
An On-Line Algorithm for Semantic Forgetting

Heather S. Packer and Nicholas Gibbins and Nicholas R. Jennings

Intelligence, Agents, Multimedia Group,
School of Electronics and Computer Science,

University of Southampton,
Southampton, SO17 1BJ, UK

{hp07r,nmg,nrj}@ecs.soton.ac.uk

Abstract

Ontologies that evolve through use to support new
domain tasks can grow extremely large. Moreover,
large ontologies require more resources to use and
have slower response times than small ones. To
help address this problem, we present an on-line se-
mantic forgetting algorithm that removes ontology
fragments containing infrequently used or cheap to
relearn concepts. We situate our algorithm in an
extension of the widely used RoboCup Rescue plat-
form, which provides simulated tasks to agents. We
show that our agents send fewer messages and com-
plete more tasks, and thus achieve a greater degree
of success, than other state-of-the-art approaches.

1 Introduction

Evolving an ontology enables it to support tasks that were
unforeseen at design time, thus enabling an agent that uses
it to adapt to changing requirements. However, evolving on-
tologies can become large in size, and thus require more re-
sources to host, manage, and use. Moreover, fast response
times are crucial for time-critical environments: an ontology
that increases in size can diminish response times which can
be reduced by removing appropriate concepts from it.

Against this background, we present an on-line algorithm
which selects an ontology fragment to remove given the fre-
quency and recency with which its concepts are used and the
cost of their acquisition (in terms of time). Specifically, an
ontology is reduced in size when it becomes too large to com-
plete a task within a given period of time. Underpinning this
is our hypothesis that by removing a fragment the associated
costs of using the ontology will be reduced. To evaluate this,
we deploy our algorithm within a RoboCup Rescue (RCR)
extension, a widely used multi-agent platform for search and
rescue simulation [Kitano and Tadokoro, 2001]. The agents
(representing the police, fire brigade and ambulances) evolve
their ontologies as they encounter unforeseen tasks that re-
quire additional knowledge to complete. An agent’s ontology
must enable the agent to assess and deliberate about its action
within a given timeframe.

While we situate our approach using a specific multi-agent
system exemplar, our algorithm is a general approach to

selecting concepts to forget from an ontology, and can there-
fore be applied outside of our framework. In AI, this area
has been studied under a variety of names such as forgetting
and variable elimination [Eiter et al., 2006; Wang et al.,
2008]. We provide a general approach for ranking knowledge
according to its use and cost, which can be applied to systems
that are limited by memory resources to evaluate memory
allocation. We also provide a specific approach to select
which concepts to remove from an ontology, using the rank-
ing. We note that our forgetting approach does not guarantee
an evolving ontology is sound or complete. However, this
is not always a requirement, and a ‘good enough’ answer
is appropriate in many cases where a response is required
quickly (as described in Section 4). Our approach is agnostic
to a specific ontology language, however for simplicity we
describe our approach in the context of OWL-Lite ontologies.

Against this background, we advance the state-of-the-art in
automatic ontology evolution, with our main contribution, an
on-line forgetting algorithm. It rates and weights concepts in
an ontology according to their use and acquisition cost. Then,
in our evaluation, we compare the performance of our forget-
ting approach to other state of the art approaches including
forgetting single, redundant and subtrees of concepts. Agents
using our approach save 99.3% more civilians and 12.4%
more of the city, compared with the next best approach.

The rest of the paper is organised as follows. Section 2
presents related work. Sections 3 and 4, introduce our eval-
uation framework and forgetting algorithm. Sections 5 and 6
detail our evaluation and results. Section 7 concludes.

2 Related Work

The agent community focuses primarily on augmenting an
agent’s ontology, instead of pruning it. In particular, Bailin
and Truszkowski [2002], Afsharchi et al. [2006], Wiesman
and Roos [2004], and Soh [2002] enable their agents to
augment their ontologies with new knowledge, when agents
have different domain models representing the same domain.
Specifically, Bailin and Truszkowski’s approach considers
semantically equivalent representations, and Afsharchi et
al. and Soh focus on the validation of the knowledge to
be incorporated into the agent’s ontology. Moreover, these
approaches augment an agent’s ontology with one concept
at a time, which increases the overhead cost of retrieving the
information. In addition to this work, we have previously

2704

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Table 1: An overview of the contents and source of each of the environment ontologies.

Ontology Domain Overview Source No. of

Concepts

EAC Ontology Fire
Brigade

Emergency Action Code (EAC) for dangerous
goods

National Chemical Emergency Centre (NCEC): http:
//the-ncec.com/ncec

1906

HazChem Ontology Fire
Brigade

Hazard Identification Numbers (HIN) for danger-
ous goods

National Institute for Occupational Safety and Health (NIOSH) www.
unece.org/trans/danger/publi/adr/pubdet.htm

1167

Chemical Ontology Fire
Brigade

Chemicals and their EAC and HIN classifications NCEC: http://the-ncec.com/ncec, and NIOSH www.cdc.
gov/niosh/

1800

Vehicle Ontology Police Vehicle capabilities, purposes, manufacturers and
categorisations

John Dennis Coach Builders: www.johndennisfire.co.uk/ 70

HantsFireEngineFleet
Ontology

Fire
Brigade

Vehicle types, models, manufacturers and registra-
tion numbers of the Hampshire fleet of Fire En-
gines

Hampshire Fire and Rescue Service: www.hantsfire.gov.uk/
theservice/sp-and-sr/fleetmanagement.htm

745

Ambulance Ontol-
ogy

Ambulance Types of ambulance, their attributes and equipment American College of Surgeons: www.facs.org/trauma/
publications/ambulance.pdf

407

ConstructionVehicles
Ontology

Fire
Brigade

The attributes and capacity of construction vehicles Construction Equipment Guide website: www.
constructionequipmentguide.com/

114

Triage Ontology Ambulance The 5-Category triage system, and the symptoms
for each category

The Agency for Healthcare Research and Quality, US department of
Health and Human Services: www.ahrq.gov/research/esi/

74

CSI Ontology Fire
Brigade

Chemical Sampling Information (CSI) details
chemicals’ effects on humans and their organs.

US Department of Labor Occupational Safety and Health Administra-
tion: www.osha.gov

3841

Treatment Ontology Ambulance Information about burns and broken bones, their
symptoms and their treatments

NHS Health Information: www.nhs.uk/chq/pages/Category.
aspx?CategoryID=72

481

presented an approach that reduces the cost associated with
learning by augmenting a fragment into an ontology [Packer
et al., 2010a]. However, while all these approaches allow
agents to augment their ontologies, they do not prune them.

However, the Semantic Web community has produced
methods that prune ontologies. In particular, an agent could
apply the approaches of Eiter et al. [2006], Wang et al.
[2008] or Wang et al. [2009] to prune its ontology. All these
approaches provide algorithms to remove one concept from
an ontology at a time. In contrast to the approach of Wang et
al. [2008], Eiter et al.’s approach requires axioms to first be
translated from Description Logic (DL) syntax to rule repre-
sentations, and translated back to DL syntax, which adds to
the resources required by the process, after the expansion of
the rules and the removal of a concept. In contrast, [Wang et
al., 2008]’s approach can be applied to axioms without need
of translation. Eiter et al.’s approach has restrictions which
limit the use of this technique to OWL-Lite and subspecies of
OWL-Lite. These approaches enable an agent to evaluate the
knowledge and remove a single concept at a time.

In this work, we chose to use the technique presented by
[Wang et al., 2008] to remove concepts from our agent’s on-
tologies because it ensures that there are no inconsistent ax-
ioms of an ontology after the removal of a concept. We use
this work to remove concepts from an ontology, however our
forgetting approach focuses on selecting which concepts to
remove, and not on how to remove them from an ontology.
This paper builds upon the work presented in our previous
paper, [Packer et al., 2010b], with new results.

3 RoboCup OWLRescue Framework

The RoboCup OWLRescue (RCOR) framework extends the
RoboCup Rescue (RCR) platform, which models the effects
of an earthquake on a virtual city’s buildings, civilians and
roads [Kitano and Tadokoro, 2001]. In a RCR simulation,
buildings may: collapse, possibly with civilians inside; cause

road blockages; and ignite. There are three types of specialist
agents: ambulance teams recover buried civilians and transfer
them to refuges; fire teams extinguish fires; and police force
teams clear blocked roads. The goal is to save the lives of
as many civilians as possible and to minimise the area of the
city which is burnt. The performance of a team is evaluated
by analysing the percentage of civilians alive, the state of live
civilians, and the average building damage. While RCR is a
testbed for the co-ordination of agents, our extension extends
the variables associated with each target (civilians, buildings,
and blockages) resulting in a set of possible actions an agent
can take, where each action has a causal effect.

Our RCOR framework extends buildings to contain
(possibly hazardous) chemicals, and extends civilians to have
symptoms. Agents have their own ontologies that they can
augment, with new information from ontologies in the envi-
ronment to complete unforeseen tasks (such as extinguishing
a fire with a new combination of hazardous chemicals,
or treating a civilian with exposure to a rare chemical).
Environment ontologies describe available resources within
the simulation which agents can use, and contain knowledge
about vehicles and their ability to deal with fires, building
collapses and casualties (see Table 1). These ontologies
have been chosen because they are representative of standard
industry vocabularies for the domains of interest of RCOR
agents. These ontologies encompass the interest areas of the
RCOR agents and provide information used in the real world.
The RCOR agents can access the environment ontologies by
requesting information about concepts and receive fragments
representing a desired concept. The agent can then augment
its ontology with all the concepts or a subset of concepts
depending on its strategy. In order for an agent to retain its
core knowledge it uses two ontologies to decide on which
actions to take: a Domain Ontology (DO) containing core
knowledge; and an Evolving Ontology (EO) which an agent
can augment and prune. Maintaining an agent’s core knowl-
edge allows agents to maintain their designated speciality:

2705

Fire brigade agents require a different core set of concepts
than an ambulance team because of their specialisation, thus,
we only remove concepts from an agent’s EO. Each agent is
allocated a vehicle, which it can exchange if it does not have
the necessary equipment for a task.

The RCOR agents can learn about variables encountered
while rescuing a target and alternative resources. For
example, a police rescue agent can discover an appropriate
construction vehicle which can remove a blockage from a
road or an ambulance agent can learn about the latest recom-
mendations for treating civilians. It is beneficial for agents
to augment their ontology so that they can successfully
perform tasks that they could not complete before. In order
to simulate real-time the RCR framework allows a team of
agents five seconds to perform an action, agents that do not
perform an action in this time forfeit their turn. Thus an agent
must spend its time efficiently performing actions. In order
to do this, our agents maintain a relatively small ontology
and send a minimal number of requests for information from
the environment ontologies. The next section describes our
forgetting approach.

4 The Forgetting Approach

When reasoning in an ontology becomes too slow to use given
a specific timeframe, our forgetting approach is invoked. Our
approach first evaluates the concepts in the ontology to select
which one to remove; second our approach selects a fragment
of the concept that is deemed to be the most irrelevant; and
third our approach removes the concept so that the ontology
remains consistent. These three stages are described in the
following sections. We use the following running example.

A fire brigade is tasked with extinguishing a building, that
contains particularly toxic chemicals and human exposure re-
sults in severe damage to airways. The fire brigade needs to
carry additional equipment to treat civilians, and augments
its ontology with a fragment containing such equipment. Dur-
ing augmentation the agent learns about intubation equip-
ment, this equipment is usually used by ambulance agents and
therefore the fire brigade has only used it once. The agent’s
response time is waning and in order to improve the response
time it decides to reduce the size of its ontology.

4.1 Evaluating Concepts

Once a task agent determines that it needs to forget, it decides
which concepts it wants to remove. In order to select concepts
to remove our approach considers two factors:

1. How recently and frequently the concept is used to
answer queries. This approach aims to reduce the
cost of acquiring regularly required concepts so we
therefore adopt the Least Recently, Frequently Used
value (LRFU) used in [Lee et al., 1997]. This is used in
caching scenarios to select concepts to remove from a
query agent’s ontology. Each time a concept is used; the
LRFU increases as do the LRFUs of the concepts which
are used to define it.

2. The cost of the original acquisition of the concept.
This cost is measured in milliseconds when the concept
is augmented. The acquisition value depends on the

availability of the concept, and the network bandwidth
available to transfer the fragment from another agent.

Both the LRFU and acquisition cost are normalised into a
ranking, these two factors are summed (see Equation 1).

CFV = LRFUr +ACr (1)
where CFV is the concept forgetting value which ranks all
concepts in an agent’s EO, the LRFUr is the ranking of the
LRFU value of a concept, and ACr is rank for the acquisition
value of the concept. A low CFV weighting indicates that the
concept has not been used recently, often, and was inexpen-
sive time wise to acquire. A high CFV weighting indicates
that the concept has been used recently, frequently and was
expensive to acquire. A medium CFV weighting can indicate
that the rankings of LRFU and AC is high and is low respec-
tively, or that AC and LRFU is high and low respectively, and
as such the likelihood of the concept being forgotten is lower
than those with a low CFV weighting. In more detail, the
LRFU is calculated for each concept in the agent’s EO using
Algorithm 1. This algorithm shows how an agent calculates
the LRFU value for each of its ontology’s concepts, where
concept(EO) is a function that holds the set of concepts in an
agent’s EO, T = {〈t1, cu1〉, . . . , 〈tn, cun〉} is a set of tasks
where each task is a tuple representing the task (t) and the set
of concepts required to complete the task (cu), all concepts
in cu are a subset of concept(EO), and all concepts in the
EO have a LRFU weighting which is represented using a
tuple 〈c, LRFU〉. The LRFU weighting for each concept is
calculated over time. After each time period each concept’s
LRFU is calculated, by increasing the value by 1 if it is used
and decaying it exponentially when it is not, so that concepts
not used recently have a lower value. In our RoboCup Rescue
example, concepts’ LRFU weightings are calculated each
timestep and are represented by tasks in the Algorithm be-
cause an agent has to complete a task per timestep. Depend-
ing on the scenario, it may be appropriate to weight the AC or
LRFU differently. For example if network bandwidth fluctu-
ates, the acquisition cost may be time-sensitive, and therefore
it would be appropriate to weight it lower than LRFU. In our
environment available bandwidth does not change, and there-
fore we do not apply weightings when calculating the CFV.

Algorithm 1 LRFU Algorithm.
Require: concepts(EO) �= ∅
Require: T = {〈t1, cu1〉, . . . , 〈tn, cun〉} /* T is the set of tasks,

where tasks require a set of concepts to complete them.

*/
Require: cu ⊂ concepts(EO)
Require: ∀c ∈ concepts(EO) = 〈c, lrfu〉

1: for cu ∈ T do

2: for c ∈ concepts(EO) do

3: if c ∈ cu then

4: c = 〈c, lrfu + 1〉 // increment concept’s LRFU
5: else

6: c = 〈c, lrfu ∗ ln 2〉 // exponentially degrade it
7: end if

8: end for

9: end for

Once a concept’s LRFU factor has decayed so that the
acquisition cost becomes more influential in the weighting,

2706

an agent can determine which concept from a set of concepts
that have the same LRFU to forget. It is more likely that
concepts will have different acquisition costs due to different
agent’s network location and bandwidth, than a different
LRFU because concepts decay exponentially. Performance
wise, it is better for the agent to forget concepts that are
inexpensive to acquire because the cost of re-acquiring them
is less, compared to concepts that are expensive to acquire.
To summarise, the agent selects the concept with the lowest
rating in its EO to remove. In our example (see Figure 1), the
agent selects the concept labelled endotrachealTubes, which
is a piece of intubation equipment, because it has the lowest
weighting. In the next section, we describe how the agent
removes a fragment representing the selected concept.

4.2 Selecting Concepts

Once the agent has selected a concept it desires to forget, it
creates a fragment representing that concept. The agent can
reduce the memory requirements using a fragment instead of
a whole ontology. The fragment is generated using the basic
segmentation technique presented in [Seidenberg and Rector,
2006]. In more detail, it first selects the target concept (in our
example (see Figure 1) the target concept is endotracheal-
Tubes) and then selects all the concepts which connect it to
the root node. It then selects the target’s leaf classes. Finally,
it selects concepts linked to the target concept and selects all
the concepts which connect them to the root node (described
in more detail in [Seidenberg and Rector, 2006]). In order to
select concepts to prune from a fragment, the agent selects
concepts with a similar CFV weighting so that it can forget
more than one concept at a time. This reduces the number of
forgetting operations and reduces the costs associated with
pruning an ontology (including loading, removing concepts
and saving the ontology).

Formally let: l be the capacity limit at which the agent
is required to prune concepts from its EO; W be the set of
weightings for the concepts contained in the EO, where W =
{w : C ∈ concepts(EO) ∧ w = weight(c)} and c1 . . . cn ∈
concepts(EO); foq,ct be the fragment representing the con-
cept to be forgotten, where oq is the query agent’s ontology
(where oq = DO∪EO) and ct is the concept to be forgotten;
Wfoq,ct

= {W : C ∈ foq,ct ∧ w = weight(c)} be the set of
concept weightings associated with the concepts contained in
foq,ct , where concepts(foq,ct) = {c1, . . . cn}. Using this for-
mal notation we describe how we select the concepts to forget
in Algorithm 2, which is run over all concepts in the EO.

Algorithm 2 Lowest Weighted Concept Selection Algorithm.
Function: getLowestWeightedConcept(concepts): returns a concept
Function: getWeight(concept): returns the weight of concept
Require: Fd ← fragment received from merging process
Require: t ← 10
1: ct ← getLowestWeightedConcept(concepts(EO))
2: wct ← getWeight(ct)

3: ConceptsToRemove ← {ct}
4: for c ∈ concepts(Fd) do

5: if |wc − wct | ≤ t then

6: ConceptsToRemove ← ConceptsToRemove ∪ {c}
7: end if

8: end for

9: return ConceptsToRemove

In our example, Figure 1 shows the ontology fragment
representing concept endotrachealTubes which has weight
wct = 0.02, thus our selection algorithm selects the concepts
endotrachealTubes, laryngoscopes, connellAnotomicMask,
and intubationEquipment to forget (these concepts have a
grey background). These concepts have not been used re-
cently by the agent so they have a low CFV because the am-
bulance agents usually intubate civilians. In the next section
we describe how the agent removes the selected concepts.

treatmentFor

 Intubation
Equipment

Laryngo
-scopes

 Endotrac
-heal Tubes

 Connell
anotomic

mask

Blocked
Airways

Symptom

thing

 Medical
Equipment

treatmentFor

treatmentFor

CFV=0.029

CFV=0.02 CFV=0.026 CFV=0.027

CFV=1.24CFV=1.96

CFV=0.91

Figure 1: Concepts selected to be forgotten, where the curved
lines represent relationships (domain and range restrictions).

4.3 Removing Concepts

After the agent has selected the concepts that it desires
to remove, the agent then prunes these from its ontology.
In order to prune these concepts from an ontology we
use the technique presented in [Wang et al., 2008] so that
the ontology remains consistent. For example, we aim to
remove concept Intubation from: MedicalEquipment �
Intubation, Intubation � Laryngoscopes which
results in MedicalEquipment � Laryngoscopes;
MedicalEquipment � Intubation, Intubation �
Laryngoscopes and Intubation � EndotrachealTubes
results in MedicalEquipment � Laryngoscopes and
MedicalEquipment � EndotrachealTubes.

Algorithm 3 Pseudo-code of the RoboCup simulator.
Function: contains(set, element) returns true if set contains element
Require: simulator ← RoboCup rescue simulator
Require: agent ← RoboCup rescue agent
1: simulator.generateFires()
2: simulator.generateBlockades()
3: simulator.generateCivilians()
4: for timestep ∈ timesteps do

5: target = getFirstTarget()
6: targetInfo = agent.getInformation(target)
7: if ¬ contains(agent.ontology, targetInfo) then

8: fragments ← requestFragements(targetInfo)
9: axioms ← selectAxioms(fragments)
10: agent.ontology.learn(axioms)
11: end if

12: if ¬ contains(agent.vehicle, requiredEquipment) then

13: travelToCentre()
14: changeVehicle()
15: end if

16: rescue(target)
17: simulator.update()
18: end for

2707

5 Empirical Evaluation

We evaluate our approach, forget-fragment, against bench-
mark forgetting approaches (described below). We analyse
their performance: in the number of civilians and buildings
saved (see Section 2); and investigate the number of messages
and tasks completed. As standard agents have five seconds
to complete their actions, and have two thousand timesteps
to complete their actions. The pseudo-code in Algorithm 3
provides the basic scenario of the agents in RCOR. In our ex-
periments, we initialise a RCOR scenario where there are ten
of each of the ambulance, fire brigade and police agents. The
agents use the learning technique presented in [Packer et al.,
2010a], and augment their ontologies with unknown concepts
or required equipment to rescue their target. This learning
technique selects fragments from ontologies about requested
concepts, and demonstrated the most efficient forgetting algo-
rithm performance compared to benchmark approaches. We
compare our forgetting approach to the following approaches:

Forget Concept removes all concepts and relationships re-
lated to the selected concept, where eo−cp and cp is the
concept to be pruned from the ontology. This technique
removes one concept at a time, and is comparable those
presented by [Eiter et al., 2006] and [Wang et al., 2008].

Forget Tree extends the above approach by selecting a
subtree from the hierarchy of concepts in the agent’s
EO. The subtree is selected by comparing the weight
used for each concept (see Algorithm 4), where eoctree

and ctree is a concept represented by the fragment
(which is a subtree) being pruned from the ontology.
Removing a connected subtree can result in removing a
subtree, branch, or extraction of a subtree.

Algorithm 4 Subtree Selection Algorithm
Function: parents(concept): returns a set of concepts
Function: children(concept): returns a set of concepts
Function: getLowestWeightedConcept(concepts): returns a concept
Function: getWeight(concept): returns the weight of the concept
Require: t ← 10
Require: ConceptsToRemove ← ∅
Require: CH ← ∅, P ← ∅
1: ct ← getLowestWeightedConcept(concepts(EO))
2: wct ← getWeight(ct)

3: CH ← children(ct)
4: for ch ∈ CH do

5: if |wch − wct | ≤ t then

6: ConceptsToRemove ← ConceptsToRemove ∪ {ch}
7: CH ← CH ∪ {children(ch)}
8: end if

9: end for

10: P ← parents(ct)
11: for p ∈ P do

12: if |wp − wct | ≤ t then

13: ConceptsToRemove ← ConceptsToRemove ∪ {p}
14: P ← P ∪ {parents(p)}
15: end if

16: end for

17: return ConceptsToRemove

Forget Redundant removes concepts that are not used in
future queries. Agents have a list of the future queries at
the start of the simulation, which have been recorded on
a dummy run using the same random seed. This is the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 T

as
ks

 C
om

pl
et

ed
 S

uc
ce

ss
fu

lly

Timestep

Forget-fragment
Forget-tree Forget-concept

Forget-redundantForget-nothing

Figure 2: Cumulative average of tasks completed success-
fully.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 M

es
sa

ge
s

Timestep

Forget-fragment
Forget-tree Forget-concept

Forget-redundantForget-nothing

Figure 3: The average number of messages sent.

only agent that requires a complete list of future queries.
This agent is not limited by a capacity.

Forget Nothing does not remove any concepts from the
agent’s ontology and is not limited by a capacity.

We use these four approaches: forget-concept, forget-tree,
forget-redundant and forget-nothing as benchmarks for our
forgetting approach (forget-fragment). These agents adopt
their behaviour defined by the sample package in RCR, which
enables agents to plan a path through the city and which target
to rescue first. In our evaluation we compare the performance
of five forgetting approaches with the same 200 scenarios
using the standard RCR Kobe map and compare the effective-
ness of their approaches for statistical significance. Each sce-
nario is randomly generated by the RCR simulators. The next
section presents the results, and analysis of our evaluation.

6 Results

Overall our approach outperforms the other approaches, by
saving the highest average number of civilians (99.3% more
civilians than the next highest approach (forget-tree)) and ex-
tinguishes the highest average number of buildings at the end

2708

Table 2: Comparison of average results for each forgetting technique.
Percentage Percentage Average Number of Average number Average Total Number Number of

of City of Civilians Tasks Completed of Messages Number of of Times Concepts Forgotten
Technique Unburned in Refuge Successfully per Timestep Messages Forgot per Timestep

Forget-Concept 31.5 29.1 27.0 581.86 870.42 11.0 50.4
Forget-Tree 33.0 29.0 27.21 581.19 869.89 10.3 50.3

Forget-Redundant 31.5 19.8 19.29 853.06 1153.36 50.3 215.1
Forget-Nothing 31.5 1.4 22.38 76.88 116.32 0.0 0.0

Forget-Fragment 37.1 58.0 70.29 311.50 474.21 3.1 44.1

of the simulation (12% more than the next highest approach
(forget-tree)), see Table 2. It outperforms other approaches
because it completes more tasks successfully by spending less
time forgetting and more time completing tasks (see Figure
2). Agents that quickly complete tasks can control the spread
of the fire, thus reducing the chance that agents will encounter
buildings that will burn out. The agents also rank which con-
cepts to forget more accurately, because they encounter and
complete more tasks, than the other forgetting approaches
and are therefore able to forget the least useful concepts, and
reduce the number of messages sent (see Figure 3).

The forget-concept and forget-tree approaches performed
almost identically with regards to the number of messages
and tasks completed (see Table 2). This is because the forget-
tree approach was unable to find trees that were connected by
the concept ratings, and subsequently removed the same num-
ber of concepts as the forget-concept approach. The forget-
redundant and forget-nothing approaches performed the same
in regards to the number messages sent, because the forget-
redundant approach has perfect foresight and does not relearn
any concepts. Agents using the no-collaboration approach
are unable to learn information required for tasks, and thus
any task that requires additional information is not possible
for the agents to attempt. A consequence is that fires spread in
an uncontrolled fashion through the environment, which ini-
tially generates more tasks to extinguish buildings, but even-
tually the city burns out and all of the civilians die.

7 Conclusions

In this paper we present a novel algorithm that selects
the most appropriate concepts to remove from an ontology.
While this algorithm is evaluated in the search and rescue
domain, it is applicable to any scenario where an ontology
evolves over time. In order to evaluate our algorithm we
developed an extension to the RoboCup Rescue framework
and implemented state of the art benchmark approaches. Our
evaluation shows that our approach saves 99.3% more civil-
ians and 12.4% more city area compared with the next best
approach. For the future, we plan to investigate how to pre-
dict which concepts to forget given the outcome of past tasks.
We will consider using simple Markov chains to model the
concepts required for past tasks and which concepts are for-
gotten. Our investigation aims to show that we can enable
agents to reduce their costs further through using prediction.

References
[Afsharchi et al., 2006] M. Afsharchi, B.H. Far, and J. Denzinger.

Ontology-Guided Learning to Improve Communication between

Groups of Agents. In Proceedings of the 5th International
Joint Conference on Autonomous Agents and Multiagent Systems,
Hakodate, Japan, pages 923–930, 2006.

[Bailin and Truszkowski, 2002] S.C. Bailin and W. Truszkowski.
Ontology Negotiation between Intelligent Information Agents.
The Knowledge Engineering Review, 17(01):7–19, 2002.

[Eiter et al., 2006] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits,
and K. Wang. Forgetting in Managing Rules and Ontologies. In
Proceedings of the 2006 IEEE/WIC/ACM International Confer-
ence on Web Intelligence, Hong Kong, China, pages 411–419,
2006.

[Kitano and Tadokoro, 2001] H. Kitano and S. Tadokoro. Robocup
rescue: A Grand Challenge for Multi-Agent and Intelligent Sys-
tems. AI Magazine, 22(1):39, 2001.

[Lee et al., 1997] D. Lee, J. Choi, H. Choe, S. Noh, S. Min, and
Y. Cho. Implementation and Performance Evaluation of the
LRFU Replacement Policy. In Proceedings of the 23rd Euromi-
cro Conference, Budapest, Hungary, pages 106–111, 1997.

[Packer et al., 2010a] H. S. Packer, N. Gibbins, and N. R. Jen-
nings. Collaborative learning of ontology fragments by coop-
erating agents. In IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, Toronto, Canada, volume 2, pages
89–96, 2010.

[Packer et al., 2010b] H. S. Packer, N. Gibbins, and N. R. Jen-
nings. Forgetting fragments from evolving ontologies. In In-
ternational Semantic Web Conference (ISWC), Shanghai, China,
volume 6496. Springer, November 2010.

[Seidenberg and Rector, 2006] J. Seidenberg and A. Rector. Web
Ontology Segmentation: Analysis, Classification and Use. In
Proceedings of the 15th International Conference on World Wide
Web, Edinburgh, Scotland, pages 13–22, 2006.

[Soh, 2002] L.K. Soh. Multiagent, Distributed Ontology Learning.
Working Notes of the Second International Joint Conference of
Autonomous Agents and Multi-Agent Systems, Workshop on On-
tologies in Agent Systems, Bologna, Italy, 2002.

[Wang et al., 2008] Z. Wang, K. Wang, R. Topor, and J.Z. Pan. For-
getting Concepts in DL-Lite. In Proceedings of the 5th European
Semantic Web Conference, Tenerife, Canary Islands, Spain, page
245, 2008.

[Wang et al., 2009] K. Wang, Z. Wang, R. Topor, J. Pan, and G. An-
toniou. Role Forgetting in ALC Ontologies. In Proceedings of
the 8th International Semantic Web Conference, Washington, DC,
pages 666–681, 2009.

[Wiesman and Roos, 2004] F. Wiesman and N. Roos. Domain In-
dependent Learning of Ontology Mappings. In Proceedings of
the 3rd International Joint Conference on Autonomous Agents
and Multi-Agent Systems, New York, USA, 2:846–853, 2004.

2709

