
B 2011

Towards the Composition of Specifications in

Event-B

Renato Silva1,2

School of Electronics and Computer Science
University of Southampton

Southampton, UK

Abstract

The development of a system can start with the creation of a specification. Following this viewpoint,
we claim that often a specification can be constructed from the combination of specifications which
can be seen as composition. Event-B is a formal method that allows modelling and refinement
of systems. The combination, reuse and validation of component specifications is not currently
supported in Event-B. We extend the Event-B formalism using shared event composition as an
option for developing (distributed) systems. Refinement is used in the development of specifications
using composed machines and we prove that properties and proof obligations of specifications can be
reused to ensure valid composed specifications. The main contributions of this work are the Event-
B extension to support shared event composition and refinement including the proof obligations
for a composed machine.

Keywords: composition, refinement, Event-B, development of specifications, formal methods

1 Introduction

Systems can often be seen as a combination and interaction of several sub-
specifications (hereafter called sub-components) where each sub-component
has its own functionality aspect. This view introduces modularity in the
system: different sub-components represent a particular functionality and
changes in the sub-components are accommodated more gracefully [12] in the
system specification. We use composition to structure specifications through
the interaction of sub-components seen as independent modules. This use of
composition is not new in other formal notations: examples are [22,13,15].

1 Part of this research was carried out within the European Commission ICT DEPLOY
2 Email:ras07r@ecs.soton.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ras07r@ecs.soton.ac.uk


Silva

Here we express how we can use (and reuse) composition for building specifi-
cations in Event-B [2] through sub-components (modules) interaction, bene-
fiting from their properties and proof obligations (POs). The interesting part
of composition involves the interaction of sub-components which usually oc-
curs by shared state [4], shared operations [7] or a combination of both (for
example, fusion composition [15]). Although sub-components have states, we
mainly focus on their (visible) events similar to CSP [11,14]: we follow a shared
event composition approach where events are synchronised in parallel.

This document is structured as follows: Sect. 2 briefly describes Event-
B. Section 3 introduces the notion and properties for shared event approach.
Composed machine, POs and the monotonicity property are introduced in
Sect. 4. Related work, conclusions and future work are drawn in Sect. 5.

2 Event-B Language

Event-B is a formal methodology that uses mathematical techniques based on
set theory and first order logic supporting system development with abstract
specification. An abstract Event-B specification is divided into a static part
called context and a dynamic part called machine. A machine sees as many
contexts as desired. A context consists of sets s (collection of elements or a
type definition), constants c and axioms A(. . . ) of the system. A machine
contains the state (global) variables v whose values are assigned in events.
Events that can be parameterised (local variables p) occur when enabled by
their guards G(. . . ) being true and as a result actions S(. . . ) are executed. In-
variants I(. . . ) define the dynamic properties of the specification and POs are
generated to verify that these properties are always maintained. An event evt
is expressed by parameters p, by guards G(s, c, p, v) and actions S(s, c, p, v, v′):

evt b= ANY p WHERE G(s, c, p, v) THEN S(s, c, p, v, v′) END.

When the guard G(s, c, p, v) is true then the event evt is enabled and there-
fore the action S(s, c, p, v, v′) updates the set of variables v to v′ (value of v
after the assignment). An abstract Event-B specification can be refined with
the introduction of more details and becoming closer to a concrete implemen-
tation. A context extends an abstract context by adding sets, constants or
axioms. The abstract context properties are still assumed. Refinement of a
machine consists of refining existing events. The relation between variables in
the concrete and abstract model is given by a gluing invariant J(. . . ). POs
are generated to ensure that this invariant is preserved in the concrete model.
New events can be added, refinining skip which may be declared as convergent,
meaning they do not cause divergence. The convergence is proved if each new
event decreases a variant. The variant must be well-founded and may be an
integer or a finite set.

2



Silva

3 Shared Event Approach

Sub-component specifications that are part of a full system specification, deal
with a particular part of the system being modelled. Sub-component interac-
tion must be verified to comply with the desired behavioural semantic of the
system. The interaction usually occurs as a shared state, shared event or a
combination of both as described. Here we focus on the developments using
shared event composition only where composition is treated as the conjunc-
tion of individual elements’ properties: conjunction of individual invariants,
conjoining variables and synchronisation of events. Consider Fig. 1(a) where

(a) (b)

Fig. 1. Simple view of the shared event composition of A and B (a) resulting in D (b)

machine A has events e1 and e2 that use variable v1. Moreover machine B
has events e3, e4 and e5 using variables v2 and v3. If events e2 and e3 occur
in parallel, they can be synchronised: another option is to compose machines
A and B by sharing events. For example, machine D in Fig. 1(c) where e2
from machine A and e3 from machine e3 are composed: e2 ‖ e3. The inter-
action of machines A and B through their events results in a composed event
sharing two independent variables: v1 and v2. The parallel composition of
events e2 and e3 from Fig. 1 is defined as Def. 3.1 [7]:

Definition 3.1 Composition of events e2 and e3 with parameter p results in:

e2 b=ANY p?, x WHERE p? ∈ C ∧G(p?, x, m) THEN S(p?, x, m) END

e3 b=ANY p!, y WHERE H(p!, y, n) THEN T (p!, y, n) END

e2 ‖ e3 b=ANY p!, x, y WHERE p! ∈ C ∧G(p!, x, m) ∧ H(p!, y, n)

THEN S(p!, x, m) ‖ T (p!, y, n) END

where x, y, p are sets of parameters from each of the events evt1 and evt2.
Event evt1 has p? as an input parameter and evt2 has p! as an output pa-
rameter and the resulting composition is p! itself an output parameter (like
in CSP). This property can be used to model message-passing systems: evt2
sends a message to evt1 using the parameter p. Communication between pa-
rameters of type input is also possible but not with both types output since
this could lead to a deadlock state [7]. Event-B has the same semantic struc-
ture and refinement definitions as action systems [17]. It is possible to make a
correspondence between parallel composition in CSP and an event-based view
of parallel composition for action systems [9,6].

3



Silva

Theorem 3.2 The shared event parallel composition of Event-B machines
corresponds to CSP parallel-composition. The failure-divergence semantics of
CSP can be applied to Event-B machines. The failure divergence semantics of
machine M in parallel with N, M ‖ N is defined as:

JM ‖ NK = JMK ‖ JNK

where JMK and JNK are the failure divergence semantics of M and N respec-
tively. The proof of this theorem can be found in [9].

The semantics of the parallel composition of machines M and N corresponds
to the set of failure-divergence for each individual machine in parallel. From
the correspondence between action systems and Event-B, machines M and N
can be refined independently which is one of the most important and powerful
properties that shared event composition in Event-B inherits from CSP. The
monotonicity property for the shared event composition in Event-B is proved
by means of proof obligation in Sect. 4.3. When sub-components are composed
it is desirable to define properties that relate the individual sub-components
allowing interactions. These properties are expressed by adding composition
invariants ICM(s, c, v1, . . . , vm) to the composed machine constraining the
variables of all machines being composed.

Definition 3.3 The invariant of the parallel composition of machines M1 to
Mn with variables v1 to vn respectively is the conjunction of the individual
invariants and the composition invariant ICM(s, c, v1, . . . , vn):

I(M1 ‖ · · · ‖Mm) b= I1(s, c, v1) ∧ · · · ∧ Im(s, c, vm) ∧ ICM (s, c, v1, . . . , vn). (1)

In Fig. 1, composed machine D has as invariant the conjunction of the
individual invariants I(A ‖ B) =̂ IA(s, c, v1) ∧ IB(s, c, v2, v3) plus possible
composition invariant ICM(s, c, v1, v2, v3). In a shared event composition the
sub-components have independent state space (variables are unique to each
machine). Consequently composition reasoning is simplified as there are no
constraints between state spaces of sub-components.

4 Composed Machines: Composition and Refinement

We define a new construct composed machine, representing the shared event
composition of Event-B machines. We aim to have a construct that remains
reactive to changes in the sub-components. Consequently the composition
is structural. The interaction of sub-components following a “top-down” ap-
proach, can represent a refinement of an existing abstraction. To formalise
the composition, it is necessary to define composition and refinement POs.
In the following sections, we introduce the structure of a composed machine,
respective POs and prove the monotonicity property.

4



Silva

4.1 Structure of Composed Machines

A shared event composed machine is expressed as the parallel conjunction of
sub-component properties. Machines are composed in parallel including their
properties and events: CM =̂ M1 ‖ · · · ‖Mm as seen in Fig. 2. Moreover:

• The composed machine variables are all the sub-component variables (v1

from M1, v2 from M2, . . . , vm from Mm) and are state-space disjoint.

• The invariants of the composed machine are defined as Def. 3.3.

• The composed events are defined according to Def. 3.1.

COMPOSED MACHINE CM SEES Ctx
INCLUDES M1, . . . , Mm

VARIABLES v1, . . . , vm

INVARIANTS ICM (s, c, v1, v2, . . . , vm)
EVENTS

evt11 b= M1.evt11 ‖ . . . Mm.evtm1

. . .
evt1p b= M1.evt1p ‖ . . . Mm.evtm1 evt1p

END

Fig. 2. Composed machine CM composing machines M1 to Mm seeing context Ctx

Next we present the required POs to verify composed machines.

4.2 Proof Obligations

POs play an important role in Event-B developments. POs are generated to
verify the properties of a model. For simplicity we define POs in terms of
a composition of two machines M1 and M2 that refine machine M0, but the
rules generalise easily to the composition of n machines. Furthermore context
elements in the formulas (s, c, A(s, c)) are not considered. The POs defined
for standard machines (invariant preservation, well-definedness, refinement,
etc) [2] are defined for composed machines. We simplify the composed ma-
chines POs by assuming that the POs of the individual machines hold. We
define the additional POs necessary to ensure that the composed machine sat-
isfies all the standard POs. We consider that the POs of the M0, M1 and M2

hold. The respective composition POs are described as follows.

4.2.1 Consistency

Consistency POs are required to be always verified. Consistency is expressed
by the feasibility and invariant preservation POs for each event. The feasibility
proof obligation for the composed event evt1 ‖ evt2 is FISevt1‖evt2.

Theorem 4.1 The individual FIS PO for each event can be reused for prov-
ing feasibility for each composed event and that is enough to verify this prop-

5



Silva

erty. From [2]:

FISevt1 : I1(v1) ∧G1(p1, v1) ` ∃v′1 ·(S1(p1, v1, v
′
1)) (2)

FISevt2 : I2(v2) ∧G2(p2, v2) ` ∃v′2 ·(S2(p2, v2, v
′
2)) (3)

FISevt1‖evt2 : ICM (v0, v1, v2) ∧ I1(v1) ∧ I2(v2) ∧G1(p1, v1) ∧G2(p2, v2) (4)

` ∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)).

Assume: FISevt1 and FISevt2.
Prove: FISevt1‖evt2.

Proof. Assume the hypotheses of FISevt1‖evt2. Prove: ∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧

S2(p2, v2, v
′
2)) . The proof proceeds as follows:

∃v′1 ·(S1(p1, v1, v
′
1)) ∧ ∃v′2 ·(S2(p2, v2, v

′
2)) {disjoint v1 and v2}

⇐ (FISevt1 ∧ FISevt2). {(2),(3)+ hypotheses of (4)}

2

In the composed machine, invariant preservation PO INVCM corresponds to
the invariant preservation in all events. The invariant preservation PO for the
composed event evt1 ‖ evt2 is INVevt1‖evt2.

Theorem 4.2 For each invariant i from the set of invariants I in a composed
machine, composition invariant ICM(v0, v1, v2) needs to be verified. From [2]:

INVevt1 : I1(v1) ∧G1(p1, v1) ∧ S1(p1, v1, v
′
1) ` i1(v′1) (5)

INVevt2 : I2(v2) ∧G2(p2, v2) ∧ S2(p2, v2, v
′
2) ` i2(v′2) (6)

INVevt1‖evt2 : ICM (v0, v1, v2) ∧ I1(v1) ∧ I2(v2) ∧G1(p1, v1) ∧G2(p2, v2)

∧ S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2) ` i1(v′1) ∧ i2(v′2) ∧ iCM (v0, v

′
1, v

′
2) (7)

Assume: INVevt1 and INVevt2.
Prove: INVevt1‖evt2.

Proof. Assume the hypotheses of INVevt1‖evt2. Prove: i1(v′1) ∧ i2(v′2) ∧
iCM (v0, v

′
1, v

′
2). The proof proceeds as follows:

i1(v′1) ∧ i2(v′2) ∧ iCM (v0, v
′
1, v

′
2)

⇐ INVevt1 ∧ INVevt2 ∧ iCM (v0, v
′
1, v

′
2). {(5),(6) and hypotheses of (7)}

2

Well-definedness for expressions (guards, actions, invariants, etc) needs to be
verified. These are verified by means of POs in Event-B [3]. For composed
machines, well-definedness POs are only generated for ICM(v0, v1, v2). Other
expressions are verified in the individual machines.

4.2.2 Refinement

Refinement POs are required when the composed machine refines an abstract
machine. Machine M0 with variables v0, invariant I0(v0) and abstract event

6



Silva

evt0 is refined by composed machine CM defined by machines M1 with vari-
ables w1, invariant I1(w1), event evt1 and M2 (w2 ; I2(w2); evt2) and com-
position invariant JCM(v0, w1, w2). The composed event evt1 ‖ evt2 refines
the abstract event evt0. A general refinement PO (REFevti) for a machine M
refining event evt follows from:

REFevti b= Ii(vi) ∧ Ji(vi, wi) ∧Hi(qi, wi) ∧ Ti(qi, wi, w
′
i) ` ∃v′i ·Gi(vi) ∧ Si(pi, vi, v

′
i) ∧ Ji(v

′
i, w

′
i)
(8)

Theorem 4.3 For each composed event evt1 ‖ evt2, refining abstract event
evt0 through (gluing) composition invariant in a composed machine, the refine-
ment REF PO consists in proving the guard strengthening of abstract guards,
proving the simulation of the abstract variables (v′0) and preserving the gluing
invariant (JCM(v′0, w

′
1, w

′
2)). From [2] and (8):

INVevt1 : I1(w1) ∧H1(q1, w1) ∧ T1(q1, w1, w
′
1) ` i1(w′

1) (9)

INVevt2 : I2(w2) ∧H2(q2, w2) ∧ T2(q2, w2, w
′
2) ` i2(w′

2) (10)

REFevt0v(evt1‖evt2) : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧H1(q1, w1) ∧H2(q2, w2) ∧ T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2)

` ∃v′0 ·G0(p0, v0) ∧ S0(p0, v0, v
′
0) ∧ I1(w′

1) ∧ I2(w′
2) ∧ JCM (v′0, w

′
1, w

′
2).

Assume: INVevt1 (9) and INVevt2 (10).
Prove: REFevt0v(evt1‖evt2).

Proof. Assume the hypotheses of REFevt0v(evt1‖evt2). Prove: ∃v′0 ·G0(p0, v0) ∧
S0(p0, v0, v

′
0) ∧ I1(w′

1) ∧ I2(w′
2) ∧ JCM (v′0, w

′
1, w

′
2). The proof proceeds as follows:

G0(p0, v0) ∧ I1(w′
1) ∧ I2(w′

2)

∧ ∃v′0 ·(S0(p0, v0, v
′
0) ∧ JCM (v′0, w

′
1, w

′
2)) {∧ goal; v0, w

′
1, w

′
2 are free variables}

≡ G0(p0, v0) ∧ ∃v′0 ·(S0(p0, v0, v
′
0) ∧ JCM (v′0, w

′
1, w

′
2)) {from (9) + (10) for each i1(w′

1),i2(w′
2)}

2

These are the required POs to verify composed machines. Next we show
that composed machines are monotonic which allows to further refine individ-
ual machines preserving composition.

4.3 Monotonicity of Shared Event Composition for Composed Machines

An important property of the shared event composition in Event-B is mono-
tonicity. We prove it by means of refinement POs confirming the result de-
scribed by Butler [9] using actions systems and CSP. Figure 3 shows abstract
component specification M1 composed with other component specification
N1, creating a composed model M1 ‖ N1. M1 is refined by M2 and N1
by N2 respectively. Once we compose component specifications M1 and N1,
discharge the required composed POs, M1 and N1 can be refined individually
while the composition properties are preserved without the need to recom-
pose refinements M2 and N2. We want to formally prove the monotonicity
property through refinement POs between composed machines. Therefore if
the refinement POs hold between CM1 and CM2, we can say that CM2 re-
fines CM1: CM1 v CM2. The gluing invariant of the refinement between

7



Silva

Fig. 3. Refinement of composed machine CM1 b= M1 ‖ N1 by CM2 b= M2 ‖ N2

M1 and M2 is expressed as JM(vM , wM) relating the states of M1 and M2:
M1 vJM

M2. We can derive the refinement PO between M2 and M1 for the
concrete event evtM2 refining abstract event evtM1.

REFevtM1vevtM2 : IM (vM ) ∧ JM (vM , wM ) ∧GM (pM , vM ) ∧HM (qM , wM )

∧ SM (pM , vM , v′M ) ∧ TM (qM , wM , w′
M )

` ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v′M ) ∧ JM (v′M , w′
M ). (11)

The refinement PO between N2 and N1 is similar. We refine an abstract event
in CM1 by a concrete one in CM2 and verify that the refinement POs for each
individual machine hold for the composition. Event evtM1 from machine M1
and event evtN1 from machine N1 are composed, resulting in the abstract
composed event evtM1 ‖ evtN1 in CM1 from Fig. 3. The gluing invariant
relating the states of CM1 and CM2 is expressed as the conjunction of the
gluing invariants between (M1 and M2) and (N1 and N2):

JCM (vM , vN , wM , wN ) = JM (vM , wM ) ∧ JN (vN , wN ) (12)

Theorem 4.4 The refinement POs for composed machines is expressed as
the conjunction of the refinement POs for the individual machines. Therefore
the monotonicity property holds if the refinement POs of individual machines
hold. The refinement PO between concrete composed event evtM2 ‖ evtN2 and
abstract composed event evtM1 ‖ evtN1 is expressed as:

REF(evtM1‖evtN1)v(evtM2‖evtN2) : IM (vM ) ∧ IN (vN ) ∧ JCM (vM , vN , wM , wN ) ∧HM (qM , wM )

∧HN (qN , wN ) ∧ TM (qM , wM , w′
M ) ∧ TN (qN , wN , w′

N )

` ∃v′M , v′N ·GM (pM , vM ) ∧GN (pN , vN )

∧ SM (pM , vM , v′M ) ∧ SN (pN , vN , v′N ) ∧ JCM (v′M , v′N , w′
M , w′

N ).
(13)

Assume: REFevtM1vevtM2
and REFevtN1vevtN2

.
Prove: REF(evtM1‖evtN1)v(evtM2‖evtN2).

Proof. Assume the hypotheses of REF(evtM1‖evtN1)v(evtM2‖evtN2). Prove:
∃v′M , v′N ·GM (pM , vM )∧GN (pN , vN )∧SM (pM , vM , v′M )∧SN (pN , vN , v′N )∧JCM (v′M , v′N , w′

M , w′
N ).

The proof proceeds as follows:

∃v′M , v′N ·GM (pM , vM ) ∧GN (pN , vN )

∧ SM (pM , vM , v′M ) ∧ SN (pN , vN , v′N )

∧ JM (v′M , w′
M ) ∧ JN (v′N , w′

N ) {expanding JCM from (12)}
≡ ∃v′M ·GM (vM ) ∧ SM (pM , vM , v′M ) ∧ JM (v′M , w′

M )

∧ ∃v′N ·GN (vN ) ∧ SN (pN , vN , v′N ) ∧ JN (v′N , w′
N ) {disjoint v′M ,v′N}

⇐ REFevtM1vevtM2 ∧REFevtN1vevtN2 {(11) + hypotheses of (13)}

8



Silva

2

We also need to prove the monotonicity for single (non-composed) events that
appear at both levels of abstraction. We shall prove it using machines M1 and
CM2. In this case, the gluing invariant described in (12) does not use neither
the variables (vN) neither the invariants(IN) neither events (evtN1) from N1.
Therefore it can be simplified and rewritten as:

JCM (vM , wM , wN ) = JM (vM , wM ) ∧ JN (wN ) (14)

Theorem 4.5 An individual event evtM1 in machine M1 is refined by a com-
posed event evtM2 ‖ evtN2 in composed machine CM2. The monotonicity is
preserved if the refinement PO between M1 and M2 hold in conjunction with
the gluing invariant preservation PO for the composed event evtM2 ‖ evtN2.
The refinement PO between concrete composed event evtM2 ‖ evtN2 and ab-
stract non-composed event evtM1:

REFevtM1v(evtM2‖evtN2) : IM (vM ) ∧ JCM (vM , wM , wN ) ∧HM (qM , wM ) ∧HN (qN , wN )

∧ TM (qM , wM , w′
M ) ∧ TN (qN , wN , w′

N )

` ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v′M ) ∧ JCM (v′M , w′
M , w′

N ). (15)

Assume: REFevtM1vevtM2
and INVevtM2‖evtN2

(based on (7)).
Prove: REFevtM1v(evtM2‖evtN2).

Proof. Assume the hypotheses of REFevtM1v(evtM2‖evtN2) and the hypotheses
of INVevtM2‖evtN2

. Prove: ∃v′M ·GM (pM , vM )∧SM (pM , vM , v′M )∧JCM (v′M , w′
M , w′

N ) . The
proof proceeds as follows:

∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v′M ) ∧ JM (v′M , w′
M ) ∧ JN (w′

N ) {expanding JCM from (14)}
≡ ∃v′M ·(GM (pM , vM ∧ SM (pM , vM , v′M ) ∧ JM (v′M , w′

M )) ∧ JN (w′
N ) {free v′N}

⇐ REFevtM1vevtM2 ∧ JN (w′
N ) {(11)+hypotheses of (15)}

⇐ REFevtM1vevtM2 ∧ INVevtM2‖evtN2 {(7)}

2

New events can be added during refinement. They must respect the refine-
ment POs. The refinement PO proof for new events is similar to the previous
cases but applied to a single event refined by composed event. Due to the lack
of space we do not present it here.

5 Related Work, Conclusions and Future Work

Composition allows the interaction of sub-components. Back [16], Abadi and
Lamport[1] studied the interaction of components through shared variable
composition. Jones [21] also proposes a shared variable composition for VDM
by restricting the behaviour of the environment and the operation itself in
order to consider the composition valid using rely-guarantee conditions. In
Z, composition can be achieved by combining schemas [20] where variables
within the same scope cannot have identical names or by views [12] allowing

9



Silva

the development of partial specifications that can interact through invariants
that relate their state or by operations’ synchronisation. Although systems
are developed in single machines in classical B, Bellergarde et at [5] suggest a
composition by rearranging separated machines and synchronising their opera-
tions under feasibility conditions. The behaviour of a component composition
is seen as a labelled transition system using weakest preconditions, where a set
of authorised transitions are defined. The objective is to verify the refinement
of synchronised parallel composition between components but it is limited to
finite state transitions and a finite number of components. This work differs
from ours as it uses a labelled transition system including a notion of refine-
ment and variable sharing while we use synchronisation and communication in
the CSP style. Butler and Walden [8] discuss a combination of action systems
and classical B by composing machines using parallel systems in an action
system style and preserving the invariants of the individual machines. This
approach allows the classical B to derive parallel and distributed systems and
since the parallel composition of action system is monotonic, the sub-systems
in a parallel composition may be refined independently. This work is closely
related to our work with similar underlying semantics and notion of refinement
based on CSP. Abrial et al [4] propose a state-based decomposition for Event-
B introducing the notion of shared variables and external events. Although
it allows variable sharing, this approach is also monotonic but its respective
nature is more suitable for parallel programs [10].

Our Event-B composition is based on the close relation between action
systems and Event-B plus the correspondence between action systems and
CSP [9]. Shared event composition is proved to be monotonic by means of
POs. Refinement in a “top-down” style for developing specifications is al-
lowed. Sub-components interact through event parameters by value-passing
and can be further refined. We extend Event-B to support shared event com-
position, allowing combination and reuse of existing sub-components through
the introduction of composed machines. Such an approach seems suitable for
modelling (distributed) systems. This work is the result of the exploration
of specifications’ composition. A methodology for the composition is defined
including the verification of properties through the generation of POs. We
do not address the step corresponding to the translation of this composition
to an implementation. This study needs to be carried out in the future. A
tool has been developed to support composition in the Rodin platform [18].
Some case studies have been applying composition with success in particular
for distributed systems and as part of decomposition [19].

References

[1] Mart́ın Abadi and Leslie Lamport. Composing Specifications. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems - Models,
Formalisms, Correctness, volume 430, pages 1–41, Berlin, Germany, 1989. Springer-Verlag.

10



Silva

[2] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

[3] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta,
and Laurent Voisin. Rodin: An Open Toolset for Modelling and Reasoning in Event-B.
International Journal on Software Tools for Technology Transfer (STTT), April 2010.

[4] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and Instantiation
of Discrete Models: Application to Event-B. Fundam. Inf., 77(1-2):1–28, 2007.

[5] Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko. Synchronized Parallel
Composition of Event Systems in B. In ZB ’02: Proceedings of the 2nd International Conference
of B and Z Users on Formal Specification and Development in Z and B, pages 436–457, London,
UK, 2002. Springer-Verlag.

[6] Michael Butler. Stepwise Refinement of Communicating Systems. Science of Computer
Programming, 27(2):139–173, September 1996.

[7] Michael Butler. An Approach to the Design of Distributed Systems with B AMN. In Proc.
10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS 1212, pages
221–241, 1997.

[8] Michael Butler and Marina Waldén. Distributed System Development in B. Technical Report
TUCS-TR-53, Turku Centre for Computer Science, 14, 1996.

[9] Michael J. Butler. A CSP Approach to Action Systems. PhD thesis, Oxford University, 1992.

[10] Thai Hoang and Jean-Raymond Abrial. Event-B Decomposition for Parallel Programs.
Abstract State Machines, Alloy, B and Z, pages 319–333, 2010.

[11] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International Series in
Computer Science, 1985.

[12] Daniel Jackson. Structuring Z specifications with views. ACM Trans. Softw. Eng. Methodol.,
4(4):365–389, 1995.

[13] Cliff B. Jones. Wanted: a compositional approach to concurrency. In Programming
methodology, pages 5–15. Springer-Verlag New York, Inc., New York, NY, USA, 2003.

[14] Carroll Morgan. Of wp and CSP. In Beauty is our business: a birthday salute to Edsger W.
Dijkstra, pages 319–326. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[15] Michael Poppleton. The Composition of Event-B Models. In ABZ2008: Int. Conference on
ASM, B and Z, volume 5238, pages 209–222. Springer LNCS, September 2008.

[16] Ralph-Johan R. Back. Refinement Calculus, part II: Parallel and Reactive Programs. In REX
workshop: Proceedings on Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, pages 67–93, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[17] Ralph-Johan R. Back and R. Kurki-Suonio. Decentralization of Process Nets with Centralized
Control. In PODC ’83: Proceedings of the second annual ACM symposium on Principles of
distributed computing, pages 131–142, New York, NY, USA, 1983. ACM.

[18] Renato Silva and Michael Butler. Parallel Composition Using Event-B. http://
wiki.event-b.org/index.php/Parallel_Composition_using_Event-B, July 2009. Online;
accessed 27-July-2010.

[19] Renato Silva, Carine Pascal, Thai Son Hoang, and Michael Butler. Decomposition Tool for
Event-B. Software: Practice and Experience, 41(2):199–208, February 2011.

[20] J. M. Spivey. The Z Notation: a Reference Manual. Prentice-Hall, Inc., 1989.

[21] Jim Woodcock and B. Dickinson. Using VDM with Rely and Guarantee-Conditions. In
Proceedings of the 2nd VDM-Europe Symposium on VDM—The Way Ahead, pages 434–458,
New York, NY, USA, 1988. Springer-Verlag New York, Inc.

[22] Pamela Zave and Michael Jackson. Conjunction as Composition. ACM Trans. Softw. Eng.
Methodol., 2(4):379–411, 1993.

11

http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

	Introduction
	Event-B Language
	Shared Event Approach
	Composed Machines: Composition and Refinement
	Structure of Composed Machines
	Proof Obligations
	Monotonicity of Shared Event Composition for Composed Machines

	Related Work, Conclusions and Future Work
	References

