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Abstract. The construction of specifications is often a combination of
smaller sub-components. Composition and decomposition are techniques
that support reuse and allow us to formally combine sub-components
through refinement steps while reusing their properties. Sub-components
can result from a design or architectural goal and a refinement framework
should allow further parallel development over the sub-components. We
propose the definition of composition and decomposition in the Event-
B formalism following a shared event approach where sub-components
interact via synchronisation over shared events and shared states are
not allow. We define the necessary proof obligations to ensure a valid
composition or decomposition. We also show that shared event composi-
tion preserves refinement proofs for sub-components, that is, in order to
maintain refinement of compositions, it is sufficient to prove refinement
between corresponding subcomponents. A case study applying these two
techniques is illustrated using Rodin, the Event-B toolset.

Key words: formal methods, composition, decomposition, reuse, Event-
B, design techniques, specification

1 Introduction

The development of specifications in a “top-down” style starts with an abstract
model of the envisaged system. Systems can often be seen as a combination and
interaction of several sub-specifications (hereafter called sub-components) where
each sub-component has its own functionality aspect. This view introduces mod-
ularity in the system: different sub-components represent a particular functional-
ity and changes in the sub-components are accommodated more gracefully [I] in
the system specification. We use composition to structure specifications through
the interaction of sub-components seen as independent modules. This use of
composition is not new in other formal notations: examples are [2/34]. Here
we express how we can use (and reuse) composition for building specifications
in Event-B [5] through sub-components (modules) interaction, benefiting from
their properties and proof obligations (POs). The interesting part of composi-
tion involves the interaction of sub-components which usually occurs by shared
state [6], shared operations [7] or a combination of both (for example, fusion
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composition [4]). Although sub-components have states, we mainly focus on their
(visible) events similar to CSP [8[9]: we follow a shared event composition ap-
proach where events are synchronised in parallel. Decomposition is motivated by
the possibility of breaking a complex problem or system into parts that are easier
to conceive, manage and maintain. The partition of a model into sub-components
can also be seen as a design/architectural decision and the further development
of the sub-components in parallel is possible. Besides alleviating the complexity
for large systems and respective proofs, decomposition allows team development
in parallel over the same model which is very attractive in the industrial environ-
ment. Moreover the proof obligations of the original (non-decomposed) model
can be reused by the sub-components. We present in more detail the shared
event approach applied to composition and decomposition. Moreover, the proof
obligations to ensure a valid composition are expressed including the possibility
to reuse the sub-components properties. The monotonicity property for compo-
sition is proved by means of refinement proof obligations. We see decomposition
as the inverse operation of composition and therefore we can reuse its properties
to decompose systems. A guideline in how to apply a shared event decomposition
is presented and a case study is illustrated to highlight the use of this technique.
The models are developed in the Rodin [I0], which is a toolset for Event-B[BIIT].
This document is structured as follows: Section [2| gives an overview of the
Event-B formal method. Section [J] introduces the notion and motivation for
shared event approach for composition and decomposition. Composed machines,
properties, proof obligations are described in Sect. ] A guideline in how to use
decomposition is presented in Sect. Section [6] illustrates the application of
composition and decomposition to a distributed system case study: file access
system. Related work, conclusions and future work are drawn in Section [7]

2 Event-B Language

Event-B is a formal methodology that uses mathematical techniques based on
set theory and first order logic supporting system development with abstract
specification. An abstract Event-B specification is divided into a static part
called context and a dynamic part called machine. A machine sees as many
contexts as desired. A context consists of sets s (collection of elements or a type
definition), constants ¢ and axioms A(...) of the system. A machine contains the
state (global) variables v whose values are assigned in events. Events that can
be parameterised (local variables p) occur when enabled by their guards G(...)
being true and as a result actions S(...) are executed. Invariants I(...) define
the dynamic properties of the specification and POs are generated to verify that
these properties are always maintained. An event euvt is expressed by parameters
p, by guards G(s, ¢, p,v) and actions S(s, ¢, p,v,v’):

evt = ANY p WHERE G(s,¢,p,v) THEN S(s,¢,p,v,v") END.

When the guard G(s, ¢, p,v) is true then the event evt is enabled and therefore
the action S(s, ¢, p,v,v’) updates the set of variables v to v’ (value of v after
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the assignment). An abstract Event-B specification can be refined with the in-
troduction of more details and becoming closer to a concrete implementation.
A context extends an abstract context by adding sets, constants or axioms. The
abstract context properties are still assumed. Refinement of a machine consists
of refining existing events. The relation between variables in the concrete and
abstract model is given by a gluing invariant J(...). POs are generated to en-
sure that this invariant is preserved in the concrete model. New events can be
added, refinining skip which may be declared as convergent, meaning they do
not cause divergence. The convergence is proved if each new event decreases a
variant. The variant must be well-founded and may be an integer or a finite set.

3 Shared Event Approach

The shared event approach seems suitable for the development of distributed
systems|[7]: sub-components interact through synchronised events in parallel;
moreover sub-components can communicate using shared parameters which is
useful for modelling message broadcasting systems.

3.1 Shared Event Composition

Sub-component specifications that are part of a full system specification, deal
with a particular part of the system being modelled. Sub-component interaction
must be verified to comply with the desired behavioural semantic of the system.
Here we focus on the developments using shared event composition where indi-
vidual elements’ properties are conjoined: conjunction of individual invariants,
conjoining variables and synchronisation of events.

Machine M1 Machine M2
e2 = ANY p
el e2 e3 ed e5 WHERE pe NAvl =0
+ THEN vl :=p
N TN s
Vs WHERE v2 =p
1 THEN v2:=0
Machine M
e2 | e3=ANY p
el e2//e3 ed e5 WHERE pe NAvl =0Av2=p

THEN v2:=0|vl:=p

NN N

Fig. 1. Shared event composition of M1 and M2 (a) resulting in M (b)
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Consider Fig. [1| where machine M1 has events el and e2 that use variable
vl. Moreover machine M2 has events e3, e/ and e5 using variables v2 and v3.
If events e2 and ed occur in parallel, they can be synchronised: machines M1
and M2 are composed by sharing events. In Fig. [} machine M is the result of
the composition of machines M1 and M2 where e2 from machine M1 and e?
from machine M3 are composed: e2 || e8. The interaction of machines M1 and
M2 through their events results in a composed event sharing two independent
variables: v1 and v2. A general definition for the parallel composition of events
€2 and e3 is defined as Def. [1 [7]:

Definition 1. Composition of events €2 and e3 with parameter p results in:

€2 ZANY p?, 2 WHERE p? € C A G(p?,z,m) THEN S(p?,z,m) END
e3 =ANY pl.y WHERE H(p!,y,n) THEN T(p!,y,n) END
e2||e3=ANY pl,z,y WHERE p! € C ANG(p!,z,m) N H(p!,y,n)
THEN S(p!,z,m) || T(p!,y,n) END

where x,y, p are sets of parameters from each of the events evtl and evt2. Event
evtl has p? as an input parameter and evt2 has p! as an output parameter and
the resulting composition is p! itself an output parameter (like in CSP). This
property can be used to model message-passing systems: e3 sends a message to
e2 using the parameter p. Communication between input type parameters is also
possible but not with both output parameters since this could lead to a deadlock
state [1].

Action systems [12] provides a general description of reactive systems, capa-
ble of modelling terminating, aborting and infinitely repeating systems. Event-B
is inspired in action systems and can be seen as a realisation of actions systems
but using a combination of logic and mathematics as a formal language. Both
formalisms share the same refinement semantics. Therefore we claim that Event-
B has the same semantic structure and refinement definitions as action systems.
It is possible to make a correspondence between parallel composition in CSP
and an event-based view of parallel composition for action systems [T314].

Theorem 1. The shared event parallel composition of actions systems corre-
sponds to the CSP parallel-composition. The failure-divergence semantics of CSP
can be applied to action systems. The failure divergence semantics of action sys-
tem M in parallel with N, M || N is defined as:

[M || NT = [M] || [N]

where [M] and [N] are the failure divergence semantics of M and N respectively.
The proof of this theorem can be found in [15)].

The semantics of the parallel composition of action systems M and N corre-
sponds to the set of failure-divergence for each individual action system in par-
allel. From the correspondence between action systems and Event-B, M and N
can be refined independently which is one of the most important and powerful
properties that shared event composition in Event-B inherits from CSP. The
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monotonicity property for the shared event composition in Event-B is proved by
means of proof obligation in Sect. [£.3]

When sub-components are composed it is desirable to define properties that
relate the individual sub-components allowing interactions. These properties are
expressed by adding composition invariants Icp(s,c,vl,...,vm) to the com-
posed machine constraining the variables of all machines being composed.

Definition 2. The invariant of the parallel composition of machines M1 to Mn
with variables v1 to vn respectively is the conjunction of the individual invariants
and the composition invariant Icp (s, c,vl, ... on):

I(M1|| - || Mm) = Li(s,c,v1) A+ A Ly (s, c,om) Alcn (s, c,vl, ... on). (1)

In Fig.[1l composed machine M has as invariant the conjunction of the individual
invariants I(A || B) = I1a(s,c,vl) A Ig(s,c,v2,v3) plus possible composition in-
variant Ioas (s, ¢,v1,v2,v3). In a shared event composition the sub-components
have independent state space (variables are unique to each machine). Conse-
quently composition reasoning is simplified as there are no constraints between
state spaces of sub-components.

3.2 Shared Event Decomposition

Decomposition can be seen as the inverse process of composition: after some re-
finements a larger model may be decomposed into smaller components. This step
might be a consequence of complexity or just as an architectural decision. The
shared event approach is also used: events are shared between sub-components
and variable sharing is not allowed. Butler [I5] proposes a shared event decom-
position for Event-B inspired by CSP and action systems with event sharing
as seen in Fig. 2] We follow that work in our approach. Events using variables
allocated to different sub-components (e2 shares v1 and v2) must be split. The
part corresponding to each variable (e2’ and e2”) is used to create partial ver-
sions of the original event. After the decomposition, the individual machines can
be further refined since the composition relation holds. The possible recomposi-
tion of the sub-components (or their refinements) is a refinement of the original
composed component although this step should never be required in practice.
Figure [3| shows the decomposition of M1 into M3_0 and M/_0 that are further
refined into M8_m and M/_n respectively. At this stage a possible recomposition
of M3_m and M4_n into c¢M2 should be proved to be a refinement of M1.

4 Composed Machines: Composition and Refinement

We define a new construct composed machine, representing the shared event com-
position of Event-B machines. We aim to have a construct that remains reactive
to changes in the sub-components. Consequently the composition is structural.
The interaction of sub-components follows a “top-down” approach, representing
a refinement of an existing abstraction. To formalise the composition, it is nec-
essary to define composition and refinement POs. In the following sections, we
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Machine S
el e'2 e3 e4
v E v2 v3
(a)
Machine T Machine W
el e2' e2" e3 ed

) v2 v3

(b) ()

Fig. 2. Shared Event Decomposition of Machine S in Machines 7" and W with
shared event e2

introduce the structure of a composed machine, respective POs and prove the
monotonicity property.

4.1 Structure of Composed Machines

A shared event composed machine is expressed as the parallel conjunction of
sub-component properties. Machines are composed in parallel including their
properties and events: CM = M1 || --- || Mm as seen in Fig. |4l Moreover:

— The composed machine variables are all the sub-component variables (vq
from M1, vy from M2, ..., v, from Mm) and are state-space disjoint.

— The invariants of the composed machine are defined as Def.

— The composed events are defined according to Def.

When a composed machine is used as a combination of composition and refine-
ment, it refines an abstract model and just like in an ordinary machine, abstract
events must be refined. For instance, a composed machine C'M resulting from
the parallel composition of M1...Mm and refining abstract machine M0 can
be expressed as M0 & CM = MO C M1 || --- || Mm. Next we present the
required POs to verify composed machines.

4.2 Proof Obligations

POs play an important role in Event-B developments. POs are generated to
verify the properties of a model. For simplicity we define POs in terms of a
composition of two machines M; and M that refine machine My, but the rules
generalise easily to the composition of n machines. Furthermore context elements
in the formulas (s, ¢, A(s,c)) are not considered. The POs defined for standard
machines are [5]:



Shared Event Composition/Decomposition in Event-B 7

M1
decoy wposes
M3_0 M4 0
refines
refines refines
M3_m M4_n
composes ‘composes
cM2

Fig. 3. Decomposition, Recomposition and Refinement

COMPOSED MACHINE CM
INCLUDES M, ..., My,
VARIABLES v, ..., vm
INVARIANTS Icnm (S, ¢, v1,02,...,0m)
EVENTS

evt11 = M1l.evtyy || ... Mm.evtm

evti, = Ml.evtip, | ... Mm.evtm:
evtip
END

Fig. 4. Composed machine CM composing machines M1 to Mm seeing context
Ctx

— Consistency: Invariant Preservation (INV) and Feasibility (FIS)

— Refinement: Guard Strengthening (GRD), Simulation/Refinement (SIM) and
Gluing Invariant Preservation (INV)

— Variant: Numeric Variant (NAT), Numeric Variant Decreasing (VAR), Finite
Set Variant (FIN)

— Well-Definedness(WD)

These POs also are defined for composed machines except the ones related with
variant (no variant for composed machines). We simplify the composed machines
POs by assuming that the POs of the individual machines hold. We define the
additional POs necessary to ensure that the composed machine satisfies all the
standard POs. We consider that the POs of the M0, M; and Ms hold. The
respective composition POs are described as follows.

Consistency Consistency POs are required to be always verified. The feasibility
proof obligation for the composed event evtl || evt2 is FISe,i1|ecvta-
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Theorem 2. The individual FIS PO for each event can be reused for proving
feasibility for each composed event and that is enough to verify this property.
From [5):
FISepi1: Ii(v1) AGi(pr,v1) F 3vt-(S1(p1,v1, 1)) (2)
FIScvi2: I2(v2) A Ga(p2,v2) F Fvg-(S2(p2, v2,vs)) (3)
FIScut1jjevtz : Iom(vo,v1,v2) A Ti(vi) A L2 (v2) A Gi(pr,v1) A Ga(p2,v2) (4)
F Jvy, vh- (S1(p1, v1,v1) A Sa2(p2, v2,v3)).
Assume: FIS.u1 and FISeyo.
Prove: FIScy1|evt2-

Proof. Assume the hypotheses of FIS,1|jevr2-
Ica(vo,v1,v2)
I1(U1)/\G1(p1,111) (5)
I>(v2) A Ga(p2,v2). (6)
Prove: 3vi, vy (S1(p1,v1,v1) A S2(p2,v2,v3)). The proof proceeds as follows:

v, v5-(S1(p1,v1,v1) A S2(p2, va, v3))

= Jv1 - (S1(p1,v1, 1)) A vy (S2(p2, v2, v3)) {disjoint v1 and v2}
& (FISewis A FISeus). {@+6.G)+@)}

Another consistency PO is invariant preservation. In the composed machine,
invariant preservation PO INVg,, corresponds to the invariant preservation
in all events from the individual machines that are composed. The invariant
preservation proof obligation for the composed event evtl || evt2 is INVeyijevta-

Theorem 3. For each invariant i from the set of invariants I in a composed
machine, composition invariant I (vo, v1,v2) needs to be verified. From [5):

INVeyir : Ti(v1) A Gi(pr,v1) A Si(pr,vr,v1) b ia(vy) (7)
INVepo : Ia(va) A Ga(p2,v2) A Sa(pe,va, v5) I i2(vy) (8)
INVeviijjevez © Lom(vo, v1,v2) A Ti(v1) A Iz (v2)
A G1(p1,v1) A Ga(p2,v2)
A S1(p1,v1,v1) A S2(p2, va, v5)
F i1 (vh) Ad2(vs) Adoa(vo, v, v)
Assume: INVy1 and INVeyo.
Prove: INV 1 ||evt2-

Proof. Assume the hypotheses of INVey1|jevr2-
Ic s (vo, v1,v2)
Ii(v1) A G1(p1,v1) A S1(p1,v1, 1) (9)
I2(v2) A G2(p2,v2) A S2(p2, v2, V) (10)
Prove: i1(v}) Ad2(v3) A e (vo, vh,v5). The proof proceeds as follows:
i1(v1) Ad2(vy) Adca (vo, vy, v5)

< INVeytr A INVeyiz A e (vo, v1, vh). {@-+@). @)+ ()}
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Well-definedness for expressions (guards, actions, invariants, etc) needs to
be verified. These are verified by means of POs in Event-B [16]. For composed
machines, well-definedness POs are only generated for Icps(vo,v1,v2). Other
expressions are verified in the individual machines.

Refinement Refinement POs are required when the composed machine refines
an abstract machine. Machine M, with variables v, invariant Io(vy) and ab-
stract event evtq is refined by composed machine C'M defined by machines M;
with variables wy, invariant I1(wq), event evt; and My (ws ; Iz(ws); evts) and
composition invariant Jeoas(vo, wi, wz). The composed event evtl || evt2 refines
the abstract event evty. A general refinement PO (REF,,:;) for a machine M
refining event evti follows from:

REF. o1 = IZ(Ul) N J»;(’Ui, wi) A Hi(qi,wi) N Ti(qi7w¢,w§)
= 3vi-Gi(vi) A Si(pi, vi, i) A Ji (07, wp) (11)

Theorem 4. For each composed event evtl || evt2, refining abstract event evt0
through (gluing) composition invariant in a composed machine, the refinement
REF PO consists in proving the guard strengthening of abstract guards, proving
the simulation of the abstract variables (v() and preserving the gluing invariant

(Jem (v, wi, wh)). From [5] and (L1)):

INVewn i Ti(wi) A Hi(gr, wi) ATi(qr, wi, wy) b ia(wh) (12)
INVeuez : I2(w2) A Ha(g2,w2) A Ta(gz, wa, wh) b= iz(w) (13)
REF yi0c(evtifjevt2) © To(vo) A Ii(wi) A I2(wz2) A Jowm (vo, wi, we)
A Hi(gi,w1) A Ha(q2, we) ATi(q1, wi, wy) A Te(ge, wa, wh)
F Jvg-Go(po, vo) A So(po,vo,v5)
A Ii(wh) A Ta(ws) A Jon (vh, wh, ws).

Assume: TNV and INVeyeo (13)).
Prove: REFevtOE(evtIHeth) .

Proof. Assume the hypotheses of REF,,i0C (evt1fevt2). Prove: 3vh-Go(po,vo) A
So(po,vo,v) A T (wy) A In(ws) A Jem (vh, wh,ws). The proof proceeds as follows:

Fvg-Go(po, vo) A So(po, vo, vp)

A Li(wy) A I (ws) A Jom (vo, w, wh)
= Go(po,vo) A Il(wll) A 12(’11)/2)

A Fvi-(So(po, vo, o) A Jom (vg, wi,ws))  {A goal; vo, w,ws are free variables}
= Go(po, vo)

A Fvg- (So(po, vo, v5) A Jowm (v, wh,ws))  {from and (13)}

These are the required POs to verify composed machines. Next we show
that composed machines are monotonic which allows to further refine individual
machines preserving composition.
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4.3 Monotonicity of Shared Event Composition for Composed
Machines

An important property of the shared event composition in Event-B is monotonic-
ity. We prove it by means of refinement POs confirming the result described by
Butler [13] using actions systems and CSP. Figure [5| shows abstract component
specification M1 composed with other component specification N1, creating a
composed model M1 || N1. M1 is refined by M2 and N1 by N2 respectively.
Once we compose specifications M1 and N1, discharge the required composed
POs, M1 and N1 can be refined individually while the composition properties
are preserved without the need to recompose refinements M2 and N2. We want

CM1

[JM/\JN M IN
CcMm2

Fig. 5. Refinement of composed machine CM1 = M1 || N1by CM2 = M2 || N2

to formally prove the monotonicity property through refinement POs between
composed machines. Therefore if the refinement POs hold between C'M1 and
CM?2 then CM1: CM1 T CM?2. Events evtp;; in machine M1 and evtpss in
machine M2 are represented as:

evtpri =ANY PM WHERE G]\/[(pM,UJ\/[)THEN SM(pM,’UM,UM) END (14)
61)th ;ANY qm WHERE H]u(qM,’LUM)THEN T]u(qzw,wM,’LUE\/[) END (15)

The gluing invariant of the refinement between M1 and M2 is expressed as
Jar(var, war) relating the states of M1 and M2: M1 Cj,, M2. We can derive
the refinement PO between M2 and M1 for the concrete event ewvt,so refining
abstract event evts.

REFevtyy Cevtpgn @ Ini(var) A Jnr(vnr, war) A Gar(par, var) A Ha(gar, war)
A Snr(par, v, vir) A Taa (qar, war, why)

F v Gar(par, var) A Sar(par, var, viar) A Ju (Vi wiy). (16)

The refinement PO between N2 and N1 is similar. We refine an abstract event
in CM1 by a concrete one in CM?2 and verify that the refinement POs for each
individual machine hold for the composition. Event evtys; from machine M1 and
event evt 1 from machine N1 are composed, resulting in the abstract composed
event evtyry || evtny in CM1 from Fig. The gluing invariant relating the
states of CM1 and C'M2 is expressed as the conjunction of the gluing invariants
between (M1 and M2) and (N1 and N2):

Jom (vm, vv, wa, wn) = Jar (v, wa) A Jn (on, wi) (17)
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Theorem 5. The refinement POs for composed machines is expressed as the
conjunction of the refinement POs for the individual machines. Therefore the
monotonicity property holds if the refinement POs of individual machines hold.
The refinement PO between concrete composed event evt o || evtye and abstract
composed event evtpq H evtny 1S expressed as:

REF cot pp, |levtn1)C(evtarallevtns) = Am(var) AN (vn) A Jom (va, vn, war, wn)
A Har(gr, wanr) A Hy(gn, wi)
A Tar(gae,s wae, wiy) A T (gn, wa, wiy)
F 3vhy, v -G (par, var) A Ga (pn, vn)
A Sa (D, var, vag) A S (pn, vn, )

/\JCM('UEMavg\Uwﬁw7w3V)' (18)

Assume: REFeytyCevtays 004 REF eyt Cevtys-
PTO'Ue: REF(C’UtMl”G’UtNl)E(e’UtJWQHG’Uth)'

Proof. Assume the hypotheses of REF ¢y, |levtn)C(evtnslevins)-

Jom (var, vn, war, wn) = Jv (v, wam) A Iv(uv,wy)  {expanding Joa from }

IM(UM)/\HM(qM,wM)/\TM(qM,wM,wgw) (19)

In(on) A Hy(gn, wn) AT (gn, wn, wiy) (20)
PI'OVe: ElU;Mvvg\l'GM(pMavM) A GN(pNaUN) A SM(va/U1W7v5M) A SN(pN7vN7/U;V) A
Jem (Vi v, wiy, wiy). The proof proceeds as follows:

Fvns, v -G (par, var) A Gy (pn, vw)

A Snr(par, v, vir) A Sn(pn, on, Uiy )

A Jat (U, wiy) A In (v, wiy) {expanding Jeas from (I7)}
= i -Gar(var) A Sar(par, var, Vi) A Jar (Wi, why)

A iy -Gn(vn) A Sn(pn,vn, o) A I (v, wi) {disjoint v}s,vN}
< REFeyt  Cevipgg N REFeyty Cevt g {+7+}

We also need to prove the monotonicity for single (non-composed) events that
appear at both levels of abstraction. We shall prove it using machines M1 and
CM?2. In this case, the gluing invariant described in does not use neither
the variables (vy) neither the invariants(Iy) neither events (evty;) from N1.
Therefore it can be simplified and rewritten as:

JCM(UM,wM7’LUN):JM(’UN[,H)]\/[)/\JN(U)N) (21)
Deriving from , the goal of INVey,,s(evty, can be expanded to:
Jom (W, why, wiv) = jar (Ui, wir) A jn (wiy) (22)

where jj; and jy correspond to each invariant from the set of gluing invariants
Jyr and Jy respectively.

Theorem 6. An individual event evt 1 in machine M1 is refined by a composed
event evtprs || evtne in composed machine CM2. The monotonicity is preserved
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if the refinement PO between M1 and M2 hold in conjunction with the gluing
invariant preservation PO for the composed event evtyro || evine. The refinement
PO between concrete composed event evtpss || evtne and abstract non-composed
event evtyrq:

REF ity C(evtprallevtns) = Aa(var) A Jom (var, war, ww)
A Hyr(gu, wan) A Hy (g, wn)
A T (qar, war, wir) AT (gn, wn, wiy)
F i Gar(par, var) A Sae(par, var, Vi)

A Jenr (Vi Wiy, W ). (23)

Assume: REF ey, Cevty, 0nd INV,
Prove: REFeyt,,,C(evtars|levtns)-

vtz |levine

Proof. Assume the hypotheses of REF, ;. C(evtys|levtns)-

Jem (va, war, w) = Iy (o, wa) A v (wy)  {expanding Joar from (21)}.
Ine(var) A Har(gar, war) A Tar(qae, war, wiy) (24)

Hn(qn,wn) AT (gn, wn, wiy)

And the hypotheses of INV,

vtpare ||evtN2 .

Jom(vm, war, wn) = Ju(vv, wm) A Jv(wn)  {expanding Joar from }
Ing(var) A Har (g, war) A Tar(qar, war, wi)

W (Vs war, W, qar, N, Whe, W) (25)
Hy(qv, wn) AT (gn, wn, wiy) (26)

Prove: HUM‘GM(])M,’UM) A S]\j(p]u,”UM,'U;V[) A JCM(U§\/171U3\/[71U5\7) . The pI‘OOf pro-
ceeds as follows:

s -Gar(par, var) A Sar(par, var, Vi)
A Jen (Vi Vv, Wiy, wiv)

= Iy -Gm(pa,var) A Sv(par, v, U;\/I)

A Jnr (Vg wie) A I (wy) {expanding Jeas from (21)}
= -G (par, var) A Sat (g, var, ar) A Jar (Vg , wihy)

A In (W) {disjoint vj,}
& REFeut ) Cevipgo

A Jn(wiy) {{)+Ea}
< REFeyt ), Cevipgo

ANINVestprollevtna {++}

New events can be added during refinement. They must respect the refine-
ment POs. The refinement PO proof for new events is similar to the previous
cases but applied to a single event refined by composed event. Due to the lack
of space we do not present it here.
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5 Decomposition Guideline

Based on the work developed for composition, its properties and the inverse re-
lation between composition and decomposition, we develop a methodology to
partition models in a shared event style. As described in Sect. in a shared
event decomposition approach, the variables of a system are separated into dif-
ferent sub-components and consequently the rest of the system is decomposed.
We present the steps that are required in order to process during decomposition.

Variables: From the modeller’s point of view, the decomposition starts by defin-
ing which sub-components are generated. The following step is to define the
partition of variables over the sub-components. The rest of the model de-
composition (events, parameters, invariants, contexts) is a consequence of
the variables allocation as defined below.

Invariants: The decomposition of the invariants depends on the scope of the
variables. It is still not very clear which invariants should be retained in the
decomposition except the ones related with variable type definition. Further
invariants need more study to determine their partition. It seems that they
should depend on the input of the user since they might be a constraint
of the composed component and not a requirement of the sub-component.
When an invariant clause is required but uses variables placed outside the
scope of a sub-component, a further refinement of the composed component
might be required to make an explicit separation of the variables. An option
is to duplicate variables, suggested by Butler [I7JI8].

Events: The partition of the events depends on the partition of the variables.
When the decomposition occurs, parameters are shared between the decom-
posed events. But the guards referring to that parameter can be different in
each decomposed event. The guard of a decomposed event inherits the guard
on the composed event according to the variable partition. For example, let
us consider event el:

el = WHEN ¢ = TRUE THEN a:=b || ¢:= FALSE

where variables a and b are of type DAT A and variable c is a Boolean. This
event is enabled when ¢ is TRUE and results in a being assigned the value
of b and this event being disabled by assigning ¢ to FALSE. If this event is
decomposed such that variable a belongs to one sub-component and variables
b and ¢ belong to another, then the action b := m needs to be split. Although
the original event does not have parameters, the decomposed events have a
new parameter p. During the decomposition, that assignment is divided into
three steps and a parameter p is introduced:

a:=bspe DATAANp=bAa:=p

Parameter p receives the value of variable b. Then the value of p is assigned
to variable a. The resulting decomposed events are:

el’2 ANY p WHERE p = b A c=TRUE THEN c:= FALSE
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el” = ANY p WHERE p € DATA THEN a :=p

These corresponds to the value passing of parallel events similar to suggested
by Butler [13] for action systems based on CSP: for event el’, parameter p
has a output behaviour as it is written by the value of b; in event el”,
parameter p has an input behaviour has the value is read and assigned to
variable a.

The events in the sub-components resulting from the decomposition maintain
the interface of the original events, preserving the parts corresponding to the
variables that belongs to each sub-component.

6 File Access Management case study

A distributed system is presented where a system is decomposed into two smaller
parts. A specification of a file management system is developed: files containing
DATA can be created, read, overwritten, deleted and sent to other users. Each
file has an owner. The owners are users with clearance level ranging from 1 to
10 where 10 is the highest level. A super user exists with clearance level 10.
Moreover, files have a classification level varying from 1 to 10. Permission is
needed in order to read, modify or delete a file. When the permission is granted,
the requested action can take place.

Machine File AccessManagement contains variables user, file, fileData (con-
tains the data of each file) and fileStatus (defines the status of a file operation
and can have the states SUCCESS or FAILED). When a file is created or sent,
variable fileStatus is updated accordingly to the result of the operation. The sta-
tus of a file must be reset (in event clearFileStatus ) to allow a new operation in
the same file. The access management is defined by variables userClearanceLevel,
permission, fileClassification and fileOwner. A user can change the clearance of
another user as long as the former has a clearance level superior to the latter
as described in event modifyUser (guard grd3 in Fig. [6[b)). For all the other
operations, permission is required and it is granted by the non-deterministic
action in event requestPermission. When a permission is granted, a file can be
read, modified, deleted or sent to another user. A file can only be modified by
users with a clearance level superior to the file classification (guard grd8 in event
overwriteFile). To delete a file, described in event deleteFile, the user must be
the owner of the file or be the super user as described by guard grd.

Our intention is to separate the management of permissions (administrative
task) from the modification of the files in the disk (writing, reading tasks). The
result are two sub-components, AccessMng and FileMng that deal with differ-
ent parts of the system. An advantage of this decomposition is that it becomes
easier to define specific properties to each part without additional constraints
of the other part. For instance, an administrative task of AccessManagement
is to have a quota of disk per user which is irrelevant to FileMng. Overwrit-
ing a file in the disk is relevant to FileMng but not to AccessMng that deals
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variables userClearancelLevel permission
fileClassification fileOwner user file
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fileData fileStatus

invariants
@invl file ¢ FILE
@inv2 user c USER

@inv4 permission € PERMISSION
@inve fileOwner e file — user
@inv7 fileData € file — DATA
@invg fileStatus e file +» STATUS

@inv10 fileOwner e file — user
@invll Vf-f e file =

@inv3 userClearancelLevel € user — ClearancelLevel

@inv5 fileClassification € file — Classification

@inv9 ran(fileStatus) ¢ {SUCCESS, FAILED}

userClearancelLevel(fileOwner(f)) > fileClassification(f)

(a)

event addUser
any uu
masterUser
newUserClearancelLevel
where
@grdl uu e dom(userClearancelevel)
@grd2 newUserClearanceLevel € ClearanceLevel
@grd3 newUserClearancelLevel < userClearancelLevel(uu)
@grd4 masterUser # uu
@grd5 wu # super
@grd6 Vf-f e dom(fileClassification) A fileOwner(f)=uu
= newlserClearancelLevel>fileClassification(f)
@grd7 uu & user
@grd8 masterUser € user
then
@actl userClearancelevel(uu)= newUserClearancelLevel
@act2 user = user v {uwu}
end

event modifyUser
any uu
mastertUser
newUserClearancelLevel
where
@grdl uu € dom(userClearancelLevel)
@grd2 newUserClearanceLevel € ClearanceLevel
@grd3 newUserClearancelLevel < userClearancelLevel(uu)
@grd4 masterUser # uu
@grd5 wu # super
@grd6 Vf+f e dom(fileClassification) A fileOwner(f)=uu
= newlUserClearancelLevel>fileClassification(f)
then
@actl userClearancelLevel(uu)= newlUserClearancelLevel
end

vent overwriteFile
any ff dd cl v
where
@grdl ff e file
@grd2 dd € DATA
@grd3 dd = fileData(ff)
@grd4 uvedom(userClearancelLevel)
@grd5 cl € Classification
@grd6 permission = ALLOWED
@grd7 ff e dom(fileClassification)
= cl = fileClassification(ff)
@grd8 userClearancelLevel(u)>cl
then
@actl fileData(ff)=dd
@act2 fileClassification(ff)= cl
@act3 permission = OFF
@act4 fileOwner(ff)= u

event deleteFile
any ff
u
where
@grdl ff e file
@grd2 u € user
@grd3 permission = ALLOWED
@grd4 ff e dom(fileOwner)
@grd5 u e {super,fileOwner(ff)}
then
@actl file=file\{ff}
@act2 fileData={ff}<fileData
@act3 fileStatus={ff}<fileStatus
@act4 fileClassification={ff}<fileClassification
@act5 permission = OFF
@act6 fileOwner={ff}<fileOwner
end

event sendFile

any ff recipient u fs cl

where
@grdl ff e file
@grd2 u € user
@grd3 recipient € user
@grd4 ff ¢ dom(fileStatus)
@grd5 fs € {SUCCESS,FAILED}
@grd6 u # recipient
@grd7 vedom(userClearancelLevel)
@grd8 cl € Classification
@grd9 permission = ALLOWED
@grd10 ff € dom(fileClassification)

= ¢l = fileClassification(ff)

@grdll userClearancelLevel(u)>cl

then
@actl fileStatus(ff) = fs
@act2 fileClassification(ff)= cl
@act3 permission = OFF
@act4 fileOwner(ff)= u

end

event requestPermission
where
@grdl permission # ALLOWED
then
@actl permission:e PERMISSION\{OFF}
end

event clearFileStatus
any ff
where
@grdl ff e dom(fileStatus)
@grd2 fileStatus(ff)e{SUCCESS,FAILED}
then
@actl fileStatus = {ff}<fileStatus
end

(b)

Fig. 6. FileAccessManagement: variables, invariants (a) and some events (b)
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with the users that are allowed to execute this action is not. Therefore we de-
compose FileAccessManagement into two sub-components as described in the
next section.

6.1 Decomposition FileAccessManagement: AccessMng and
FileMng

Following the steps suggested in Sect.[5] the variables of File Access M anagement
need to be allocated to sub-components AccessMng and FileMng as described
in the following table:

FileMng AccessMng
Variables file,user, userClearanceLevel,permission,
fileData,fileStatus| fileOwner,fileClassification

The distribution of events can be seen on the composed machine described in

Fig. [7

COMPOSED MACHINE FileAccessManagement
INCLUDES
AccessMng, FileMng
EVENTS
addUser
Combines Events AccessMng.addUser || FileMng.addU ser
modifyUser
Combines Events AccessMng.modifyUser
createFile
Combines Events AccessMng.createFile | FileMng.createFile
readFile
Combines Events AccessMng.readFile || FileMng.readF'ile
overwriteFile
Combines Events AccessMng.overwriteFile || FileMng.overwriteFile
deleteFile
Combines Events AccessMng.deleteFile || FileMng.deleteFile
sendFile
Combines Events AccessMng.sendF'ile | FileMng.sendF'ile
requestPermission
Combines Events AccessMng.requestPermission
clearFileStatus
Combines Events FileMng.clear F'ileStatus

Fig. 7. Composed machine FileAccessManagement

Some events are specific to a sub-component: events modi fyU ser and
request Permission belong to AccessMng while clearFlileStatus belongs to
FileMng. The majority of the events are decomposed between the two sub-
components and when they are synchronised and occur in parallel, they refine
the original event before the decomposition. The resulting sub-components can
be seen in Figs. [§l and [} Compositon and decomposition are combined when
modelling this system: the decomposition partition the model in sub-components
based on the variables and the composition expresses how the decomposed events
interact. Silva et al [I9] present a decomposition tool that permits the semi-
automatic decomposition in a shared event or shared variable style. Our case
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machine AccessMng sees User (@ AccessManagement C@ FileManagement CO
variables userClearancelevel permission fileClassification fileOwner

invariants
theorem @typing userClearancelevel userClearancelLevel € P(USER x Z)
theorem - fileOwner € P(FILE x USER)
theorem g on permission € PERMISSION
theorem @typing fileClassification fileClassification € P(FILE x Z)

(a)

machine FileMng sees User_CO AccessManagement CO FileManagement CO

variables file user fileData fileStatus

invariants
theorem g fileStatus fileStatus e P(FILE x STATUS)
theorem g file file e P(FILE)
theorem ¢ user user € P(USER)
theorem @ fileData fileData e P(FILE x DATA)
@FileAc ent invl file ¢ FILE
ent_inv2 user ¢ USER

2
ent inv7 fileData € file — DATA
jement inv8 fileStatus e file -+ STATUS
@FileAccessManagement inv9 ran(fileStatus) ¢ {SUCCESS, FAILED}

(b)
Fig. 8. AccessMng (a) and FileMng (b): variables and invariants

study was run using this tool and we show that we can integrate the shared
event decomposition in cooperation with composition (and respective composi-
tion tool [20]).

One of the properties of the shared event composition is monotonicity. There-
fore sub-components can be further refined independently preserving the verified
properties while composed. For instance, machine AccessMng can be refined by
defining a more deterministic event requestPermission based on the kind of oper-
ation and the user that intends to execute the operation. For machine FileMng,
the event sendFile can be further refined by introducing a queue where events
would be stored before being processed (create a new file own by the recipient of
the file). The independent refinement of the sub-components results in a sepa-
ration of behaviours and properties that can be verified without the interference
of other sub-components.

7 Conclusions

Composition allows the interaction of sub-components. Back [2I], Abadi and
Lamport[22] studied the interaction of components through shared variable com-
position. Jones [23] also proposes a shared variable composition for VDM by
restricting the behaviour of the environment and the operation itself in order to
consider the composition valid using rely-guarantee conditions. In Z, composi-
tion can be achieved by combining schemas [24] where variables within the same
scope cannot have identical names or by views [I] allowing the development of
partial specifications that can interact through invariants that relate their state
or by operations’ synchronisation. Although systems are developed in single ma-
chines in classical B, Bellergarde et at [25] suggest a composition by rearranging
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event addUser
any uu masterUser newUserClearancelLevel
where
ping uu wu € USER
ning rU masterUser € USER
@typing Clearancelevel newUserClearancelLevel € Z
@yrdl uu e dom(userClearancelLevel)
@grd2 newUserClearancelLevel € ClearancelLevel
@grd3 newUserClearancelLevel < userClearancelevel(uu) event addUser
@rd4 masterUser # uu any uu masterUser newUserClearancelLevel
agrds uu # super
@grd6 V7 f e dom(fileClassification) A fileOwner(f)=uu
= newUserClearancelevel>fileClassification(f)

g uu uu € USER
m User masterUser € USER

then
@actl userClearancelevel(uu)= newlUserClearancelLevel
end

g.r rClearancelevel newUserClearancelevel € Z
2 newUserClearancelLevel € ClearancelLevel
\ masterUser # uu
d5 uu # super
7 uu e user
d8 masterUser € user

event overwriteFile
any ff dd cl u

where
ping u u € USER 2 user = user u {uu}
yping ff ff € FILE
atyping cl cl e Z
@yrd2 dd € DATA event overwriteFile
@grd4 uedom(userClearanceLevel) any ff dd cl
@grd5 cl e Classification where
@rd6 permission = ALLOWED @typing ff ff € FILE
@grd7 ff e dom(fileClassification) @t clclez
= cl = fileClassification(ff) ff e file
@rds userClearancelevel(u)>cl dd € DATA

then 3 dd = fileData(ff)
@act2 fileClassification(ff)= cl yrd5 ¢l € Classification
@act3 permission = OFF then
gact4 fileOwner(ff)= u @actl fileData(ff)=dd
end end
event deleteFile event deleteFile
any ff u any ff u
where where
atyping u u € USER @typing u u e USER
@typing ff ff e FILE @typing ff ff € FILE
@grd3 permission = ALLOWED rdl ff e file
@grd4 ff e dom(fileOwner) @rd2 u € user
@rd5 u € {super,fileOwner(ff)} then
then @actl file=file\{ff}

@act4 fileClassification={ff}<fileClassification
@act5 permission = OFF
gact6 fileOwner={ff}<fileOwner end

2 fileData={ff}<fileData
@act3 fileStatus={ff}<fileStatus

Fig. 9. AccessMng (a) and FileMng (b): decomposed events addU ser,
overwriteFile and deleteFile

separated machines and synchronising their operations under feasibility condi-
tions. The behaviour of a component composition is seen as a labelled transition
system using weakest preconditions, where a set of authorised transitions are
defined. The objective is to verify the refinement of synchronised parallel com-
position between components but it is limited to finite state transitions and a
finite number of components. This work differs from ours as it uses a labelled
transition system including a notion of refinement and variable sharing while we
use synchronisation and communication in the CSP style. Butler and Walden [26]
discuss a combination of action systems and classical B by composing machines
using parallel systems in an action system style and preserving the invariants of
the individual machines. This approach allows the classical B to derive parallel
and distributed systems and since the parallel composition of action system is
monotonic, the sub-systems in a parallel composition may be refined indepen-
dently. This work is closely related to our work with similar underlying semantics
and notion of refinement based on CSP. Abrial et al [6] propose a state-based de-
composition for Event-B introducing the notion of shared variables and external
events. Although it allows variable sharing, this approach is also monotonic but
its respective nature is more suitable for parallel programs [27]. Sorge et al [2§]
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propose a feature composition in Event-B and define composition POs to ensure
its consistency. In the feature composition approach, exploration of specifica-
tions’ composition with possible variable sharing (similar to the shared variable
style) is allowed but no refinement is defined which differs from our work. Never-
theless similar to our work, sub-components POs are reused to avoid re-proving
composition POs.

Our Event-B composition and decomposition is based on the close relation
between action systems and Event-B plus the correspondence between action
systems and CSP [I3]. Shared event composition is proved to be monotonic by
means of POs. Refinement in a “top-down” style for developing specifications
is allowed. Sub-components interact through event parameters by value-passing
and can be further refined. We extend Event-B to support shared event com-
position, allowing combination and reuse of existing sub-components through
the introduction of composed machines. Such an approach seems suitable for
modelling (distributed) systems. We combine composition and decomposition
and suggest a methodology for modelling systems including the verification of
properties through the generation of POs and refinement. We do not address
the step corresponding to the translation of this composition to an implementa-
tion. This study needs to be carried out in the future. A file access management
system is decomposed into two independent parts with a separation of their
logics: file management and access management. Possible refinement for each
sub-component are suggested to carry on this development. Other case stud-
ies have been applying composition with success in particular for distributed
systems such as the decomposition of a safe metro system.
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