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Abstract— Design of high-efficiency low-complexity detection
schemes for ultrawide bandwidth (UWB) systems is highly
challenging. This contribution proposes a reduced-rank adaptive
multiuser detection (MUD) scheme operated in least bit-error-
rate (LBER) principles for the hybrid direct-sequence time-
hopping UWB (DS-TH UWB) systems. The principal component
analysis (PCA)-assisted rank-reduction technique is employed to
obtain a detection subspace, where the reduced-rank adaptive
LBER-MUD is carried out. The reduced-rank adaptive LBER-
MUD is free from channel estimation and does not require
the knowledge about the number of resolvable multipaths as
well as the knowledge about the multipaths’ strength. In this
contribution, the BER performance of the hybrid DS-TH UWB
systems using the proposed detection scheme is investigated,
when assuming communications over UWB channels modeled
by the Saleh-Valenzuela (S-V) channel model. Our studies and
performance results show that, given a reasonable rank of the
detection subspace, the reduced-rank adaptive LBER-MUD is
capable of efficiently mitigating the multiuser interference (MUI)
and inter-symbol interference (ISI), and achieving the diversity
gain promised by the UWB systems.

Index Terms— Ultrawide bandwidth, direct-sequence, time-
hopping, adaptive detection, least bit error rate, reduced-rank
detection, principal component analysis.

I. I NTRODUCTION

Pulse-based UWB communications schemes constitute a
range of promising alternatives that may be deployed for
home, personal-area, sensor network, etc. applications, where
the communication devices are required to be low-complexity,
high-reliability and minimum power consumption [1, 2]. How-
ever, in pulse-based UWB systems, the spreading factor is
usually very high. The UWB channels are usually very sparse,
which results in a huge number of low-power resolvable
multipaths [2, 3]. The huge number of resolvable multipaths
can provide significant diversity gain, if they are efficiently
exploited, but also generates severe MUI and ISI. Hence, in
order to attain the promised diversity gain, an UWB receiver
has to deal efficiently with the low-power resolvable multipath
signals and mitigate the MUI and ISI generated by them. As
demonstrated in [1, 3], in pulse-based UWB communications,
the huge number of resolvable multipaths generally consist
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of a few relatively strong paths and many other weak paths.
Unlike in the conventional wideband channels where strong
paths usually arrive at the receiver before weak paths, in
UWB channels, the strong paths are not necessary the ones
arriving at the receiver the earliest. In fact, the time-of-arrivals
(ToAs) of the strong paths are random variables distributed
within a certain range. Due to the above-mentioned issues,
therefore, in pulse-based UWB systems, it is normally diffi-
cult to implement coherent detection depending on accurate
channel estimation. In fact, it has been recognized that, in
pulse-based UWB systems, the complexity of the conventional
single-user matched-filter (MF) detector [4] might be stilltoo
high. This is because the single-user MF detector is a coherent
detector, which needs to estimate a huge number of multipath
component channels. The complexity of the single-user MF
detector is at least proportional to the sum of the spreading
factor and the number of resolvable multipaths [5].

In this contribution, we consider the low-complexity detec-
tion in hybrid DS-TH UWB systems [6, 7], since the hybrid
DS-TH UWB scheme represents a generalized pulse-based
UWB communication scheme, including both the pure DS-
UWB and pure TH-UWB as its special examples [1, 6, 7]. The
detector proposed is an adaptive MUD based on the principles
of least bit-error-rate (LBER) [9, 10] operated in a reduced-
rank detection subspace. Hence, for convenience, it is referred
to as the reduced-rank adaptive LBER-MUD. The reduced-
rank subspace, which is also referred to as the detection sub-
space, is obtained based on the principal component analysis
(PCA) [12]. It has a rank that is usually significantly lower
than that of the original observation space. As our forthcoming
discourse show, the reduced-rank adaptive LBER-MUD does
not require channel estimation. At the start of communication,
the reduced-rank adaptive LBER-MUD achieves its near-
optimum detection with the aid of a training sequence. During
communication, it maintains its near-optimum detection based
on the decision-directed (DD) principles [11]. Furthermore,
the reduced-rank adaptive LBER-MUD does not require the
knowledge about the number of resolvable multipaths as
well as the knowledge about the locations of the strong
resolvable multipaths. It only requires the knowledge, which is
still not necessary very accurate, about the maximum delay-
spread of the UWB channels. In this contribution, the BER
performance of the hybrid DS-TH UWB systems using the
proposed reduced-rank adaptive LBER-MUD is investigated,
when assuming communications over UWB channels modeled
by the Saleh-Valenzuela (S-V) channel model. Our simulation
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results show that the reduced-rank adaptive LBER-MUD is
capable of suppressing efficiently both the MUI and ISI, and
attaining the diversity promised by the UWB channels.

Note that, in this contribution, the LBER algorithm is pre-
ferred instead of the conventional least mean-square (LMS)al-
gorithm [13, 14], because of the following observations. First,
in terms of the BER performance, the LBER algorithm works
under the principles of minimum BER (MBER), which may
outperforms the LMS algorithm operated in the principles of
minimum mean-square error (MMSE) [9, 10]. This observation
is also verified by our simulation results shown in Section IV.
Second, the LBER algorithm has a similar complexity as
the LMS algorithm [9, 10]. Furthermore, as analyzed in [9,
10], the LBER algorithm can provide a higher flexibility for
system design in comparison with the LMS algorithm. Note
furthermore that, in [15, 16], the performance of hybrid DS-TH
UWB systems employing reduced-rank adaptive detection has
been investigated, when the reduced-rank adaptive detectors
are operated in the principles of normalized least mean-square
(NLMS) [15] or recursive least square (RLS) [16]. The reader
who is interested in the details of these reduced-rank adaptive
detectors is referred to the above-mentioned references.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model of the hybrid DS-TH
UWB system, which includes transmitted signal, channel
model and receiver. In Section III detection of hybrid DS-TH
UWB system is addressed. Simulation results are provided in
Section IV and, finally, in Section V conclusions of the paper
are presented.

II. D ESCRIPTION OF THEHYBRID DS-TH UWB SYSTEM

The hybrid DS-TH UWB scheme considered in this paper
is the same as that considered in [6, 7, 14, 15]. Specifically,
in [6], the BER performance of the hybrid DS-TH UWB
system using single-user MF detector and MMSE-MUD has
been investigated. In [7, 14], the full-rank adaptive detection
has been considered, when the adaptive detector is operated
based on the normalized least mean-square (NLMS) [7] or
LMS [14] algorithm. Furthermore, in [15, 16], the reduced-
rank adaptive detection in hybrid DS-TH UWB systems has
been investigated, where the reduced-rank adaptive detectors
are operated in the principles of NLMS [15] or RLS [16].
Below we provide a brief description of the hybrid DS-TH
UWB system model.

A. Transmitted Signal

The transmitter schematic block diagram for the considered
hybrid DS-TH UWB system is shown in Fig. 1. We assume for
simplicity that the hybrid DS-TH UWB system employs the
binary phase-shift keying (BPSK) baseband modulation. As
shown in Fig. 1, a data bit of thekth user is first modulated
by aNc-length DS spreading sequence, which generatesNc
chips. TheNc chips are then transmitted byNc time-domain
pulses within one symbol-duration, where the positions of
theNc time-domain pulses are determined by the TH pattern
assigned to thekth user. According to Fig. 1, it can be shown
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Fig. 1. Transmitter schematic block diagram of the hybrid DS-TH UWB
systems.

that the hybrid DS-TH UWB baseband signal transmitted by
the kth user can be written as [6]

s(k)(t) =

√

Eb
NcTψ

∞∑

j=0

b
(k)

b j

Nc
cd

(k)
j ψ

[

t− jTc − c
(k)
j Tψ

]

(1)

wherebxc represents the largest integer less than or equal to
x, ψ(t) is the basic time-domain pulse of widthTψ, which
satisfies

∫ Tψ
0

ψ2(t)dt = Tψ. Note that, the bandwidth of the
hybrid DS-TH UWB system is approximately equal to the
reciprocal ofTψ. The other parameters used in (1) as well as
some other related parameters are listed as follows:

• Eb: Energy per bit;
• Nc: Number of chips per bit, which is the DS spreading

factor;
• Nψ: Number of time-slots per chip, which is the TH

spreading factor;
• NcNψ: Total spreading factor of hybrid DS-TH UWB

system.
• Tb andTc: Bit-duration and chip-duration, which satisfy
Tb = NcTc;

• Tψ: Width of time-domain pulse or width of time-slot,
which satisfiesTc = NψTψ;

• b
(k)
i ∈ {+1,−1}: The ith data bit transmitted by userk;

• {d(k)
j }: Random binary DS spreading sequence assigned

to thekth user;
• {c(k)j ∈ {0, 1, · · · , Nψ − 1}}: Random TH pattern as-

signed to thekth user.

Note that, the pure DS-UWB and pure TH-UWB schemes
are two special examples of the hybrid DS-TH UWB scheme.
Specifically, ifNc > 1 andNψ = 1, Tψ andTc are then equal
and, in this case, the hybrid DS-TH UWB scheme is reduced
to the pure DS-UWB scheme. By contrast, whenNc = 1 and
Nψ > 1, the hybrid DS-TH UWB scheme is then reduced to
the pure TH-UWB scheme.

B. Channel Model

In this contribution, the S-V channel model is considered.
Under this channel model, thekth user’s channel impulse
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response (CIR) can be represented as [17]

hk(t) =

V−1∑

v=0

P−1∑

p=0

h(k)
p,vδ(t− Tv − Tp,v − τk)

=

V−1∑

v=0

P−1∑

p=0

h(k)
p,vδ(t− Tv − pTψ − τk),

k = 1, 2, . . . ,K (2)

whereτk takes into account the lack of synchronization among
the user signals as well as the transmission delay,V represents
the number of clusters andP denotes the number of resolvable
multipaths per cluster. Hence, the total number of resolvable
multipaths of the UWB channel can be as high asL = PV .
For simplicity, we assume thatP andV are common for all
theK users. In (2),h(k)

p,v = |h(k)
p,v|ejθ

(k)
p,v represents the fading

gain of thepth multipath in thevth cluster, where|h(k)
p,v| and

θ
(k)
p,v are assumed to obey the Rayleigh distribution [17] and

uniform distribution in [0, 2π), respectively,Tv denotes the
arrival time of thevth cluster whileTp,v = pTψ is the arrival
time of thepth multipath in thevth cluster. Furthermore, we
assume that the average power of a multipath component at
a given delay, say atTv + Tp,v, is related to the power of
the first resolvable multipath of the first cluster through the
relation of [17]

Ωp,v =Ω0,0 exp

(

−Tv
Γ

)

exp

(

−Tp,v
γ

)

,

V = 0, 1, . . . , V − 1; p = 0, 1, . . . , P − 1 (3)

where Ωp,v = E
[

|h(k)
p,v|2

]

represents the power of thepth
resolvable multipath in thevth cluster,Γ andγ are the cluster
and ray power decay constants, respectively.

According to (2), we can know that the maximum delay-
spread of the UWB channels considered is(TV + TP,V )
and the total number of resolvable multipaths is aboutL =
b(TV + TP,V )/Tψc + 1. In order to make our channel model
sufficiently general, in this paper, we assume that the maxi-
mum delay spread(TV +TP,V ) spansg ≥ 1 data bits, yielding
severe ISI. This also implies that(g − 1)NcNψ ≤ (L− 1) <
gNcNψ, since the bit-duration isTb = NcNψTψ.

C. Receiver Structure

When theK number of DS-TH UWB signals in the form
of (1) are transmitted over UWB channels having the CIR as
shown in (2), the received signal at the base-station (BS) can
be expressed as

r(t) =

√

Eb
NcTψ

K∑

k=1

MNc∑

j=0

V−1∑

v=0

P−1∑

p=0

h(k)
p,vb

(k)

b j

Nc
cd

(k)
j

× ψrec

[

t− jTc − c
(k)
j Tψ − T (k)

v − T (k)
p,v − τk

]

+ n(t) (4)

where n(t) represents an additive white Gaussian noise
(AWGN) process, which has zero-mean and a single-sided
power spectral density ofN0 per dimension,ψrec(t) is the
received time-domain pulse, which is usually the second
derivative of the transmitted pulseψ(t) [18].

The receiver schematic block diagram for the hybrid DS-
TH UWB systems using the considered reduced-rank adaptive
LBER-MUD is shown in Fig. 2. As shown in Fig. 2, the
received signal is first filtered by a MF having an impulse
response ofψ∗

rec(−t). The output of the MF is then sampled
at a rate of1/Tψ. The observation samples are first stored
in a buffer and then projected onto the reduced-rank detection
subspacePPPU , once it is obtained. Finally, the adaptive LBER-
MUD is carried out based on the observations in the detection
subspacePPPU , as detailed in our forthcoming discourse.

Let us assume that a block of data per user containing
M number of data bits is transmitted. Then, the receiver can
collect a total(MNcNψ + L− 1) number of samples, where
(L − 1) is due to theL number of resolvable multipaths. In
more detail, theλth sample can be obtained by sampling the
MF’s output at the time instant oft = T0 + (λ+ 1)Tψ, which
can be expressed as

yλ =

(√

EbTψ
Nc

)
−1 ∫ T0+(λ+1)Tψ

T0+λTψ

r(t)ψ∗

rec(t)dt (5)

whereT0 denotes the ToA of the first multipath in the first
cluster.

In order to reduce the detection complexity of the hybrid
DS-TH UWB system, in this contribution, we consider only
the bit-by-bit based detection. Let the observation vectoryyyi
and the noise vectornnni related to the detection of theith data
bit of the first user, which is referred to as the reference user,
be represented by

yyyi = [yiNcNψ , yiNcNψ+1, · · · , y(i+1)NcNψ+L−2]
T (6)

nnni = [niNcNψ , niNcNψ+1, · · · , n(i+1)NcNψ+L−2]
T (7)

where the elements ofnnni are Gaussian random variables with
zero mean and a variance ofσ2

n = N0/2Eb per dimension.
Then, according to [7, 14],yyyi can be expressed as

yyyi =

K∑

k=1

i−1∑

j=max(0,i−g)
i6=0

CCC(k)
j hhhkbbb

(k)
j

︸ ︷︷ ︸

ISI from the previous bits ofK users

+CCC
(1)
i hhh1b

(1)
i

︸ ︷︷ ︸

Desired signal

+

K∑

k=2

CCC
(k)
i hhhkb

(k)
i

︸ ︷︷ ︸

Multiuser interference

+

K∑

k=1

min(M−1,i+g)
∑

j=i+1
i6=M−1

C̄CC
(k)
j hhhkbbb

(k)
j

︸ ︷︷ ︸

ISI from the latter bits ofK users

+nnni (8)

where the matrices and vectors have been defined in detail
in [6, 14]. From (8), we are implied that theith data bit
of the reference user conflicts both severe ISI and MUI, in
addition to the Gaussian background noise. Without mitigating
efficiently the ISI and MUI, the diversity gain promised by
UWB channels may be overwhelmed by the ISI and MUI.
Let us now consider the reduced-rank adaptive LBER-MUD
in the next section.

III. D ETECTION OF HYBRIDDS-TH UWB SIGNALS

First, we note that, when the conventional linear detectors
without invoking reduced-rank techniques are considered,the
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Fig. 2. Receiver schematic block diagram for the hybrid DS-THUWB systems using reduced-rank adaptive detection.

decision variable forb(1)i of the reference user can be formed
as

z
(1)
i = wwwH1 yyyi, i = 0, 1, . . . ,M − 1 (9)

wherewww1 is a (NcNψ+L−1)-length weight vector. As men-
tioned previously, in hybrid DS-TH UWB systems, the total
spreading factorNcNψ may be very high and the number of
resolvable multipathsL of UWB channels is usually very big.
Hence, the length of the weight vectorwww1 or the linear filter’s
length may be very large. In this case, the complexity of the
corresponding detectors might be extreme, even when linear
detection schemes are considered. Furthermore, using very
long filter for detection in UWB systems may significantly
degrade the performance of the UWB systems. For example,
using a longer traversal filter results in lower convergence
speed and, hence, a longer sequence is required for training
the filter [13]. Consequently, the data-rate or spectral efficiency
of the corresponding communications systems decreases. The
robustness of an adaptive filter also degrades as the filter
length increases, since, in this case, more channel-dependent
variables are required to be estimated for the filter [19].
Furthermore, when a longer adaptive filter is employed, the
computational complexity is also higher, as more operations
are required for the corresponding detection and estimation.
Therefore, in this contribution, we consider the reduced-rank
adaptive MUD, which is operated in the LBER principles, i.e.,
the reduced-rank adaptive LBER-MUD.

The reduced-rank adaptive LBER-MUD starts with pro-
jecting the observation vectoryyyi onto a lower dimensional
subspace referred to as thedetection subspace, as shown in
Fig. 2. Specifically, letPPPU be an ((NcNψ + L − 1) × U)
processing matrix with itsU columns determining anU -
dimensional detection subspace, whereU < (NcNψ +L−1).
Then, given an observation vectoryyyi, theU -length vector in
the detection subspace can be expressed as

ȳyyi = PPPHU yyyi (10)

where an over-bar is used to indicate that the argument is in
the reduced-rank detection subspace.

In this contribution, we consider the PCA-assisted reduced-
rank technique [12, 20], which derives the processing matrix
PPPU as follows. First, the auto-correlation matrixRRRyi of yyyi is

estimated based on some training data as

RRRyi = E[yyyiyyy
H
i ] ≈ 1

N

N∑

i=1

yyyiyyy
H
i (11)

whereN denotes the number of data bits invoked for estimat-
ing RRRyi . Then, the auto-correlation matrixRRRyi is represented
using eigen-analysis as

RRRyi = ΦΦΦΛΛΛΦΦΦH (12)

whereΛΛΛ is a diagonal matrix containing the eigenvalues of
RRRyi , which can be written as

ΛΛΛ = diag{λ1, λ2, · · · , λNcNψ+L−1}, (13)

while ΦΦΦ is an unitary matrix consisting of the eigenvectors of
RRRyi , expressed as

ΦΦΦ = [φφφ1,φφφ2, · · · ,φφφNcNψ+L−1] (14)

whereφφφi is the eigenvector corresponding to the eigenvalue
λi. Finally, let us assume that the eigenvalues are arranged in
descent order satisfyingλ1 ≥ λ2 ≥ · · · ≥ λNcNψ+L−1. Then,
the processing matrixPPPU in the context of the PCA-assisted
reduced-rank technique is constructed by the firstU columns
of ΦΦΦ, i.e., we have

PPPU = [φφφ1,φφφ2, · · · ,φφφU ]. (15)

Given the observation vector̄yyyi as shown in (10), the linear
detection of b(1)i can now be carried out by forming the
decision variable

z
(1)
i = w̄wwH1 ȳyyi, (16)

as shown in Fig. 2. In (16),̄www1 is now anU -length weight
vector instead of an(NcNψ + L− 1)-length vector in (9) for
the conventional linear detectors. According to the properties
of the PCA-based reduced-rank detection [12], the full-rank
BER performance can be attained, provided that the rankU
of the detection subspace is not lower than the rank of the
signal subspace, which for our hybrid DS-TH UWB system
is K(g + 1). However, if the rank of the detection subspace
is lower than the signal subspace’s rank, the reduced-rank
detection may then conflict MUI. Consequently, the BER
performance of the hybrid DS-TH UWB system using the
PCA-based reduced-rank detection deteriorates, in comparison
with the BER performance achieved by the corresponding
full-rank detectors. Therefore, in the PCA-based reduced-rank
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detection, it is desirable to have the knowledge about the signal
subspace’s rank. Note that, in our simulations considered in
Section IV, the signal subspace’s rank was estimated through
eigen-analysis of the auto-correlation matrixRRRyi , which was
estimated based on (11) with the aid of a block of training
data.

As shown in Fig. 2, the weight vector̄www1 in (16) is
obtained with the aid of the sample-by-sample adaptive LBER
algorithm proposed in [9, 10]. Specifically, the reduced-rank
adaptive LBER-MUD is operated in two modes, including
the training mode and the DD-mode. When operated in the
training mode, the weight vector̄www1 is adapted with the aid
of a training sequence known to the receiver. Correspondingly,
the update equation in the LBER principle can be formulated
as [9]

w̄ww1(i+ 1) =w̄ww1(i) + µ
sgn(b(1)i )

2
√

2πρn
exp

(

−|<(z
(1)
i )|2

2ρ2
n

)

ȳyyi,

i = 0, 1, 2, . . . (17)

where sgn(x) is a sign-function,µ is the step-size andρn is the
so-called kernel width [9]. In the adaptive LBER algorithm,
the step-sizeµ and the kernel widthρn are required to be
set appropriately, in order to obtain a high convergence rate
as well as a small steady BER misadjustment. Furthermore,
it has been observed [9] that the above-mentioned two pa-
rameters can provide a higher flexibility for system design in
comparison with the adaptive LMS algorithm, which employs
only single adjustable parameter of the step-size [13].

After the training stage is completed, the normal data
transmission is started. At this stage, the reduced-rank adaptive
LBER-MUD is switched to the DD-mode. Under the DD-
mode, the data bits detected by the receiver are fed back to
the reduced-rank adaptive LBER-MUD, in order to update the
weight vectorw̄ww1. To be more specific, during the DD-mode,
the update equation for the weight vectorw̄ww1 can be formulated
as

w̄ww1(i+ 1) =w̄ww1(i) + µ
sgn(b̂(1)i )

2
√

2πρn
exp

(

−|<(z
(1)
i )|2

2ρ2
n

)

ȳyyi,

i = 0, 1, 2, . . . (18)

where b̂(1)i denotes the estimate tob(1)i .
The convergence behavior of the LBER-MUD is jointly

determined by the step-sizeµ and kernel widthρn, as implied
in (17) and (18). Generally, if the step-sizeµ is increased,
the LBER-MUD converges faster, as seen, for example, in
Fig. 4. However, using a bigger step-size usually leads to a
higher misadjustment after the final convergence. By contrast,
as our results in Fig. 5 show, when the other related parameters
of the LBER-MUD are fixed, there exists an optimum value
for the kernel widthρn, which results in the lowest BER
for a given number of training symbols. Additionally, when
the communication environment changes, such as, when the
number of users supported changes, the step-sizeµ and the
kernel widthρn may need to be adjusted correspondingly, in
order to attain the best performance.

Note that, in comparison with the ideal MMSE-MUD as
shown in [6], the reduced-rank adaptive LBER-MUD consid-
ered in this contribution employs the following advantages.
Firstly, it is free from channel estimation and does not require
the knowledge about the user signatures. By contrast, the ideal
MMSE-MUD requires channel estimation and all the above-
mentioned knowledge. Secondly, operated in the principles
of adaptive LBER, the reduced-rank adaptive LBER-MUD
does not need to compute the inverse of the auto-correlation
matrix RRRyi . Hence, it may be argued that the reduced-rank
adaptive LBER-MUD has a substantially lower complexity and
is also more feasible to implement in practice in comparison
with the ideal MMSE-MUD, when UWB communications are
considered. Additionally, the reduced-rank adaptive LBER-
MUD works under the minimum BER principles, which may
outperform the MMSE detector in terms of the attainable BER
performance.

In comparison with the PCA-assisted reduced-rank adaptive
RLS-MUD studied in [16], the reduced-rank adaptive LBER-
MUD has a significantly lower complexity. This is because the
adaptive LBER-MUD has a similar complexity as the adaptive
LMS-MUD [9, 10]. It is well-known that the complexity of
the LMS algorithm is much lower than that of the RLS
algorithm [13]. Let us now provide our simulation results in
the next section.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, the learning and BER performance of the
reduced-rank adaptive LBER-MUD is investigated by simula-
tions. We also compare the performance of the reduced-rank
adaptive LBER-MUD with that of the reduced-rank adaptive
LMS-MUD, since both of them have similar complexity. In
our simulations, the total spreading factor was assumed to be
a constant ofNcNψ = 64, where the DS-spreading factor
was set toNc = 16 and the TH-spreading factor was hence
Nψ = 4. The normalized Doppler frequency-shift of the
UWB channels was fixed tofdTb = 0.0001. The S-V channel
model used in [17] was considered and the channel gains were
assumed to obey the Rayleigh distribution. In more detail, the
parameters of the S-V channel model used in our simulations
are1/Λ = 14.11ns,Γ = 2.63ns andγ = 4.58ns, whereΓ and
γ have been defined associated with (3), whileΛ is the cluster
arrival rate [17]. Note that, in the above UWB channel model,
both the number of clustersV and the number of resolvable
paths per clusterP are variables, when given the total number
of resolvable pathsL = V P . In our simulations, the values of
V andP are fixed for one frame duration, while independent
from one frame to the next.

Fig. 3 shows the learning curve of the reduced-rank adaptive
LBER-MUD for the hybrid DS-TH UWB system supporting
K = 5 users, when the detection subspace has different ranks
of U = 1, 5, 10, 30 or 78. Note that, the BER drawn in
Fig. 3 was evaluated by the formula

BER =
1

TL

TL∑

n=1

Q

(

sgn(b(1)i (n))<(z
(1)
i (n))

σ2
n

√

w̄H1 w̄1

)

(19)
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Fig. 3. Learning curves of the reduced-rank adaptive LBER-MUD with
respect to different ranks of detection subspaces for the hybrid DS-TH UWB
systems supportingK = 5 users. The other parameters used in the simulations
wereEb/N0 = 10dB, Doppler frequency-shift offdTb = 0.0001, ρn = σn,
µ = 0.5, g = 1, Nc = 16, Nψ = 4 andL = 15.

where TL stands for the training length andQ(x) is the
Gaussian-Q function defined as

Q(x) =
1√
2π

∫
∞

x

exp

(

−u
2

2

)

du (20)

In our simulations, the average signal-to-noise ratio (SNR) per
bit was set toEb/N0 = 10dB, the BER was obtained from
the average overTL = 100, 000 independent realizations of
the UWB channel specified by the parameters1/Λ = 14.11ns,
Γ = 2.63ns andγ = 4.58ns. The weight vector was initialized
to w̄ww1(0) = 111 of an all-one vector. Furthermore, we assumed
that g = 1, implying that the desired bit conflicts ISI from
one bit transmitted before the desired bit and also from one
bit transmitted after the desired bit. Note that, given the
parameters as shown in the caption of the figure, it can be
shown that the rank of the signal subspace isK(g+ 1) = 10.
From the results of Fig. 3, we observe that, when the rank
of the detection subspace is lower than that of the signal
subspace, i.e., whenU ≤ 10, the BER performance of the
hybrid DS-TH UWB system improves, as the rank of the
detection subspace increases. The best BER performance is
attained, when the detection subspace reaches the rank of
the signal subspace, i.e., whenU = 10. When the detection
subspace uses a rank higher than that of the signal subspace,
higher BER is observed. This loss in BER performance is
because, in this case, more undesired signals including MUI,
ISI and noise are collected by the adaptive LBER-MUD.

Fig. 4 and Fig. 5 illustrate respectively the impact of the
step-sizeµ and kernel widthρn on the learning performance
of the reduced-rank adaptive LBER-MUDs for the hybrid DS-
TH UWB systems supportingK = 5 users, when operated at
an average SNR ofEb/N0 = 10 dB. In our simulations for
both the figures, the BER was obtained by averaging over
100, 000 independent realizations of the channel. Again, the
weight vector was initialized tōwww(0) = 111. From the results
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Fig. 4. Learning curves of the reduced-rank adaptive LBER-MUD with
respect to different step-size values for the hybrid DS-TH UWB systems
supportingK = 5 users. The other parameters used in the simulations were
Eb/N0 = 10 dB, fdTb = 0.0001, U = 10, ρn = σn, g = 1, Nc = 16,
Nψ = 4 andL = 15.
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Fig. 5. Learning curves of the reduced-rank adaptive LBER-MUD with
respect to different kernel width values for the hybrid DS-TH UWB systems
supportingK = 5 users. The other parameters used in the simulations were
Eb/N0 = 10 dB, fdTb = 0.0001, U = 10, µ = 1.0, g = 1, Nc = 16,
Nψ = 4 andL = 15.

of Fig. 4 and Fig. 5, it can be observed that, for a given
length of training symbols, an appropriate step-sizeµ and an
appropriate kernel widthρn are usually required, in order for
the reduced-rank adaptive LBER-MUD to achieve the lowest
BER. Specifically, for the step-size values considered in Fig. 4,
the reduced-rank adaptive LBER-MUD using a step-size of
µ = 0.125 converges the fastest and also achieves the lowest
BER. If the step-size is too low, such asµ = 0.05, or too
high, such asµ = 1, the reduced-rank adaptive LBER-MUD
may converge with a lower convergence rate but to a higher
BER. In the context of the impact from the kernel widthρn,
the results of Fig. 5 imply that there is an optimum kernel
width for a given number of training systems. For example,
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Fig. 6. Learning curves of the reduced-rank adaptive LBER-MUD and LMS-
MUD with respect to different ranks of detection subspaces for the hybrid
DS-TH UWB systems supportingK = 5 users. The other parameters used
in the simulations wereEb/N0 = 10 dB, fdTb = 0.0001, µLMS = 0.001,
µLBER = 0.125, ρn =

√
10σn,g = 1, Nc = 16, Nψ = 4 andL = 15.

when 100 to 150 training symbols are used, the attainable
BER first decreases as the value of the kernel width increases,
and then increases as the value of the kernel width further
increases. Furthermore, for the kernel width values considered
in Fig. 5, the reduced-rank adaptive LBER-MUD usingρ2

n =
10σ2

n converges with the highest speed. However, when a long
training sequence is used, the reduced-rank adaptive LBER-
MUD using ρ2

n = 100σ2
n may converge to a lower BER.

In Fig. 6, we compare the learning performance of the
reduced-rank adaptive LBER-MUD with that of the reduced-
rank adaptive LMS-MUD, when the hybrid DS-TH UWB
systems operated at an average SNR ofEb/N0 = 10 dB
supportK = 5 users. In our simulations, we set the normalized
Dopper frequency-shift to befdTb = 0.0001. Furthermore, we
assumed thatg = 1, hence, the desired bit conflicts ISI from
one bit transmitted before the desired bit and also from one
bit transmitted after the desired bit. Note furthermore that,
as discussed associated with Fig. 3, the rank of the signal
subspace isK(g + 1) = 10. From the results of Fig. 6,
we can see that, for a given rankU , the LMS-MUD usually
converges faster than the LBER-MUD. However, the LBER-
MUD is capable of reaching a lower BER than the LMS-
MUD. Hence, when having a sufficient number of training
symbols, which may be obtained through the techniques such
as DD [11], the reduced-rank adaptive LBER-MUD is capable
of attaining a lower BER than the reduced-rank adaptive LMS-
MUD. Furthermore, the results of Fig. 6 show that, as the rank
of the detection subspace is increased fromU = 5 to U = 10,
equating the signal subspace’s rank, the BER performance of
both the detectors is improved significantly.

Fig. 7 shows the BER versus average SNR per bit per-
formance of the hybrid DS-TH UWB systems using either
the reduced-rank adaptive LBER-MUD or the reduced-rank
adaptive LMS-MUD, when communicating over the UWB
channels specified by the parameters1/Λ = 14.11ns, Γ =
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Fig. 7. BER performance of the hybrid DS-TH UWB systems using reduced-
rank adaptive LBER- and LMS-MUD, when communicating over the UWB
channels modeled by the S-V channel model associated with the parameters
1/Λ = 14.11ns, Γ = 2.63ns andγ = 4.58ns. The parameters used in the
simulations wereK = 5, fdTb = 0.0001, µLMS = 0.001, µLBER =
0.125 ρn =

√
10σn, g = 1, Nc = 16, Nψ = 4 and L = 15. The frame

length was fixed to1000 bits, where the first400 bits were used for training.

2.63ns andγ = 4.58ns. The hybrid DS-TH UWB systems
considered supportedK = 5 users and the normalized
Dopper frequency-shift was assumed to befdTb = 0.0001.
Furthermore, we assumed that the UWB channels hadL = 15
resolvable paths resulting ing = 1. Hence, a desired data bit
conflicts ISI from one bit transmitted respectively before and
after the desired bit. Note that, given the parameters as shown
in the caption of the figure, it can be shown that the rank of the
signal subspace isK(g+ 1) = 10. From the results of Fig. 7,
we can observe that, when the rank of the detection subspace
is lower than that of the signal subspace, i.e., whenU ≤ 10,
the BER performance of the hybrid DS-TH UWB system
using either the LBER-MUD or the LMS-MUD improves,
as the rank of the detection subspace increases. The best
BER performance is attained, when the rank of the detection
subspace reaches the rank of the signal subspace, i.e., when
U = 10. When the rank of the detection subspace is lower
than that of the signal subspace, error-floors are observed,
explaining that the MUI cannot be fully suppressed by the
reduced-rank adaptive LBER- and LMS-MUD. Furthermore,
for a given rank of the detection subspace, the reduced-rank
adaptive LBER-MUD outperforms the reduced-rank adaptive
LMS-MUD, in terms of their attainable BER.

Finally, in Fig. 8, we compare the BER versus average SNR
per bit performance of the hybrid DS-TH UWB systems using
either the reduced-rank adaptive LBER-MUD or reduced-rank
adaptive LMS-MUD, when communicating over the UWB
channels specified by the parameters1/Λ = 14.11ns, Γ =
2.63ns andγ = 4.58ns. In our simulations we assumed that
the UWB channel hadL = 150 resolvable paths, which hence
resulted in severe ISI. Specifically, in contrast to Fig. 7, where
the number of resolvable multipaths wasL = 15 resulting
in g = 1, the L = 150 resolvable paths in Fig. 8 resulted
in g = 3. The other parameters used for Fig. 8 were the
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Fig. 8. BER performance of the hybrid DS-TH UWB systems using reduced-
rank adaptive LBER- and LMS-MUD, when communicating over the UWB
channels modeled by the S-V channel model associated with the parameters
1/Λ = 14.11ns, Γ = 2.63ns andγ = 4.58ns. The parameters used in the
simulations wereK = 5, fdTb = 0.0001, µLMS = 0.5,µLBER = 0.5,
ρn =

√
100σn, g = 3, Nc = 16, Nψ = 4 andL = 150. The frame length

was fixed to1000 bits, where the first400 bits were used for training.

same as those used for Fig. 7, as shown in the caption of
the figure. Note that, for the parameters considered in Fig. 8,
the rank of the signal subspace isK(g + 1) = 20. Again, as
the results of Fig. 8 shown, the BER performance improves as
the rank of the detection subspace increases, until it reaches
the rank of the signal subspace. In comparison with Fig. 7,
we can see that, for a givenEb/N0 value, the full-rank BER
shown in Fig. 8 is lower than the corresponding full-rank BER
shown in Fig. 7. This is because the UWB channel considered
associated with Fig. 8 hasL = 150 number of resolvable
multipaths, which results in a higher diversity gain than the
UWB channel considered associated with Fig. 7, which has
L = 15 number of resolvable multipaths. Furthermore, as
observed in Fig. 7, for a given rank of detection subspaces, the
reduced-rank adaptive LBER-MUD outperforms the reduced-
rank adaptive LMS-MUD, in terms of their attainable BER.

Finally, as an example, in Table. I shown below, we
compare the performance and complexity of the proposed
algorithm with the correlation detector, MMSE detector, full-
rank LMS adaptive detector, full-rank RLS adaptive detector
and reduced-rank RLS adaptive detector, whenK = 5, Nc =
16, Nψ = 4, g = 1, L = 15 and Eb/N0 = 10 dB. The
principles of these related detectors can be found in [6, 7, 14–
16].

From the Table, we can have the following observations.
First, the BER performance of the correlation detector is worse
than that of all the other detectors, while the complexity ofthe
correlation detector is lower than that of all the other detectors,
except that of the LMS-adaptive MMSE-MUD. Second, the
best BER performance is achieved by the ideal MMSE-MUD.
However, the number of operations required by the ideal
MMSE-MUD is extremely higher than that of the others.
Furthermore, for the ideal MMSE-MUD, the knowledge about
the signature sequences and channel state information (CSI)

Algorithm Rank BER No. of Oper.
Correlation detector 78 0.0064307 2496

Full-rank ideal MMSE 78 0.00049017 267384
Full-rank LMS adaptive 78 0.0039017 392
Full-rank RLS adaptive 78 0.0016025 67551

PCA-based reduced-rank 10 0.00129 8011
LMS adaptive detector

PCA-based reduced-rank 10 0.00080188 9132
RLS adaptive detector

PCA-based reduced-rank 10 0.00078458 8014
LBER adaptive detector

TABLE I

BER PERFORMANCE AND NUMBER OF OPERATIONS REQUIRED TO

DETECT ONE BIT.

of all the users is required. Since the exact CSI is usually
extremely hard to acquire in UWB communications, the ideal
MMSE-MUD is therefore not a desired detector for achiev-
ing low-complexity detection in UWB systems. Third, the
full-rank LMS-adaptive detector has the lowest complexity.
However, its BER performance is only better than that of
the correlation detector but far worse than that of the ideal
MMSE-MUD. Forth, the BER performance of the full-rank
RLS-adaptive detector is better than that of the full-rank LMS-
adaptive detector and also better than that of the correlation
detector. However, the BER performance is still much worse
than that of the ideal MMSE-MUD. Furthermore, the number
of operations required by the full-rank RLS-adaptive detector
to detect a bit is very high as compared to the full-rank
LMS adaptive detector and correlation detector, although it is
much lower than that of the ideal MMSE-MUD. Fifth, the
BER performance of the reduced-rank adaptive detector is
better than that of the full-rank adaptive detector. Moreover,
the complexity of the reduced-rank LMS-adaptive detector is
higher than that of the full-rank LMS adaptive detector. By
contrast, the complexity of the reduced-rank RLS-adaptive
detector is lower than that of the full-rank RLS-adaptive
detector. Finally, the BER performance of the reduced-rank
adaptive LBER-MUD is better than that of all the other
reduced-rank and full-rank adaptive detectors. It can alsobe
observed that the reduced-rank RLS-adaptive MMSE-MUD
has approximately the same BER performance as the reduced-
rank adaptive LBER-MUD. However, the complexity of the
reduced-rank RLS-adaptive detector is slightly higher than
that of the reduced-rank adaptive LBER-MUD. Furthermore,
the reduced-rank adaptive LBER-MUD’s BER performance
is not far away from that of the ideal MMSE-MUD, but its
complexity is much lower than that of the ideal MMSE-MUD.

V. CONCLUSIONS

In this contribution, we have investigated the learning and
achievable BER performance of the hybrid DS-TH UWB
systems using reduced-rank adaptive LBER-MUD, when com-
municating over the UWB channels experiencing both MUI
and ISI in addition to multipath fading. Furthermore, com-
parisons have been made between the reduced-rank adaptive
LBER-MUD and the reduced-rank adaptive LMS-MUD in
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terms of their learning and achievable BER performance.
Our studies and simulation results show that the reduced-
rank adaptive LBER-MUD constitutes one of the efficient
detectors for the hybrid DS-TH UWB systems. The reduced-
rank technique can be employed for achieving low-complexity
detection in the DS-TH UWB systems and also for improving
their efficiency. The reduced-rank adaptive LBER-MUD is
capable of achieving the full-rank BER performance with the
detection subspace having a rank that is significantly lower
than(NcNψ+L−1) of the original observation space. Given
a rank of the detection subspace, the reduced-rank adaptive
LBER-MUD outperforms the reduced-rank adaptive LMS-
MUD, in terms of their attainable BER performance. Fur-
thermore, the reduced-rank adaptive LBER-MUD can provide
us more degrees-of-freedom for design when compared to
the reduced-rank adaptive LMS-MUD with the same level of
complexity.
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