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ABSTRACT

This paper focuses on the problem of person detection in
harsh industrial environments. Different image regions often
have different requirements for the person to be detected. Ad-
ditionally, as the environment can change on a frame to frame
basis even previously detected people can fail to be found. In
our work we adapt a previously trained classifier to improve
its performance in the industrial environment. The classi-
fier output is initially used an image descriptor. Structure
from the descriptor history is learned using semi-supervised
learning to boost overall performance. In comparison with
two state of the art person detectors we see gains of 10%.
Our approach is generally applicable to pretrained classifiers
which can then be specialised for a specific scene.

Index Terms— Image analysis, Image classification, Ob-
ject detection, Identification of persons, Image segmentation

1. INTRODUCTION

Detection of people in images has a long history [1, 2] but de-
spite this has yet to yield good results particularly in cluttered
or complex environments. Such environments are prevalent
in industry and serve as the motivation for this work. Typical
industrial environments are harsh for image processing. They
suffer from rapid lighting changes (machinery in operation),
occlusion (obscured by equipment), and camera shake (trans-
port of heavy machinery). The environments are also lit to
enable the employees to perform their tasks rather than cap-
ture them. In our work we have recordings from within such
an environment and are examining the problem of person de-
tection. Our resulting method needs to be robust and able to
be adaptive. As a starting point for our analysis we examined
the most popular person detectors [3, 4].

Whilst the details of the specific approaches differ they
do share in common a global threshold to find the final candi-
dates for person location. A specific problem caused by this is
that there may be candidate people which are lost by particu-
lar thresholds (see figure 1). In this figure four candidate peo-
ple are found two of which are shop window manikins. How-
ever, notice that the manikins have higher confidence (0.39
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Fig. 1. Confidences and ranking for a person detector.

and 0.29) than one of the people (0.13). In this case if the
global threshold was adjusted to remove the false positives
then one human would also disappear. This means that there
needs to be an alternate way of finding the threshold in the
image. Ideally, each pixel should have a different threshold
value.

In addition to needing a spatially localised threshold there
is a second problem that can occur. For a single stationary
individual the confidence values are not constant. This is il-
lustrated in figure 2. Notice there is large variation of the
confidence from frame to frame. The mean value (as shown
by the red line) is 0.7 but the standard deviation is compar-
atively large at 0.3 (green lines). Such a variation makes it
difficult to assign a single threshold even to small regions of
the image. Additionally, low thresholds will result in many
false positives. For these reasons it is a requirement to vary
the threshold as the sequence progresses. It should be evident
that smoothing approaches are unlikely to work here as the
difference between consecutive frames can be very large.

The failure of global thresholding due to lack of spatial
and temporal support will be addressed in the next sections.
Specifically, we will attempt to improve the overall response
of the base person detector by adapting the results of the ex-
isting classifier using semi-supervised learning. Within this
we make the assumption that there are confidence values for
each frame and each frame region which are good indicators
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Fig. 2. (a) Variation of confidence values for a stationary indi-
vidual for 300 frames (b) frame 1 (confidence=0.71) (c) frame
150 (confidence=1.08) (d) frame 300 (confidence=0.27)

of there being a person. We will discover these by learning
from the history of the classifier confidence values.

2. APPROACH

We will start with outlining how a typical person detector
works. For a given image I , which is a single frame in se-
quence of images with infinite past and future we can apply a
person detector, H . The output, P , from the person detector
is a number of bounding boxes with associated confidences.
These can be ordered by the region and the scale they cor-
respond to. P has 59000 results for [3] and 47000 for [4].
Typically, a global threshold is applied to P to find the best
candidates for people, Pt. Rather than using Pt we propose to
use the original results from the person detector P . The mo-
tivation here is to exploit relationships from within the data
and history to improve the performance. Thus we have an
exhaustive list of boxes for I:

P = {ws,i : s = [1, S], i = [1, Ns]}

Here S is the number of scales in the person detector (our
method works equally for S = 1), and Ns is the number of
windows at that particular scale. The window, ws,i, is de-
fined by the location, size, and confidence. It is a vector,
ws,i = [x, y, w, h, c]. Without loss of generality we assume
that the confidence can be considered to act at the centre of
the box. This is a fair assumption as the best match for H
will occur when the person fills the entire box and is centred
on it. We also analyse each scale independently. As an ex-
ample, a person is typically valid for a number of detections
across different scales. Thus we can treat all scales as inde-
pedent to find the best detection scale. The classifier output
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Fig. 3. Confidence maps found from person detection results
(a) Original image (b) Final confidence map (c-f) Confidence
maps at different scales.

at a single scale is a sampling of the original data on a uni-
form lattice. Consequently we can interpolate over this data
to produce an image of the confidences at a single scale. Fig-
ure 3 is an example of the approach applied to an example
image. The images along the bottom are confidence maps
created at a single scale from P . The final confidence map,
C, can be created from the individual confidence map images,
Cs, by a maximisation process. This is similar in spirit to the
approach of [5]. This novel generation of a confidence map
from bounding box information underpins the rest of our ap-
proach. Additionally, it is broadly applicable to other region
oriented detectors.

The confidence map could be considered to be an image
descriptor. In our work we plan to learn from the time his-
tory of the confidences. This is unusual but has an intuitive
basis. The output from a person detector can be considered
a statistical sampling of the space of detected people in the
image. By integrating history we can improve the proposed
distribution. Statistical classification based on this distribu-
tion can provide us with better classifications of the person.
Figure 4 illustrates two examples of the history of the con-
fidences with a window size of 700 frames. Contrasting the
two cases in the figure shows there to be clear differences be-
tween them. Firstly, in the case where there is a person the
confidence values are much higher. Secondly, the addition of
the person creates a second distribution centred on the per-
son as seen by the small peak centred about 0 in figure 4(a).
Thus, the introduction of a person to a scene will result in a
slow shift of the distribution to positive numbers. Whereas, a
scene without a person will yield a distribution generally cen-
tred on low negative numbers. Using these observations we
can model the resulting time-series histograms using mixture
models. This approach is inspired by [6].

Our mixture models were made up of NG Gaussian dis-
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Fig. 4. Time-series of the confidence values for 700 frames
(a) histogram for person (b) raw confidences for a person (c)
histogram for no person (d) raw confidences for no person

tributions. Each distribution has an associated weight αk,t,
mean µk,t, and standard deviation σk,t for distribution k and
frame t. As every pixel in the image has a different history
there is a mixture model for every pixel. Updating the mixture
models occurs using a simplified form of expectation maximi-
sation as outlined in [6]. We start with the current confidence
value for a pixel, x. If this fails to match any of the exist-
ing Gaussians then we replace the most unlikely distribution
with a new one with mean the same as the confidence value, a
large variance, and a low weight. For a specific frame, t, the
weights are updated:

αk,t =
{

(1− λ)µk,t−1 + λx best match
(1− λ)µk,t−1 other cases

Here λ is the learning rate and controls how quickly the
distributions incorporate the new data. As this rule employs
an exponential window it is related to the size of the history.
In the case that x lies within 2.5σk,t (98%) of the mean then
the mean and variance of the best match are updated to inte-
grate the new data:

µk,t = (1− ρ)µk,t−1 + ρx

σ2
k,t = (1− ρ)σ2

k,t−1 + ρ(x− µk,t)T (x− µk,t)

Where ρ is learning rate multiplied by the Gaussian for
this confidence value. This process is carried out for every
point in the image with a number of Gaussians modelling the
behaviour of the confidence history. Labels are assigned to

each of the Gaussians depending on the observed properties of
them. Typically lower means are considered to be background
distributions whereas higher ones are considered to belong to
people. Labels are changed if the location of the distribution
drifts significantly or the ratio of αk,t

σk,t
changes to resemble any

of the other classes. The process of assigning labels based on
learned classifier results is typical of semi-supervised learning
approaches.

Taking the confidence map and generative models to-
gether we can build a system to improve the person detection.
It initially proceeds by applying a person detector to the data.
Before on-line operation a suitable history is needed to create
the histograms of confidences and to initialise the Gaussian
models for each image pixel. Practically, we find that this is
no more than twice the window size. Once the initial labelling
is performed this system can be used for classification. This
proceeds by first using the Gaussian models to perform a clas-
sification at each pixel. We have three classes for this person,
background, and uncertain. The classes are decided upon the
response of the current confidence value and to which Gaus-
sian they belong. Results that are classified as person and
background are then used to augment the existing Gaussian
models using the update rules previously outlined. As a final
step the resulting classification undergoes a morphology step
to reject noise. We then perform a non-maximal suppression
step to find the best candidate for the person. In essence our
approach could be considered to be using semi-supervised
learning [7] to adapt the classifier output.
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Fig. 5. Representative results (a) Original image (b) confi-
dence map (c) classification (d) resulting bounding box
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Fig. 6. Bounding box detection (a-b) industrial (c) i-Lids

3. EXPERIMENTS

This section presents preliminary results from the system ap-
plied to several different data sets. The data sets we chose
were two separate collections (6 months apart) from a large
manufacturing environment and the i-Lids data set. We chose
one subset of each for experimentation taking approximately
1400 frames for each set. A window size (Nw) for the time-
series histograms of 200 frames was chosen and a further 200
frames were used to initialise the Gaussian models. Figure 5
shows an example image with the various important steps in
our system. Notice that our adaptive technique reduces the
search space for people dramatically. Specifically, results are
concentrated around the region where historically a person
has been. The false positives in the image are mostly removed
by the application of morphology. Some more examples of
the result on the data sets examined are shown in figure 6.
The three examples show the systems ability to find people in
occluded environments. Furthermore, in the case of i-Lids it
finds two people at very different scales.

For a better comparison of performance we examined the
result of our person detector versus the ones from [3] and [4].
To do this we marked up ground truth for the entire of the se-
quences outlined previously. This gave us 2479 frames worth
of data with 3200 bounding boxes. Then we obtained the
number of false positives (Fp) and true positives (Tp) in the
entire sequence in each of the three cases with the same fixed
threshold (rejects 90% of boxes). From the ground truth data
we know the number of real positives, P , for the data. Then
we computed the precision (Pr = Tp

Tp+Fp
), recall (R = Tp

P ),

and F-measure (Fm = 2PrR
Pr+R ) to compare the aggregate re-

sults. These are illustrated in table 1. Our approach used the
[3] person detector as a source of the confidence information.
The results show our proposed approach having an edge over
the other approaches.

Pr R Fm
Felzenszwalb et al. [3] 0.85 0.65 0.74
Dalal & Triggs [4] 0.73 0.56 0.63
Our Approach 0.93 0.72 0.81

Table 1. Comparison of the three approaches on dataset

4. CONCLUSION

In this paper we presented a novel approach for improving
person detection based on using the output of an existing clas-
sifier as an image descriptor. Salient features from the history
of this descriptor are learned via semi-supervised learning to
improve the classification task. We presented several main
contributions. Firstly, we reinterpreted the bounding box data
as a confidence map which can be examined on a per pixel
fashion. Secondly, we proposed that useful information could
be learned from the history of these confidences. Finally, we
presented a mixture method to model this descriptor and learn
in an on-line fashion a correction which gives a better classifi-
cation of people. Currently, the work is ongoing but is show-
ing promising results. We are currently looking at the effi-
cacy of the descriptor. Additionally we would like to apply
our technique to correct other pretrained classifiers. Lastly,
we plan to speed the performance of the approach by looking
at simpler methods to model the descriptor behaviour.
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