
 1

Abstract— According to the Memorandum of Understanding

(MoU) of the World-wide LHC Computing Grid (WLCG)

project, participating sites are required to provide resource usage

or accounting data to the Grid Operational Centre (GOC) to

enrich the understanding of how shared resources are used, and

to provide information for improving the effectiveness of resource

allocation. As a multi-grid environment, the accounting process of

WLCG is currently enabled by four accounting systems, each of

which was developed independently by constituent grid projects.

These accounting systems were designed and implemented based

on project-specific local understanding of requirements, and

therefore lack interoperability. In order to automate the

accounting process in WLCG, three transportation methods are

being introduced for streaming accounting data metered by

heterogeneous accounting systems into GOC at Rutherford

Appleton Laboratory (RAL) in the UK, where accounting data

are aggregated and accumulated throughout the year. These

transportation methods, however, were introduced on a per

accounting-system basis, i.e. targeting at a particular accounting

system, making them hard to reuse and customize to new

requirements. This paper presents the design of WLCG-RUS

system, a standards-compatible solution providing a consistent

process for streaming resource usage data across various

accounting systems, while ensuring interoperability, portability,

and customization.

Index Terms—Aggregate accounting, Enabling Grids for E-

sciencE, Grid accounting, Large Hadron Collider, Open Grid

Forum, Resource Usage Service, Usage Record, Worldwide LHC

Computing Grid.

I. INTRODUCTION

ccounting in the grid, also known as grid accounting,

plays an important role in system administration, resource

usage policing, and supporting grid economic models.

The main purpose of grid accounting is to meter shared

computing resources and to supply usage information in a grid

environment. Collective usage information enriches system

administrators’ understanding and enhances overall resource

Manuscript received June 15st, 2010. This work was supported in part by

Engineering and Physical Sciences Research Council.

X. Chen is with the School of Electronics and Computer Science,

University of Southampton, SO17 1BJ, Southampton, UK (e-mail:

xc2@ecs.soton.ac.uk).

A. Khan is with the School of Engineering and Design, Brunel University,

Uxbridge, UB8 3PH, London, UK (e-mail: akram.khan@brunel.ac.uk).

G. B. Wills is with the School of Electronics and Computer Science,

University of Southampton, SO17 1BJ, Southampton, UK (e-mail:

gbw@ecs.soton.ac.uk).

L. H. Gilbert is with the School of Electronics and Computer Science,

University of Southampton, SO17 1BJ, Southampton, UK (e-mail:

lg3@ecs.soton.ac.uk).

utilization in a grid system. For most e-Science grids,

computing resources are provided by academic institutions for

one or more collaborative and non-commercial research

projects. Individual projects and participants are granted fixed

quotas for resources such as such as computational cycles and

storage space. Accounting in such e-Science grid environments

enables usage management that prevents grid resources from

overexploitation by checking actual resource usage against

allocated resource quotas. Resources and services managed

within a commercial grid system are utilized on a “pay-per-

use” basis. Accounting in this case is mainly used for

authorization and provision of usage proof for charging users

based on actual resource usage. In addition, grid accounting

supports the management of security, Quality of Service

(QoS), etc.

A number of grid accounting systems have been developed

and deployed. In the Open Science Grid (OSG) [1] project, an

accounting system called Gratia [2] operates at each

participating site. Accounting Processor for Event Logs

(APEL) [3] and Distributed Grid Accounting System (DGAS)

[4] are two accounting systems developed by the World-wide

LHC Computing Grid (WLCG) [5] and the Enabling Grids for

E-sciencE (EGEE) [6] projects. These two accounting systems

became part of the gLite middleware, the common software

stacks shared by both EGEE and WLCG projects. SweGrid

Accounting System (SGAS) [7] is another grid accounting

system designed for SweGrid, the national grid test-bed in

Sweden, and used as the major accounting solution for the

NorduGrid [8] infrastructure.

These grid accounting systems were implemented in various

ways based on local understanding of project-specific

requirements, making them hard to interoperate. Additionally,

in multi-grid environments such as WLCG which involves

three grid infrastructures from the OSG, EGEE, and

NorduGrid projects, the accounting process is complicated due

to the heterogeneity of accounting systems deployed at

participating sites. Three transportation methods were

therefore introduced as interim solutions to stream accounting

data metered by grid-specific accounting systems into the

WLCG Grid Operational Centre (GOC) at Rutherford

Appleton Laboratory (RAL) in UK. These transportation

methods, however, target particular accounting systems,

making them hard to reuse and customize to meet evolving

requirements. In this paper, we propose a standards-

compatible solution, the WLCG-RUS system, which aims at

providing the consistent collection of accounting data across

various accounting systems in the WLCG project while

ensuring interoperability, portability, and customization.

This paper is organized as follows. Section II reviews the

current accounting processes in the WLCG project, and

Developing Resource Usage Service in WLCG

Xiaoyu Chen, Akram Khan, Member, IEEE, Gary B. Wills and Lester H. Gilbert

A

 2

identifies problems to be addressed by the proposed WLCG-

RUS system. The design and implementation details of the

WLCG-RUS system are given in section III and section IV.

Section V presents and discusses the unit and functional

performance tests. Conclusions are given at the end of this

paper.

II. ACCOUNTING IN WLCG

The accounting process in the WLCG project meters,

collects, and represents resource usage of the EGEE/WLCG

infrastructure as well as the collaborative grid infrastructures

(i.e. OSG and NorduGrid) to provide an integrated view across

grid boundaries. This accounting process is complicated by the

heterogeneity of accounting tools that have various interface

definitions and various formats of meter data. The process is

further complicated by the restrictive security policies of

collaborative grid projects. Some do not allow sharing of

detailed resource usage information, instead only permitting

anonymized summary usage information. Therefore two

accounting models, the job accounting model and the

aggregate accounting model, were introduced in the WLCG

project. These models provide synchronization of resource

usage information on a per batch job basis from EGEE/WLCG

infrastructures, and anonymous summary usage statistics from

collaborative grid projects. The information and statistics are

transported to the WLCG GOC through three methods as

illustrated in Fig. 1.

A. Job Accounting Model

In most EGEE/WLCG sites, APEL and DGAS are two

widely deployed accounting tools. The APEL accounting tool

consists of a number of log processors that meter usage

information from log files of gatekeeper and batch systems,

and query other relevant information from sites’ information

services. This information is then merged as complete usage

records on a per batch-job basis, and stored in a relational

database at each site. The APEL accounting tool also provides

a publisher component that automates the collection process

and publishes job usage records into WLCG GOC through the

Relational Grid Monitoring Architecture (RGMA) [9]

protocol. DGAS generates job accounting records in a

different format. In order to share DGAS accounting records to

WLCG GOC, a lightweight component, DGAS2APEL, was

built to transform DGAS accounting records into the APEL

usage record format, reusing the APEL publisher module to

publish job usage records into GOC through the R-GMA

protocol.

B. Aggregate Accounting Model

After job usage records are received from sites, an off-line

daily scheduled aggregation process at WLCG GOC

summarizes usage statistics, which are accessible to

communities via a Web portal. This aggregate accounting

process acts upon the central database of job usage records and

generates two types of summaries: the user summary usage

record and the anonymous summary usage record. Generated

usage statistics can be used to provide various views of usage

statistics for Virtual Organization (VO) managers, VO

members, end users, and site administrators. The two summary

usage representations along with the APEL job usage

representation are collectively defined as the standard WLCG

accounting schema [10].

For those sites from collaborative grid projects with

restrictive security policies, the WLCG accounting framework

introduced a third transportation method, the “direct SQL

insertion”, allowing grid systems administrators to populate

either user summary usage records or anonymous summary

usage records by directly executing SQL insertion statements

on central databases at WLCG GOC. Unlike automated job

accounting process, this method requires human intervention

and additional administrative effort.

.

C. Enforcement Activities

During the WLCG job accounting process and the

following aggregation process, there is a sequence of

enforcement activities which ensure data integrity.

There are over 200 sites across different time zones

participating in the WLCG project. To ensure time

consistency, date-time properties of every job usage record are

required to be published in the ISO8601 format (e.g. 2008-10-

01T21:39:28+01:00). A process can then transform these

date-time properties into Coordinated Universal Time (UTC)

values (e.g. 2008-10-01T20:39:28Z).

In order to normalise the CPU usage data from many

disparate sites the enforcement procedure requires every

published job accounting record to have a SpecInt [11] value

that is taken from the sites’ information system. Sites are

required to publish a meaningful (non-zero) SpecInt value.
Fig. 1. The current WLCG accounting infrastructure

 3

When aggregating job usage records into user summary

repository, user information, such as user role and group, is

extracted from Virtual Organization Membership Service

(VOMS) [12].

III. DESIGN OF WLCG-RUS SYSTEM

In this paper, we propose an alternative standards-

compatible solution, enabling both job and aggregate

accounting models across various accounting systems

deployed in the WLCG participating sites in a consistent

manner.

A. Design Objectives

The main design goal of the WLCG-RUS system is to

provide a standards-based method that automates both WLCG

job and aggregate accounting models. In order to achieve this

goal, there is a set of objectives to meet.

Standardization

The WLCG-RUS system adopts two standards proposed by

the Open Grid Forum (OGF), the Usage Record (UR)

Representation [13] standard proposed by OGF UR working

group, and the Resource Usage Service (RUS) [14] standard

proposed by OGF RUS working group. The OGF UR standard

defines a set of core properties for representing job usage

records in XML format, while the OGF RUS standard defines

a set of core service interface definitions mainly for publishing

and querying OGF UR compatible instances based on Web

Service Interoperability (WS-I) [15] profile. These two

standards focus on job accounting, however, and do not

support the WLCG aggregate accounting model.

Back compatibility

The deployment of WLCG-RUS system should not break

current WLCG accounting processes, but provide an

alternative method for data transportation. This means that the

WLCG-RUS system should use existing accounting data

repositories at WLCG GOC.

Customization

Considering the evolving nature of WLCG accounting

framework, the design of WLCG-RUS system should be

flexible enough to adopt possible updates (e.g. changes to

WLCG accounting schemas or introduction of new schemas).

B. Design of Aggregate Usage Record

As discussed before, the OGF UR standard focuses on the

representation of job usage records. In 2006, we collaborated

with researchers from Fermilab and RAL, and proposed an

Aggregate Usage Record (AUR) standard [16]. An AUR

instance represents summary usage statistics of more than one

Unit of Work (UoW), ranging from finest-grained batch jobs

to complex service workflows. The collection process at

coarse-grained level involves an extra aggregation process,

according to a specific grouping criterion, also known as an

aggregation strategy.

As illustrated in Fig. 2, the content model of AUR reuses

usage properties of UR and defines a set of common aggregate

properties, including total number of UoWs aggregated,

aggregation interval starting from the start time of earliest

 Fig. 2. Content model of proposed AUR standard

 4

UoW to the end time of the last UoW, and overall status of

UoWs aggregated. User properties define the ownership of

UoWs within an aggregate usage record instance. In addition

to those user properties defined within OGF UR, AUR

introduced additional VO-related properties (e.g. VO name,

user’s role in the VO, and user’s subgroup in the VO).

Additional resource-related properties are also introduced in

the AUR schema to describe the properties of grid-wide

resources upon which UoWs were executed. These properties

include global resource identity, cluster identity, participating

site name, etc.

These non-usage properties can be combined to represent a

grouping criterion or aggregation strategy of an aggregate

usage record instance. A WLCG summary usage record

instance, for example, defines an aggregation strategy that

summarizes resource usage of batch jobs on a per VO, per site,

per month and per year basis, and can be formatted into an

AUR instance as follows:

<aur:AggregateUsageRecord ...>
<aur:RecordIdentity ...>

<!--aggregate properties-->

<urf:StartTime>2007-01-01T00:00:00Z<urf:StartTime/>

<urf:EndTime>2007-12-31T23:59:59Z</urf:EndTime>

<urf:Status>completed</urf:Status>

<aur:UserIdentity>

<aur:VOName>Atlas</aur:VOName>

</aur:UserIdentity>
<aur:ResourceIdentity>

<aur:SiteName>UKI-LT2-Brunel</aur:SiteName>

</aur:ResourceIdentity>
...
<aur:AggregateUsageRecord />

The AUR schema also defines an extension property, the

“<aur:Group>”, which can be used for the definition of

custom aggregate properties that are not defined within the

AUR representation. It is worth noting that the use of “group”

extensions might undermine the interoperability.

C. Extensions to OGF RUS

The service interfaces defined within the OGF RUS

specification are closely coupled to the OGF UR standard.

This means a RUS service endpoint can only accept OGF UR

instances. In order to publish AUR instances through the

standard RUS insertion interface, a “<xsd:any>” extension

was added to the RUS insertion request message definition.

This means a RUS service endpoint can be potentially used for

any usage record instances, including AUR instances.

D. Design of System Architecture

As illustrated in Fig. 3, the WLCG-RUS system architecture

consists of two subsystems, the RUS service and WLCG-RUS

Admin.

RUS service

The RUS service is the core of the WLCG-RUS system and

exhibits two standard service interfaces as defined in the OGF

RUS specification. The “RUS::listMandatoryUsageRecord-

Elements” interface is used by a client to query the mandatory

elements that must appear in a usage record instance. The

“RUS::insertUsageRecords” is the interface through which job

or aggregate usage record instances can be published to

WLCG GOC.

 The design of the RUS service is based on a component

architecture, consisting of a set of loose-coupled and reusable

components. Each component targets a certain functionality

and exhibits well-defined interfaces. These components are

designed in a loosely-coupled pattern, so that they can be

easily customized, upgraded, and replaced to adapt to local

deployment requirements.

As the internal design illustrates in Fig. 4, there are four

abstract functional components defined within the RUS

service. The “Command” component is the main functional

component for the execution of RUS logic operations. A single

common interface, the “execute()”, completely decouples the

RUS service endpoint from various “Command” component

implementations. On receiving a request, a RUS service

endpoint delegates the incoming request to different

Fig. 3. The WLCG-RUS system components and interactions

Fig. 4. The internal design of the RUS service

 5

“Command” implementations. A RUS service may chose to

implement a single “Command” implementation that serves all

RUS requests or to have multiple “Command”

implementations for each RUS service interface. The

execution of various “Command” implementations shares a

common workflow, including checking user permissions,

applying an appropriate aggregate strategy, and ensuring data

persistence. This common workflow is realized through the

three other RUS service components.

The authorization service component provides an interface

for fine-grained access control over operation and usage

records, allowing the application of different authorization

mechanisms. The Data Access Object (DAO) component

provides a higher-level abstraction upon the underlying data

storage, and can be implemented for data persistence in XML

databases, relational databases, file systems, and other storage

formats. Different aggregation strategies can be implemented

by extending the aggregate strategy interface. Each

component of the RUS service has an associated factory

interface that creates and instantiates component instances

dynamically.

WLCG-RUS Admin

The WLCG-RUS Admin is designed as a Web application

based on the Model-View-Controller (MVC) pattern, with

models encapsulating domain-specific representations of data,

controllers representing domain-specific logics operating upon

the data, and views providing Web-based interfaces allowing

end-user interactions. The WLCG-RUS Admin Web

application is intended to provide administrative and host

management facilities for the WLCG-RUS system.

In order to access the WLCG-RUS Admin system, a user

must have a valid and recognized X.509 user certificate, and a

valid user account. Each user is directed to a specific view

according to their granted role. Site managers only have access

to host management facilities, which allow host registration,

exploring host status, and deleting a host. Newly registered

hosts cannot share accounting data or usage records through a

RUS service endpoint until their registration request is

approved by the system administrator. A site manager only has

management authority over owned hosts. A system

administrator has an administrative view, which provides

facilities for user and host management. A system

administrator can create a new role, grant a role to registered

users, revoke a user, publish system announcements, and have

full control over all hosts registered by site managers.

Another important usage of WLCG-RUS Admin is to

specify RUS service configurations, including the creator of

RUS service functional components, maximum usage records

per insertion, and mandatory elements for validating incoming

usage records.

IV. IMPLEMENTATION

The following gives implementation details of the WLCG-

RUS system.

A. RUS service

The implementation of RUS service reuses the three WLCG

accounting data models defined by the WLCG accounting

framework to ensure backward compatibility. In order to

upload accounting data through the standard RUS insertion

interface, a data mapping mechanism is triggered at runtime to

transform the XML-formatted usage records into WLCG

relational data representations. The RUS service accepts OGF

UR or AUR instances, and uses an Object-Relational Mapping

(ORM) mechanism to save them into WLCG accounting

storage. Hibernate [17] is employed as the ORM engine. These

class models also implement the enforcement activities

described in section III.C to ensure data consistency.

As illustrated in Fig. 5, three command implementations are

provided in the default RUS service, serving as the main

components of the WLCG job and aggregate accounting

processes. A lightweight authorization service is provided to

perform fine-grained access control based on user-role

mapping information maintained by the WLCG-RUS Admin

system. Two aggregation strategies are implemented to enable

runtime aggregations for WLCG anonymous and user

aggregation strategies. Each object includes an associated

DAO implementation, which provides data persistence through

the Hibernate ORM engine.

An example runtime aggregation model is given in Fig. 6

and involves a sequence of interactions as follows:

1) Host client sends a “RUS::insertUsageRecords” SOAP

request message to a RUS service endpoint.

2) On receiving an insertion request, the RUS service

endpoint instantiates command, authorization service,

DAO, and aggregate strategy components through

configured factory classes, and loads mandatory element

configurations into runtime.

3) The RUS service endpoint delegates the insertion request

to the command component through execute() interface.

4) For each usage record instance, the command component

firstly checks for user authority to perform an insertion.

5) Once authorized the command component then validates

the current usage record against the mandatory element

configurations.

6) If the received usage records are OGF UR instances, an

aggregate strategy is triggered. This generates one or

more instances of the target aggregate class,instances of

WLCG anonymous aggregate records in this example.

Otherwise, the command component creates an instance of

the target aggregate class by passing the current OGF

AUR instance to the “LcgSumRecord” constructor.

7) The command component then invokes the save method

of “LcgSumRecordDAO” and passes the “LcgSumRecord”

instance.

8) The DAO object makes the “LcgSumRecord” instance

persistent into a local relational database and returns a

record identity.

 6

Fig. 5. Implementations of internal components of the RUS service

Fig. 6. Example workflow of aggregate accounting implemented in the WLCG-RUS system.

 7

B. WLCG-RUS Admin Web Application

The WLCG-RUS Admin Web application is implemented

based on a Grails [18] framework and uses the Groovy [19]

script language, a perfect combination for agile development

with well-maintained and featured plug-ins for Web 2.0 and

Web service applications. Based upon the Grails framework,

the WLCG-RUS service backend and the WLCG-RUS admin

web application can be integrated and delivered as a single

package.The implementation adopts the passive MVC model

with one controller exclusively manipulating one model and

refreshing changes of the model to views.

WLCG-RUS Admin provides Web interfaces for site

mangers and system administrators through two views, the

manager view (Fig. 7a) and administrative view (Fig. 7b). A

WLCG-RUS system administrator can configure the runtime

of a RUS service endpoint by specifying factory classes of

individual functional components, editing the mandatory

element list, and managing RUS client authorities. A registered

site manager adds, edits, and deletes hosts that share

accounting data.

C. Client Interface

The WLCG-RUS system provides a Command-Line

interface (CLI), the WLCG-RUS client, allowing access to the

RUS service endpoint through standard RUS service

interfaces. The WLCG-RUS client is implemented using the

Java programming language, and is wrapped by a shell script.

Before using the client, users must configure their

environment to provide all required information to establish

mutual authentication. A configuration file allows users to

specify the location of a site, trusted Certificate Authority

(CA) certificates, and access passphrases.

The client accepts a set of arguments. A least one of the two

actions, “list” and “insert”, must be used every time the client

is triggered. A mandatory argument, the “service_uri” is used

for both actions to specify the URI of the target RUS service

endpoint. The “insert” action can be combined with additional

arguments providing more controls over the action. As in the

following example, the “insert” action is combined with three

additional parameters to publish all usage record instances

stored in a local directory with 10 usage records per

transaction, and delete successfully inserted usage records.

>wlcgrus --service-uri http://localhost:8080/wlcgrus

 --insert --dir /opt/usages

 --max-elements 10

 --delete-after-insertion

If errors are encountered during execution, the target file

name is changed and appended with an “ERROR” suffix, and

server-side error messages are also appended. This feature

ensures reliability of data delivery. At the server side, each

insertion is dealt as an atomic transaction; therefore failures at

any step (i.e. validation of mandatory usage record elements,

authorization, aggregation, etc) during insertion would result

in the overall failure of the overall usage record. However, the

failure of a single usage record should not affect insertion of

other usage records within the same transaction. System

administrators can then check local usage record directory to

examine the failure status. Automatic retry mechanisms can be

also implemented using the WLCG-RUS client interfaces. The

client can also be used by host machines to upload usage

records to a RUS service endpoint automatically by scheduling

the shell client as a “cron” job and publishing usage records

periodically.

V. PERFORMANCE

This section provides performance evaluation of the

WLCG-RUS system. The test results are intended to provide

reference guidance for deployment of WLCG-RUS system to

obtain optimal performance.

A. Testbed

In order to better demonstrate the performance of WLCG-

RUS system, a testbed was set up in the Brunel Information

Technology Laboratory (BITLab) at Brunel University, one of

(a) (b)

Fig. 7. (a) The administration view (b) The management view .

 8

the UK tier-2 sites, to simulate the accounting process in the

production WLCG environment. The testbed consists of two

workstations that are interconnected by Local Area Network

(LAN). One dedicated workstation is used to host WLCG-

RUS server, which keeps listening insertion requests from

clients. The hardware and runtime environment details of the

WLCG-RUS server are listed in TABLE I. On the other

workstation, a number of clients along with a usage record

generator were deployed to simulate the accounting process at

Grid participating sites. The usage record generator simulated

the metering process and generates standard OGF UR or AUR

instances into the local file system. One or more WLCG-RUS

clients were then scheduled to read usage record instances

from that directory and populate them to the WLCG-RUS

server simultaneously through the standard

RUS::InsertUsageRecords interface. A thread pool was also

provided to hold multiple WLCG-RUS client threads and

ensured a fixed number of threads that interrogate the WLCG-

RUS server at a time.

TABLE I. TEST SERVER HARDWARE AND RUNTIME SPECIFICATION

 Component Description

 Processor Genuine Intel (R) Duo Core (1.66 GHz)

 Memory 1024 MB

 Operating System Ubuntu 32-bit

 Web Container Apache Tomcat 5.5.23

 Service Container Apache Axis 1.4

 DBMS MySQL 5.1

 Based on the testbed, a series of tests were conducted to:

• Evaluate the performance of individual WLCG-RUS

runtime components (as discussed in section III.D). The

result of which is to be used by deployers to have a

detailed picture on how WLCG-RUS system perform, and

by developer to improve system performance through

custom implementation of particular runtime components.

• Evaluate how the WLCG-RUS system’s insertion

performance varies with different deployment options, in

particular the number of usage records per insertion

transaction, known as bulk size, and the number of client

threads. The result of the insertion performance test is

expected to be used by deployers to make decisions on

how to deploy WLCG-RUS system to obtain optimal

performance.

B. Unit Performance

Fig. 8 plots the performance of runtime component units of

different accounting models, both job accounting and

aggregation accounting models. Multithreading was

intentionally avoided in these tests so that overall costs of

individual runtime components in different accounting models,

both job and aggregate accounting models, can be fairly

observed and compared.

As summarized in Table II, the average performance of

authorization, messaging and validation processes are similar

(a)

(b)

(c)

Fig. 8. (a) Unit runtime costs of job accounting process. (b) Unit runtime

costs of aggregate accounting process without runtime aggregation. (c) Unit

runtime costs with runtime aggregation.

TABLE II

COMPARISON OF AVERAGE RUNTIME COSTS OF JOB AND AGGREGATE

ACCOUNTING PROCESSES

 9

with slight difference less than 0.008 second. Comparing to

job accounting model, aggregate accounting models exhibits

worse performance mainly because of additional complexity

introduced on the data persistence process. On receiving an

insertion request of an aggregate usage record, the WLCG-

RUS system runtime requires check whether there is an

existing aggregate usage record using same aggregate strategy.

In the case of WLCG anonymous aggregate strategy for

example, the WLCG-RUS runtime is required to the existence

of an aggregate usage record with certain month/year, certain

VO and certain executing site. If an existing record found, the

WLCG-RUS runtime is then add usage information to the

existing record, and change the aggregation starting and

ending time accordingly. Therefore the data persistence

process introduces average 0.02 second overhead. In the

aggregate accounting model with runtime aggregation,

additional 0.003-second overhead is introduced by the

enforcement of the WLCG anonymous aggregation strategy.

However this figure can be quite different depending on the

complexity of an aggregation strategy implementation.

C. Insertion Performance

The WLCG-RUS system runtime can be configured to

accept one or more usage records per insertion transaction.

The number of usage records per transaction is also called

bulk size. The first part of the insertion performance test is to

evaluate the WLCG-RUS system performance with different

bulk size. In this test, the client machine continuously inserts

35,000 job usage records to the WLCG-RUS server.

Successive execution time is logged when finishing insertion

of 5,000, 10,000, 15,000, 20,000 25,000, 30,000 and 35,000

usage records. As the performance plot described in Fig. 9, the

insertion time decreases gradually with the increasing bulk size

until the bulk size is 10, and then increases exponentially.

Based on the test results, the maximum elements should be set

between 10 and 15 in order to gain optimal insertion

performance, as illustrated in Fig. 10.

Fig. 9. Insertion performance against different granularities of usage records

per transaction.

(a)

(b)

(c)

(d)

 10

(e)

(f)

(g)

Fig. 10 (a) insertion performance of 5,000 usage records against bulk size (b)

insertion performance of 10,000 against bulk size (c) insertion performance of

15,000 usage records against bulk size (d) insertion performance of 20,000

against bulk size (e) insertion performance of 25,000 usage records against

bulk size (f) insertion performance of 30,000 against bulk size (g) insertion

performance of 35,000 usage records against bulk size.

The WLCG-RUS system can be deployed in two ways in

the context of the WLCG accounting process. It can be either

deployed at the GOC centre as a singleton entry point or

hierarchically deployed at each regional site responsible for

region-wide accounting purposes while streaming accounting

data to the main WLCG-RUS server at GOC. For both cases,

the WLCG-RUS system is required to serve multiple client

requests at a time. In order to figure out the performance of

WLCG-RUS system when dealing with multiple client

requests simultaneously, and find out which way is of best

performance for the WLCG accounting process, a multi-

threading test is conducted to evaluate WLCG-RUS system

performance against different number of client threads. As the

performance plot illustrated in Fig. 11, the WLCG-RUS

system performance decreases with the increasing number of

client threads. In the case of 100 client threads insert usage

records at same time, the total time cost for insertion of 35,000

usage records reaches 2.6 hours (0.27 second per transaction),

comparing to 1.26 hours (0.13 second per transaction) when

using a single client thread. In the case of WLCG accounting,

it is better to adopt the hierarchical deployment manner, with

multiple WLCG-RUS server deployed at regional sites and

one central WLCG-RUS server deployed at GOC site to

accept requests from regional sites only. It is worth noting that

the performance of WLCG-RUS system may gain better

performance when deployed on modem server machines with

multi-core or multi-CPU supports.

VI. CONCLUSION

Accounting in a multi-grid environment such as the WLCG

project involves the collection of usage records generated by

heterogeneous accounting systems. These usage records are

represented in various formats. The accounting process in the

WLCG project is further complicated by project-specific

security policies. Two accounting models were introduced in

the WLCG project for sharing both job and aggregate usage

records from participating sites to WLCG GOC through three

data transportation methods. These transportation methods

were defined on a per-accounting system basis, and require

additional administrative effort.

In order to provide a consistent solution for automating the

collection of usage records across various grid accounting

systems, while accommodating local security policies, this

paper proposes the WLCG-RUS system to provide an

alternative but standards-based way to automate WLCG job

Fig. 11. Insertion performance against the number of simultaneous client

threads

 11

accounting and aggregate accounting processes. The design of

the WLCG-RUS system consists of two subsystems, based on

a loosely-coupled component-based architecture to provide

default implementations compatible with OGF UR and OGF

RUS specifications. The work described in this paper also

contributes to a proposed standard aggregate usage record

representation. The performance tests illustrated the

effectiveness of the WLCG-RUS system and provide guidance

notes for system deployers who are interested in employing the

WLCG-RUS system as a part of their accounting solutions on

how to deploy WLCG-RUS system to obtain optimal

performance.

REFERENCES

[1] Open Science Grid. http://www.opensciencegrid.org/

[2] P. Canal, S. Borra, M. Melani, “GRATIA, a resource accounting system

for OSG”, Proc. of Computing in High Energy and Nuclear Science

2006 (CHEP06), Mumbai, Inida, February 2006.

[3] R. Byrom, R. Cordenonsi, and L. Cornwall, “APEL: An implementation

of Grid accounting using R-GMA”, UK e-Science All Hands

Conference, Nottingham, September 2005.

[4] R. M. Piro, M. Pace, A. Ghiselli, A. Guarise, E. Luppi, G. Patania, L.

Tomassetti, and A. Werbrouck, “Tracing Resource Usage over

Heterogeneous Grid Platforms: A Prototype RUS interface for DGAS”,

Proceedings of International Conf. on e-Science and Grid Computing,

Dec. 2007, pp93-101.

[5] Wordwide LHC Grid. http://lcg.cern.ch/lcg

[6] Enabling Grids for E-sciencE. http://www.eu-egee.org/

[7] P. Gardfjall, E. Elmroth, L. Johnsson, and O. Mulmo, “Scalable

Gridwide capacity allocation with SweGrid Accounting System”

Concurrency and Computation: Practice and Experience, John Wiley

and Sons Ltd, June 2008.

[8] Nordic Data Grid Facility, http://www.ndgf.org/ndgfweb/home.html

[9] B. Coghlan, A. W. Cooke, A. Datta, et. al., “R-GMA: A Grid

Information and Monitoring System” Conf. on UK e-Science all hands,

Sheffield, 2-4 September 2002.

[10] R. Byrom and D. Kant, “LCG Accounting Schema”, EGEE Support and

Management Activity (SA1) document, Oct. 19th, 2004. Available online

at: http://www.egee.cesga.es/EGEE-SA1-SWE/accounting/guides/apel-

schema.pdf.

[11] Standard Performance Evaluation Corporation (SPEC) “Computer

benchmark specification for CPU’s integer processing power,”, Oct.

2001.Avaliable at http://www.spec.org/cpu2000/.

[12] R. Alfieri, R. Cecchini, V. Ciaschini, et. al, “VOMS: an Authorisation

System for Virtual Organisations”, Procs. of Computing in High Energy

Physics (CHEP), India, 2004.

[13] L. McGinnis, R. Mach, R. Lepro-Mez, and S. Jackson, “Usage Record-

Format Recommendation version 1.0”, Open Grid Forum Usage Record

Working Group,GFD.58, September 2006. Available online at:

https://forge.gridfourm.org/projects/ur-wg/

[14] J. Ainsworth, S. Newhouse, and J. MacLaren, “Resource Usage Service

Based on WS-I Basic Profile 1.0 (draft)”, Open Grid Forum Resource

Usage Service Working Group, August, 2006.

[15] K. Ballinger, D. Ehnebuske, et. al., “Web Services Interoperability Basic

Profile Verion 1.0”, Web Services Interoperability Organization.

Available at http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-

16.html

[16] X. Chen, R. M. Piro, P. Canal, et. al, “Aggregate Usage Representation

Version 1.0”, OGF Usage Record working group, Dec. 2006. Available

online at: https://forge.gridfourm.org/projects/ur-wg/

[17] Hibernate, https://www.hibernate.org/

[18] Groovy, http://groovy.codehaus.org/

[19] Grails, http://www.grails.org/

