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Abstract—This paper proposes a transmit power allocation 

(TPA) scheme based on multiple-input multiple-output (MIMO) 

Tomlinson-Harashima precoding (THP) structure, where a TPA 

matrix is introduced to the conventional MIMO-THP. We 

analyze the influence of the introduced TPA matrix on the 

performance of MIMO-THP. The proposed TPA scheme invokes 

the minimum average uncoded bit-error rate (BER) criterion 

subjected to a sum-power constraint. During the derivation, we 

consider the effects of precoding loss factor on the TPA scheme 

and obtain a closed-form expression of the TPA. Compared to 

existing TPA methods for MIMO-THP systems, the proposed 

scheme reduces processing complexity and improves the BER 
performance. 

Keywords- multiple-input multiple-output (MIMO);Tomlinson-

Harashima precoding (THP); Minimum bit-error rate (MBER); 

transmit power allocation (TPA). 

I. INTRODUCTION 

Nowadays, multiple-input multiple-output (MIMO) system 
has been considered as one of the most important techniques 
owing to the significantly higher capacity improvement than 
single-input single-output (SISO) wireless channel [1], [2].The 
Vertical Bell Laboratories Layered Space-Time (V-BLAST) 
system, originally proposed in [3], is one of the most prominent 
schemes to achieve this higher spectral efficiency. Ginis and 
Cioffi [4] proved that V-BLAST receiver processing is 
equivalent to the MIMO Decision Feedback Equalization 
(DFE) structure.  

Above methods require channel state information (CSI) 
only at the receiver side. In some cases, if the communication 
environment is slowly time varying, the CSI at transmitter is 
possible obtained by feedback in frequency-division duplex 
(FDD) systems or the reciprocal principle in time-division 
duplex (TDD) systems. Fischer et al. [5] first introduce the 
Tomlinson-Harashima precoding (THP) structure to eliminate 
the spatial interference in MIMO channel. This scheme moves 
the feedback filters of MIMO-DFE to the transmitter to avoid 
the error propagation, which is similar to the original THP used 
in dispersive SISO channel [6], [7]. Because the feed-forward 
filters are still at the receivers, it should be pointed out that the 
received signals of the method [5] must be cooperatively 
processed. Modulo operators in MIMO-THP systems result in 

a transmit power increase, which is quantified by precoding 
loss [5], [8], [11].  

In order to make full use of CSI, transmit power allocation 
(TPA) schemes can achieve a performance improvement for 
MIMO systems. From the point view of maximizing channel 
capacity, TPA strategies were derived in [9], [10] for V-
BLAST systems and [11], [12] for MIMO-THP systems. 
Alternatively, from the point view of minimizing error rate 
performance, TPA strategies were derived in [13], [14] for V-
BLAST systems and [15] for MIMO-THP systems. The 
scheme in [15], which approximately minimizes the average 
Symbol-Error Rate (SER) under sum-power constraint, 
achieves better performance than MIMO-THP systems without 
TPA. However, the existing scheme needs iterative procedure 
and does not consider the precoding loss which is not 
negligible at lower constellations. 

In this paper, we bring a TPA matrix into the conventional 
MIMO-THP system and analyze the modification of MIMO-
THP structure employed with TPA scheme first. Then an 
effective TPA method that minimizes the bit-error rate (BER) 
performance under sum-power constraint is proposed. This 
method is capable of achieving further performance 
improvement because the precoding loss factor is considered in 
the derivations. When employed to uncoded QAM, a tighter 
approximation expression to the complementary cumulative 
distribution function (Q-function) is introduced. Finally, a 
closed-form expression of TPA scheme is derived.  

The rest of this paper is organized as follows. The modified 
MIMO-THP systems for TPA are described in section II. In 
section III, the proposed TPA scheme is derived for this 
modified MIMO-THP structure in perfect CSI case. Simulation 
results are given in Section IV and conclusions are followed in 
Section V. 

II. MODIFIED MIMO-THP SYSTEM

A. System Model and Assumptions 

In this paper, we assume the transmitter has perfect 
knowledge of the CSI and consider the MIMO system 

equipped with TN  transmit antennas and RN  receive antennas. 

For simplicity, we assume both sides of the system have equal 
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−I B

( )i

v xa

d

( )ii

r

d
-

â

Figure 1. Block diagram of Modified MIMO-THP for TPA. 

antennas number (i.e. T RN N K= = ). Let [ ]1
,...,

T

Kx x=x  and 

[ ]1
,...,

T

Ky y=y  represent the transmitted and the received 

signals, respectively. The system model can be written as 

= +y Hx n .                               (1) 

ijh=H  is the K K×  channel gain matrix. The channel gain 

from transmit antenna j  to receive antenna i  is denoted by ijh

and assumed to be normalized i.i.d. zero-mean complex 
Gaussian random variables(i.e. flat fading case). 

[ ]1
,...,

T

Kn n=n  denotes the channel noise, which is 

uncorrelated white Gaussian noise with noise power 2

nσ  per 

dimension (i.e. 2E[ ]H

nσ= =
n

R nn I ). It is assumed that the 

transmitter knows the noise variance 2

nσ .

The definitions of some symbols and operators used in this 
paper are listed below. 

a : Boldface small symbol represents a vector 

H : Boldface capital symbol represents a matrix 

[ ]1 2
, ,..., Ddiag x x x : A diagonal matrix with diagonal entries 

1 2, ,..., Dx x x

( )diag A : A vector made by the diagonal entries of A

ija : The entry at the i th row and j th column of A

tr( )⋅ : Trace of a matrix 

E( )⋅ : Expectation 

( )T⋅ : Transpose 

( )H⋅ : Conjugate transpose 

B. Modified THP Structure 

We first review the MIMO-THP scheme presented in [5] 
with some modifications. The overall system structure is 
illustrated as a block diagram in Fig. 1, where the TPA matrix 
P  is introduced to the structure in [5]. Here I  is identity 
matrix, B  is unit lower triangular (lower left triangular matrix 
with ones on the main diagonal), F  is unitary, G  and P  are 

diagonal matrices. [ ]1,...,
T

Ka a=a  is the data vector. Each 

, 1,...,ka k K=  uses the same M-ary square constellation ( M  is 

Figure 2. Alternative linear representations of modulo operators in Fig. 1. 

squared number) and has unity power (i.e. 2 2
1,

ka a kσ σ= = ∀ ). 

1 ,..., Kdiag P P=P  is the TPA matrix. =a Pa  is the 

power loaded data vector and the variance of each component 

is 2 2 , 1,...,
k ka k a kP P k Kσ σ= ⋅ = = . The feedback matrix B  and 

feed-forward matrix GF  can be calculated under ZF or 

MMSE criteria. If we use ZF criterion, the filter matrices G ,
B and F  can be obtained by performing QL-factorization to 
H  [5], i.e. 

=H QS ,                                                    (2.1) 

1 1

11 ,..., KKdiag s s− −=G ,                             (2.2) 

=B GS ,                                                    (2.3) 

1 H−= =F Q Q .                                          (2.4) 

ijs=S  is a lower triangular matrix, Q  is a unitary matrix. In 

this case the covariance matrix of noise =n GFn  is  

2

2 2 2 2

11

E[ ]

/ ,..., /

H H

n

n n KKdiag s s

σ

σ σ

= =

=
nR nn GG

.                     (3) 

On an alternative criterion, the MMSE based solution has 
also been given in [5]. The error is defined as  

= − = −e r v GFy Bx ,                            (4) 

and the covariance matrix of error is E[ ]
H=

e
R ee .By 

minimizing the mean-square error ( )tr
e

R , we perform a 

(modified) Cholesky factorization of H
H H  to obtain the filter 

matrices, i.e.  

H Hς ′ ′+ =H H I S S ,                                (5.1) 

1 1

11
,...,

KK
diag s s− −′ ′ ′=G ,                        (5.2) 

′ ′ ′=B G S ,                                              (5.3) 

H H−′ ′=F S H ,                                        (5.4) 

where 2 2 2
/

n a n
ς σ σ σ= =  and [ ]

ij
s′ ′=S  is a lower triangular 

matrix. The covariance matrix of the error vector e  is  

1

2 2

2 2 2 2

11

E[ ] ,...,

/ ,..., /

K

H

e e

n n KK

diag

diag s s

σ σ

σ σ

= =

′ ′=

e
R ee

.               (6) 
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From (3) and (6), we can see that the structures of noise and 
error covariance matrices are similar. Thus, the transmit power 
can be calculated as the same manner both in ZF and MMSE 
cases.  

C. Equivalent Sub-channel Model 

By considering Fig.1, Fig.2 and properties of THP matrices, 

the detected signal vector â  is given as  

ˆ ( )Mod ′= + + +
t

a a d I n ,                             (7) 

and can be decoupled into K  parallel streams [15] 

( )ˆ ,
kk t k k k ka Mod a d I n k′= + + + ∀ ,                (8) 

where [ ]1,...,
T

KI I′ ′ ′=I  is the residual spatial Co-Channel 

Interference(CCI) after MMSE criterion on THP filters (for ZF 

case ′ =I 0 ), The modulo operator is introduced to reduce the 

transmit signal power, where [ ]1,..., Kt t=t  is the modulo 

bound vector. ( )
kt

Mod  is modulo kt  operator to bound its 

output on [ ) [ )/ 2, / 2 / 2, / 2 ,k k k k kT t t j t t k= − + ⋅ − ∀  and is 

defined for a complex variable c  as 

Re( ) 1 Im( ) 1
( )

2 2kt k k

k k

c c
Mod c c t j t

t t
− + − + ,         (9) 

where the floor operator  rounds the argument to the 

nearest integer towards minus infinity. Note that the modulo 
operator can be represented as a linear model [11] and 

generates a data vector = +v a d . [ ]1,...,
T

Kd d=d  is the 

modulo alphabet which can be eliminated at the receivers by 
another modulo operator as explicated in Fig.2. 

In optimum case, the spatial CCI approximates to zero 

( 0kI ′ → ). For clarity, we ignore the truncation effect [17] on 

noise n , and the parallel K  streams (8) can be simplified as 

ˆ , 1,...,k k k k k ka a n P a n k K= + = + = .                (10) 

Note that the transmit power is successfully introduced to 
each equivalent sub-channel, we may use the TPA scheme to 
achieve better performance. 

III. TRANSMIT POWER ALLOCATION

We first analyze the precoding loss of MIMO-THP system 
in section III.A. Followed in section III.B, a TPA scheme is 
derived by minimizing the BER performance. In the 
derivations, we assume that ZF-THP is used for transmission, 
and the derivations of MMSE case are straightforward. Finally, 
the results of section III.B are applied to an uncoded quadrature 
amplitude modulation (QAM) in section III.C. 

A. Precoding Loss Analysis 

Because of modulo operator in THP, the transmitted 

symbols 
kx  are assumed to be uniformly distributed, bounded 

on enlarged range kT . As a result, the transmit power will be 

increasing and is quantified by the precoding loss, which is 
usually defined for square QAM as 

( )2 2
/ / 1E x E a M Mγ = −  [5], [8], [11]. But in fact, 

because B  is a unit lower triangular matrix, the first element 

1
a  of power loaded data vector a  is directly passed through 

modulo operator without being interfered by other power 

loaded data components. Consequently, the distribution of 
1

x

is the same with 
1

a  rather than the uniform distribution 

bounded on 1
T . We redefine the precoding loss as 

( )
1                      , 1

/ 1 , 2,...,
k

k

M M k K
γ

γ
=

=
= − =

.                    (11) 

From the analysis above, we note that the precoding loss is 
negligible for moderate and large modulation sizes, but it 
should be considered for the small modulation sizes as well. 

Thus the exact power of kx  is given by 

2

2 2

2

      , 1

, 2,...,

k

k k

k

a k

x k a

a k

P k

P k K

σ
σ γ σ

γσ γ

= =
= =

= =
,                  (12) 

and the corresponding bound region Kt  can be calculated as 

2
2

6 k

k

x k k

t
Pσ γ= = .                                  (13). 

B. Derivation of TPA Scheme 

To derive a TPA scheme, we will express the BER of each 

transmitted symbol as a function of transmit power kP , and 

find the TPA matrix P  by means of minimizing the average 
BER. As discussed in section II, from the equivalent model in 
(10) and the noise covariance matrix (3), the postdetection 

signal to interference and noise ratio (SINR) 
kρ  of the k -th 

sub-channel can be expressed as 

2 2

2 2

k

k

a k kk
k

n n

P sσ
ρ

σ σ
= = .                                (14) 

The average uncoded BER bP  is then expressed as an 

arithmetic mean of the BER for every sub-channel 

1

1
( )

K

b b k

k

P P
K

ρ
=

= ,                              (15) 

where ( )b kP ρ  is the BER of the k -th sub-channel. Hence the 

TPA scheme that approximately minimizes the average 
uncoded BER (AMBER-TPA) under sum-power constraint is 
given by 

{ }
1

1 ,...,
1

1

1
arg min ( )

s.t.   

K

K
K

k b kk P P
k

K

k k T

k

P P
K

P P

ρ

γ

=
=

=

=

=
,                   (16) 

where the sum-power constraint is denoted as 

890



2

1 1
k

K K

T x k k

k k

P P Kσ γ
= =

= = = .                          (17) 

We may use the Lagrange multiplier method to deal with 
this problem in (16) and the cost function may be expressed as  

1

1 1

1
( ,..., , ) ( ) ( )

K K

k b k k k

k k

L P P P P K
K

λ ρ λ γ
= =

= + − .     (18) 

From / 0kL P∂ ∂ = , we get a set of K  equations 

( )
, 1,...,

b k

k

k

P
K k K

P

ρ
λ γ

∂
= − =

∂
.                     (19) 

Solving 1K +  equations in (17) and (19), we may obtain a 
closed-form expression of TPA matrix P  by minimizing the 
BER in (15). 

C. Application to Uncoded QAM 

When uncoded -aryM  QAM is used for THP transmission, 

the BER for the -thK  sub-channel can be tightly approximated 

as an exponential function of kρ  [14], [16] 

31
( ) exp

5 2( 1)

k

b kP
M

ρρ = −
−

.                        (20) 

The average uncoded BER can be expressed as  

1 1

31 1
exp exp( )

5 2( 1)

K K
k

b k k

k k

P P
K M

ρ α β
= =

= − = −
−

,       (21) 

where 
1

5K
α =  and 

2

2

3

2( 1)

kk

k

n

s

M
β

σ
=

−
.

Taking (21) into (18) and solving equations (19), the 
closed-form solution of the transmit power is 

ln ln

, 1,...,

k

k
k

k

P k K

αβ λ
γ

β

+

−
= = ,                   (22) 

where ( ) max( ,0)x x
+

, the Lagrange multiplier λ  is chosen 

to satisfy the constraint (17), i.e., 

1

1

ln

exp

K
k k

k k k

K
k

k k

K
γ αβ
β γλ

γ
β

=

=

−
= .                         (23) 

Applying (23) to (22), the closed-form expression of TPA 
matrix is obtained. It should be noted that the TPA scheme in 
(22) is more reasonable for we considered the precoding loss 

factor 
kγ  and the results are shown in the next section.  

IV. SIMULATION RESULTS

Computer simulations are performed to evaluate the 
uncoded BER performance over signal to noise ratio (SNR). 
Two kinds of modulation, square 4QAM and square 16QAM, 
with Gray encoding are employed [18] during the simulation. 

We assume 4
T RN N K= = =  i.e., the channel matrix H  is 

square 4 4× , quasi static and assumed to be perfectly known at 
the transmitter. 

Fig.3 shows the performance comparisons using square 
4QAM modulation for MIMO-THP systems. There are three 
kinds of curves, which are THP without TPA, conventional 
approximate minimum SER (AMSER)-TPA [15] and proposed 
AMBER-TPA (22), employed to THP system under ZF and 
MMSE case, respectively. It is clearly that both TPA schemes 
achieve better performance than systems without TPA in all 
cases. More importantly, because we considered the precoding 
loss factor, proposed AMBER-TPA also achieves better 
performance than conventional AMSER-TPA, Under ZF cases, 

we observe that at BER of 2
10

− , proposed AMBER-TPA offers 
3.7 and 0.8 dB SNR gains over THP without TPA and 
conventional AMSER-TPA schemes, respectively. When 

MMSE case is employed at BER of 3
10

− , proposed AMBER-
TPA offers nearly 7.4 dB SNR gains over THP without TPA. 

More importantly, It should be noted that at BER of 4
10

− ,
proposed AMBER-TPA achieves nearly 2.0 dB SNR gains 
than conventional AMSER-TPA schemes. 

Fig.4 shows the performance comparisons using square 
16QAM modulation for MIMO-THP systems. There are also 
six curves the same as Fig. 3. Noteworthy, both under ZF case 
and MMSE case, the curves of proposed AMBER-TPA and 
AMSER-TPA are almost indistinguishable. This indicates that 
when the modulation size is moderate, the precoding loss effect 
of TPA is negligible. Because the AMSER-TPA scheme in [15] 
needs iterative procedure, and yet the proposed AMBER-TPA 
can get a closed-form solution, complexity of the latter 
algorithm is lower. Therefore, we focus on the comparisons 
between proposed AMBER-TPA and THP without TPA. At 

BER of 2
10

− , the ZF-THP with AMBER-TPA gives 
approximately 2.4 dB gains over ZF-THP without TPA, and 
the MMSE-THP with AMBER-TPA gives approximately 
2.1dB gains over MMSE-THP without TPA.  

V. CONCLUSIONS

An AMBER-TPA algorithm for MIMO-THP system is 
proposed under flat fading scenarios. This scheme is achieved 
by minimizing the average uncoded BER under sum-power 
constraint and considering the precoding loss. The comparisons 
show that the proposed AMBER-TPA method can effectively 
improve the BER performance of MIMO-THP systems without 
TPA. Furthermore, it is not only more efficient calculation, but 
also achieves better performance than AMSER-TPA method in 
[15]. Finally, above results are derived under perfect conditions, 
while in fact it is difficult to obtain ideal information. An 
important topic for our future work is to apply the algorithm to 
more realistic situations, such as extended to multiuser case or 
coded MIMO system and analysis of the penalty for using 
imperfect or outdated channel information.  
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Figure 3. Uncoded BER performance comparisons of proposed AMBER-

TPA, conventional AMSER-TPA and without TPA in MIMO-ZF/MMSE-

THP for square 4QAM ( 4
T R

N N= = ). 

Figure 4. Uncoded BER performance comparisons of proposed AMBER-

TPA, conventional AMSER-TPA and without TPA in MIMO-ZF/MMSE-

THP for square 16QAM ( 4
T R

N N= = ). 
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