query language enables
the consumption of emergent structures conveyed in RDF.
In this way the power is shifted from the producer to the
consumer and lowers barriers to publishing Linked Data.

The language SPARQL Query is the agreed standard for
the purpose of querying RDF. The first SPARQL Query
standard has been widely deployed [5, 12]. A second
draft for SPARQL Query learns from the experiences of the
first [25]. A SPARQL end point is used to observe an RDF
store. The observer declares the link patterns of interest
using SPARQL Query. The query language also determines
the format in which results are presented.

For instance an application may be interested the question,
“Obtain names for either products related to the show or
products related to an exhibitor at the show.” The example
scenario can be specified as follows in the SPARQL Query
concrete syntax, where eg:show2011 identifies the show
and eg:exhibitor and eg:product identify predicates
from some vocabulary.

SELECT ?product WHERE {

{

eg:show2011 eg:exhibitor ?exhibitor .

?exhibitor eg:product ?product

}

UNION

{ eg:show2011 eg:product ?product }

}

An analogy is that queries support compound sentences
although RDF only supports simple sentences. Several
simple sentences can verify the truth of a compound
sentence. The returned result is witness to the veracity of
the compound sentence in the given context. While the truth
of RDF is subjective, the truth represented by a successful
SPARQL Query is intersubjective [26]. For intersubjective
truth there is an subjective agreement between multiple
parties. The parties involved are the client that poses the
query (compound sentence) and the providers of the triples
(simple sentences).

Current SPARQL recommendations have no constructs
for maintenance. However, there is a proposal by Hewlett-
Packard Labs and a working draft for a language called
SPARQL Update [10, 21]. The proposals allow RDF to
be inserted and deleted at the level of triples. Update
operations reuse the operations of SPARQL Query for
powerful updates.

The example above can be extended to specify the update,
“For either products related to the show or products related
to an exhibitor at the show, insert a link from another show
to that product.” The extension is to add one clause to the
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φF I true
| 0 false
| φ ∧ φ and
| φ ∨ φ or
| ¬φ not
| . . . etc.

U F |C| ask
| C⊥ delete
| C insert
| φ filter
| U ⊕ U choice
| U ⊗ U join
| ∗U iteration
|

∨
a.U select name

|
∨

x.U select literal

FIGURE 3. A syntax for constraints and updates.

query. The clause inserts a triple which relates the show to
the discovered product.

A model for SPARQL Update is sufficient to model
SPARQL Query. However, a model for SPARQL Update
is more subtle than a model for SPARQL Query. Not
only is the truth represented by a successful intersubjective
interaction, it is also dependent on time.

2.2.1. An abstract syntax for updates.
An updates is a declarative specification of the intention of
the programmer. The meaning of an update is independent
of a particular implementation. An application expects
some behaviour and an implementation provides a behaviour
within the bounds of expectation. The common interface
between the application and the store is the syntax of the
language. An abstract syntax for Updates is provided in
Fig. 3.

Basic queries are formed by embedding the syntax of
RDF. The embedding ‘ask’ is used to demand that a some
RDF is matched. This models asking a query, which has no
side effects. The following is an example of asking a query
which is satisfied by the example RDF in Section 2.1.1.

|(doc1 creator Burns) O (doc1 title ‘Links’)|

Basic updates are also formed by embedding the syntax
of RDF in two ways. The embedding ‘delete’ demands
that some persistently stored RDF should be removed. The
embedding ‘insert’ stores some RDF persistently. Unlike
queries, both delete and insert have side effects. For instance
the above RDF could be inserted into a store then removed
from the store.

Update can be formed using two binary operations, ‘join’
and ‘choose’. Join is the operation which combines two
updates to ensure that they happen in the same atomic
commitment. For instance, a query and an insert can be
joined to ensure that an insert occurs if and only if the

query is satisfied. Choose presents an option where either
the left update or the right update occurs. For instance,
a choice can be presented between two possible query
patterns. The iteration operation indicates that zero, one, two
or more copies of an update are simultaneously applied. The
constructs choose, join, iterate, true and false form a Kleene
algebra.

Syntactic conventions for Kleene algebras are adopted for
examples. The operator ⊗ binds stronger than ⊕ and the
operator ⊗ can be omitted; hence (U ⊗ V)⊕W is abbreviated
UV ⊕ W. The following example presents a syntax for the
update described in the previous section. The update is a
extension of the query given in concrete syntax. Here the
query is translated into abstract syntax and an insert is joined
to the query.

∗
∨

a.
∨

b.



|(show2011 exhibitor b)|
|(b product a)|
⊕

|(show2011 product a)|


(show2011 product x)


Updates extend Kleene algebras with quantifiers. The

select quantifier binds occurrences of a name not known in
advance. For instance, in the example above the name of
the product is not known. The name is bound in both the
query and the insert, so the name discovered by the query is
also the name inserted. Names and literals are disjoint, so
a separate quantifier is provided for variables. Quantifiers
highlight the logical content of updates.

The syntax of constraints is embedded in the syntax of
updates. A constraint imposes a condition on the update
taking place. Typically variables which occur as the object
of a triple are constrained. For instance a variable may
represent a string of characters which satisfies a regular
expression, or a numeral within a range of values. Like
literals, constraints are well understood, so technicalities are
left to the SPARQL Query standards [5, 25]. It is sufficient
to note that constraints form a Boolean algebra.

For the purpose of defining operational semantics, a
syntax for processes is introduced. Processes allow updates
to be considered simultaneously. The commutative monoid
using par and nothing defined for RDF is extended to
processes, as in Fig. 2. The convention, common to sequent
style deductive systems, is that the symbol O is abbreviated
with a comma in examples.

2.2.2. An operational semantics for atomic updates.
The behaviour of an update at the level of the syntax is
captured by operational semantics. A preliminary draft of
an operational semantics for SPARQL Update was published
in October 2010 [21]. The operational semantics presented
elaborates the draft. A fine grained operational semantics for
updates are specified using atomic actions.

Atomic actions are specified as a relation over processes
called the commitment relation. The process on the left of
the relation is exactly the processes used by the action. The
process on the right of the relation is exactly the processes
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C O C⊥ B ⊥ C BC |C| O C BC

� φ

φ B ⊥

P O U B P′ Q O V B Q′

P O Q O (U ⊗ V) B P′ O Q′

P O U B Q
P O (U ⊕ V) B Q

P O V B Q
P O (U ⊕ V) B Q

∗U B ⊥
P O U B Q
P O ∗U B Q

P O (∗U ⊗ ∗U) B Q
P O ∗U B Q

P O U
{
b/a

}
B Q

P O
∨

a.U B Q
P O U{v/x} B Q
P O

∨
x.U B Q

FIGURE 4. The axioms and rules form atomic commitments:
delete axiom, insert axiom, query axiom, filter axiom, join rule,
choose left rule, choose right rule, weakening axiom, dereliction
rule, contraction rule, select name rule, select literal rule.

after the action. Thus an commitment relation describes only
the local behaviour of an update. A similar approach is given
by commitment relations in the π-calculus [6]. In the π-
calculus there is one type of commitment – the passing of a
name on a channel. Coordination of Web Services motivates
extending the commitments to joins [7]. SPARQL provides
a compelling reason to extend commitments to all updates.
The commitment relation B is defined in Fig. 4.

The delete axioms. A simple interaction is when an update
deletes a triple and the triple is available to delete. For
instance, the delete and triple below are expected to interact.
The result of the interaction is that the delte and the matching
triple are consumed. The following is an instance of the
delete axiom.

(doc1 creator Burns)⊥ , (doc1 creator Burns) B ⊥

Notice that the axioms of Linear Logic and the atomic
commitments of CCS are of a similar form [27, 28]. Note
the syntactic convention of using a comma for O.

The insert axiom and query axiom. RDF to be stored after
an update appears on the right of a commitment relation.
There are two ways in which RDF can appear on the right.
The first scenario is that a triple is inserted into a store. This
is captured by the insert axiom. The insert axiom states that
some RDF intended to be stored is stored by a successful
update.

The second scenario is that some stored RDF can be used
to answer a query. The stored RDF then returned to the store
unaltered. For instance, the following example consists of a
stored triple and a query asking for that triple. The query is
answered and the triple remains stored.

|(doc1 creator Burns)| ,
(doc1 creator Burns) B (doc1 creator Burns)

The syntax for an insert is the same as the syntax for some
stored RDF. Therefore a trivial update which inserts some
RDF is used to model stored RDF. Other SPARQL Query
results may be modelled similarly to inserts, by indicating
the results on the right of the commitment relation. Related
calculi investigate updates and queries over inserted data
as concurrent constraint satisfaction problems for Web
Services [29, 30].

The join rule. The join rule forces two updates to occur
in the same commitment. Join meets a requirement
of SPARQL Update that a delete and insert can occur
atomically. Join avoids the issue of reversing an insert, when
a delete fails.

Another requirement met by join is that updates can be
dependent on queries. The following example demonstrates
an insert joined with a query. The available triple is adequate
for the query, so the insert takes place. Both the stored
triple and the inserted triple persist, so are composed after
the transaction.(

|(doc1 title ‘Links’)|
(doc1 creator Burns)

)
,

(doc1 title ‘Links’)
B

(doc1 creator Burns) ,
(doc1 title ‘Links’)

Join splits a query into two updates which can be resolved
in separate locations. For instance, in the above query the
two joined parts can be resolved on different machines in
a cluster of servers. Thus, join serves the same purpose as
join in relational algebra [31, 15]. The join rule also appears
as the rule for multiplicative conjunction (times) in linear
logic and as atomic commitments in process calculi for Web
Services [27, 7].

The choose rules. Choice allows the programmer to
specify several possible updates. The example below asks
for a triple where the predicate is one of two options. The
branch with the query which matches the available data is
chosen. This is an external choice dependent on the available
data.  (doc1 creator Burns)⊥

⊕

(Burns author doc1)⊥

 ,
(Burns author doc1)

B ⊥

If both branches of a choice can be enabled, one is chosen
non-deterministically. The choose rules correspond to the
rules for additive disjunction (plus) of linear logic and an
external choice in process calculi for Web Services [27, 9].

The select rules. Most constructs work at the level of
triples. Quantifiers are required to access names within
triples. The select name rule works by substituting a name
for the quantified name. For instance, in the example below
the bound name a is replaced by person. This particular
substitution allows the query to be answered and determines
the name in the triple inserted.∨

a.
(
|(doc1 creator a)|
(Hamish knows a)

)
,

(doc1 creator Burns)
B (Hamish knows Burns)
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The effect above is that the substituted name is passed
from the triple to the update. This is also the effect
of the atomic commitments of the π-calculus [6]. The
commitments of the π-calculus are decomposed into: a
select which inputs the name; join which composes
a continuation; and ask which poses a guard. By
replacing triples with channel-value pairs and inserts with
processes, the π-calculus can be recovered as investigated
by Miller [32].

The select literal rule substitutes literals for variables. As
above, this captures the passing of literals from triples to
updates. Value passing is achieved by atomic commitments
in the applied π-calculus [8]. The select rules match the
rule for first-order existential quantification (some) in linear
logic [27].

The constraint satisfaction relation. In general constraints
form a Boolean algebra. True formulae are indicated by
� the constraint satisfaction relation. The definition of the
constraint satisfaction relation is left to the SPARQL Query
standards [5, 25]. For instance, the constraint below is
satisfied when x is at least 20 years before the current
year. Select substitutes x for ‘1987’, enabling the following
commitment.∨

a.
∨

x. |(a year x)|
(year-now − x > 20)
(a copyright open)

 ,
(paper year 1987)

B
(paper year 1987) ,
(paper copyright open)

An equality comparison over names is another form of
constraint. An equality comparison joined to an update,
captures match found in common process calculi [6, 8]. The
constraints true and false are the top and bottom elements of
the Boolean algebra. True always holds, so true is embedded
as the multiplicative unit in linear logic. False never holds,
so like the additive zero in linear logic, no rule can be
applied [27]. The embedding of Boolean algebras in Kleene
algebras is elaborated by Kozen [33].

The rules for iteration. Without iteration updates are only
applied once. This enables a protocol where the programmer
requests an update. The user then observes the commitment
relation. If the update was not as the user intended, the
update can be revoked. Then the next update is observed
until the user is satisfied. Caution is exercised when the exact
update is difficult to express or the content to update is not
certain. When a user is certain that the update is intended,
the update can be applied iteratively. The replace tool in the
reader’s text editor probably has similar functionality.

To apply an iterated update zero times, the weakening
axiom is used. To apply an iterated update once, the
dereliction rule is used. To apply an iterated update twice,
the contraction rule creates two joined copies of the update.
Join ensures that both copies occur in the same commitment.
The example below demonstrates two nested iterations. The
outermost applies twice, the innermost applies both once and

P B Q
P→ Q

P→ Q Q→ R
P→ R

P→ P′ Q→ Q′

P O Q→ P′ O Q′

FIGURE 5. Reduction relations: action, transitivity and mix.

twice.

∗
∨

a.(
|(a status hidden)| ,
∗
∨

b.(a knows b)⊥

)
,

(Alice status hidden) ,
(Bob status hidden) ,
(Alice knows Bob) ,
(Alice knows Chris) ,
(Bob knows Chris)

B
(Alice status hidden) ,
(Bob status hidden)

Iteration is the Kleene star in regular algebra. A classic
result is that nested iteration can be represented by a single
iteration [34, 33]. However, quantifiers ensure that the
example above cannot be expressed without nested iteration.
The SPARQL Query recommendation does not have nested
iteration, so cannot express the corresponding query [5].

Iteration is not replication in process calculi. Iteration
defines a single commitment of an unbounded size; whereas
replication persists a process across an unbounded number
of commitments [6]. The use of contraction, dereliction and
weakening is similar to the exponentials in linear logic, but
does not correspond to either. Iteration has been used by
Hoare to specify unbounded behaviour [35].

2.2.3. A transition system for SPARQL processes.
Atomic commitment relations describe the local behaviour
of an update. Only processes consumed and inserted are
accounted for in a commitment relation. Another relation
between processes, called the reduction relation→, captures
the evolution of a store, defined in Fig. 5.

The action rule turns a local commitment relation into a
reduction relation. The action rule can be applied repeatedly,
to allow multiple updates to happen in parallel. Multiple
updates and idled inserts are composed in parallel using the
mix rule. The transitive closure of the transition relation
permits a sequence of updates on a store. The following
demonstrates two separate deletes which may be applied in
parallel or in sequence with the same outcome.

(doc1 creator Burns)⊥ ,
(doc1 creator Burns) ,
(doc1 title ‘Links’)⊥ ,
(doc1 title ‘Links’)

→ ⊥

The reduction relation provides a concise model of
the evolution of a store, with respect to updates. The
commitment relation and the reduction relation cannot be
combined, without breaking the atomicity of an update. The
separation of the actions (given by B) and the representation
of actions on the space on which they act (given by →) is
common across dynamic systems [36, 37]. The combination
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of mix and transitivity defines a truly concurrent process
calculus [38].

3. FEATURES FOR SYNDICATION

The core calculus focusses on fine grained updates, where
updates act at the level of individual triples. This
section considers a coarser level of granularity. A coarser
granularity of data divides a store into regions, each regions
contains triples. Each region can be considered separately
from other regions. Regions impact the querying of data by
allowing queries to be directed at particular regions. Regions
also enable a coarser level of update, where entire regions
become atomic units.

This section argues that two key Web technologies
work at the granularity of regions — feeds and named
graphs [1, 16]. At a suitable level of abstraction, feeds
and named graphs can be queried and updated in one
model. The model demonstrates that several key standards
for feeds and named graphs enable a programming language
for Linked Data. Furthermore, prominent examples of
feeds and named graphs suggest several useful scenarios,
including syndication and provenance. Both syndication and
provenance have been found to be essential for a Web of
Data, where separate authorities contribute separate data.

3.1. Extensions of RDF for Named Graphs

Named graphs are introduced as a minimal extension to RDF
such that a large monolithic knowledge base, consisting
of a single RDF store can be divided into smaller stores,
each individually named [16]. The name of the graph is a
URI, which can be liked to like any other URI. The RDF
associated with the name of a graph, can describe the nature
of the knowledge represented by the graph. Applications
including provenance and access control have lead to the
widespread acceptance of named graphs. Named graphs are
primitive in SPARQL Query and SPARQL Update [25, 21].

The following is an example of two named graphs. The
example is expressed in the TriG syntax, an extension of
the Turtle syntax [16]. The first graph contains some
RDF data. The second graph contains some RDF data
about the first graph. This enables the user make decisions
based on the source of the RDF. The user may trust RDF
with provenance eg:G1 and use that directly, ignoring data
in eg:G2. Alternatively, the user may trust RDF with
provenance eg:G2 on the subject of whether to use data in
eg:G1.

eg:G1 {

_:Monica eg:name "Monica Murphy" .

_:Monica eg:email <monica@murphy.org> .

}

eg:G2 {

eg:G1 eg:author eg:Chris .

eg:G1 eg:date "2003-09-03"ˆˆxsd:date

eg:G1 eg:disallowedUsage eg:Marketing.

}

C F ⊥ nothing
| (a a o) triple
| C O C par
|

∧
a.C blank node

GF GaC named graph
| C default graph
| G O G par
| ⊥ nothing

FIGURE 6. An extended abstract syntax for RDF Content and
Graphs.

The above example also introduces a feature of RDF.
Identifiers with prefix eg: are URIs in some example
namespace. The identifier with prefix : represents a blank
node. A blank node is used in place of a URI when a
URI is not explicily assigned. A blank node is a local
identifier which cannot be linked to directly. Blank nodes
reduce the barrier between RDF and other data formats, by
allowing common data structures to be encoded in RDF
without introducing new URIs. A constraint placed on
named RDF graphs is that blank nodes are local to each
individual named graph. This preserves the integrity of data
structures encoded in named graphs.

3.2. An abstract syntax for named graphs

The abstract syntax of RDF content (from Fig. 1) is extended
with blank nodes (in Fig. 6). Blank nodes are indicated by a
quantifier for names, similarly to N3 logic [39]. The scope
of the quantifier indicates the RDF content in which a blank
node is bound. Bound names represent blank nodes, whereas
unbound names represent URIs.

The syntax of graphs indicates both named graphs and
unnamed RDF content. Named graphs are represented
by a prefix with a subscript indicating the name, called
the naming operator. RDF content without a naming
operator represent the default graph, which allows RDF to
be published without the named graph mechanism. The
example from the previous section is expressed below in the
abstract syntax. The blank node quantifier binds the name
Monica in the first graph. However, the name G1 is not
bound by the naming operator so can be linked to from the
second graph.

GG1


∧

Monica.(
(Monica name ‘Monica Murphy’) ,
(Monica email monica@murphy.org)

)  ,
GG2

 (G1 author Chris) ,
(G1 date ‘2003-09-03’) ,
(G1 disallowedUsage Marketing)


The above example shows that par, abbreviated by

comma, is used as before to compose triples and also
graphs. The structural congruence over RDF content, in
Fig. 2, ensures that par and nothing form a commutative
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∧
a.⊥ ≡ ⊥

∧
a.C O D ≡

∧
a.(C O D) a < fn (C)

∧
a.
∧

b.C ≡
∧

b.
∧

a.C Ga(C O D) ≡ GaC O GaD

FIGURE 7. The structural congruence extended for blank node
quantifiers and naming operators.

monoid. The structural congruence is extended to blank
node quantifiers in Fig. 7. The first rule allows blank nodes
to be eliminated if they bind nothing. The second rule allows
a blank node to be distributed across some RDF content
where the name does not occur. The third rule allows the
order of two quantifiers to be swapped. The blank node rules
preserve the free URIs in RDF content.

As standard, bound names can be α-converted. This
avoids name clashes between blank nodes. Content where
only blank nodes differ are equivalent, by α-conversion.
This is a syntactic approach to the graph isomorphisms
defined in the RDF standards. Like α-conversion, the graph
isomorphisms preserve the structure and URIs but allow the
blank nodes to change [3, 40].

The structural congruence also extends to naming
operators. A named graph can be split into two pieces
each with the same name. This is for the purpose of fine
grained updates, as only the part of a graph required for an
update need be considered. The naming operator and the
quantifiers do not commute, so blank nodes remain within
their designated graph.

Related work constrains named graphs so that the
boundaries of a named graphs are fixed [16]. For instance,
knowing the boundaries of a named graph enable the named
graph to be completely dropped from a store, as in the
drop operation of SPARQL Update [21]. This structural
constraint is a perpendicular concern to this work. Similar
constraint on global structure are tackled, for instance, in
dynamic epistemic logic as structure preserving maps [37].
Stronger preservation of structure is extensively researched
in the context of the Web using ontologies [41]. This work
focusses on Linked Data without such a global perspective
on structure.

3.3. SPARQL Update over Named Graphs

Queries and updates also work in the the named graph
setting. The abstract syntax for updates, in Fig. 3, is
extended to named graphs, by replacing RDF content (from
Fig. 1) with named graphs (from Fig. 6). The same rules for
atomic commitments (in Fig. 4) work for named graphs.

The SPARQL Update submission describes an update,
where the title of a book is replaced by a new title [10].
This example is captured by the commitment relation below.
The delete axiom removes a triple from a graph, the insert
axiom inserts the new triple in to the graph and the join rule
ensures the delete and the insert happen synchronously. The
presence of the naming prefix makes no difference to the

P B P′ Q B Q′

P O Q B P′ O Q′
P O Q B P′ O Q′∧

a.P O Q B
∧

a.P′ O Q′
a < fn (Q)
a < fn (Q′)

GbP O Q B GbP′ O Q′

Gb
∧

a.P O Q B Gb
∧

a.P′ O Q′
a < fn (Q,Q′, b)

FIGURE 8. Commitments extended for mix, blank nodes and
blank nodes in named graphs.

rules. (
Gstore(book3 title ‘Designs’)⊥

Gstore(book3 title ‘Design’)

)
,

Gstore(book3 title ‘Designs’)

BGstore(book3 title ‘Design’)

The largest example given in initial SPARQL Update
drafts can now be expressed [10]. The update combines a
query which finds the date of a book, a filter which checks
the date is in a certain range, and an iterated update on
books in that range. The iterated update will only trigger
if the query and filter are satisfied. The iterated update
moves triples about a book across from one graph to another
graph, by combining a delete and insert. The example can
be expressed in the abstract syntax, as follows.

∗
∨

d.
∨

book.
(d ≤ ‘01-01-2000’)
|Gstore1(book date d)|

∗
∨

a.
(
Gstore1(book note a)⊥

Gstore2(book note a)

)
 ,

Gstore1

(
(Kidnapped date ‘01-05-1886’) ,
(Kidnapped note classic)

)

B
Gstore1(Kidnapped date ‘01-05-1886’) ,
Gstore2(Kidnapped note classic)

The above example is compact compared to the example
in the draft concrete syntax. The presentation here is enabled
by the constructs in the abstract syntax, whereas a single
compound construct is used in the concrete syntax.

3.4. Updates for RDF with Blank Nodes

To query and update blank nodes, the commitment relation
is extended in Fig. 8. The trick is to replace a quantified
name with a temporary free name. This allows the quantifier
to be removed and the rules of the calculus to be applied as
if there were no quantifiers.

The temporary name is chosen to be fresh in the context.
By choosing a fresh name, the name can be tracked before
and after the commitments. This ensures that the same name
that was quantified before is quantified after, as expressed
by the first blank node rule. The blank node rule is similar
to universal quantification in Linear Logic and new name
quantification in the π-calculus [27, 6].

University of Southampton



A TypedModel for Linked Data 9

The second blank node rule ensures that a blank node
which originates in an named graph is returned to the same
named graph. The extra mix rule allows triples in the scope
of a blank node which are not used in a commitment to idle.

The following example demonstrates an update which
involves a blank node in a named graph. The name of the
blank node in the graph is replaced by a temporary name.
The temporary name is discovered by the select quantifier as
normal. A new triple with the temporary name is inserted
into the same graph as normal. The blank node rule ensures
that the temporary is bound after the commitment.∨

person.
∨

x.
∨

y.
∣∣∣Ggraph1(person nickname x)

∣∣∣
Ggraph1(person email y)
(y = concat(x, ‘@soton.ac.uk’))

 ,
Ggraph1

∧
a.(a nickname ‘Rabbie’)

B Ggraph1
∧

a.
(

(a nickname ‘Rabbie’) ,
(a email ‘Rabbie@soton.ac.uk’)

)
In the example the blank node does not leave the graph.

Suppose that instead the update inserts the new triple into
a different named graph. In this case the update cannot be
applied since the blank node would appear free in another
graph. The side condition would be violated.

3.5. Feeds as a ubiquitous syndication format.

RDF is the format standardised by the W3C, however
feeds are ubiquitous on the Web. Like RDF, feeds are
a semi-structured data format which identifies resources
using URIs. The two ubiquitous feed formats are RSS and
Atom. RSS was originally created by Netscape and comes
in several varieties. Atom has the same purpose as RSS but
is standardised [1, 18]. Atom has been adopted by Google
for its Google Data protocol, which shares data between
applications.

Feeds are particularly suited to syndication. Syndication
is the strategy of delivering data to the intended audience
on demand. Feeds typically represent the view point of
some authority. A BBC News feed on Africa contains data
representing the viewpoint of the BBC on the topic of news
in Africa. A user who is interested in that viewpoint can
obtain that feed on demand. The user can answer questions
such as, “According to BBC News on Africa, what are the
headlines today?”

The following is an example of the Atom Syndication
Format. Notice that the feed and the entry are identified
by URIs, which are abbreviated here as eg:feed id and
eg:entry id. The tags such as title and updated are also URIs
indicated by the XML namespace.

<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example Feed</title>

<link href="http://example.org/"/>

<updated>2003-12-13</updated>

<author>

<name>John Doe</name>

</author>

<id>eg:feed_id</id>

<entry>

<title>Example Entry</title>

<link href="http://example.org/03"/>

<id>eg:entry_id</id>

<updated>2003-12-13</updated>

<summary>Some text.</summary>

</entry>

</feed>

The above example can be represented using named
graphs and blank nodes as follows. The entries are translated
into triples and form the content of a named graph. The
triples associate with the feed are part of the default graph.
The XML style above does not indicate a URI for the author
of the feed. Below the implicit author is represented by
introducing a blank node.

∧
Doe.

(
(Doe name ‘John Doe’) ,
(feed id author Doe)

)
,

(feed id title ‘Example Feed’) ,
(feed id updated ‘2003-12-13’) ,
(feed id link http://example.org/) ,

G f eed id


(entry id title ‘Example Entry’) ,
(entry id link http://example.org/03) ,
(entry id updated ‘2003-12-13’) ,
(entry id summary ‘Some text.’)


The above syntax demonstrates one representation of

Atom in RDF, however there is no standard representation.
Some varieties of RSS encode feeds using triples. However,
named graphs are primitive in SPARQL, so are suggested
here as a representation of the content of a feed.

3.6. The Atom Publishing Protocol

For RSS an application implements its own update
mechanism. In contrast, the Atom Publishing Protocol
extends Atom with a standard update mechanism [19]. The
publishing protocol allows new resources to be published
and existing resources to be edited. The protocol works at
the low level of passing messages using an HTTP protocol.
However, feeds can still be updated at the high level offered
by SPARQL. This section demonstrates a high level update
of a feed and outlines the corresponding low level operations
which realise the high level update.

The Atom publishing protocol specification allows
variations on the basic protocol. The example in this section
features a main feed of articles and comment feed linked to
each entry of an article. Firstly, a feed is declared such that
initially it contains no resources. The data associated with
the feed indicates the author of the feed and a title for the
feed.

(feed author Hamish) ,
(feed title ‘Caucasus reported’) ,
Gfeed⊥

The first update, defined below, creates a new article in
the feed and an empty comment feed to go with the article.
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The comment feed is linked to the new article. The triple
associated with entry indicates a title and a modification
date.

Gfeed

 (entry title ‘Invaded’)
(entry updated ‘01-02-2008’)
(entry comments discussion)


(discussion subject entry)
Gdiscussion⊥

A second update, defined below, changes the title and the
date the feed was updated. The update first discovers the old
title and old date using select quantifiers. The update then
deletes the old triples and inserts the new triples.

∨
s, d.Gfeed

(
(entry title s) ,
(entry updated d)

)⊥
Gfeed

(
(entry title ‘Ossetia invaded’) ,
(entry updated ‘02-04-2008’)

)
A third update creates a new comment in the comment

feed associate with the entry. A query discovers the relevant
comment feed and a new entry is inserted in that comment
feed. The new comment is identified by a blank node rather
than a URI.∨

discussion.
∣∣∣Gfeed(entry comments discussion)

∣∣∣
Gdiscussion

∧
reaction. (reaction content ‘Why?’) ,
(reaction author Dmitri) ,
(reaction updated ‘05-04-2008’)


The updates can be applied to the initial configuration.

By applying the operational semantics the results is the
configuration bellow.

(feed author Hamish) ,
(feed title ‘Caucasus reported’) ,

Gfeed

 (entry title ‘Ossetia invaded’) ,
(entry updated ‘02-04-2008’)
(entry comments discussion) ,

 ,
Gdiscussion

∧
reaction. (reaction content ‘Why?’) ,
(reaction author Dmitri) ,
(reaction updated ‘05-04-2008’)


This example demonstrates that the same language for

updating named graphs can be used to update feeds. The
underlying operations of a publishing protocol can realise
these updates. Operations of the protocol are described by
the verbs post, put and get as found in a REST protocol [42].

The underlying REST operations can be outlined as
follows. The first update corresponds to posting an entry
to the feed and posting a new feed to the store. The second
update corresponds to getting the entry and putting it back
in its updated form. The third entry corresponds to getting
the entry, evaluating a query and posting a new entry in the
comment feed.

This example demonstrates that other semi-structured
data formats, such as Atom, are compatible with RDF. It

also demonstrates that SPARQL Update can be realised by
the operations of a lower level protocol. The details of the
low level protocol are hidden from the programmer. Related
work demonstrates high level operations encoded using low
level operations in the setting of Web Services [7].

4. LIGHT TYPES FOR URIS AND LITERALS

Many structural constraints, often expressed using an
ontology [41], are not tackled in this work. The issue is
that many invariants on structures which are imposed by an
ontology require a global perspective on data. Apparently
simple invariants such as, “Resources with a surname have a
nick name,” are difficult to impose in an open environment.
If delete removes one nickname, is there another nickname
that maintains the invariant? This cannot be confirmed
without knowing the extent of the entire store. Furthermore,
a query which checks for a triple indicating a nickname
might be unsuccessful. An unsuccessful query does not
mean that the triple does not exist, only that the query was
unsuccessful.

A compromise between ontologies and pure data exists.
A light type system which only deals with URIs and literals
in triples, rather then structures across several triples, is
proposed. Given one triple it is easier to tell whether the
subject and object are of the correct type for a predicate.
For instance, a type system may allow the assumption that
a predicate surname relates a person to a string. Thus for
any triple in which surname is observed as the predicate, the
subject of the triple is a person and the object is a string. No
knowledge of other triples is required.

It is still naive to assume that triples can be typed. Given
a literal, say ‘3’, it is reasonable to assume that ‘3’ is an
integer. However given a URI, say http://eprints.ecs.
soton.ac.uk/15017/, what is the type of the URI? Is it a
person? Is it a predicate? The only sure answer is that it is
a URI. Inside knowledge may say that the prefix of the URI
indicates a paper, however in general such policies are not
available. In general on the Web few type assumptions can
be made about URIs.

Intrinsic problems associated with semi-structured data on
the Web are well known. In isolating the essential aspects
of semi-structured data, Abiteboul highlights prevailing
challenges [43]. Abiteboul argues for a light exchange
model with an a-posteriori data guide; which addresses
challenges including, eclectic types and a blurring of the
distinction between schema and data. A light flexible type
system for Linked Data addresses issues highlighted by
Abiteboul.

For flexibility the type system works at three levels.
Firstly, the XML Schema Datatype standard is reused to
form a solid basic type system for RDF, where only literals
are typed. Secondly, some types for URIs are moved from
the data to the type system as propositional types. Thirdly,
the standard inference system from the W3C standard RDFS
is adapted to form a subtype system [4]. The subtype
system offers flexibility and interoperability between the
different strengths of typing. The three perspectives offer
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a compromise between static typing and dynamic data. In
the presence of updates, static types are preserved while
dynamic data changes.

4.1. A Standardised Type System for Literals

A type system for literals can detect basic programming
errors in queries. Literals can appear in constraints in which
only literals of a certain type make sense. For instance
a regular expression only makes sense over as string. A
comparison between literals only makes sense if the two
literals are of the same type. An inequality between literals
only makes sense if the two literals are of the same type and
there is a natural order over that type of data.

The SPARQL Query recommendation defines the op-
erations which appear in filters [5]. The XML Schema
Datatypes recommendation is reused to define the types for
literals [23]. Literals are well understood, so it assumed that
a type system for literals exists. From these standards a ba-
sic type system for updates can be defined. The basic type
system annotates variables with data types as follows.

∨
x : Date.


(‘01-01-1960’ ≤ x)
(x < ‘01-01-1970’)
|(document1 created x)|
(document1 note candidate)


The data types can be used in a type system to check that
the constraints are correctly typed. In the example above,
the constraints are inequalities between dates and a variable
which is presumed to be a date. A type system accepts this
update. If a constraint that checks the variable for a regular
expression is also added then a type error is triggered.

Due to the data type standards, this level of typing can
always be applied. Furthermore, a type inference algorithm
allows the programmer to specify an update without types
and still take advantage of the type system. A suitable type
system and inference algorithm for literals is assumed [44].

4.2. Light Propositional Types for RDF

By typing predicates, basic errors can be detected in the
structure of triples. When the choice of verb does not match
the choice of subject and object, no information needs to be
known about the context of a sentence to reject a sentence.
A simple sentence such as, “The mountain writes the fish,”
will always be nonsense.

Without type information it is less obvious that the above
sentence is nonsense. Naming the mountain ‘Ararat’ and
the fish ‘Nemo’ might give, “Ararat writes Nemo.” By
supposing that Ararat is a persons name and Nemo is a
story, the nonsense appears to make sense. However, cultural
experience suggests that Ararat refers to Mount Ararat,
rather than some person. A mountain cannot be the subject
of the verb to write, so the sentence remains nonsense.

The type of a URI is harder to establish than in natural
language. What is the type of the URI dbpr:Mt_Ararat?
According to DBpedia the type is another URI dbpo:Place.
The relationship between the URI and its type can be
represented by the following triple.

Data := String string type
| Date date type
| . . . etc.

τF a atomic proposition
| p(τ, τ) predicate type
| p(τ,Data) data predicate type
| > top type
| class dynamic class type
| τ ∪ τ union type
| #τ container type

FIGURE 9. The syntax of types and type environments.

dbpr:Mt_Ararat rdf:type dbpo:Place .

Note the namespace prefixes dbpr: and dbpo: ab-
breviate http://dbpedia.org/resource/ and http://
dbpedia.org/ontology/, which are used by DBpedia for
resources and terminology respectively [12]. The names-
pace prefix rdf: corresponds to the http://www.w3.org/
1999/02/22-rdf-syntax-ns#, which is used for stan-
dardised terminology for RDF [3]. The classification of the
subject is indicated by the object of the predicate rdf:type
in a triple, as above. The URIs used for classification are
referred to as classes.

The type system can treat classes in two different ways.
In the first interpretation, classes are treated like any other
URI. A class treated as a URI can be used in data, so
can be linked to and updated as normal. In the second
interpretation, a class is distinguished as an atomic type.
A class distinguished as an atomic type indicates static
properties of URIs. The type system is designed so that
both approaches may be used. This allows an interplay
between applications which use classes in data and use
classes as static types. This design decision is a blurring
of the distinction between schema and data, highlighted by
Abiteboul [43].

4.2.1. The syntax of propositional types.
The syntax of types which defines propositions which can
be assigned to URIs, is presented in Fig. 9. The definition
of types uses atomic propositions, which depend on the
application.

Atomic propositional types. For a type system, a number
of atomic propositional types are fixed. Atomic types
are indicated by small capitals, such as article, person.
Atomic types are application specific. They indicate static
assumptions about a URI. For instance, an application
which plots resources on a map deals with URIs typed by
proposition place. A different application which maintains a
calendar of concerts may use the proposition event.

Unlike datatypes, which restrict the structure of literals,
atomic propositional types do not impose structure on a URI.
Atomic propositional types are just syntax which guides how
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a URI is used.

Predicates between URIs. Atomic types can be used to
construct predicates types. A predicate type indicates the
type of a subject and object. For instance, the predicate
writes may relate a person to a document. This is indicated
by the predicate type p(person, document). The predicate
knows may relate a person to a person, indicated by type
p(person, person).

Predicate types can be used to catch basic errors in triples,
where the subject or the object does not match the expected
type. For instance, a subject of type location and object of
type animal are not valid for the predicate writes, under the
assumptions above.

Datatype predicates. Predicates which allow literals as
objects, are indicated using datatype predicates. For
instance, the predicate created relates a document to a date
literal, indicated by type p(document,Date). This allows
both literals and variables of type Date to be used as the
object of created.

In the example in Sec. 4.1, the variable appears as
the object of a triple with predicate created. The type
assumption for created can be used to check that the type of
the variable, matches how the variable is used in the triple.
In the example, the variable also appears in a constraint. A
type error occurs if the type of the variable in the triple and
the type of the same variable in the constraint do not match.

The top type. A URIs can be assigned the top type >,
which represents anything. The top type is used to indicate
URIs where no static type information is known. This allows
a light type system, by allowing any URI as the subject or
object of a predicate. For instance, the atomic proposition
document may be too stringent for the predicates writes and
created. Instead, the types p(person,>) and p(>,Date) can
be used where any resource can be written and any resource
can be created.

The top type can only be applied to URIs. Literals have
their own top type defined in the datatype standard [23]. By
keeping these two top types distinct the type system for URIs
and for literals do not interfere with each other.

The union type. The union type offers a compromise be-
tween atomic propositions and top. For instance, the pred-
icate writes may apply to two atomic propositions article
and book. The object of the predicate becomes the union
type of the two atoms, as follows p(person, article ∪ book).

The class type. For classes which appear in data (dynamic
classes) the class type is introduced. The class type is just
another propositional type. Just as the propositional type
person is used to type URIs of type person, the propositional
type class is used to type URIs which are used as classes.
The predicate rdf:type may be assigned the type p(>, class).

A common misunderstanding here arises from two
approaches to using using classes, illustrated as follows. A
URI person can be assigned the type class. This represents

a dynamic class in data which may be linked to and updated
like any other URI. However, the URI Hamish may be
assigned the type person. In this case the class person has
been lifted to the type system, so can no longer be treated
like any other URI.

The mistake at this point is to link the dynamic class
person and the static type person. By making this mistake
the static type would be of type class and the dynamic URI
would be a type. The distinction between data and types is
lost. The RDFS standard unfortunately makes this mistake
by not distinguishing between data and types. The result is
that serious paradoxes are breached, which may be partially
resolved by a higher-order type system [45]. Higher-order
type systems are technically complicated and add almost
nothing to this application domain. By treating class as a
simple proposition these problems disappear.

Types for feeds and named graphs. To type named graphs
and feeds the container type is introduced. Typically, the
subject of a triple is what is described by the triple. By
analogy, the subject of a simple sentence is what is described
by the sentence. A feed can therefore indicate what type
of resources its triples describe. For instance, a feed of
articles contains triples with subjects of type article. A feed
of articles is indicated by the type #article.

Container types are well suited to feeds. For instance,
BBC News delivers feeds of articles, Flickr delivers feeds
of photos and Google Calendar delivers feeds of events.
However, named graphs are intended to contain diverse
triples. The most general container type #> indicates a
named graph with no restrictions on content.

Container types allow novel features. For instance, the
seeAlso predicate indicates where to find more information
about a resource. A suitable type would be p(>, #>), which
suggests that more information about the subject can be
found in a named graph indicated by the object. Another
novel type is # (p(>,>) ∪ class) which suggests a feed of
predicates and dynamic classes. This type of container is
useful for presenting meta vocabularies using feeds.

Note that types for atomic propositions, predicates and
union types are implicit in the RDFS standard. However,
there is no standard type for named graphs, since named
graphs and RDFS were introduced independently [4, 16].
The named graph type suggests one light approach to typing
named graphs.

4.2.2. A subtype system based on RDFS.
Subtypes are essential for enabling some basic scenarios.
The subtype system, presented in Fig. 10, defines a preorder
over types. The subtype system enables interoperability
by enabling different strengths of type system to coexist.
For instance, data which is heavily typed can still be
used if very little type information is required. This light
approach to interoperability avoids typical data integration
problems, such as the integration of schema with conflicting
constraints [46].
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τ0 ≤ τ1
τ0 ≤ τ1 ∪ τ2

τ0 ≤ τ2
τ0 ≤ τ1 ∪ τ2

τ0 ≤ τ2 τ1 ≤ τ2
τ0 ∪ τ1 ≤ τ2

τ ≤ >

τ′0 ≤ τ0 τ′1 ≤ τ1

p(τ0, τ1) ≤ p
(
τ′0, τ

′
1

) τ0 ≤ τ1 d0 ≤ d1

p(τ1, d1) ≤ p(τ0, d0)

τ0 ≤ τ1

#τ1 ≤ #τ0

τ0 ≤ τ1 τ1 ≤ τ2
τ0 ≤ τ2 τ ≤ τ

FIGURE 10. Axioms and rules of the subtype system: left
injection, right injection, least upper bound, top, predicate, data
predicate, feed, transitivity and reflexivity.

The subtype axioms. The subtype relation τ0 ≤ τ1 can be
read τ0 is stronger than or equivalent to τ1. So, if something
is of type τ0, then it is also of type τ1. The basic axiom of the
subtype system, reflexivity, states that every type is at least
as strong as itself.

Interoperability of systems can be further enabled by
application specific axioms. For instance an application may
define types image and media. To indicate that an image can
also be treated as media, the axiom image ≤ media can be
included. Application specific subtype axioms always relate
an atomic proposition to another atomic proposition. They
correspond to the subClass predicate in RDFS, lifted to the
type system [4].

Subtypes for union types. A union type indicates that a
term is of one of two types. For instance, the type article
is a subtype of article ∪ image. This is the left injection of a
type into a union type. Similarly, the type image is a subtype
of article ∪ image by the symmetric right injection rule.

A union type is the least upper bound of two types. If
article ≤ media and image ≤ media are subtype axioms, then
article ∪ image is also bound above by media. A URI of
type article ∪ image means that the URI may vary between
identifying either an article or an image.

Subtypes for top types. Every type is bound above by the
top type. Thus both person and p(person, person) are bound
above by top. If a URI can be anything then a person
or a predicate are both suitable. This eases the restriction
in ontologies that URIs for resources and predicates are
disjoint [41]. Similarly, the type class is also bound above
by the top type, so dynamic classes in the data are just URIs,
like resources and predicates.

Subtypes for predicates. Predicate types are contravariant
in both the subject and object. Contravariance switches the
direction of the subtype relation. For instance, a predicate
of type p(person,>) is also of type p(person, article).
Contravariance allows the top type to be strengthened to the
article type. So a predicate which allows anything as the
object can certainly have an article as the object.

Data predicates are also contravariant in both arguments.

For instance, a predicate of type p(>,String) can be used as
a predicate of type p(person,String). The subtype relation
for datatypes is defined in the XML Datatypes standard [23].
For instance, a ‘normalised string’ from the standard can be
used in place of a string. Because datatypes and types for
URIs are separate the subtype systems do not interfere.

Subtypes for named graphs and feeds. With subtypes, the
type of feeds containing more than one type of resource can
be expressed. For instance, #(article ∪ photo) is a feed of
articles and photos collectively have their union type. The
feed constructor is contravariant meaning that the type of
the content of the feed may be strengthened. For instance,
a feed containing resources which are either articles or
photos can be treated as a feed containing only articles by
ignoring the photos. This is captured by the subtype relation
#(article ∪ photo) ≤ #article.

4.2.3. Cut Elimination for the Subtype System.
Cut elimination allows transitivity to be eliminated from
subtype proofs. Cut elimination exhibits the categorical
content of the subtype system. Arrows are normalised proof
trees and objects are types. The theorem is justification for
the rules of the subtype system.

Theorem 4.1 (Cut elimination). Given a proof of a subtype
relation τ0 ≤ τ1, there exists a normalised proof with the
same conclusion which does not use cut (i.e., the transitivity
rule in Fig. 10). Furthermore, proofs form a category such
that union types are coproducts and top is terminal.

The routine proof appears in the forthcoming thesis of the
first author. It relies on using the completion of the subtype
axioms. For instance, consider the atomic types, reporter,
journalist, person, and the subtype axioms reporter ≤
journalist and journalist ≤ person. Cut is used to
determine the subtype relation reporter ≤ person, which
must also be a primitive subtype axiom.

The Dedekind-MacNeille completion can be used to
determine all the subtype axioms for atomic types [47]. The
completion associates each atomic type with a set of atomic
types which are less than all types greater than the type. This
set is the principle ideal of the atomic type. The ideals form
a complete join semi-lattice from which the subtype axioms
can be efficiently recovered.

4.2.4. Interoperability of Subtype Systems.
A store may include Linked Data from more than one
source with static type information. The subtype system
enables interoperability between different subtype type
systems. For instance, suppose there exist three stores,
for distinct applications. Suppose that one store uses
atomic types musician and venue, while another store
uses atomic types person and location. A third store
uses content from both servers, so must handle all four
atomic types. Furthermore, the third server is given the
subtype assumptions musician ≤ person and venue ≤
location, which improves interoperability of content from
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both servers.
In the example involving three stores, the subtype systems

of the first two stores can be extended to the subtype system
of the third store. A subtype system δ0 is defined to extend to
a subtype system δ1 if and only if the completion of subtype
axioms in δ0 is contained in the completion of subtype
axioms in δ1. Thus if δ0 extends to δ1, then all subtype
assumptions with respect to δ0 are subtype assumptions with
respect to δ1. Valid extensions can be checked efficiently
using the Dedekind-MacNeille completion [47].

Subtypes ease restrictions imposed by types. Linked
Data can involve data from stores with different subtype
systems. By extending the subtype systems lightweight
interoperability across diverse Linked Data systems can be
achieved.

5. THE TYPED SYNDICATION CALCULUS

This section introduces the typed calculus. The typed
calculus builds on the calculus described in previous
sections. The extra type information assigns types to URIs
and literals. The type system investigates the feasibility of
lifting a small amount of the data to a type system. In
particular, the typed calculus provides a model to evaluate
the effectiveness of using RDF classes in a conventional type
system for Linked Data [4].

A type system allows data and updates to be statically
type checked. This type system ensures that URIs assigned
a distinguished role are always used consistently. Notice
that the data formats and query system exists in major
deployments [12]. Also, a preliminary update system is
under development, so is considered a requirement for
Linked Data. The type system for literals has certain
benefits for catching basic programming errors. However,
the type system for URIs is a design decision, rather than a
requirement. It depends on the application whether a type
system for URIs should be used.

Although, the type system requires a design decision, the
barriers imposed by the type system are less than those
imposed by traditional database schema. For instance, an
application may decide that a URI refers to an article, but
the data associated with that article may change. An entirely
new vocabulary might be used to replace the data about an
article. However the URI of type article is remains a URI of
type article. As long as the new vocabulary allows articles
to be described, then the article can still be described.

As expected from an application dependant type system,
care should be taken with what data is part of the type
system. For instance, a URI may be of type person. It is
reasonable to assume that a person will not morph into a bat,
so person is a good choice of static type. However in an
application, if a person is a banker, that person may become
a bar tender. In this case role banker is too strong to be a
static type, so should remain part of the data. For flexibility,
the RDFS standard can also be considered at the level of
data [48].

αF a : τ name assignment
| x : Data variable assignment
| ε empty environment
| α, α environment composition

α, ε ≡ α α0, (α1, α2) ≡ (α0, α1), α2

α0, α1 ≡ α1, α0 α, α ≡ α

FIGURE 11. A syntax for type environments and structural rules
over type environments: unit, associativity, exchange, contraction
and weakening.

5.1. Type Rules for Linked Data and Updates

RDF content and updates are typed to ensure that URIs
used in RDF content are consistent with type assumptions.
This section presents type rules for both RDF content and
updates. The type rules for updates ensure that an update is
only well typed if it updates well typed RDF content. A type
rule for each construct of content is provided in Fig. 12. In
a type judgement, the turnstile ` separates the context on the
left, represented by a type environment, from the well typed
term on the right.

5.1.1. Type Environments for names and literals.
Type environments are finite partial functions from names
to types. Syntactically, a type assignment is a name–type
pair. If the pair Alice : person occurs, the URI Alice is said to
be assigned type person. Similarly, type assignments allow
variables to be assigned datatypes. The type environment
is built from comma separated type assignments. Type
environment composition is associative, with the empty
environment as a unit, as indicated by the congruence over
type environments in Fig. 11.

The type system uses the standard structural rules
exchange and contraction. Exchange allows the order of
type assignments to be changed. Contraction allows two
identical assumptions can be reduced to a single assmption.
For instance Alice : person,Alice : person is equivalent to
Alice : person. Exchange and contraction are captured
by the congruence over type environments in Fig. 11.
These structural rules are standard for type systems. The
congruence can always be applied to the environment on the
left of the turnstile in a type judgement.

To ensure that environments are partial functions from
URIs and variables to types and datatypes respectively, type
environments must satisfy the following condition. If a URI
or variable occurs in two type assignments within one type
environment, then in each case the URI must be assigned
the same type. Two type environments are compatible if and
only if their composition still satisfies this constraint. For
instance, the type environment Alice : person and the type
environment Alice : book are incompatible. It is useful to
denote the domain of a type environment α, by dom (α).
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a : τ ` a : τ x : Data ` x : Data

α ` a : τ0 α ` p : p(τ0, τ1) α ` b : τ1

α ` (a p b) : τ0

α ` a : τ α ` p : p(τ,Data) α ` e : Data
α ` (a p e) : τ

α ` a : #τ α ` C : τ
α ` GaC : #τ

α, a : τ0 ` P : τ1

α `
∧

a : τ0.P : τ1

` ⊥ : τ
α ` P : τ α ` P : τ

α ` P O P : τ

α0 ` P : τ
α0, α1 ` P : τ

α ` P : τ0 τ0 ≤ τ1

α ` P : τ1

FIGURE 12. Type rules for RDF content and named graphs: name
assignment, variable assignment, type triple, type triple with literal
object, type named graph, type blank node, type nothing, type par,
weakening and subsumption.

5.1.2. Axioms, weakening, subsumption and literals.
The type system uses the standard axioms, which states that,
assuming that a URI is of a particular type, the URI is of
the given type. Thus if Ossetia is assumed to be an article,
then Ossetia is an article. The same shape of axiom applies
to variables, but types and datatypes do not overlap so the
axioms are separate.

The weaken environment rule allows unused type
assignments to be added to the context. So weakening
can be applied to an axiom to give, if Ossetia is an article
and Exchange is an article, then Ossetia is an article.
The subsumption rule allows the subtype system to be
applied at any point. So, if Ossetia is an article, then
Ossetia is anything, by the top axiom from the subtype
system. Weakening and subsumption enable the intuitive
presentation of the type system in Fig. 12.

Data literals are defined independently from the calculus.
For the purpose of examples, intuitive type judgements
are assumed to hold, such as ` ‘09-09-2008’ : Date or
` ‘Hamish’ : String. Technical details are left to the
standards [23].

5.1.3. Type rules for triples and simple RDF content.
Predicate types indicate the subject and object of predicate.
The type rules for triples ensure that the subject and
object are of the correct type. For instance, suppose
that author is of type p(article, person). If Ossetia is of
type article and Hamish is type person then the triple
(Ossetia author Hamish) is well typed.

Data predicates are typed using a similar rule. The
data predicate type indicates the type of the subject and
the datatype of the object. For instance, suppose that the
predicate name is of type p(person,String). Given that the

name Hamish is of type person and the literal ‘Hamish’ is of
data type String, then the triple (Hamish name ‘Hamish’)
is well typed.

In both cases a well typed triple takes on the type of the
subject. So the first triple above is of type article and the
second triple is of type person. Only the type of the subject
of the triple is indicated. This allows collections of triples
with the same type of subject to be identified. For instance,
some content may consist of triples with subjects which are
articles. As noted in Sec. 4, typing triples according to the
type of the subject is an application specific choice. The top
type can be used to indicate that the type of the subject is
irrelevant.

Triples and processes are composed using par. The type
rule for par allows two triples of the same type to be
composed. For instance, the two triples in this section can
be composed. Subtyping is applied to weaken the types of
both triples to the appropriate union type.

Hamish : person,Ossetia : article,
author : p(article, person) , name : p(person,String)

`
(Hamish give name ‘Hamish’) ,
(Ossetia author Hamish) : person ∪ article

The type judgement indicates that the locality contains
triples which describe either people or articles.

5.1.4. Type rules for blank nodes.
The blank node quantifier binds names which represent
blank nodes. In the typed calculus, bound names are
annotated with a type information. The rule for blank nodes
first types some RDF assuming that the blank node is a
normal URI. The rule then internalises the type information
as a quantifier.

The following example internalises three type assump-
tions, which represent blank nodes. Two blank nodes indi-
cate that they are two separate events. The third blank nodes
is of the top type. The scope of the quantifier indicates that
the same resource judged both events but no information is
known about that resource.

judge : p(>,>) , date : p(>,Date)

`
∧

a : >.



∧
event1 : event.(
(event1 judge a) ,
(event1 date ‘13-01-2011’)

)
,∧

event2 : event.(
(event2 judge a) ,
(event2 date ‘14-01-2011’)

)


: event

Subjects bound by typed blank nodes help determine the
type of the content. In the above example, since the subject
of all triples are events, the whole resource is of type event.

5.1.5. Type rules for named graphs.
The type of a named graph indicates the type of content
that may be contained in the named graph. For instance,
a named graph of type #article has content of type article.
The following named graph models a feed named Caucuses,
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α ` G : τ
α ` |G| : τ

α ` G : τ
α ` G⊥ : τ

α ` φ

α ` φ : τ

α ` S : τ α ` T : τ
α ` S ⊕ T : τ

α ` S : τ α ` T : τ
α ` S ⊗ T : τ

α, a : τ ` S : τ
α `

∨
a : τ.S : τ

α, x : D ` S : τ
α `

∨
x : D.S : τ

α ` S : τ
α ` ∗S : τ

FIGURE 13. Type rules for updates: type ask, type delete, type
filter, type choice, type join, type select name, type select literal,
type exponential.

appearing below. The four triples in the named graph have
subjects which are articles, so the feed is well typed.

title : p(article,String) , published : p(article,Date) ,
editor : p(#article, person) ,Caucuses : #article,
Hamish : person,Ossetia : article, exchange : article

` (Caucuses editor Hamish) ,

GCaucuses


(Ossetia title ‘Ossetia invaded’) ,
(Ossetia published ‘09-09-2008’) ,
(exchange title ‘Stock collapse’) ,
(exchange published ‘08-10-2008’)

 : >

A URIs for a named graph are be treated like any other
URI. Thus triples can be assigned to named graphs, such as
the triple which indicates the editor of the named graph in
the example above.

5.1.6. Type rules for updates and queries.
A delete, insert or a query have the same type as the
RDF content that they act on. This ensures that only
RDF content which makes sense can be updated or queried.
For instance, the following type judgement holds, which
indicates a resource and an update which intends to replace
in with out.

Dmitri : person,
status : p(>,>) ,
in : >, out : >

`

(Dmitri status in) ,(
(Dmitri status in)⊥

(Dmitri status out)

)
: person

In the example above deleted and inserted data has a
subject of type person, so the update maintains the type of
the context. A type checker can detect malformed triples in
a delete or insert before the update is applied.

5.1.7. Type rules for select quantifiers.
Select quantifiers consist of a type assignment and an update.
The type environment constrains the type of name to select.
The example below selects a URI of type person. The type
information permits the assumption that a selected URI will
be of type person. The object of the triple in both the query

and the insert are expected to be of type person.

article : article, editor : p(article, person) ,
club : >,member : p(>, person)

`

∨
p : person.

(
|(article editor p)|
(club member p)

)
,∧

Hamish : person.(article editor Hamish)
: >

The above update is in the presence of some data where a
blank node appears. The type assignment for the blank node
is the same as the type assignment for the select quantifier.

5.1.8. Type rules for literals in filters and selects.
A constraint which contains variables or names can be typed.
For instance, under the assumption that x : Date, constraint
x ≤ ‘01-01-1950’ is well typed. A date literal substituted
for x results in a constraint such as ‘01-05-1886’ ≤

‘01-01-1950’, which is also well typed. In the example
below, the select quantifier introduces the assumption that
x is a date. This type assumption allows the filter and triple
in the query to be typed. The update satisfies the following
type judgement.

Kidnapped : book, published : p(book,Date) ,
note : p(>,>) , classic : >

`

∨
x : Date.

∨
book : book. (x ≤ ‘01-01-1950’)

|(book published x)|
(book note classic)

 ,
(Kidnapped published ‘01-05-1886’)

: book

Typing literals is the minimal type system for updates.
Literals can still be typed without application specific type
information for URIs.

5.1.9. Type rules for joins, choice and iteration.
Joins ensure that two well typed updates are applied
atomically. A choice between two well typed updates is
presented. A join or choice assumes a type that both
components can assume. Iteration does not affect the type
of a process. In the following example all components are of
type person so the whole update is of type person.

guard : class, attendant : class, porter : class,
type : p(>, class)

`

∗
∨

a : person.


 (a type attendant)⊥

⊕

(a type guard)⊥


(a type porter)

 ,∨
b : person.(b type attendant) ,∨
c : person.(c type guard)

: person

The above example demonstrates a mix of static classes
as types and dynamic classes as data. The people are always
people, but their role changes.

5.2. Algorithmic Typing for the Calculus

In the type system in the previous section, the subsumption
and weakening rules can be applied at any point. An
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τ0 ≤ τ1
a : τ0 
 a : τ1

α + a : τ1 
 P : τ0

α 

∧

a : τ1.P : τ0
a ∈ fn (P)

α 
 P : τ0

α 

∧

a : τ1.P : τ0
a < fn (P)

α0 
 U : τ α1 
 V : τ
α0, α1 
 U ⊗ V : τ

α0 
 a : τ0 α1 
 p : p(τ0, τ1) α2 
 b : τ1 τ0 ≤ τ2

α0, α1, α2 
 (a p b) : τ2

FIGURE 14. Variations in rules for the algorithmic type system.

algorithmic type system controls the use of subsumption and
weakening. Subsumption can instead be applied as early as
possible. Weakening can be applied as late as possible. The
algorithmic type system can be less intuitive but is syntax
directed, so easier to work with for proofs and type inference
algorithms [49].

Key differences between the rules of the type system
and the algorithmic type system are presented in Fig. 14.
The first variation is that the axioms immediately weaken
the type to the correct type required. The second
variations is that, when two terms are composed, the type
environments are merged whenever they are compatible.
This is characterised by the type rule for join. Merging
environments avoids weakening both environments before
updates are combined. The third variation is that the
blank node and select rules, which internalise the type
environment permit weakening of the environment. This
permitted weakening is expressed using the congruence over
environments. Exchange and contraction still apply and +

indicates disjoint environments.
The soundness and completeness of the algorithmic type

system with respect to the intuitive type system ensures that
results carry from one system to the other. The proof begins
with a technical lemma. The lemma demonstrates that, for
the algorithmic type system, the environment on the left of
the turnstile covers exactly the URIs that occur free in the
term.

Lemma 5.1. If α 
 P : τ then fn (P) = dom (α).

Soundness of the algorithmic type system is established
by a straightforward rewrite from an algorithmic type tree to
a normal type tree. The effect of the typing is preserved by
the rewrite.

Theorem 5.1 (Soundness of algorithmic typing). If α 

P : τ then α ` P : τ.

Proof. Soundness is established by a straight forward
translation of proof trees. Each algorithmic type rule which
involves subtypes can be replaced by their equivalent type
rule followed by a subsumption link.

For blank nodes, if a < fn (P) then the algorithmic
type rule is transformed into the type rule, preceded by

application of weakening, as follows.

π
α 
 P : τ0

α 

∧

a : τ1.P : τ0

yields

π
α ` P : τ0

α0, a : τ1 ` P : τ0

α0 `
∧

a : τ1.P : τ0

Hence, each algorithmic type tree corresponds to a type tree
with the same conclusion. �

The proof of completeness of the algorithmic type system
is a transformation of proof trees which pushes subsumption
towards the leaves and weakening towards the root of a type
tree.

Theorem 5.2 (Completeness of algorithmic subtyping). If
α ` P : τ, then there exists some α0, α1 such that α0, α1 ≡ α
and α0 
 P : τ.

Proof. The transformation ~·� pushes subsumption rules as
deep as possible into the proof tree and suspends weakening.

There are two special cases. If two subsumption links
appear consecutively, then they can be performed in a
single subsumption link using cut in the subtype system.
Also, weakening rules can be deleted, since weakening is
controlled by the induction hypothesis.

For axioms, subsumption is absorbed by the algorithmic
rule. ���������a : τ0 ` a : τ0

π
` τ0 ≤ τ1

a : τ0 ` a : τ1

��������� yields
π

` τ0 ≤ τ1

a : τ0 
 a : τ1

For join, the subsumption link is pushed up each branch.
By structural induction, α0, α1 are type environments, such
that α ≡ α0, α

′
0 and α ≡ α1, α

′
1 and also each forms the

premises of the conclusions of the respective branches of the
resulting tree.���������������

π0
α ` P : τ0

π1
α ` Q : τ0

α ` P ⊗ Q : τ0

π2
` τ0 ≤ τ1

α ` P ⊗ Q : τ1

���������������
yields

α0 
 P : τ1 α1 
 Q : τ1

α0, α1 
 P ⊗ Q : τ1

where

α0 
 P : τ1 =

��������� π0
α ` P : τ0

π2
` τ0 ≤ τ1

α ` P : τ1

���������
and

α1 
 Q : τ1 =

��������� π1
α ` Q : τ0

π2
` τ0 ≤ τ1

α ` Q : τ1

���������
The triple rule absorbs a subsumption link. By induction,

there exists type environments α0, α1, α2 such that α ≡
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α0, α1, α2, α
′ and the following transformation holds.���������������

π0
α ` a : τ0

π1
α ` p : p(τ0, τ1)

π2
α ` b : τ1

α ` (a p b) : τ0

π3
` τ0 ≤ τ2

α ` (a p b) : τ2

���������������
yields

α0 
 a : τ0 α1 
 p : p(τ0, τ1) α2 
 b : τ1

π3
` τ0 ≤ τ2

α0, α1, α2 
 (a p b) : τ2

For blank nodes, subsumption is pushed straight up the
tree. Consider the following proof tree.���������������

π0
α, a : τ2 ` P : τ0

α `
∧

a : τ2.P : τ0

π1
` τ0 ≤ τ1

α `
∧

a : τ2.P : τ1

���������������
By induction, there is some α1 and α′ such that the following
transformation holds, where α1, α

′ ≡ α, a : τ2.��������� π0
α, a : τ2 ` P : τ0

π1
` τ0 ≤ τ1

α, a : τ2 ` P : τ1

��������� =

π3
α1 
 P : τ1

If a < fn (P), then the following proof tree holds.

π3
α1 
 P : τ1

α1 

∧

a : τ2.P : τ1

If a ∈ fn (P) then, by Lemma 5.1 there exists α′1 such that
α1 ≡ α

′
1 + a : τ2, and the following holds.

π3
α′1 + a : τ2 
 P : τ1

α′1 

∧

a : τ2.P : τ1

Further cases are similar to the above. Thus by induction
over the proof trees a transformation from any type tree to
an algorithmic type tree exists. �

The algorithmic type system demonstrates that type
checking is syntax directed. Even for a light type system,
type checking a store at each operational step is costly. A
feasible approach is to type check updates.

6. THE TYPED OPERATIONAL SEMANTICS

Given a well typed update, the expectation is that Linked
Data need only be typed once. Well typed updates applied
to well typed Linked Data should result in well typed Linked
Data, without the need to recheck the Linked Data. The light
type system works locally, in the sense that the correctness
of one triple is not affected by other triples. Similarly,
the commitment relation over updates describes the local
behaviour of updates, since unused triples are ignored. The

P O ⊥ ≡ P P O (Q O R) ≡ (P O Q) O R

P O Q ≡ Q O P Ga(C O D) ≡ GaC O GaD∧
a : τ.(P O Q) ≡

∧
a : τ.P O Q a < fn (Q)

∧
a : τ.⊥ ≡ ⊥

∧
a : τ0.

∧
b : τ1.P

≡
∧

b : τ1.
∧

a : τ0.P
a , b or τ0 = τ1

FIGURE 15. The structural congruence over content and
processes: unit, associativity, commutativity, split named graph,
distribute blank node, eliminate blank node and commute blank
node.

type system and commitment relations therefore work at the
same level of granularity, so are compatible.

This section demonstrates that the specification of atomic
commitments can be extended to ensure that the type system
and the commitment relation are compatible. The typed
commitment rules introduce minimal assumptions about the
context. The assumptions about the context are that names
selected in an update are of the correct type. This amounts
to a minimal dynamic type check on selected names. Under
minimal assumptions about the context, type judgements are
preserved by the dynamically typed commitment relation, as
verified by Theorem 6.1.

The typed operational semantics are defined by combining
the following components. α-conversion of bound names,
the structural congruence in Fig. 15 and a typed commitment
relation in Fig. 16. Examples throughout this section
illustrate the operational behaviour of typed updates.

6.1. The Structural Congruence for Typed Linked Data

The structural congruence for typed content is gathered in
Fig. 15. The structural congruence captures the commutative
monoid formed by par and nothing, which is used for both
RDF content and processes. The structural congruence
allows blank node quantifiers to distribute over tensor and
be eliminated in the presence of nothing. Compatible blank
node quantifiers may be swapped. The side condition for
swapping type assignments ensures that the composition of
the assignments form a partial function. Type environments
must be partial functions. The split named graph rule allows
named graphs to be decomposed for fine grained updates.

The first type preservation result verifies that the structural
congruence preserves types. Thus given a well typed
process, processes structurally congruent to the process are
well typed. Lemma 6.1 verifies this compatibility between
the structural congruence and the type system. The proof
makes use of algorithmic typing to simplify proofs.

Lemma 6.1 (Structural congruence preserves types).
Assuming that P ≡ Q, α ` P : τ if and only if α ` Q : τ.

Proof. For each algorithmic type tree and rule of structural
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congruence, an algorithmic type tree of the equivalent
process can be constructed, by Theorems 5.1 and 5.2.

For distributivity of blank nodes over par, assume that
a < fn (Q). Also assume that a ∈ fn (P) and the following
proof tree holds.

α0 + a : τ0 
 P : τ1

α0 

∧

a : τ0.P : τ1 α1 
 Q : τ1

α0, α1 

∧

a : τ0.P O Q : τ1

Now a < dom (α1), by Lemma 5.1, and a < dom (α0) thus
a < dom (α0, α1), so the following proof tree holds. The
converse is immediate.

α0 + a : τ0 
 P : τ1 α1 
 Q : τ1

(α0, α1) + a : τ0 
 P O Q : τ1

α0, α1 

∧

a : τ0.(P O Q) : τ1

Now, assume that a < fn (P) and the following proof tree
holds. Clearly a < fn (P O Q) so the following proof trees
can be interchanged.

α0 
 P : τ1

α0 

∧

a : τ0.P : τ1 α1 
 Q : τ1

α0, α1 

∧

a : τ0.P O Q : τ1

iff
α0 
 P : τ1 α1 
 Q : τ1

α0, α1 
 P O Q : τ1

α0, α1 

∧

a : τ0.(P O Q) : τ1

Remaining cases are straight forward. The result follows by
induction over the derivation of an equivalence. �

The structural congruence covers the reorganisation of
content and processes. The structural congruence is always
reversible. In contrast, the effect of updates are generally
irreversible, so are captured by a commitment relation.

6.2. Typed Atomic Commitments

Atomic commitments were introduced in Sec. 2 to specify an
operational semantics for queries and updates over Linked
Data. In Sec. 3, atomic commitments were extended to
cover key features for syndication. In this section, atomic
commitments are extended with a type environment, called
the context. Otherwise, the role of atomic commitments
remains the same. The process on the left indicates
exactly the processes consumed. The processes on the right
indicates the exact processes which replace the processes
consumed.

The context for typed atomic commitments indicates a
minimal dynamic type check required by a commitment. By
minimising dynamic type checks, a feasible type system is
enabled. The context represents these minimal type checks
as a type environment. Any processes in the vicinity of the
commitment must agree on the the assignments of names to
types in the context.

For instance, a context for a commitment relation may
indicate that the name Burns is of type writer. However,
if it is assumed elsewhere that Burns is a person, then the

commitment cannot be applied, since the required context
indicates a stronger type. The rules for typed commitments
are presented in Fig. 16. The higher-order π-calculus
similarly constrains the context of a transition using type
environments [50].

6.2.1. Fully type safe commitments
Assuming that a process is well typed, a commitment which
only uses axioms requires no dynamic type checks. When
there are no type checks most other rules behave like the
untyped calculus. For instance, in the example below the
deletes and inserts have an empty context, so their join has
an empty context.

`


(studio status closed)⊥

(studio status open)
Gstudio(Dmitri status out)⊥

Gstudio(Dmitri status in)

 ,
(studio status closed) ,
Gstudio(Dmitri status out)

B
(studio status open) ,
Gstudio(Dmitri status in)

Because the context above is empty, any environment which
types the process before the commitment also types the
process after the commitment.

6.2.2. The dynamically typed select quantifier.
The select quantifier introduces the need for dynamic type
checks. A select quantifier annotates a name with a type.
The type annotation imposes an upper bound on the type
of the selected name. For instance, the select quantifier
below requires that the selected name is of type person. The
commitment selects the name Dmitri according to the triple
to be deleted. However, the given process does not indicate
that Dmitri is of type person. The missing assumption is
indicated by the context in front of the commitment.

Dmitri : person `

∨
a : person.

(Hamish knows a)⊥ ,
(Hamish knows Dmitri)

B ⊥

The context above indicates that the commitment can only
be applied safely when Dmitri is of type person. Further
information required to type the process, such as knows is of
type p(person, person) and Hamish is of type person, is not
required for the commitment.

6.2.3. Joined commitments with non-empty context.
Join is used to synchronise updates. If two updates each
require a context, then the join of the updates composes the
contexts. For instance, the following example consists of
two commitments where each requires a URI to be of type
person. The commitments are joined so the context indicates
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` C O C⊥ B ⊥ ` C BC ` C O |C| BC

α ` P O U B Q
α ` P O (U ⊕ V) B Q

α ` P O V B Q
α ` P O (U ⊕ V) B Q

α0 ` P O U B P′ α1 ` Q O V B Q′

α0 + α1 ` P O Q O (U ⊗ V) B P′ O Q′ `

� φ

φ B ⊥

α ` P O U B Q
α ` P O ∗U B Q

α ` P O (∗U ⊗ ∗U) B Q
α ` P O ∗U B Q

` ∗U B ⊥

α ` P O U
{
b/a

}
B Q ` τ0 ≤ τ1

α + b : τ0 ` P O
∨

a : τ1.U B Q

α ` P O U{v/x} B Q ` v : D
α ` P O

∨
x : D.U B Q

α0 ` P B P′ α1 ` Q B Q′

α0, α1 ` P O Q B P′ O Q′

α + a : τ ` P O Q B P′ O Q′

α `
∧

a : τ.P O Q B
∧

a : τ.P′ O Q′
a < fn (Q,Q′)

α + a : τ ` GbP O Q B GbP′ O Q′

α ` Gb
∧

a : τ.P O Q B Gb
∧

a : τ.P′ O Q′
a < fn (Q,Q′, b)

FIGURE 16. The axioms and rules form atomic commitments:
delete axiom, insert axiom, query axiom, choose left rule, choose
right rule, join rule, filter axiom, dereliction rule, contraction rule,
weakening axiom, select name rule, select literal rule, mix rule,
blank node rule, named graph rule.

that both URIs are of type person.

user1 : person, user2 : person

`

(user1 status busy) ,
(user2 status ready) ,

∨
a : person.(
(a status busy)⊥

(a status ready)

)
∨

b : person.(
(b status ready)⊥

(b status busy)

)

B

(user1 status ready) ,
(user2 status busy)

In the above example, the names in the context are
distinct. The join rule forces combined contexts to be
disjoint. By forcing disjoint contexts, two select quantifiers
cannot discover the same name. Consequently, the more
controlled ‘select distinct’ quantifier is modelled from
SPARQL Query [5].

In contrast, the join rule in Sec. 2 models the normal
select quantifier in SPARQL Query. The normal select
allows different selects to discover the same name. The
normal quantifier can be achieved here by removing the
constraint that joined contexts are disjoint. Removing the

constraint allows the same name to appear in the combined
environment, hence contraction may be applied. Contraction
allows two different select quantifiers to share the same
resource. The two variations on the select quantifier
may coexist by extending the type environment in the
calculus. A more subtle type environment can control the
use of contraction, as investigated in the logic of bunched
implications [51].

6.2.4. Dynamic type checks for selected literals.
The select literal quantifier annotates a variable with a
data type. The annotation constrains the type of a literal
discovered using the select literal rule. To enforce the
constraint, the select literal rule dynamically type checks the
selected literal. In the example below, the literal input by the
select quantifier is successfully checked to be a date. The
syntax of the literal is enough information to check the type.

Kidnapped : book

`

∨
x : Date.

∨
book : book. (x ≤ ‘01-01-1950’)

|(book published x)|
(book status classic)

 ,
(Kidnapped published ‘01-05-1886’)
B (Kidnapped published ‘01-05-1886’) ,

(Kidnapped status classic) ,

The select literal performs the dynamic type check
immediately. No further information about the literal is
required from the environment. In contrast, there is not
enough information to check the name Kidnapped is a
book. This minimum requirement placed on the context is
indicated by the type environment.

6.2.5. Typed Commitments involving Choice
The branches in a choice may depend on different contexts.
In the update below a person and a string are always selected.
The string is immediately type checked and the check for
the person is indicated by the context. The update features
a third select which demands a name of type place, but
alternatively offers the choice of the unit update. In the
commitment below the unit branch is chosen, so the third
select does not contribute to the context.

Burns : person
`

∨
x : String.

∨
a : person.

|(a email x)|
Gpoets(a email x)

∨
h : place.(
|(a home h)|
Gpoets(a home h)

)
⊕ I



 ,
(a email ‘Rabbie@soton.ac.uk’)

B
(Burns address ‘Rabbie@soton.ac.uk’) ,
Gpoets(Burns address ‘Rabbie@soton.ac.uk’)

The choice between an update and the unit update models
the operator ‘opt’ in SPARQL Query [5, 14]. Since the unit
update is always enabled, the other branch may always be
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ignored so is optional. This demonstrates that, firstly, opt is
not primitive and, secondly, opt works for updates. In related
work, opt is borrowed from relational algebra for modelling
queries [15].

6.2.6. Iterated updates and dynamic types.
Iteration allows multiple copies of an update to be applied.
For instance, the following iteration joins two copies of the
inner update. Due to the use of join in the contraction rule,
selected names are forced to be disjoint. In the following
example, the context demands three disjoint names of type
person.

Alice : person,Bob : person,Chris : person

`

∨
a : person.
|(a type journalist)|
∗
∨

b : person.(
|(b type photographer)|
(a knows b)

)
 ,

(Alice type journalist) ,
(Bob type photographer) ,
(Chris type photographer)
B (Alice type journalist) , (Alice knows Bob) ,

(Alice knows Chris) , (Bob type photographer) ,
(Chris type photographer)

Now suppose that the whole of the above update is also
iterated. Due to the disjunction of environments forced by
join, each journalist is assigned distinct photographers. To
allow names to be shared the join rule can be relaxed, as
discussed above.

6.2.7. Commitments for typed blank nodes.
The blank node rule allows a blank node to be used in
place of a URI. The typed blank node also indicates a lower
bound on the type of URI the blank node can represent. For
instance, the example below involves a blank node quantifier
annotated with type person. The query demands a name of
any type, so the assumption that the blank node is of type
person is strong enough for the following commitment.

`

∨
b : >.(
|(b name ‘Burns’)|
(Dmitri knows b)

)
,∧

a : person.
(a name ‘Burns’)

B

∧
a : person.(
(a name ‘Burns’) ,
(Dmitri knows a)

)

The context is used to ensure that type of the select quantifier
and the blank node quantifier match. The select quantifier
introduces to the context an assignment of a name to type
person. The blank node rule eliminates that assignment from
the context. In the above example, this leaves an empty
context so no dynamic checks are required.

6.3. Type Preservation for Commitments

Type preservation verifies that given a well typed process
the resulting process after a commitment is well typed with
respect to the same environment. This means that the

use of a URI after an update is consistent with the use
of a URI before the update. For a commitment relation
with a non-empty context, the context must agree with the
type environment used to type the process. The following
substitution lemma is required for selected names and
literals.

Lemma 6.2 (Substitution preserves types). For names,

if α, a : τ1 ` U : τ and τ0 ≤ τ1, then α, b : τ0 ` U
{
b/a

}
: τ.

Similarly for literals,

if α, x : D ` U : τ and ` v : D, then α ` U{v/x} : τ.

The proof of the lemma follows by structural induction.
The type preservation theorem also uses type preservation
of the structural congruence, Lemma 6.1. The soundness
and completeness of the algorithmic type system eliminate
the need to consider subsumption and weakening rules,
Theorems 5.1 and 5.2.

Theorem 6.1 (Commitments preserve types). If α0 ` PBQ,
then α0, α1 ` P : τ yields that α0, α1 ` Q : τ.

Proof. The axioms are immediate. The structural induction
proof for choose, join, select and blank nodes are
demonstrated.

Consider the choose rule and assume that the following
type tree holds.

α0 ` P : τ
α1 ` U : τ α2 ` V : τ
α1, α2 ` U ⊕ V : τ

α0, α1, α2 ` P O (U ⊕ V) : τ

Therefore the following type tree holds.

α0 ` P : τ α1 ` U : τ
α0, α1 ` P O U : τ

Now assume that the choose left rule is used to resolve a
commitment, where α, α′ ≡ α0, α1, α2.

α ` P O U B Q
α ` P O (U ⊕ V) B Q

By induction, α ` P O U B Q and α0, α1 ` P O U : τ yields
the following type judgement, as required.

α0, α1, α2 ` Q : τ

Consider the join rule and suppose that the following type
judgement holds.

α0 ` P : τ α1 ` Q : τ
α0, α1 ` P O Q : τ

α2 ` U : τ α3 ` V : τ
α2, α3 ` U ⊗ V : τ

α0, α1, α2, α3 ` P O Q O (U ⊗ V) : τ

Hence the following two judgements hold.

α0, α2 ` P O U : τ and α1, α3 ` Q O V : τ
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Now, assume that the following commitment holds, where
α0, α2 ≡ β0, β

′
0 and α1, α3 ≡ β1, β

′
1.

β0 ` P O U B P′ β1 ` Q O V B Q′

β0 + β1 ` P O Q O (U ⊗ V) B P′ O Q′

Hence by induction, the following type judgement holds, as
required.

α0, α2 ` P′ : τ α1, α3 ` Q′ : τ
α0, α1, α2, α3 ` P′ O Q′ : τ

Consider the select rule and suppose that the following
type tree holds.

α0 
 P : τ
α1 + a : τ1 
 U : τ
α1 


∨
a : τ1.U : τ

α0, α1 
 P O
∨

a : τ1.U : τ

Assuming that τ0 ≤ τ1, by the substitution lemma, α1 +

a : τ1 ` U : τ yields α1, b : τ0 ` U
{
b/a

}
: τ, so the following

proof tree can be constructed.

α0 ` P : τ α1, b : τ0 ` U
{
b/a

}
: τ

α0, α1, b : τ0 ` P O U
{
b/a

}
: τ

Also, assume that the following commitment holds, where
α0, α1 ≡ α, α

′, for some α′.

α ` P O U
{
b/a

}
B Q

α + b : τ0 ` P O
∨

a : τ1.U B Q

By the induction hypothesis, α ` P O U
{
b/a

}
B Q and

α0, α1, b : τ0 ` P O U
{
b/a

}
: τ yield the following, as

required.
α0, α1, b : τ0 ` Q : τ

Consider the blank node rule and assume that the
following type tree holds.

α0 `
∧

a : τ0.P : τ α1 ` Q : τ
α0, α1 `

∧
a : τ0.P O Q : τ

Hence, assuming that a < fn (Q), the following type tree
holds.

α0 + a : τ0 ` P′ : τ α1 ` Q : τ
α0, α1 + a : τ0 ` P O Q : τ

Hence by induction, there exists α′0, α
′
1 such that α0, α1 ≡

α′0, α
′1 and the following type tree holds.

α′0 + a : τ0 ` P′ : τ α′1 ` Q′ : τ
α′0, α

′
1 + a : τ0 ` P′ O Q′ : τ

Therefore, assuming that a < fn (Q′) the following proof tree
holds, as required.

α′0 + a : τ0 ` P′ : τ
α′0 `

∧
a : τ0.P′ : τ α′1 ` Q′ : τ
α′0, α

′
1 ` P′ O Q′ : τ

The remaining cases follow a similar pattern. Therefore,
by induction on the structure of a commitment derivation,
types are preserved by atomic commitments. �

6.3.1. Monotonicity of contexts.
The examples in the previous section indicate the weakest
context for a transition. However, the example involving
the blank node quantifier uses subtyping in the select
name rule to select a stronger name. Similarly, in all
examples subtyping allows a stronger type to be used in the
environment.

For instance, a context which requires that Burns is of
type person, is satisfied by context which instead assigns the
subtype writer to the same name. In general, Proposition
6.1 verifies that a stronger context can be used in place
of a weaker context without breaking a commitment. The
preorder extends subtyping point-wise to environments.

Proposition 6.1 (Monotonicity). If α0 ≤ α1, then α1 `

P B Q yields that α0 ` P B Q.

The proof pushes the strengthening of the context towards
the select quantifiers, where it is eliminated. A similar proof
shows the monotonicity of typing. Monotonicity facilitates
integration by allowing processes to be moved to a stronger
environment without further type checks.

6.3.2. Recovering the untyped calculus.
The relationship between the typed and untyped calculus
is acknowledged through erasure. Erasure removes all
type annotations whilst retaining operational behaviour. In
particular, the type annotations which appear in select and
blank node quantifiers are removed, as defined by the
transformation erase. As verified in Proposition 6.2, all
transitions possible in the typed calculus are possible in the
untyped calculus. For an exact match, the join rule is relaxed
to remove requirement that joined context are disjoint.

Proposition 6.2. If α ` P B Q, then erase P B eraseQ.

However, as expected, the converse does not hold. There
exist transitions in the untyped calculus that are impossible
in the typed calculus. For instance in the following example
the blank node can only be selected after erasure, since > is
not a subtype of document.

erase

( ∧
a : >.(a status official) ,∨
b : document.(b status official)⊥

)
B ⊥

The main differences between the typed commitments in
Fig 16, and the untyped commitments in Figs. 4 and 8,
are summarised are as follows. The select name quantifier
inputs a name of a given type, rather than any name.
The select literal rule checks the datatype of the literal,
rather than accepting any literal. Rules propagate resulting
constraints on the context, whereas the untyped calculus
does not constrain the context. The blank node quantifier
rule simulates URIs of a given type, rather than any URI.

The combination of the subtype system, literal only
typing, monotonicity and erasure allow different strengths
of type system to be used in different applications.
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7. FURTHER WORK

The calculus provides an abstract syntax and operational
semantics which model a language where Linked Data is
primitive. The focus of this work is to investigate the
capabilities of a of light type system for Linked Data
programming languages. The rules of the type system
provide a model, which can be used to implement type
inference algorithms for Linked Data. The operational
semantics can also be used to derive an algebra for
optimisations of queries and updates. A range of extensions
can enrich the calculus for particular applications. In
particular, extensions for data interoperability and further
higher level programming languages are outlined.

7.1. Type inference algorithms

Type inference reduces constraints imposed by the type
system by inferring types from partial type information.
An update can be provided untyped by a programmer.
An algorithm then automatically infers the missing type
annotations. Type inference makes programming easier and
improves interoperability with Linked Data systems with
different degrees of static type information.

For instance, in the example below the types of Hamish
and Dmitri are unknown, so are assigned fresh type variables
x and y. The constraints x ≤ person and y ≤ person are
obtained by unfolding the tree of the following algorithmic
type judgement.

knows : p(person, person) ,
Hamish : x,Dmitri : y 
 (Hamish knows Dmitri) : >

A type inference algorithm discovers the minimal unifier.
The minimal unifier above is x 7→ person, y 7→ person. This
unifier is a substitution, which gives an valid type judgement
when applied to the above tree.

The general inference algorithm proceeds as follows.
Firstly, apply algorithmic subtyping to obtain a proof tree
indicating a set of subtype constraints over types involving
fresh atomic types, as in the example above. Secondly, apply
unification to the constraints, until either the constraints are
rejected or the algorithm terminates successfully. If the
constraints are rejected, there is no unifier. If the constraints
are accepted, then the minimal unifier is generated [52].

Type inference appears implicitly in the RDFS standard.
The rules of RDFS state that given a predicate, the type of the
domain of the predicate bounds the type of any subject of the
predicate. Similarly, the range of a predicate bounds the type
of any object [4]. As demonstrated above, the same effect is
achieved by type inference in this work. Type inference is
performed at compile time, so incurs no cost to queries or
updates.

7.2. An algebra for optimising updates

The calculus can be used as a basis for optimisation of
queries. In particular, an algebra over updates can be
derived. A suitable algebra allows updates to be rewritten
whilst preserving the operational semantics of an update.

An update before the algebra is applied should have the
same operational behaviour as an update after the algebra
is applied. For instance, the following two updates are
expected to have the same operational behaviour.

∨
a.
∨

b.(b knows a)⊥ |(a type spy)|
⊕

|(a type hermit)|


 ∼

∨
a.
∨

b.

(
(b knows a)⊥

|(a type spy)|

)
⊕(

(b knows a)⊥

|(a type hermit)|

)


The algebra can be applied to rewrite queries to normal
forms. For instance, a suitable normal form can be
used to optimise an update for distribution over a cluster
of machines. The details of the algebra and proof that
it preserves operational behaviour is worthy of detailed
attention, so is the focus of a paper in preparation.

7.3. Extensions for interoperability of data

Interoperability problems similar to those for static types,
tackled in Sec. 4, also apply to dynamic Linked Data.
The intrinsic interoperability problem for URIs is known as
co-reference [53]. Linked Data from different authorities
may use different URIs to identify the same resource. For
instance, many different URIs identify Robert Burns.

The problem results in an equivalence, or more generally
a preorder, over URIs. The preorder, say v, can be used
to improve queries and updates, by permitting discrepancies
between URIs. This light URI level reasoning can built into
the axioms. The following instance of an extended delete
axiom allows a triple to be deleted by a weaker triple.

(Burns’ author tribute) v (Burns creator tribute)
(Burns’ author tribute) O (Burns creator tribute)⊥ B ⊥

The above example works under the assumptions that
Burns = Burns’ and author v creator. This demonstrates
one use of subProperty from the RDFS standard and sameAs
from the OWL standard [41].

7.4. Extensions for future high level languages.

Extensions can specify long term behaviour. A continuation
process (indicated by then below) describes update which
follows the current update. Recursion (indicated by ν below)
allows a precess to be unfolded. For instance, the following
example unfolds a process twice to navigate a chain of
knows predicates until it reaches a leader.

νY(Ali).
∨

b.
|(Ali knows b)| thenY[b]
⊕

|(Ali type leader)| then P

 ,
(Ali knows Bob) ,
(Bob type leader)

→

(Ali knows Bob) ,
(Bob type leader) ,
P
{
Bob/Ali

}

The above example, Upon reaching the leader performs
some process P using the URI of the leader. Recursion is
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useful for describing long term behaviour of an automata.
An automata can control navigation in a site dependant on
Linked Data.

In another paradigm the right hand side of a commitment
relation gathers a monoid of query results. Results are then
manipulated in a functional language. The suggestion is
that the standards are approaching a high level language for
engaging with Linked Data.

8. CONCLUSIONS

The calculus has a distinguished role in the emerging Web
of Linked Data. The calculus provides a level of abstraction
where atomic actions can be executed using only local
observations about data. The level of abstraction is above
concerns such as the messages sent between machines, but
below concerns such as the global structure of a store.

The calculus models substantial queries and updates
which span diverse data sources. It is assumed that
mechanisms can aggregate Linked Data in one environment
— typically a store. The contribution is an operational
semantics for standards which operate at this level of
abstraction. In particular, an operational semantics
for SPARQL Query and SPARQL Update are specified.
Examples focus on SPARQL Update which is crucial for
Read–Write Linked Data.

The calculus works with a light type system, which can
be checked locally. This contrasts to stronger schema,
which require a global perspective on data. The calculus
demonstrates that appropriate data can be lifted to a feasible
type system. Literals in a query or update can always be type
checked. By providing type assumptions, URIs can also be
type checked. The contribution is an investigation into the
RDFS standard as a type system.

The calculus simultaneously models key Linked Data
standards. The challenge is that collectively the standards
do not form an established logical system. Classical logic
is found in constraints, linear logic is found in atomic
actions and a truly concurrent process algebra combines
actions, Sec. 2. A partial order over URIs and types
enables interoperability, Sec. 4. The type system introduces
two intuitionistic logics, Sec. 5, 6. Kleene algebras found
optimisations, Sec. 7. Related work includes models based
on graphs, epistemic logics and bunched implications [14,
37, 51]. The suggestion is that any model for Linked Data
accommodates several notions of truth.
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