

The Tony Davies High
Voltage Laboratory

UNIVERSITY OF
Southampton
School of Electronics
and Computer Science

Affect of Photo-oxidation Products on Electroluminescence Emission and Conduction Current of LDPE

David H. Mills, Paul L. Lewin and George Chen
13th April 2011

Introduction

- Ageing of high voltage insulation
 - Interest in mechanisms behind ageing process
 - Improving dielectric design and life time estimation
 - Role of charge trapping and movement in material ageing.
- Artificial ageing
 - Generation of oxidation products and cross-linking
 - Affect on charge injection, trapping and recombination

Experiment

- Chosen a standard polymeric system
 - 100 μm low density polyethylene (LDPE) films
 - Ultraviolet ageing with peak emission of 253.7nm
- UV affect
 - Electrical changes and chemical structure
 - Charge movement in the bulk and near the electrode-polymer interface.

What is Electroluminescence?

- Low level light emission from electrically stressed polymers
- Bipolar recombination of charge carriers
 - AC stress, emission is thought to originate near the electrode-polymer interface.
 - Emission peaks in first and third quadrants

Ageing Process

- Experiment setup
 - 36 W UV fluorescent tube with peak emission at 253.7 nm
 - Samples mounted away from reflective back wall
 - Fan oven at constant 40 °C
 - 100 µm LDPE film
 - Aged in 3 and 7 day intervals up to 17 days.

Fan oven at 40°C

The Tony Davies High
Voltage Laboratory

UNIVERSITY OF
Southampton
School of Electronics
and Computer Science

Ageing Effects

Dielectric Strength

- ASTM D149 standard (50 Hz, 50 V/s ramp, 6.3 mm steel ball bearings)
- Reduced breakdown strength with ageing
- Reduced uniformity

Sample Age	α Value (kV/mm)	β Value
Virgin	160.1 ± 1.2	43.0
7 Days	154.4 ± 2.5	19.9
17 Days	151.1 ± 2.7	17.7

2 Parameter Weibull Distribution

$$P_f(x) = 1 - \exp \left[- \frac{(x - x_t)^\beta}{\alpha} \right]$$

FTIR spectra – Oxidation Products

- Increased Carbonyl and Hydroxyl groups
- No effect due to 40 °C temperature
- Chemical (deep) trapping sites

Dissolving in Xylene – Cross-linked

- Samples dissolved in boiling Xylene for 1 hour and then dried.
- Initially large increase in cross-linking
- Cross-linking reduces as ageing time continues

The Tony Davies High
Voltage Laboratory

UNIVERSITY OF
Southampton
School of Electronics
and Computer Science

Charge Transport

Pulsed Electro-Acoustic (PEA) Experiment

- 40 minutes charging,
20 minutes decay
- 40 kV/mm dc field,
calibrated at 10 kV/mm
- Top electrode –
semiconducting polymer
- Bottom electrode -
aluminium

PEA Results

Total Bulk Charge

The Tony Davies High
Voltage Laboratory

UNIVERSITY OF
Southampton
School of Electronics
and Computer Science

Electroluminescence

Electroluminescence Experiment

- Experiment under dry nitrogen at 1 bar above atmospheric.
- 50 Hz, sinusoidal field.
- Gold sputter coat \sim 20 nm each side.
- Total EL emission during 1 ac cycle, averaged over 100 cycles.

Electroluminescence Results

- Increased EL and cross-linking initially.
- Increased cross-linking maintained, reduced EL with further ageing.

Electroluminescence Results

- Carbonyl absorbance taken at 1714 cm^{-1}
- Oxidation products are seen to increase with ageing time.

Electroluminescence Results

- Measured bulk charge after 40 minutes.
- Initially bulk charge reduces up to 7 days
- Further ageing increases bulk charge

Conclusions

- This initial work aims to improve understanding in the role of charge movement in the ageing of high voltage insulation
- LDPE was UV aged, resulting in:
 - A reduction in dielectric strength
 - Increased cross-linking
 - Increased oxidation products

Conclusions Continued

- Experiments to investigate charge movement showed:
 - Initially less charge is trapped within the bulk but this increases with further ageing.
 - Initially stronger electroluminescence but this reduces with further ageing.
- A build up of charge traps near the electrode-polymer interface limits charge injection into the bulk. Continued ageing shows greater oxidation allowing for charge injection and trapping within the bulk of the polymer.

