
Tasking Event-B: An Extension to Event-B
for Generating Concurrent Code

Andrew Edmunds
School of Electronics and Computer Science,

University of Southampton, UK
ae2@ecs.soton.ac.uk

Michael Butler
School of Electronics and Computer Science,

University of Southampton, UK
mjb@ecs.soton.ac.uk

Abstract

The Event-B method is a formal approach for modelling systems in safety-, and business-critical,
domains. Initially, system specification takes place at a high level of abstraction; detail is added in
refinement steps as the development proceeds toward implementation. Our aim has been to develop
a novel approach for generating code, for concurrent programs, from Event-B. We formulated the
approach so that it integrates well with the existing Event-B methodology and tools. In this paper
we introduce a tasking extension for Event-B, with Tasking and Shared Machines. We make use
of refinement, decomposition, and the extension, to structure projects for code generation for multi-
tasking implementations. During the modelling phase decomposition is performed; decomposition
reduces modelling complexity and makes proof more tractable. The decomposed models are then
extended with sufficient information to enable generation of code. A task body describes a task’s
behaviour, mainly using imperative, programming-like constructs. Task priority and life-cycle (pe-
riodic, triggered, etc.) are also specified, but timing aspects are not modelled formally. We provide
tool support in order to validate the practical aspects of the approach.

1 Introduction

Event-B [3] can be used to model both single and multi-tasking software systems. The approach that
we present here is greatly influenced by our previous experience [9, 10, 11] where we link Event-B with
Java. We continue this section discussing our motivation. Section 2 provides an overview of Event-B.
Section 3 describes the Tasking Event-B extension. Section 4 describes the preparation of a model for
code generation. Section 5 describes the translation. In Section 6 we discuss our results and future work.

The work reported here has been undertaken as part of the EU DEPLOY [2] project, where our
target domain is multi-tasking, real-time embedded systems. Our more general interest is in modelling
concurrency in the application domain, with a view to automatic code generation. In previous work [9,
10, 11] we identified a problem with the large semantic gap between Event-B and the language that we
used for specifying the implementation. We also encountered problems working with large models; our
language introduced too much fine-grained atomicity, giving rise to a large number of proof obligations.

The undertaking, described here, was to develop an approach which integrates well with the existing
Event-B methodology. One of our aims was to have just a few additions to the Event-B language; to have
a small semantic gap between Event-B and the tasking specification. In essence we extend Event-B with
just enough information to be able to derive an implementation. To address the problem of large model
size we make use of Event-B’s decomposition approach [6, 19]. After decomposition a machine can be
further refined, and decomposed again if necessary. At a suitable point we introduce implementation
specific constructs to the development and generate the code. We also use the extended Event-B model
to generate a model of the implementation. We have developed a demonstrator tool [22] to validate the
approach; the tool integrates with the existing Rodin platform [23].

1

ae2@ecs.soton.ac.uk
mjb@ecs.soton.ac.uk


Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

machine AbstractBuffer
variables buff wVal . . .
invariants

buff ∈ Z
wVal ∈ Z

. . .

event write
where

buff < 0
then

buff := wVal
sCount := sCount + 1
wCount := sCount + 1
wCount2 := wCount2 + 1

end

Figure 1: Example of Textual Event-B

2 Event-B

The Event-B method [3] was developed by J.R. Abrial, and uses set-theory, predicate logic and refine-
ment to model discrete systems. The basic structural features of Event-B are contexts and machines.
Contexts are used to describe the static features of a system using sets and constants, and the relation-
ships between them are specified in the axioms. Machines are used to describe the variable features of a
system in the form of state variables and guarded events which update state; system properties are spec-
ified using the invariants clause. Machines are able to see Contexts; the contents of a Context is visible
and accessible to a machine. The invariants give rise to proof obligations, which are generated automat-
ically by the tool; a large number of the proof obligations may be discharged without user intervention
by the provers. Where auto-provers fail to discharge proof obligations the user guides the interactive
prover. They proceed by suggesting strategies, and sub-goals in the form of hypotheses, in the endeavour
to complete the proof.

2.1 An Event-B Model

A fragment of an Event-B specification is shown in Fig. 1. The specification has a number of variable
declarations which are typed in the invariant clause. Additional predicates are added to the invariants
clause to describe the desired safety properties; the invariants clause consists of a conjunction of predi-
cates. The write event has a single guard clause (but may have more) following the where keyword, and
a number of actions following the then keyword. The guard is a predicate, over the sets, constants, and
variables of the system, describing a condition under which an event may occur. Each event guard may
have a number of guard clauses which are conjoined. Action clauses consist of assignments to variables,
and may be non-deterministic. The event action is a parallel composition of the action clauses.

3 Tasking Event-B

3.1 Extending Event-B Machines

Tasking Event-B introduces a number of new concepts to facilitate code generation. The most signifi-
cant is the extension of Event-B with two new types of machine, namely Tasking and Shared Machines.
Tasking Machines are related to the concept of an Ada [21] task (but we are not restricted to Ada im-
plementations). Shared Machines are related to the concept of a protected resource, such as a monitor
[14].

Event-B machines without any additional additional features may be implemented; but we wish to
implement the machines in a particular way which necessitates the use of information in addition to

2



Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

that available in a standard Event-B machine. We introduce specific tasking constructs to facilitate code
generation for multi-tasking systems where the implemented tasks may have interleaving executions, but
are restricted to communicate only with some protected resource in a mutually exclusive manner. The
tasking features are an extension of standard Event-B machines, and machines to be implemented are
characterised by one of the following attributes:

• Auto Task Machine or Shared Machine

Auto Tasks are tasks that will be declared and defined in the Main procedure of the implementation. The
effect of this is that the Auto Tasks are created when the program first loads, and then activated (made
ready to run) before the Main procedure body runs.

3.2 Tasking Specifics

3.2.1 Task Scheduling

The following extensions relate only to Tasking Machines, and provide implementation details; but note
that timing aspects of periodic tasks, and scheduling, is not modelled formally.

• TaskType and Priority

the TaskType construct is used to define the scheduling, cycle and lifetime of a task. i.e. one-shot,
periodic or triggered. The period of a task is specified in milliseconds. Priority is an integer value; the
task with the highest value priority takes precedence when being scheduled.

3.2.2 Flow Control

Each Tasking Machine has a task body which contains the following flow control (algorithmic) con-
structs.

• Sequence, Branch, Loop, EventSynch, Event

The Sequence construct is used for imposing an order on events. Branch is choice between a number of
mutually exclusive events. Loop specifies event repetition while its guard remains true. EventSynch is
used to synchronize an event in a Tasking Machine with an event in a Shared Machine. The EventSync
construct allows the updates in a Tasking Machine and Shared Machine to be viewed as an atomic update.
Synchronization is implemented as a subroutine call, with atomic (with respect to an external viewer)
updates. The updates in the protected resource are implemented by a procedure call to a protected
object. It is important to note that tasks communicate through shared resources, and not directly with
each other. The EventSync construct facilitates subroutine parameter declarations, and substitution in
calls, by pairing ordered Event-B parameter declarations. The EventSynch construct may also be used
with a single event, in which case it is implemented as a subroutine call with no parameters. The event
may belong to the Tasking Machine (local), a Shared Machine (remote), or both.

3.3 Events

Events can play one of several roles in the mapping to the implementation as follows,

• ProcedureSynch, ProcedureDef, Branch, Loop

Events with the ProcedureSynch extension can take part in event synchronization, whilst ProcedureDef
indicates implementation as a parameterless subroutine call. The remainder are self explanatory.

3



Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

3.4 Tasking Constructs

Events that are local to a Tasking Machine only update the Tasking Machine state; conversely events
that are remote only update the state of the Shared Machine. Synchronised events share parameters to
facilitate communication between Tasking and Shared Machines.

To represent the combined updates on local and remote machines we introduce synchronized event
composition. The synchronization of the two events is equivalent to a single atomic event, with the
guards and actions of the individual events merged. We can write the guards and actions of the events
as guarded commands [8]. The general case of event synchronization is shown in Equation (1) where a
local event is written as gl→ al , and gl and al are local guards and actions. The remote event is gr→ ar,
where gr and ar are remote guards and actions. The synchronization of one local and one remote event
uses the event composition operator ‖e. The actions describing state updates are composed with the
parallel update operator ‖.

gl → al ‖e gr→ ar , gl ∧gr→ al ‖ar (1)

The merged guard is the conjunction of the guards of the local and remote events, and the merged action
is the parallel composition of the actions of the local and remote events.

The general case of event synchronisation may lead to undesirable behaviour if our implementation
followed Event-B semantics in an unrestricted manner. For example, an event guard prevents an update of
state until the guard is true. This is implemented as a subroutine with a conditional critical region [13].
In an implementation the calling task should not block itself, so the local guard gl is redundant; the
task state is not visible externally so the task would remain blocked. Therefore the definition of our
synchronized event s omits the local guard, as shown in Equation (2).

In the current version of our language we define the Branch and Loop constructs with the restriction
that guards are defined for the local event only. The definition of a simple branch b is shown in Equa-
tion (3), which makes use of the alternative choice operator []. The same restrictions are applied to the
loop construct thus when we define a loop it has the same form as the simple branch shown.

s = al ‖e gr→ ar (2) b = gl → al ‖e ar []

¬gl → SKIP
(3)

4 Preparing a Model for Implementation

Fig. 2 illustrates keys features of the following section, and we begin with the AbstractBuffer write event
of Fig. 1. The buffer buff is used to transmit natural numbers, so a reader sets buff to -1 when it has read
and removed the value; this signals that the writer can write and the reader is blocked. The write event
is enabled when bu f f < 0; the action writes wVal to the buffer. We also keep track of the number of
updates to the buffer with sCount. wCount will be the writer’s copy of sCount. We keep track of the
count of the writer’s writes with wCount2. The counts wCount and wCount2 may differ if further writer
tasks are added. Using the existing decomposition tools [6, 19] we separate the variables into separate
components during decomposition. The ReadWriteBuffer is the first refinement, where parameters are
added in preparation for decomposition. The abstract and refined write events are shown in Appendix A.1
for reference.

We now focus on the first refinement of the write event, see Appendix A.1. We introduce shared
parameters p1 and p2, define p1 = wVal in the guard, and make the assignment to buff using p1. We do
the same for wCount and p2. The use of shared parameters is necessary for decomposition, since buff
and wVal will reside in different machines, as will wCount and sCount.

4



Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

Figure 2: Linking Event-B to Code

We decompose into a writer, reader and shared machine using shared-event decomposition [6, 19].
We segregate the variables; buff and sCount become part of the shared machine, wVal and wCount be-
come part of the writer machine. See Appendix A.2. Following decomposition, the write events in the
writer and shared machines are not structurally linked in Event-B, but may synchronize in Tasking Event-
B. The development, shown below the dashed line in Fig. 2, continues. We specify the task body, where
we define the flow of control (see Appendix A.3). We have the Sequence, Branch, Loop and EventSynch
constructs available to use; in our example we just use Sequence and EventSynch. Clause w1 specifies
that the writer’s write event should synchronize with the shared machine’s write event. This is sequen-
tially composed with clause w2. The write event parameters are marked as actualIn and actualOut to
indicate the type and direction of parameters in the implementation. The shared machine’s write event is
the same as its abstraction (thus not shown) except for the specification of formal in and out parameters.

5 Translation

We have developed tool support to translate the Tasking Event-B to Ada source, and a model of the
implementation. The writer task body can be seen in Appendix A.4.

In the translation of the task body we map the tasking constructs to a Common Language Model.
The Common Language Model is an abstraction of commonly used programming constructs, such se-
quence, loop, branch, subroutine call. It is useful to provide such an abstraction to simplify the task of
translating to a number of different implementations. The tasking extension has both an Event-B seman-
tics, and an operational semantics which makes use of the Common Language. The translator is then an
implementation of the rule definitions. For instance a branch specification may be written

if evt1 ‖e evt2
else evt3 ‖ evt4
end

This is syntactic sugar for the following, where evti = gi→ ai and g3 = ¬g1.

g1→ a1 ‖e a2

[]

g3→ a3 ‖e a4

5



Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

Then the definition of a branch translation to Common Language Model is as follows,

Event Common Language Model

g1→ a1 ‖e a2 if g1
[] then a1 ; a2
g3→ a3 ‖e a4 else a3 ; a4

end

6 Discussion

6.1 Correctness of the Translation

We have successfully used the tool to specify tasking developments, and generate code in several small
case studies. The question of correctness of the generated code has not been formally addressed at
present. However, we do have rules defining the operational semantics, and these are embodied in the
translation to the Common Language Model. The tasking constructs are relatively simple, so we are
able to check that the translator implementation corresponds to the rules. As an example we consider
the atomic event which appears in a task body. This atomic event maps to a atomic subroutine call in
the Common Language Model. In an Ada implementation we translate the atomic subroutine call to
protected object call. The protected object acts as a monitor to enforce mutually exclusive access, and
we assume that the Ada protected object correctly enforces this. The other constructs can be reasoned
about in a similar manner, however, further work is being undertaken to address the issue of correctness
of the translation.

Confidence in the correctness of the resulting code can be increased by the use of SPARKAda [1].
SPARKAda is an approach where Ada code is augmented with pre-, post, and assert conditions, and
a verifier is used to prove that the code satisfies the conditions. Additional restrictions are placed on
multi-tasking developments in accordance with the Ravenscar profile [5]. We would expect to be able
to derive the SPARKAda annotations from the Tasking Event-B model, but this remains a task for the
future.

6.2 Related Work

The motivation for this work was to facilitate the link between Event-B and multi-tasking implementa-
tions; with the specific aim of overcoming the shortcomings discovered in our previous work [11]. To
our knowledge no other work has been undertaken to facilitate this. The closest comparable work is that
of providing implementations for Classical-B [4] using the B0 implementation notation described in [7].
B0 is similar to a programming language, and consists only of concrete programming constructs that
map to programming constructs in programming languages. B0 forms part of the Classical-B refinement
chain, so the implementation level specification is shown to refine an abstract development. B0 is similar
to our current work in that the final step between B0 specification and actual implementation code is
verified by inspection rather than formal proof. It should be noted that, although B0 can be translated to
various multi-tasking programming languages, there is no support for concurrency in B0.

In previous investigations we considered using a combined CSP [15] and Event-B approach to specify
the order in which events occur and synchronize. In such a development, the specifications are combined
so that Event-B events synchronize with CSP events with the same name. We considered this approach to
be more complex than the approach we ultimately adopted, and we prefer a streamlined approach which
uses only Event-B in combination with tasking extensions.

Another code generation approach for multi-tasking involves the use of CSP and Java, and is called
JCSP [24, 17] and JCSProB [27]. JCSP links the OCCAM [18] subset of the CSP process algebra and the

6



Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

Java programming language. The result is the ability to specify process behaviour in CSP, and translate
to those to Java threads. The resulting Java is a message passing style implementation of communication
between processes. This differs from the shared memory approach described in our work. JCSProB
combines the CSP and classical-B formal methods, the ProB tool [16] can be used to provide a unified
approach for specification and model checking. The most obvious difference between the JCSProB
approach and Tasking Event-B is that our work is aimed at the more recent Event-B approach.

Other work involving JCSP is that of Circus [25], which is a combined approach using CSP and
Z− notation [20]. In a Circus specification the Z and CSP constructs are used to build a specification
that is amenable to model checking using [26]. In this respect, Circus has more in common with JCSProB
than Tasking Event-B since it is a combined approach using model-checking technology. Circus can be
translated to Java as described in [12], making use of the JCSP library code.

There is also code generation for VDM++ which can be used to specify and implement multi-tasking
systems. VDM++ is an object-oriented extension to VDM-SL formal specification language. Models
can be described textually; or using a graphical interface using UML diagrams. The VDM++ Toolbox
can be used to generate multi-tasking C++ and Java code. Conditional waiting can be specified using
permission predicates; this corresponds to the Shared Machine guards used t specify blocking behaviour
in Tasking Event-B.

7 Conclusions

We have developed an approach for generating source code from Event-B, specifically targeting multi-
tasking, embedded, real-time systems. We have succeeded in achieving a small semantic gap between
Event-B and the tasking extension through the use of a minimal set of constructs; this is achieved by
restricting the use of event guards so that we can implement them using sequences, loops, branches,
or procedure calls (with parameter passing). We keep models manageable using the decomposition ap-
proach; and allocating variables to machines during shared event decomposition automatically generates
the parameters. We anticipate that the approach will be scalable because the decompositions can be
performed repeatedly, whenever required, prior to application of the tasking extension. Development of
each of the decomposed machines can then continue in isolation from the other components.

We extend the machine with a task body to define the control flow and generate source code from
this, and an Event-B model of the implementation. Tasking Machines are implemented as Tasks, Shared
Machines as protected objects, and event synchronizations as procedure calls. The approach has been
applied to a multi-tasking read/write buffer, and a controller for a heating system.

In the current tool we are limited to integer and Boolean types; the tool is not yet fully integrated
with the Rodin platform; and we have not yet implemented triggered tasks. The tool support will be
developed further to add new types, and special sensing variables that allow sensing in tasks. We will
investigate when is the best time in the development to apply the tasking extensions, and further formalize
the approach.

References
[1] SPARKAda. Available at http://www.praxis-his.com/sparkada/index.asp.
[2] The DEPLOY Project Website. at http://www.deploy-project.eu/.
[3] J. R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010.
[4] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University Press, 1996.
[5] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the use of the ada ravenscar profile in high

integrity systems. Ada Lett., XXIV:1–74, June 2004.

7

http://www.praxis-his.com/sparkada/index.asp
http://www.deploy-project.eu/


Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

[6] M. Butler. Decomposition Structures for Event-B. In Integrated Formal Methods iFM2009, Springer, LNCS
5423, volume LNCS. Springer, February 2009.

[7] ClearSy System Engineering. The B Language Reference Manual, version 4.6 edition.
[8] E.W. Dijkstra. Guarded Commands, Non-determinacy and Formal Derivation of Programs. Commun. ACM,

18(8):453–457, 1975.
[9] A. Edmunds. Providing Concurrent Implementations for Event-B Developments. PhD thesis, University of

Southampton, March 2010.
[10] A. Edmunds and M. Butler. Linking Event-B and Concurrent Object-Oriented Programs. In Refine 2008 -

International Refinement Workshop, May 2008.
[11] A. Edmunds and M. Butler. Tool Support for Event-B Code Generation, 2010.
[12] A. Freitas and A. Cavalcanti. Automatic Translation from Circus to Java. In J. Misra, T. Nipkow, and

E. Sekerinski, editors, FM, volume 4085 of Lecture Notes in Computer Science, pages 115–130. Springer,
2006.

[13] P.B. Hansen. Structured multiprogramming. Commun. ACM, 15:574–578, July 1972.
[14] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Commun. ACM, 17(10):549–557,

1974.
[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[16] M. Leuschel and M. Butler. ProB: A Model Checker for B. In Proceedings of Formal Methods Europe 2003,

2003.
[17] P.H.Welch, J.R. Aldous, and J. Foster. CSP Networking for Java (JCSP.net). In Computational Science -

ICCS 2002: International Conference, 2002.
[18] SGS-Thomson Microelectronics Ltd. Occam 2.1 Reference Manual, 1995.
[19] R. Silva, C. Pascal, T.S. Hoang, and M. Butler. Decomposition Tool for Event-B. Software: Practice and

Experience, 2010.
[20] J. M. Spivey. The Z notation: A Reference Manual. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.
[21] T.S. Taft, R.A. Tucker, R.L. Brukardt, and E. Ploedereder, editors. Consolidated Ada reference manual:

language and standard libraries. Springer-Verlag New York, Inc., New York, NY, USA, 2002.
[22] The Deploy Code Generation Wiki. at http://wiki.event-b.org/index.php/Code Generation Activity.
[23] The RODIN Project. at http://rodin.cs.ncl.ac.uk.
[24] P.H. Welch and J.M.R. Martin. A CSP Model for Java Multithreading. In Software Engineering for Parallel

and Distributed Systems, 2000.
[25] J. Woodcock and A. Cavalcanti. A Concurrent Language for Refinement. In A. Butterfield, G. Strong, and

C. Pahl, editors, IWFM, Workshops in Computing. BCS, 2001.
[26] Jim Woodcock, Ana Cavalcanti, and Leonardo Freitas. Operational Semantics for Model Checking Circus. In

John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM, volume 3582 of Lecture Notes in Computer
Science, pages 237–252. Springer, 2005.

[27] L. Yang and M. Poppleton. Automatic Translation from Combined B and CSP Specification to Java Programs.
In J. Julliand and O. Kouchnarenko, editors, B, volume 4355 of Lecture Notes in Computer Science, pages
64–78. Springer, 2007.

8

http://wiki.event-b.org/index.php/Code_Generation_Activity
http://rodin.cs.ncl.ac.uk


Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

A Appendix

A.1 Abstract and First refinement

event write
where

buff < 0
then

buff := wVal
sCount := sCount + 1
wCount := sCount + 1
wCount2 := wCount2 + 1

end

event write refines write
any p1 p2
where

p1 = wVal
p2 = sCount + 1
buff < 0

then
buff := p1
sCount := sCount + 1
wCount := p2
wCount2 := wCount2 + 1

end

A.2 Decomposed Machines

machine Writer
variables wVal wCount . . .
invariants . . .
events

event write
any p1 p2
where

p1 = wVal
then

wCount := p2
wCount2 := wCount2 + 1

end

machine Shared
variables buff sCount . . .
invariants . . .
events

event write
any p1 p2
where

p2 = sCount + 1
buff < 0

then
buff := p1
sCount := sCount + 1

end
. . .

A.3 Tasking Machine Extension

machine WriterTsk refines Writer

tasktype periodic(250)
priority 5

taskbody is
w1: WriterTsk.write ‖e Shared.write;
w2: . . .

event write
is procedureSynch refines write
any

actualOut p1
actualIn p2

where
p1 = wVal
p1 ∈ Z
p2 ∈ Z

then
wCount := p2

end

9



Tasking Event-B: An Extension to Event-B for Generating Concurrent Code Edmunds, and Butler

A.4 Ada Task Code
task body WriterTsk is . . .
loop

t := clock;
write;
shared.write(wVal, wCount);
. . .
delay until t + period;

end loop;

protected body Shared is
entry write(p1: in Integer; p2: out Integer)
when buff < 0 is
begin

p2 := sCount + 1;
buff := p1;
sCount := sCount + 1;

end;

10


	Introduction
	Event-B
	An Event-B Model

	Tasking Event-B
	Extending Event-B Machines
	Tasking Specifics
	Task Scheduling
	Flow Control

	Events
	Tasking Constructs

	Preparing a Model for Implementation
	Translation
	Discussion
	Correctness of the Translation
	Related Work

	Conclusions
	Appendix
	Abstract and First refinement
	Decomposed Machines
	Tasking Machine Extension
	Ada Task Code


