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Abstract— Design of high-efficiency low-complexity detection of a few relatively strong paths and many other weak paths.
schemes for ultrawide bandwidth (UWB) systems is highly Unlike in the conventional wideband channels where strong
challenging. This contribution proposes a reduced-rank adaptive paths usually arrive at the receiver before weak paths, in

multiuser detection (MUD) scheme operated in least bit-error- UWB ch Is. the st th t th
rate (LBER) principles for the hybrid direct-sequence time- channels, the strong patns areé not necessary ine ones

hopping UWB (DS-TH UWB) systems. The principal component @rriving at the receiver the earliest. In fact, the timeaafvals
analysis (PCA)-assisted rank-reduction technique is employed to (TOAS) of the strong paths are random variables distributed
obtain a detection subspace, where the reduced-rank adaptive within a certain range. Due to the above-mentioned issues,
LBER-MUD s carried out. The reduced-rank adaptive LBER-  {harefore, in pulse-based UWB systems, it is normally diffi-
MUD is free from channel estimation and does not require . . .
the knowledge about the number of resolvable multipaths as cult to |mple_mer_1t coherent d_etectlon dependlng_on accura_te
well as the knowledge about the multipaths’ strength. In this channel estimation. In fact, it has been recognized that, in
contribution, the BER performance of the hybrid DS-TH UWB  pulse-based UWB systems, the complexity of the conventional
systems using the proposed detection scheme is investigatedsingle-user matched-filter (MF) detector [4] might be stib
when assuming communications over UWB channels modeled yioh This is because the single-user MF detector is a cohere
by the Saleh-Valenzuela (S-V) channel model. Our studies and . h .
performance results show that, given a reasonable rank of the detector, which needs to estimate a_huge numper of multipath
detection subspace, the reduced-rank adaptive LBER-MUD is component channels. The complexity of the single-user MF
capable of efficiently mitigating the multiuser interference (MUI)  detector is at least proportional to the sum of the spreading
anq inter-symbol interference (I1S1), and achieving the diversiy  factor and the number of resolvable multipaths [5].
gain promised by the UWB systems. In this contribution, we consider the low-complexity detec
Index Terms— Ultrawide bandwidth, direct-sequence, time- tion in hybrid DS-TH UWB systems [6, 7], since the hybrid
hopping, adaptive detection, least bit error rate, reduced-rak  DS-TH UWB scheme represents a generalized pulse-based
detection, principal component analysis. UWB communication scheme, including both the pure DS-
UWB and pure TH-UWB as its special examples [1, 6, 7]. The
I. INTRODUCTION detector proposed is an adaptive MUD based on the principles

Pulse-based UWB communications schemes constituteofaleast bit-error-rate (LBER) [9, 10] operated in a reduced
range of promising alternatives that may be deployed féank detection subspace. Hence, for convenience, it isreefe
home, personal-area, sensor network, etc. applicationsrev t0 as the reduced-rank adaptive LBER-MUD. The reduced-
the communication devices are required to be low-complexifank subspace, which is also referred to as the detection sub
high-reliability and minimum power consumption [1, 2]. How Space, is obtained based on the principal component asalysi
ever, in pulse-based UWB systems, the spreading factor(RCA) [12]. It has a rank that is usually significantly lower
usually very high. The UWB channels are usually very spardan that of the original observation space. As our forthiogm
which results in a huge number of low-power resolvabl@iscourse show, the reduced-rank adaptive LBER-MUD does
multipaths [2, 3]. The huge number of resolvable multipatH¥t require channel estimation. At the start of communacati
can provide significant diversity gain, if they are efficignt the reduced-rank adaptive LBER-MUD achieves its near-
exploited, but also generates severe MUI and ISI. Hence, @atimum detection with the aid of a training sequence. Dyrin
order to attain the promised diversity gain, an UWB receivé@mmunication, it maintains its near-optimum detectioseloh
has to deal efficiently with the low-power resolvable mudtip on the decision-directed (DD) principles [11]. Furthermor
signals and mitigate the MUI and ISI generated by them. ABe reduced-rank adaptive LBER-MUD does not require the
demonstrated in [1, 3], in pulse-based UWB communicatiorl§yowledge about the number of resolvable multipaths as
the huge number of resolvable multipaths generally consiell as the knowledge about the locations of the strong

resolvable multipaths. It only requires the knowledge,chitis
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results show that the reduced-rank adaptive LBER-MUD i$§’“) 4>®—>®—> s ()

capable of suppressing efficiently both the MUI and ISI, and _ *)

attaining the diversity promised by the UWB channels. T T”’(t —JTe —¢; Ty)
Note that, in this contribution, the LBER algorithm is pre-

ferred instead of the conventional least mean-square (LAKS) | SpPeSadinJ | TH WTH Pa“e(f,?)

gorithm [13, 14], because of the following observationssti A {eg s ’CNWl}

in terms of the BER performance, the LBER algorithm works

k k
{d((] )7 7d§Vc)*1} w(tich)
under the principles of minimum BER (MBER), which may Imil
outperforms the LMS algorithm operated in the principles of Generator
minimum mean-square error (MMSE) [9, 10]. This observation ) i i i
is also verified by our simulation results shown in Section I\/;'gtelmsl Transmitter schematic block diagram of the hybrid $-OWE
Second, the LBER algorithm has a similar complexity as
the LMS algorithm [9,10]. Furthermore, as analyzed in [9,
10], the LBER algorithm can provide a higher flexibility for ) ) )
system design in comparison with the LMS algorithm. Notfat the hybrid DS-TH UWB baseband signal transmitted by
furthermore that, in [15, 16], the performance of hybrid Dig- the kth user can be written as [6]
UWB systems employing reduced-rank adaptive detection has
been investigated, when the reduced-rank adaptive degecto E, & k _ &
are operated in the principles of normalized least meaarsqu * () = N.T, ]Z;)bijudg‘ " |t = jT. - Cg‘ T, @

o0

c

(NLMS) [15] or recursive least square (RLS) [16]. The reader -

who is interested in the details of these reduced-rank agapt

detectors is referred to the above-mentioned references. Where |z | represents the largest integer less than or equal to
The remainder of this paper is organized as follows. Seg- ¢ (t) is the basic time-domain pulse of widff,, which

tion Il describes the system model of the hybrid DS-Tiatisfies, ” ¢*(t)dt = T;. Note that, the bandwidth of the

UWB system, which includes transmitted signal, channbybrid DS-TH UWB system is approximately equal to the

model and receiver. In Section Il detection of hybrid DS-THeciprocal ofT;,. The other parameters used in (1) as well as

UWB system is addressed. Simulation results are provideds@me other related parameters are listed as follows:

Section IV and, finally, in Section V conclusions of the paper

are presented. = Ey: Energy per bit

o N.: Number of chips per bit, which is the DS spreading
factor;
II. DESCRIPTION OF THEHYBRID DS-TH UWB SYSTEM o Ny: Number of time-slots per chip, which is the TH

. . I spreading factor;
The hybrid DS-TH UWB scheme considered in this paper i : .
is the same as that considered in [6,7,14,15]. Specifically,® ~eVv: Total spreading factor of hybrid DS-TH UWB

; . system.

in [6], the BER performance of the hybrid DS-TH UWB . Rir . . . . .

system using single-user MF detector and MMSE-MUD has * g:b an](i]T%..Blt duration and chip-duration, which satisfy
b= {Vede

been mveshgatgd. In [7,14], the fuII-rapk adaptive d'etbec o Ty: Width of time-domain pulse or width of time-slot,
has been considered, when the adaptive detector is operated ~ ¥ o }

. which satisfiesl. = Ny Ty;
based on the normalized least mean-square (NLMS) [7] or ;) _ ! ) )
LMS [14] algorithm. Furthermore, in [15,16], the reduced- ® i (k)e {+1,—1}: Theth data bit transmitted by usér
rank adaptive detection in hybrid DS-TH UWB systems has ® {¢; }: Random binary DS spreading sequence assigned
been investigated, where the reduced-rank adaptive detect 0 (E{f)\e kth user;
are operated in the principles of NLMS [15] or RLS [16]. * {¢;~ € {0,1,---, Ny — 1}}: Random TH pattern as-
Below we provide a brief description of the hybrid DS-TH  Signed to thekth user.

UWB system model. Note that, the pure DS-UWB and pure TH-UWB schemes
are two special examples of the hybrid DS-TH UWB scheme.
A. Transmitted Signal Specifically, if N. > 1 and Ny = 1, Ty, andT, are then equal

) _ ) _and, in this case, the hybrid DS-TH UWB scheme is reduced
The transmitter schematic block diagram for the considerggl ine pure DS-UWB scheme. By contrast, whgp= 1 and

hybrid DS-TH UWB system is shown in Fig. 1. We assume fqr\/w > 1, the hybrid DS-TH UWB scheme is then reduced to
simplicity that the hybrid DS-TH UWB system employs thgne pure TH-UWB scheme.

binary phase-shift keying (BPSK) baseband modulation. As

shown in Fig. 1, a data bit of thkth user is first modulated

by a N.-length DS spreading sequence, which generates

chips. TheN, chips are then transmitted by, time-domain B. Channel Model

pulses within one symbol-duration, where the positions of

the N, time-domain pulses are determined by the TH patternin this contribution, the S-V channel model is considered.
assigned to théth user. According to Fig. 1, it can be showrlUnder this channel model, theth user's channel impulse
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response (CIR) can be represented as [17] The receiver schematic block diagram for the hybrid DS-
V1P—1 TH UWB systems using the considered reduced-rank adaptive

Z Zh(k)5 (t =Ty — Tpow — 71) LBER-MUD is shown in Fig. 2. As shown in Fig. 2, the
0 1 received signal is first filtered by a MF having an impulse

V_1P_1 response oty .(—t). The output of the MF is then sampled
- Z h,(;’fv5(t — T, — pTy — 7%), at a rate ofl/Ty. The _observation samples are first storgd

v=0 p=0 in a buffer and then projected onto the reduced-rank detecti

—1,2,... K ) subspaceP;, once it is obtained. Finally, the adaptive LBER-

MUD is carried out based on the observations in the detection
wherer;, takes into account the lack of synchronization amorgubspaceP;;, as detailed in our forthcoming discourse.
the user signals as well as the transmission d&agpresents  Let us assume that a block of data per user containing
the number of clusters and denotes the number of resolvablel/ number of data bits is transmitted. Then, the receiver can
multipaths per cluster. Hence, the total number of resddvalrollect a total(M N.N,, + L — 1) number of samples, where
multipaths of the UWB channel can be as highlas=- PV. (L —1) is due to theL number of resolvable multipaths. In
For simplicity, we assume thalP andV are common for all more detail, the\th sample can be obtained by sampling the
the K users. In (2),/1,(,’2 = \h,, v|eJ9p » represents the fading MF’s output at the time instant af= T, + (A + 1)T),, which
gain of thepth multipath in thevth cluster, WherQh(’f)\ and can be expressed as

9,(,"3 are assumed to obey the Rayleigh distribution [17] and < BT >—
bly
Y =

To+(A+1)
uniform distribution in [0, 27), respectively,T;, denotes the / r(t)r.(Hdt  (5)
arrival time of thevth cluster whileT}, , = pT), is the arrival Ne To+ATy,

time of thepth multipath in thevth cluster. Furthermore, we where 7;, denotes the ToA of the first multipath in the first
assume that the average power of a multipath componentcgister.

a given delay, say al, + 7}, is related to the power of |n order to reduce the detection complexity of the hybrid
the first resolvable multipath of the first cluster througle thps-TH UWB system, in this contribution, we consider only

relation of [17] the bit-by-bit based detection. Let the observation vegtor
T, Ty and the noise vectat; related to the detection of théh data
Q0 =800 exp ( T ) €xXp <— : > ) bit of the first user, which is referred to as the reference,use

V=01,...V—-1p=01,...P-1 (3) be represented by

Yi = [yiN(.,Nu,ayiNch-&-la T 7y(i+1)NcNd,+L72]T (6)
whereQ, , = E \hp 1)\2 represents the power of theth
resolvable multipath in theth cluster,I’ and~ are the cluster
and ray power decay constants, respectively. where the elements of; are Gaussian random variables with

According to (2), we can know that the maximum delayzero mean and a variance of. = No/2E; per dimension.
spread of the UWB channels considered (& + Tpy) Then, accordmg to [7, 14y, can be expressed as
and the total number of resolvable multipaths is abbut
|(Ty 4+ Tpv)/Ty] + 1. In order to make our channel model  y; Z Z cMhp” +C Wpypt

n; = [niNcN“aniNchJrla T 7n(i+1)Nch+L—2}T (7)

sufficiently general, in this paper, we assume that the maxi- k=1 j=max0.i=g) Des”ed signal
mum delay spreadl’y +1'p,) spans > 1 data bits, yielding . -
severe ISI. This also implies théy — 1)N.Ny, < (L —1) < IS from the previous bits of<" users
gN.Ny, since the bit-duration i§}, = N.N,T. K _min(M—1,i+9)
(k)g 1 (k) (R)y 2(k)
+ZC JCSED VD RN
=i+1
C. Receiver Structure — i#ar-1
When the K number of DS-TH UWB signals in the form MUltuSer INETEIENCE 151 rom the latter bits offC users
of (1) are transmitted over UWB channels having the CIR as +n; (8)

shown in (2), the received signal at the base-station (BB) Gihere the matrices and vectors have been defined in detail
be expressed as in [6,14]. From (8), we are implied that thih data bit
B K MNv-o1p-1 of the reference user conflicts both severe ISI and MU, in
r(t) = b Z h;"fvb(tkl Jdgk) addition to the Gaussian background noise. Without mitigat
i=0 v=0 e efficiently the I1SI and MUI, the diversity gain promised by
X Proe {t T, — Ek T, - Tv(k) _ T,S’Z) _ Tk} Fa(t) (4) UWB channels may be overwhelmed by thg ISI and MUI.
' Let us now consider the reduced-rank adaptive LBER-MUD
where n(t) represents an additive white Gaussian noide the next section.
(AWGN) process, which has zero-mean and a single-sided
power spectral density oV, per dimensiong),...(t) is the lIl. DETECTION OF HYBRIDDS-TH UWB SGNALS
received time-domain pulse, which is usually the secondFirst, we note that, when the conventional linear detectors
derivative of the transmitted pulsg(t) [18]. without invoking reduced-rank techniques are considettes,
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Fig. 2. Receiver schematic block diagram for the hybrid DSOWB systems using reduced-rank adaptive detection.
decision variable fobl(.l) of the reference user can be forme@stimated based on some training data as
as |
Hi H
0 R, =Byl ~ > v (12)
2z =wly;, i=0,1,...,.M —1 9) i1

where N denotes the number of data bits invoked for estimat-
wherew, is a(N.Ny + L —1)-length weight vector. As men- ing R,,. Then, the auto-correlation matr,,, is represented
tioned previously, in hybrid DS-TH UWB systems, the totalising eigen-analysis as
spreading factotV. N, may be very high and the number of R — ®ADY (12)
resolvable multipathg, of UWB channels is usually very big. vi
Hence, the length of the weight vector or the linear filter's where A is a diagonal matrix containing the eigenvalues of
length may be very large. In this case, the complexity of tmyi, which can be written as
corresponding detectors might be extreme, even when linear ]
detection schemes are considered. Furthermore, using very A =diag{A1, A2, -+ AN+ -1} (13)
:;3”9 f(ljltert'hfor deftecnon in ?\t’xB S{/\S/Eems tmay Slggn'f'cam'é}/\/?hile ® is an unitary matrix consisting of the eigenvectors of

egrade the performance of the systems. For exampje,

using a longer traversal filter results in lower convergencey“ expressed as
speed and, hence, a longer sequence is required for training ® = [p1,02, - ,dN.N,+L-1] (14)

the filter [13]. Consequently, the data-rate or spectratiefficy here; is the eigenvector corresponding to the eigenvalue

of the corresponding Comm“r_"ca“ons systems decreases._ h Finally, let us assume that the eigenvalues are arranged in
robustness of an adaptive filter also degrades as the filigr

. . . . scent order satisfyingy > A\ > --- > An,n,+2-1. Then,
Iength Increases, since, in this case, more channell-depEn e processing matriPy; in the context of the PCA-assisted
variables are required to be estimated for the filter [19

. . . educed-rank technique is constructed by the fifstolumns
Furthermore, when a longer adaptive filter is employed, t g y

) o2 : . Gf’(b, i.e., we have
computational complexity is also higher, as more operation

are required for the corresponding detection and estimatio Py =[d1,02, - ,du]- (15)
Therefore, in this contribution, we consider the reducaukr

adaptive MUD, which is operated in the LBER principles,,i.e. Givgn the o?gervation vectgr, as ;hown in (10), th? linear
the reduced-rank adaptive LBER-MUD. detection ofb,’ can now be carried out by forming the

The reduced-rank adaptive LBER-MUD starts with progIeCISIOn variable

jecting the observation vectay; onto a lower dimensional 251) :@{fgi, (16)
subspace referred to as thetection subspace, as shown in o . )
Fig. 2. Specifically, letP;; be an((N.Ny + L — 1) x U) 3S shoyvn in Fig. 2. In (16)w; is now anU-Iength weight
processing matrix with its/ columns determining ar/- Vector instead of afiN. Ny, + L —1)-length vector in (9) for
dimensional detection subspace, where: (NN, + L —1). the conventional linear detectors. According to the proger

Then, given an observation vectgy, the U-length vector in of the PCA-based reduced-rank detection [12], the fulkran
the detection subspace can be expressed as BER performance can be attained, provided that the &nk

of the detection subspace is not lower than the rank of the
signal subspace, which for our hybrid DS-TH UWB system
is K(g + 1). However, if the rank of the detection subspace
is lower than the signal subspace’s rank, the reduced-rank
where an over-bar is used to indicate that the argument isdétection may then conflict MUI. Consequently, the BER
the reduced-rank detection subspace. performance of the hybrid DS-TH UWB system using the

In this contribution, we consider the PCA-assisted reducelCA-based reduced-rank detection deteriorates, in casguar
rank technique [12, 20], which derives the processing matnvith the BER performance achieved by the corresponding
Py as follows. First, the auto-correlation mati,, of y, is full-rank detectors. Therefore, in the PCA-based reduesi-

y, = Py (10)
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detection, it is desirable to have the knowledge about tpeesi  Note that, in comparison with the ideal MMSE-MUD as
subspace’s rank. Note that, in our simulations considenmedshown in [6], the reduced-rank adaptive LBER-MUD consid-
Section 1V, the signal subspace’s rank was estimated througred in this contribution employs the following advantages
eigen-analysis of the auto-correlation matf,, which was Firstly, it is free from channel estimation and does not rexju
estimated based on (11) with the aid of a block of traininthe knowledge about the user signatures. By contrast, da id
data. MMSE-MUD requires channel estimation and all the above-
As shown in Fig. 2, the weight vecto; in (16) is mentioned knowledge. Secondly, operated in the principles
obtained with the aid of the sample-by-sample adaptive LBER adaptive LBER, the reduced-rank adaptive LBER-MUD
algorithm proposed in [9, 10]. Specifically, the reduceakra does not need to compute the inverse of the auto-correlation
adaptive LBER-MUD is operated in two modes, includingnatrix R,,. Hence, it may be argued that the reduced-rank
the training mode and the DD-mode. When operated in thdaptive LBER-MUD has a substantially lower complexity and
training mode, the weight vectan, is adapted with the aid is also more feasible to implement in practice in comparison
of a training sequence known to the receiver. Correspoigdingwith the ideal MMSE-MUD, when UWB communications are
the update equation in the LBER principle can be formulatensidered. Additionally, the reduced-rank adaptive LBER
as [9] MUD works under the minimum BER principles, which may
outperform the MMSE detector in terms of the attainable BER
sgr(bgl)) \éR(zfl))P _ performance.
227 py, P 2p2 Yir In comparison with the PCA-assisted reduced-rank adaptive
i—0.1.2 (17) RLS-MUD studied in [16], the reduced-rank adaptive LBER-
o MUD has a significantly lower complexity. This is because the
adaptive LBER-MUD has a similar complexity as the adaptive
LMS-MUD [9, 10]. It is well-known that the complexity of
the LMS algorithm is much lower than that of the RLS
aﬂlgorithm [13]. Let us now provide our simulation results in

w1 (i + 1) =w1 (i) + p

where sgiiz) is a sign-functiony is the step-size angd, is the
so-called kernel width [9]. In the adaptive LBER algorithm
the step-sizeu and the kernel widthp,, are required to be
set appropriately, in order to obtain a high convergence r ;
as well as a small steady BER misadjustment. Furthermopé(,e next section.
it has been observed [9] that the above-mentioned two pa-

rameters can provide a higher flexibility for system design i IV. SIMULATION RESULTS AND DISCUSSION
comparison with the adaptive LMS algorithm, which employs
only single adjustable parameter of the step-size [13]. In this section, the learning and BER performance of the

After the training stage is completed, the normal datgduced-rank adaptive LBER-MUD is investigated by simula-
transmission is started. At this stage, the reduced-raatae tions. We also compare the performance of the reduced-rank
LBER-MUD is switched to the DD-mode. Under the DD-2daptive LBER-MUD with that of the reduced-rank adaptive
mode, the data bits detected by the receiver are fed back-dS-MUD, since both of them have similar complexity. In
the reduced-rank adaptive LBER-MUD, in order to update t@Ir simulations, the total spreading factor was assumee to b
weight vectorw,. To be more specific, during the DD-mode@ constant ofN.N,, = 64, where the DS-spreading factor
the update equation for the weight vecimr can be formulated Was set toN. = 16 and the TH-spreading factor was hence

as N, = 4. The normalized Doppler frequency-shift of the
UWB channels was fixed t@;7;, = 0.0001. The S-V channel
. . sgr(éﬁ”) \§R(z§1))|2 _ model used in [17] was considered and the channel gains were
w10+ 1) =wa (i) + p 227 py, P 2p2 Yir assumed to obey the Rayleigh distribution. In more detad, t
i=0.1.2, . (18) parameters of the S-V channel model used in our simulations

arel/A =14.11ns,T" = 2.63ns andy = 4.58ns, wherel’ and
5 (1) . 1) v have been defined associated with (3), whiles the cluster
whereb;” denotes the estmate té : .~ .. arrival rate [17]. Note that, in the above UWB channel model,
The convergence behavior of the LBER-MUD is jointlyyo the number of cluster and the number of resolvable
determined by the step-sizeand kernel widthp,,, as implied  aihs per clusteP are variables, when given the total number

in (17) and (18). Generally, if the step-sizeis increased, o regolvable pathd = ¥V P. In our simulations, the values of

the LBER-MUD converges faster, as seen, for example, {A onq p are fixed for one frame duration, while independent
Fig. 4. However, using a bigger step-size usually leads to@y, one frame to the next.

higher misadjustment after the final convergence. By ceftra Fig. 3 shows the learning curve of the reduced-rank adaptive

as our results in Fig. 5 show, when the other related paraseteg = \uUD for the hybrid DS-TH UWB system supporting

of the LBER'MUD are fixed_, there exis_ts an optimum valu% = 5 users, when the detection subspace has different ranks
for the kernel widthp,, which results in the lowest BER U — 1. 5 10. 30 or 78. Note that. the BER drawn in

for a given number of training symbols. Additionally, wher]:i 3 was evaluated by the formula
the communication environment changes, such as, when thg'

number of users supported changes, the stepsiaad the 1 Ze san(bV) R

kernel widthp,, may need to be adjusted correspondingly, in BER = o Z Q < grid, 2(”))_H(fz (n))> (19)
order to attain the best performance. L=t Tn VW Wi
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Fig. 3. Learning curves of the reduced-rank adaptive LBEBEMwith  Fig. 4. Learning curves of the reduced-rank adaptive LBEBEMwith
respect to different ranks of detection subspaces for theithyDS-TH UWB  respect to different step-size values for the hybrid DS-TH/RJ systems
systems supportingg = 5 users. The other parameters used in the simulatiorssipporting X’ = 5 users. The other parameters used in the simulations were
were Ey, /No = 10dB, Doppler frequency-shift of;7;, = 0.0001, p,, = o, Ep/No = 10 dB, f4T, = 0.0001, U = 10, pn = on, g = 1, N. = 16,
nw=059g=1, Nc =16, Ny, =4 andL = 15. Ny =4andL = 15.

e e e e

where T}, stands for the training length an@(x) is the
Gaussian® function defined as

Qz) = \/% /:O exp (u22> du (20) 10"

In our simulations, the average signal-to-noise ratio (P&t
bit was set toE}, /Ny, = 10dB, the BER was obtained from
the average ovel’, = 100,000 independent realizations of
the UWB channel specified by the parametefd = 14.11ns, ®
I' = 2.63ns andy = 4.58ns. The weight vector was initialized 2
to w,(0) = 1 of an all-one vector. Furthermore, we assumed
that ¢ = 1, implying that the desired bit conflicts ISI from
one bit transmitted before the desired bit and also from one
bit transmitted after the desired bit. Note that, given the
parameters as shown in the caption of the figure, it can be
shown that the rank of the signal subspac&ig; + 1) = 10.
From the results of F|g 3, we observe that, when the rafie- 5. Lgarning curves Of the reduced-rank ad_aptive LBEBEMwith

of the detection subspace s lower than that of the. sigrfeectic (ferent keme) Wt vlues for e e D DWE systems
subspace, i.e., wheli < 10, the BER performance of the E,/N, = 10 dB, f;T;, = 0.0001, U = 10, u = 1.0, g = 1, N. = 16,
hybrid DS-TH UWB system improves, as the rank of thé/v =4andL = 15.

detection subspace increases. The best BER performance is

attained, when the detection subspace reaches the rank of

the signal subspace, i.e., whéh= 10. When the detection of Fig. 4 and Fig. 5, it can be observed that, for a given
subspace uses a rank higher than that of the signal subsp&a®yth of training symbols, an appropriate step-gizand an
higher BER is observed. This loss in BER performance &ppropriate kernel width,, are usually required, in order for
because, in this case, more undesired signals including, MitHe reduced-rank adaptive LBER-MUD to achieve the lowest
ISI and noise are collected by the adaptive LBER-MUD. BER. Specifically, for the step-size values considered in &

Fig. 4 and Fig. 5 illustrate respectively the impact of théhe reduced-rank adaptive LBER-MUD using a step-size of
step-sizen, and kernel widthp,, on the learning performance = 0.125 converges the fastest and also achieves the lowest
of the reduced-rank adaptive LBER-MUDs for the hybrid DSBER. If the step-size is too low, such as= 0.05, or too
TH UWB systems supportingl = 5 users, when operated athigh, such as: = 1, the reduced-rank adaptive LBER-MUD
an average SNR oF;, /Ny = 10 dB. In our simulations for may converge with a lower convergence rate but to a higher
both the figures, the BER was obtained by averaging ovBER. In the context of the impact from the kernel widif,
100,000 independent realizations of the channel. Again, thtee results of Fig. 5 imply that there is an optimum kernel
weight vector was initialized tav(0) = 1. From the results width for a given number of training systems. For example,

2

2 2 2 2 2
pn =100, pn =0.50, Pn =0n

=
o
I

O

2 2
| p? =1(‘)Un | | | | | |
50 100 150 200 250 300 350 400 450 500
Number of training symbols
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Fig. 6. Learning curves of the reduced-rank adaptive LBEBEMand LMS-  Fig. 7. BER performance of the hybrid DS-TH UWB systems usingiced-
MUD with respect to different ranks of detection subspacwstiie hybrid rank adaptive LBER- and LMS-MUD, when communicating over th&/RJ
DS-TH UWB systems supportingd = 5 users. The other parameters usedhannels modeled by the S-V channel model associated withatfzeneters
in the simulations werds;, /Ny = 10 dB, f4T, = 0.0001, prars = 0.001,  1/A = 14.11ns,T" = 2.63ns andy = 4.58ns. The parameters used in the
wreer = 0.125, pp = /100m,9 = 1, N. = 16, Ny =4 andL = 15. simulations wereK = 5, f37, = 0.0001, prps = 0.001, prper =
0.125 pn = v/100p, g = 1, No. = 16, Ny, = 4 and L = 15. The frame
length was fixed td 000 bits, where the first00 bits were used for training.

when 100 to 150 training symbols are used, the attainable

BER first decreases as the value of the kernel width increaseg3ns andy = 4.58ns. The hybrid DS-TH UWB systems
and then increases as the value of the kernel width furth@insidered supporteds = 5 users and the normalized
increases. Furthermore, for the kernel width values censitl Dopper frequency-shift was assumed to pd} = 0.0001.
in Fig. 5, the reduced-rank adaptive LBER-MUD usipij=  Furthermore, we assumed that the UWB channelslhad15
1007, converges with the highest speed. However, when a lopgsolvable paths resulting in= 1. Hence, a desired data bit
training sequence is used, the reduced-rank adaptive LBERnflicts I1SI from one bit transmitted respectively beforela
MUD using p7, = 10007, may converge to a lower BER.  ater the desired bit. Note that, given the parameters asrsho
In Fig. 6, we compare the learning performance of the the caption of the figure, it can be shown that the rank of the
reduced-rank adaptive LBER-MUD with that of the reducedsignal subspace i& (g + 1) = 10. From the results of Fig. 7,
rank adaptive LMS-MUD, when the hybrid DS-TH UWBwe can observe that, when the rank of the detection subspace
systems operated at an average SNRERfN, = 10 dB s lower than that of the signal subspace, i.e., wher: 10,
supportK = 5 users. In our simulations, we set the normalizeghe BER performance of the hybrid DS-TH UWB system
Dopper frequency-shift to bg;7;, = 0.0001. Furthermore, we using either the LBER-MUD or the LMS-MUD improves,
assumed thay = 1, hence, the desired bit conflicts ISI fromas the rank of the detection subspace increases. The best
one bit transmitted before the desired bit and also from oBER performance is attained, when the rank of the detection
bit transmitted after the desired bit. Note furthermoret,thasubspace reaches the rank of the signal subspace, i.e., when
as discussed associated with Fig. 3, the rank of the sigmal= 10. When the rank of the detection subspace is lower
subspace isK (g + 1) = 10. From the results of Fig. 6, than that of the signal subspace, error-floors are observed,
we can see that, for a given rak the LMS-MUD usually explaining that the MUI cannot be fully suppressed by the
converges faster than the LBER-MUD. However, the LBEReduced-rank adaptive LBER- and LMS-MUD. Furthermore,
MUD is capable of reaching a lower BER than the LMSfor a given rank of the detection subspace, the reduced-rank
MUD. Hence, when having a sufficient number of trainingdaptive LBER-MUD outperforms the reduced-rank adaptive
symbols, which may be obtained through the techniques sudiS-MUD, in terms of their attainable BER.
as DD [11], the reduced-rank adaptive LBER-MUD is capable Finally, in Fig. 8, we compare the BER versus average SNR
of attaining a lower BER than the reduced-rank adaptive LM$er bit performance of the hybrid DS-TH UWB systems using
MUD. Furthermore, the results of Fig. 6 show that, as the rawrlther the reduced-rank adaptive LBER-MUD or reduced-rank
of the detection subspace is increased fildm 5to U = 10, adaptive LMS-MUD, when communicating over the UWB
equating the signal subspace’s rank, the BER performancecbhnnels specified by the parametéys\ = 14.11ns, ' =
both the detectors is improved significantly. 2.63ns andv = 4.58ns. In our simulations we assumed that
Fig. 7 shows the BER versus average SNR per bit pghe UWB channel had = 150 resolvable paths, which hence
formance of the hybrid DS-TH UWB systems using eithaesulted in severe ISI. Specifically, in contrast to Fig. figve
the reduced-rank adaptive LBER-MUD or the reduced-rartke number of resolvable multipaths wés= 15 resulting
adaptive LMS-MUD, when communicating over the UWHBn ¢ = 1, the L = 150 resolvable paths in Fig. 8 resulted
channels specified by the parametéys\ = 14.11ns,I" = in ¢ = 3. The other parameters used for Fig. 8 were the
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Algorithm Rank BER No. of Oper.
Correlation detector 78 0.0064307 2496
Full-rank ideal MMSE 78 0.00049017 267384
Full-rank LMS adaptive | 78 0.0039017 392
Full-rank RLS adaptive | 78 0.0016025 67551
PCA-based reduced-rank 10 0.00129 8011
% LMS adaptive detector
L= = PCA-based reduced-rank 10 0.00080188 9132
5 B — LBER = RLS adaptive detector
utJ 1 ---- LMS \% VR PCA-based reduced-rank 10 | 0.00078458 8014
= 10°% =] S ;\‘a 8. LBER adaptive detector
@ = x u=1 N=—=—==
1 A U=5 . ﬁ\ i) TABLE |
ot= O uU=10 Y \E\é BER PERFORMANCE AND NUMBER OF OPERATIONS REQUIRED TO
= [ u=15 e ~ DETECT ONE BIT.
= O u=20 A\
10° T \\‘
0 3 6 9 15
Eo/No (dB)

of all the users is required. Since the exact CSI is usually

extremely hard to acquire in UWB communications, the ideal

Fig.k 8.dBE‘R performance of the hybrid DS-TH UWB systems usingeed- MMSE-MUD s therefore not a desired detector for achiev-
e oo e S el o s s 10 low-complexity defection in UWB systers. Third, the
1/A = 14.11ns, T = 2.63ns andy = 4.58ns. The parameters used in thefUll-rank LMS-adaptive detector has the lowest complexity
simulations wereK = 5, f47;, = 0.0001, prys = 0.5.uBEr = 0.5, However, its BER performance is only better than that of

cvgs:fiﬁgl%b g v]yﬁeTelt?{e ]\f?rbs;]g ;‘i{‘sd Vl\;eTelL?SOe. dTPoer g";mﬁléength the correlation detector but far worse than that of the ideal
’ ' MMSE-MUD. Forth, the BER performance of the full-rank

RLS-adaptive detector is better than that of the full-raik3-
same as those used for Fig. 7, as shown in the captiona&aptive detector and also better than that of the coroelati
the figure. Note that, for the parameters considered in Fig. @tector. However, the BER performance is still much worse
the rank of the signal subspacefi&g + 1) = 20. Again, as than that of the ideal MMSE-MUD. Furthermore, the number
the results of Fig. 8 shown, the BER performance improves @&0perations required by the full-rank RLS-adaptive detec
the rank of the detection subspace increases, until it emacfP detect a bit is very high as compared to the full-rank
the rank of the signal subspace. In comparison with Fig. #MS adaptive detector and correlation detector, althougs i
we can see that, for a givefi, /N, value, the full-rank BER much lower than that of the ideal MMSE—MUD. Fifth, the_
shown in Fig. 8 is lower than the corresponding full-rank BERBER performance of the reduced-rank adaptive detector is

shown in Fig. 7. This is because the UWB channel considerBgtter than that of the full-rank adaptive detector. Moepv
associated with Fig. 8 hag = 150 number of resolvable the complexity of the reduced-rank LMS-adaptive detecor i
multipaths, which results in a higher diversity gain thae thhigher than that of the full-rank LMS adaptive detector. By
UWB channel considered associated with Fig. 7, which h§§ntrast, the complexity of the reduced-rank RLS-adaptive
L = 15 number of resolvable multipaths. Furthermore, d&€tector is lower than that of the full-rank RLS-adaptive
observed in Fig. 7, for a given rank of detection subspabes, fletector. Finally, the BER performance of the reduced-rank
reduced-rank adaptive LBER-MUD outperforms the reducegdaptive LBER-MUD is better than that of all the other
rank adaptive LMS-MUD, in terms of their attainable BER. reduced-rank and full-rank adaptive detectors. It can akso
Finally, as an example, in Table. | shown below, wabserved that the reduced-rank RLS-adaptive MMSE-MUD

compare the performance and complexity of the propos@ﬁs approx_imately the same BER performance as t.he reduced-
algorithm with the correlation detector, MMSE detectot]-fu "ank adaptive LBER-MUD. However, the complexity of the

rank LMS adaptive detector, full-rank RLS adaptive detectgeduced-rank RLS-adaptive detector is slightly highemtha
and reduced-rank RLS adaptive detector, wigr= 5, N, = that of the reduced-rank adaptive LBER-MUD. Furthermore,

16, Ny = 4, g = 1, L = 15 and E,/N, = 10 dB. The Fhe reduced-rank adaptive LBER-MUD’S BER performapce

principles of these related detectors can be found in [64-7, 11S Not far away from that of the ideal MMSE-MUD, but its

16]. complexity is much lower than that of the ideal MMSE-MUD.
From the Table, we can have the following observations.

First, the BER performance of the correlation detector iss@o V. CONCLUSIONS

than that of all the other detectors, while the complexityhef

correlation detector is lower than that of all the other dtes, In this contribution, we have investigated the learning and

except that of the LMS-adaptive MMSE-MUD. Second, thachievable BER performance of the hybrid DS-TH UWB

best BER performance is achieved by the ideal MMSE-MUDBystems using reduced-rank adaptive LBER-MUD, when com-

However, the number of operations required by the idealunicating over the UWB channels experiencing both MUI

MMSE-MUD is extremely higher than that of the othersand ISI in addition to multipath fading. Furthermore, com-

Furthermore, for the ideal MMSE-MUD, the knowledge abougarisons have been made between the reduced-rank adaptive

the signature sequences and channel state informatior) (ABER-MUD and the reduced-rank adaptive LMS-MUD in
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terms of their learning and achievable BER performancgs] J. zhang, T. D. Abhayapala, and R. A. Kennedy, “Role ofsps in
Our studies and simulation results show that the reduced- \l;\;trdaeb\gli]%ebzir:?ctfygﬁ{?zzléﬁEE '”tsegga_tg;”g] gé’”{azeé‘gg on Ultra-

rank adaptive LBER-MUD constitutes one of the efﬁCiertrlQ] M. Honigi and M K. Tsatsaﬁizf)-“AdaptiveYtecr?n.iques -for Itiuser

detectors for the hybrid DS-TH UWB systems. The reduced- CDMA receivers,”|EEE Sgnal Processing Magazine, vol. 17, pp. 49—
rank technique can be employed for achieving low-compyexit__ 61, May 2000. _

detection in the DS-TH UWB systems and also for improvingo] G. H. DuntemanPrincipal Components Analysis. Newbury Park, 1989.
their efficiency. The reduced-rank adaptive LBER-MUD is

capable of achieving the full-rank BER performance with the

detection subspace having a rank that is significantly lower

than (NN, + L — 1) of the original observation space. Give
a rank of the detection subspace, the reduced-rank adap
LBER-MUD outperforms the reduced-rank adaptive LMS
MUD, in terms of their attainable BER performance. Fur
thermore, the reduced-rank adaptive LBER-MUD can provi
us more degrees-of-freedom for design when compared
the reduced-rank adaptive LMS-MUD with the same level x
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