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We introduce a new multiscale Fourier-based object description in 2-D space using a low-pass Gaussian
filter (LPGF) and a high-pass Gaussian filter (HPGF), separately. Using the LPGF at different scales
(standard deviation) represents the inner and central part of an object more than the boundary. On the
other hand using the HPGF at different scales represents the boundary and exterior parts of an object
more than the central part. Our algorithms are also organized to achieve size, translation and rotation
invariance. Evaluation indicates that representing the boundary and exterior parts more than the
central part using the HPGF performs better than the LPGF-based multiscale representation, and in
comparison to Zernike moments and elliptic Fourier descriptors with respect to increasing noise.
Multiscale description using HPGF in 2-D also outperforms wavelet transform-based multiscale contour
Fourier descriptors and performs similar to the perimeter descriptors without any noise.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Silhouette-based object description and recognition is an
important task in computer vision. The descriptor must be
invariant to size, translation and rotation, and it must be effective
in adverse conditions such as noise and occlusion. There are two
main types of shape description methods: boundary-based meth-
ods and region-based methods.

1.1. Boundary-based shape descriptors

In boundary-based methods only the boundary pixels of a
shape are taken into account to obtain the shape representation.
Boundary-based techniques have some limitations. First, they are
generally sensitive to noise and variations of shape, since they
only use boundary information. Second, in many cases, the object
boundary is not complete with disjoint regions or holes. Region-
based methods can overcome these limitations. The most com-
mon boundary-based shape descriptors are Fourier descriptors
[1-4], wavelet descriptors [5], wavelet-Fourier descriptors [6-8]
and curvature scale space (CSS) [9].

Shape representation using Fourier descriptors is easy to
compute and robust. Fourier descriptors are obtained from the
Fourier transform on a shape signature. The shape signature is a
1-D function that represents the shape derived from the boundary
points of a 2-D binary image. Many shape signatures exist such as,
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centroid distance, complex coordinates (position function), cur-
vature and cumulative angle [10,11]. Geometric invariance can be
achieved at the shape signature extraction stage or after the
Fourier transform by normalizing Fourier coefficients appropri-
ately, which depends on the choice of shape signature type. The
lower frequency descriptors contain information about the gen-
eral features of the shape and the higher frequency descriptors
contain finer details of the shape.

Wavelet descriptors are derived from wavelet transform on a
1-D shape signature. The wavelet transform can be considered as
a signal decomposition onto a set of basis functions. It has
multiresolution, denoising and feature extraction capabilities.
Chang and Kuo [5] used 1-D discrete periodized wavelet trans-
form to describe shapes. However, the matching schema was
more complicated than for Fourier descriptors. Kunttu et al. [6-8]
introduce multiscale Fourier descriptors using wavelet and Four-
ier transforms. The multiscale contour Fourier descriptors are
obtained by applying the Fourier transform to the coefficients of
the multiscale complex wavelet transform.

McNeil and Vijayakumar [12] introduced perimeter and radial
descriptors. In this work, shapes are represented by a large
number of points from their boundaries. These points are selected
at fixed intervals in terms of distance along the boundary
(perimeter distance) or radial angle. Then, a probabilistic corre-
spondence-based algorithm, which also incorporates with scale,
translation and rotation invariance, is applied for shape matching.
Later on, McNeil and Vijayakumar [13] improved their algorithm
by segment-based shape matching, which can overcome limita-
tions of global shape matching such as independent movement of
parts or smooth deformations. There are also some recent
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advances in boundary-based shape description and classification
techniques such as using the inner-distance [14], based on the
contour flexibility [15] and based on the two perceptually
motivated strategies [16].

Multiscale shape description is the most promising approach
for recognition. Different features of the shape can be obtained at
different scales and the combination of these features can
increase discrimination power, so increasing the correct classifi-
cation rate. In addition, it is more robust to noise since
the dominant features are those that persist across scales. There
are many boundary-based multiscale description techniques
[6,9,17,18,19].

One of the most influential techniques is curvature scale space
(CSS) introduced by Mokhtarian and Mackworth [9]. This method
uses the scale space framework in 1-D space [20]. The boundary
of a shape is filtered by LPGF of varying scales (standard devia-
tion). For each specific scale, the locations of those curvatures
zero crossings designated as one and otherwise as zero. The
binary CSS image, which is generated by the location and scale
in the horizontal and vertical axes, is used for matching.

Adamek and O’Connor [17] proposed a multiscale representa-
tion for a single closed contour that makes use of both concavities
and convexities of all contour points. It is called multiscale
convexity concavity (MCC) representation, where different scales
are obtained by smoothing the boundary with LPGF of different
scales. There are also other boundary-based mutiscale description
techniques such as graph-based approach [18] and triangle-area-
based approach [19].

1.2. Region-based shape descriptors

In region-based methods, all the pixels within a shape are used
to obtain the shape representation. Popular region-based shape
descriptors include moments [4,21] and generic Fourier descrip-
tors (GFDs) [22]. There are different types of moments and they
can be classified as non-orthogonal and orthogonal moments
depending on the basis function used. Geometric moments [23]
are the first and simplest type of moments, which has been used
for character recognition. They use non-orthogonal basis func-
tions called a monomial. Low-order moments capture global
description, whereas as the order increases, more detail is
captured. The main problem with geometric moments is the high
degree of information redundancy, because of a non-orthogonal
basis function (monomials) is used. If the basis functions are
orthogonal then each moment should highlight independent
features. Teague [24] proposed Legendre moments that use
Legendre polynomials as basis functions. These polynomials are
orthogonal and cause Legendre moments to extract independent
features within the image, with no information redundancy. This
property also provides good reconstruction capability. These
moments are based on Cartesian coordinates but the image
function has to be mapped to a specific range of values. Zernike
moments were also first proposed by Teague [24] and are based
on the complex valued Zernike polynomials. These polynomials
are defined in polar coordinates, which help to achieve rotation
invariance. Zernike moments were found to be the best perform-
ing type of moment in image analysis and description task in
terms of noise resilience, information redundancy and reconstruc-
tion capabilities [25].

Generic Fourier descriptors (GFD) [22] are other popular
region-based shape descriptors. A 2-D Fourier transform is
applied on a polar raster sampled shape image. The translational
invariance is achieved due to using the shape centroid as origin in
polar transform. The obtained polar Fourier coefficients represent
translation and rotation invariant features. The scale invariance is

achieved by normalizing the polar Fourier coefficients. GFDs
capture features of the shape in both polar and radial directions.
GFDs are simple to compute and efficient.

Although many boundary-based multiscale description tech-
niques exist, there is no region-based multiscale description
technique in the image space. It is important to note that
moments and GFDs are multiscale approach in the feature space,
but not in the image space. In our work, we introduce image-
based multiscale description using LPGF and HPGF, separately.
The LPGF applies smoothing to the object and as scale (standard
deviation) decreases, it causes loss of boundary and exterior
regions. Therefore using the LPGF at different scales focuses on
the inner and central part more than on the boundary of an
object. On the other hand, using the HPGF at different scales
emphasizes the boundary and exterior parts of an object more
than the central part. Our algorithm is organized to achieve size,
translation and rotation invariance. By classifying objects with the
HPGF-based multiscale description, increase immunity to noise as
well as increase correct classification rate is observed. Evaluation
indicates that the HPGF-based multiscale representation performs
better than the LPGF-based multiscale representation, and in
comparison to Zernike moments and elliptic Fourier descriptors
with respect to increasing noise. Multiscale description using
HPGF in 2-D also outperforms wavelet transform-based multi-
scale contour Fourier descriptors and performs similar to the
perimeter descriptors without any noise. Note that part of this
work and the preliminary version were presented in [26,27],
respectively. In this paper, we extend the basis and evaluation of
the new multiscale shape description technique. We investigate
and compare single scales (filtering at different scales) and
average distance results of LPGF- and HPGF-based representation
with respect to increasing noise in the MPEG-7 dataset [28]. We
also compare the proposed descriptors with wavelet transform-
based multiscale contour Fourier descriptors [6] and with the
perimeter descriptors [12]. In addition, we experiment the pro-
posed multiscale shape description on Swedish leaf dataset [29],
which is a real and challenging dataset. We also have time
evaluations for our model and for other models on two different
databases.

2. Fourier-based description with multiscale representation
in 2-D space

We produce multiscale Fourier-based object descriptors in 2-D
space. For this purpose, we investigate the LPGF and the HPGF,
separately. The new algorithm starts with size normalization of
an object using bilinear interpolation in an image. We choose
bilinear interpolation, since it scales better than nearest neighbor
interpolation and it is faster than bicubic interpolation. The object
size (the sum of intensities over the image) and the image size are
determined experimentally depending on the database to locate
each object in the image without any occlusion with image edges.

We also note that it is optional to centralize object in the
image, since the next step is 2-D Fourier transform, as given in
Eq. (1), which provides translation invariance:

M-1 N-1

FT(u,v) = ﬁ Z Z [(X,y)e[*ﬂﬂ((ux/l\/l)+(VY/N)] (1)
x=0y=0

where FT(u, v) is Fourier transform of the silhouette image I(x, y).
M x N is the size of the silhouette image.

We also note that there is no “windowing” operation before
the Fourier transform. The Fourier transform treats an image as it
is part of a periodically repeated set of images extending hor-
izontally and vertically to infinity, which can cause strong edges
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between the neighbors of the periodic image. Therefore, the
Fourier transform is the combination of the actual Fourier trans-
form of the given image and that caused by the edge effects at
image neighbors. These edge effects can be significantly reduced
by using “windowing” operations, which in general makes image
values zero towards edges. In our application, the given image is a
pre-segmented object on a zero-valued background. Since the
object does not occlude image edges, the image values are already
zero towards image edges, and there is no need for a “window-
ing” operation.

In general, the result of the Fourier transform is a complex
number and the transform can be represented in terms of its
magnitude and phase. The magnitude describes the amount of
each frequency component and the phase describes timing, when
the frequency components occur. Here, we choose to use the
Fourier magnitude image, which is translation invariant. How-
ever, the phase also carries considerable information that is
discarded here. Oppenheim and Lim [30] showed that if we
construct synthetic images from the magnitude information of
one image and the phase information of another, we perceive
mostly the image corresponding to the phase data. We leave
investigation of the phase information as future work and con-
tinue with the magnitude information.

tion invariant, however it retains rotation. Given the shift opera-
tion (the =zero-frequency components are at the center),
multiscale generation is achieved at this stage. To represent the
inner and central part of an object more than the boundary, an
LPGF with a selection of scale parameters (standard deviation) is
applied to the Fourier magnitude image as shown below:

|FT(w,v)|° = |FT(u,v) (e~ +v/209) )

where |FT(u, v)|* and o, are Fourier magnitude and scale para-
meter of scale index s, respectively. This method is generating the
scale space [20] of the object in 2-D as shown in Fig. 1. It is
observed that the LPGF smoothes the object and as scale
decreases, it causes loss of the boundary and exterior regions.
The LPGF emphasizes lower frequency components, but retains
some contribution of higher frequency components.

EIEIE)
EIEIE)

Fig. 1. Horse object filtered by LPGF with respect to decreasing scale: (a) 6,=20, (b) g,=15, (

On the other hand, to represent the boundary and exterior
parts of an object more than the central part, an HPGF with a
selection of scale parameters (standard deviation) is similarly
applied to the Fourier magnitude image as shown below:

[FT(w,v)|° = |FT(w,v)|(1—e® +v)/200) 3)

Filtering with the HPGF at different scales is illustrated in
Fig. 2. It is observed that the HPGF detects the object boundary
and as scale decreases, it represents exterior regions. The HPGF
emphasizes higher frequency components, but retains a slight
contribution of lower frequency components.

The obtained Fourier magnitude images are not convenient for
matching at this stage, since they still vary with rotation. To
remove rotation variance, the coordinates of each Fourier magni-
tude image are polar mapped to make rotations appear as
translations in the new image.

Consider the polar coordinate system (r, 6), where re®R
denotes radial distance from the center of the Fourier magnitude
image (x., y.) and 0 < 0 < 2n denotes angle. Any point (x, y)e R?2
can be represented in polar coordinates as follows:

=/ (x=x)* +(y—yc)®

f=tan! (y—yc> 4

X—Xc

Eq. (4) describes conversion from Cartesian to polar coordi-
nates. The reverse process, which is the polar to Cartesian
coordinates transform, is defined below:

x =rcos(0)
y =rsin(0) 5)
For every point (x, y), there is a unique point (r, 6). Rotating the

Cartesian coordinate system about an origin, while preserving
position and size, can be written with the following matrix notation:

X5 cos(p) —sin(@) | [ x4 6
Y2 | | sin(@) cos(p) ||y ©
where, (X1, y1) is the point before rotation and (x;, ¥,) is the point

after rotation by the angle ¢. Assuming that (x;,y;) = (rcos(0),
rsin(f)) and after substitution to Eq. (6), we obtain the new

c) o3=11, (d) 64=38, (e) 65=5 and (f) 6=3.
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b

Cc

Fig. 2. Horse object filtered by HPGF with respect to decreasing scale: (a) 0,=15, (b) 62=11, (c) 63=38, (d) 04=5, (e) 05=3 and (f) g=1.

a b

Fig. 3. Alternative approaches for mapping a square image to the circle: (a) Fitting
the image into the circle, where the shaded area shows parts of the circle ignored
in the mapping process and (b) fitting the circle to the square image, where
shaded areas represent parts of the image lost in mapping.

coordinates as

Xy =1cos(0+ @)
y2 =rsin(0+¢) Q)

Here, we can observe that rotation in Cartesian coordinates
causes translation in polar coordinates,

(X1,y1) < (1,0)
(X2,y2) = (1,04 @) ®)

There are two principal methods for mapping a rectangular
image to a circle in polar transform. The image can either be fitted
within the circle as shown in Fig. 3(a) or the circle can be fitted
within the boundaries of the image as shown in Fig. 3(b). The
main problem with fitting circle within the boundaries of the
image is losing the information in the corners. Since we want to
use all information in the Fourier magnitude image, we use the
method that fits the image within a circle. In this method, all
pixels will be taken into account but some invalid pixels will also
be included, which fall inside the circle but outside the image. In
our algorithm these invalid pixel values are set to zero. Fig. 4
shows the polar transform of a Fourier magnitude image.

Finally, another 2-D Fourier transform is applied, as given in
Eq. (9), to compute Fourier magnitude, which removes these
translations:

s 155 [j2n((kr /C)+ (0/EV)]

FPT(k,]) = F > P(rb)e 9)

r=00=0

—_

5

a b

Fig. 4. Cartesian to polar transform with fitting the image into the circle:
(a) Fourier magnitude image of the horse object filtered by HPGF (¢=3) and the
image size is 151 x 151 and (b) polar transformed Fourier magnitude image of size
90 x 90, the invalid pixels are zero.

where FPT*(k, I) is the Fourier transform of the polar mapped
image PS(r, 0) of size C x E and at scale index s. Note that there is
no “windowing” operation before the Fourier transform. Although
it can remove edge effect between the neighbors of the periodic
image, it may also cause losses of some important information in
the polar mapped image.

The resultant Fourier magnitude image, |FPT(k, 1)|°, is transla-
tion, size and rotation invariant and represents object descriptors
0D’ of a shape at scale index s. Fig. 5 shows the proposed
algorithm to obtain multiscale Fourier-based object descriptors.

The Fourier-Mellin transform is similar to our algorithm in
terms of achieving rotation, size and translation invariance. The
Fourier-Mellin transform is a method for rotation, size and
translation invariant image feature extraction in 2-D space [31].
The first stage is a 2-D Fourier transform to calculate the Fourier
magnitude image (|FT|), which removes translation variance
while keeping scale and rotation variances, then the coordinates
are log-polar transformed (LPT) to make scaling and rotation
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Object size normalization

v

Fourier Transform (FT)

IFTI! [FTP | ... IFTI®
v v v v
Polar Transform
v v v v
Fourier Transform
IFPT! IFPTI? IFPTP | ... [FPTI®

Fig. 5. Producing the proposed multiscale Fourier-based object descriptors.

Fourier Transform (FT)

:

IFTI

v

Log-Polar Transform (LPT)

v

Fourier Transform (FT)

'

[FLPTI

Fig. 6. Fourier-Mellin transform to produce rotation, size and translation invar-
iant image features.

appear as translations, and finally another 2-D Fourier transform
is applied to compute Fourier magnitude image (|FLPT|), which
remove these translations. Fig. 6 shows the Fourier-Mellin trans-
form to obtain rotation, size and translation invariant image
features. In the log-polar transform, converting scale change to
translation is achieved by logarithmic scaling the radius coordi-
nate of the polar map image [32]. The difference from our new
approach is that we now have a filtering approach to create a
multiscale representation, which must be applied to the objects of
the same size. Because of this, object size is normalized in the first
step and we do not apply logarithmic scaling to the radius
coordinate of the polar transformed image.

3. Classification with multiscale Fourier-based description

Classification is achieved using the nearest neighbor algo-
rithm. We are using a standard approach to allow comparison,
though other classifiers are equally appropriate. Euclidean dis-
tance (Ed) is used to measure similarity between objects and is

computed separately in each scale as given below:

C E
Ed*(T,D) = \j > > (0Dj(xy)-0Dp(x.y))* (10)
x=1y=1

where Ed*(T, D) is the Euclidean distance between the object
descriptors, OD, of the test image T and object descriptors OD§, of
an image from database D, at scale index s. Then average distance
(Ad) is computed for each object:

Y
Ad:%ZEdS a1

s=1

where Ad represents average distance and Y is the number of
scales. Classifying with average distance, instead of single scale
distance, increase correct classification as well as increase immu-
nity to noise.

4. Evaluations and experimental results

For evaluation, we use MPEG-7 CE-Shape-1 Part B data-
base [28] and Swedish leaf database [29]. MPEG-7 CE-Shape-1
Part B is a commonly used dataset in shape classification experi-
ments, which consists of shapes acquired from real world objects.
On the other hand, the Swedish leaf database is a real and
challenging dataset due to their high between class similarity
and large inner class deformations. Computational time evalua-
tions are also conducted on these two datasets, which is pre-
sented in this section.

4.1. Evaluation on MPEG-7 shape database

There are 1400 images in MPEG-7 CE-Shape-1 Part B data-
set [28], which are pre-segmented and are in binary form. The
objects are divided into 70 classes with 20 images in each class.
The object classes are shown in Fig. 7. The appearance of these
silhouettes changes due to

e viewpoint with respect to objects (size, translation and rotation
variance),

e non-rigid object motion (e.g. people walking and fish
swimming),

e noise inside shape (e.g. digitization and segmentation noise).

Some object variations are shown in Fig. 8. Leave-one-out
cross-validation is applied to validate classification. The correct
classification rate (CCR%) is measured as follows:

CCR(%) = % 100 (12)
0

where ¢, is the total number of correctly classified objects and ¢,
is the total number of classified objects.

In evaluation, first we investigate and compare single scales
(filtering at different scales) and average distance (with the
method given in Section 3) results of LPGF- and HPGF-based
representation without any noise in silhouette images. Single
scales and average distance results are also compared with the
original result, where the original result represents the classifica-
tion result without any filtering operation. Second, we experi-
ment with the original, single scales and average distance
performances with respect to increasing noise in the dataset.
Finally, LPGF- and HPGF-based multiscale description (average
distance performances) are compared with other object descrip-
tion techniques.
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4.1.1. Original, single scales and average distance results without
any noise in the database

We analyze the original (without any filtering operation),
single scales and average distance performances of LPGF- and
HPGF-based multiscale description without adding any noise to
the database. We also remove existing noise in the database by
filling object region (using morphological flood-fill operation),
since there is noise only inside shapes.

In a multiscale description using LPGF, the object size is
normalized to be 2500, which is the sum of intensities over the
image, in a 151 x 151 size image. Five different scales are selected
for multiscale representation. The selected scales are: g;=20,
0,=15,03=11, 64,=8 and g5=5. The size of the object descriptor
matrix is 90 x 90 at each scale. These five-scale values are
determined experimentally to achieve the best performance of
the proposed algorithm with LPGF. Note that as the number of
scales increases, the computational complexity increases.

In a multiscale description using HPGF, the object size is
similarly normalized to be 2500, which is the sum of intensities
over the image, in a 151 x 151 size image. Five different scales are
selected for multiscale representation. The selected scales are:
o1=11, 0,=8, 63=5, 64=3 and os=1. The size of the object
descriptor matrix is 90 x 90 at each scale. These five-scale values
are also determined experimentally to achieve the best perfor-
mance of the proposed algorithm with HPGF. As the number of
scales increases, the computational complexity increases.

Table 1 shows the CCR% of the original, selected single scales
using LPGF and average distance of selected scales. It is observed
that the highest CCR% is achieved with the original that is without
applying any LPGF. The CCR% of the original is 92.6% and as we
apply LPGF with decreasing scales, which means as the objects
become smoother, CCR% decreases. Taking average distances from
these selected scales, with the method given in Section 3, results
with 91.1%. This is not higher than the original result and some
single scale results. Therefore using LPGF is not effective, when
there is no noise in the database.

Table 2 similarly shows the CCR% of the original, selected
single scales using HPGF and average distance of selected scales. It
is observed that applying HPGF with scales g3=5, g4=3 and
os=1 perform better than the original (92.6%). The highest CCR%
is 95% among the single scale results and is achieved at scale
04=3. This is the scale that represents the exterior parts of the

Table 1
CCR% of the original, single scales using LPGF and average distance using LPGF.

object more than the boundary and the central part. The scales
os=1 and o3=>5 give exactly the same result (93.9%). After 63=5,
as scale increases, the CCR% decreases. This is because we start to
focus more on the boundary alone, which is more sensitive to
shape variations. Averaging the distances of these five scales,
which represents the boundary and exterior parts of an object
more than the central part, even increase CCR% more and makes
it 95.7%.

4.1.2. Original, single scales and average distance results with added
noise in the database

We experiment with the original (without any filtering opera-
tion), single scales and average distance performances with
respect to increasing salt and pepper noise in the database.
Fig. 9 illustrates salt and pepper noise corrupted binary images
with increasing density. In this evaluation, we do not remove the
existing noise in the database as well (no region filling). Although
some objects in the dataset contain noise inside the shape, adding
salt- and pepper-type noise cause noise outside the shape as well.
Salt and pepper noise is added to all objects in the database;
therefore noisy test image is matched with the noisy images from
database. It is also important to note that the noise is added after
the object size normalization stage.

Table 3 and Fig. 10 show the CCR% of the original images,
LPGF-filtered images at different scales and the average distance
of these scales. The results represent mean values obtained over
four applications of each scale at each noise level. In Fig. 10, the
error bar represents minimum and maximum values at the data
points. It is simpler to follow our explanations from the table,
since the obtained results are very close to each other and cannot
be seen well in the figure. It is observed that when there is no
noise or small amounts of noise such as D=0.1 and D=0.2,
applying LPGF at selected scales does not increase CCR% in
comparison to the original. Even averaging the distances with
selected scales does not become effective. When there is noise
more than D=0.2, applying LPGF at higher selected scales
(61=20, 02=15 and o3=11) increase CCR% slightly. Averaging
the distances from these selected scales, at noise levels D=0.3
and D=0.4, increases the original as well as the single scales
performances slightly. However, at noise levels D=0.5 and
D=0.6, we do not observe any increased performance by average

LPGF Original g1=20 o,=15

o3=11 04=8 o5=5

Average distance

CCR% 92.6% 92.2% 91.7% 91.4%

90.2% 91.1%

Table 2
CCR% of the original, single scales using HPGF and average distance using HPGF.

HPGF Original

g,=8 g3=5

Average distance

CCR% 92.6%

92.4%

-

95.7%
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b

D=0.4

D=0.5

d

D=0.6

Fig. 9. Fly object with increasing density (D) of salt and pepper noise.

Table 3
CCR% of the original, single scales using LPGF and average distance using LPGF
with respect to the increasing density of salt and pepper noise.

Table 4
CCR% of the original, the single scales using HPGF and the average distance using
HPGF with respect to the increasing density of salt and pepper noise.

LPGF Salt and pepper noise density (D) HPGF Salt and pepper noise density (D)
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

Original 92.6% 89.5% 86.1% 77.4% 69.2% 57.7% 41.5% Original 92.6% 89.5% 86.1% 77.4% 69.2% 57.7% 41.5%
01=20 91.7% 88.1% 84.0% 787% 69.2% 59.4% 44.2% og1=11 91.7% 59.1% 254% 10.2% 3.7% 2.6% 2.4%
a,=15 91.2% 89.4% 83.5% 78.2% 69.7% 58.7% 44.5% g,=8 92.5% 78.1% 48.4% 23.0% 11.2% 5.2% 2.5%
o3=11 90.7% 89.0% 82.5% 79.0% 69.6% 57.8% 43.7% 03=5 93.8% 89.3% 77.4% 56.7% 34.7% 152% 4.7%
04=8 89.4% 86.1% 81.1% 76.5% 655% 56.1% 39.7% 04=3 94.7% 91.7% 88.8% 80.7% 67.5% 457% 21.8%
05=5 88.1% 84.3% 77.2% 69.2% 587% 48.1% 34.4% o5=1 93.7% 92.1% 90.9% 86.6% 803% 69.0% 52.3%

Average distance 90.4% 89.5% 85.2% 80.5% 70.3% 55.0% 41.5%

Average distance  95.5% 93.6% 92.2% 88.5% 82.0% 71.3% 52.0%
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Fig. 10. Classification performance of the original, the single scales and the
average distance by LPGF-based representation with respect to increasing salt
and pepper noise in the database. CCR% is plotted with minimum and maximum
values using error bars.

distance in comparison to the original and some single sales
(higher scales).

Table 4 and Fig. 11 show the CCR% of the original image, the
single scales using HPGF and the average distance using HPGF-
based representation, with respect to increasing density of salt

Original
30 Scale = 11
Scale =8
Scale =5
Scale =3
Scale =1

Average

0 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Density of Salt & Pepper noise (D)

Correct Classification Rate (CCR%)

Fig. 11. Classification performance of the original, the single scales and the
average distance by HPGF-based description with respect to increasing salt and
pepper noise in the database. CCR% is plotted with minimum and maximum
values using error bars.

and pepper noise. The results represent mean values obtained
over four applications of each scale at each noise level. In Fig. 11,
the error bar represents minimum and maximum values at the
data points. It is observed that when D=0, lower scales (g3=>5,
04=3 and ogs5=1) perform better than the original (92.6%).
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The best single scale result is achieved at o4=3, which is 94.7%.
This scale represents the exterior regions of an object more than
the boundary and the central part. Averaging the distances of the
selected scales also improves the CCR% (95.5%). When we add salt
and pepper noise with increasing density, average distance
always performs better than the original and the single scales.
Only at D=0.6, which is very noisy and objects are not visible,
the scale g5=1 performs slightly better than average distance.
The scale o5=1 also performs better than the original at all noise
levels. The scale o4=3, which achieves the best result without
any added noise, performs better than original until D=0.3. The
performances of the higher selected scales goes down faster than
lower selected scales, since the higher selected scales represent
the boundary more than the exterior parts and the central part,
and more sensitive to noise and shape variations.

Applying HPGF at selected scales and computing average
distance improve CCR% in the dataset. This result occurs because
of representing more the boundary and the exterior parts, which
are more discriminative, than the central part.

4.1.3. Comparison with other techniques

Performance evaluation is also employed by comparing the
multiscale description using LPGF (average distance) and multi-
scale description using HPGF (average distance) with each other
as well as with elliptic Fourier descriptors (EFD) and Zernike
moments (ZM). The evaluation is again achieved with respect to
increasing salt and pepper noise in the database, and the noisy
test image is matched with the noisy images from the database.

EFD are fast and robust boundary-based shape descriptors. The
contour is represented with complex coordinates (position func-
tion) and then the Fourier expansion is performed to obtain the
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Fig. 12. Classification performance of HPGF- and LPGF-based multiscale descrip-
tion in 2-D, ZM and EFD, with respect to increasing salt and pepper noise in the
database. In graphs, the rectangle represents standard deviation from the mean
value and error bar represents minimum and maximum values of the CCR%.

Table 5

C. Direkoglu, M.S. Nixon / Pattern Recognition 44 (2011) 2134-2146

EFD, where the number of descriptors is 80 in this evaluation. To
evaluate EFD, we use a Matlab implementation given in [33], and
note that this is a non-optimal Matlab framework. We describe
the boundary of the biggest region in the image, since there will
be many regions after noise has been added.

Zernike moments (ZM) are region-based shape descriptors.
They are an orthogonal moment set, which makes optimal
utilization of shape information and allows accurate recognition.
It is a potent moment technique for shape description [34]. To
evaluate ZM, we use the algorithm given in [34], which uses 36
moments for description. We use a Matlab implementation given
in [35] that is also a non-optimal framework.

Fig. 12 and Table 5 show the correct classification rate (CCR%)
of the multiscale description in 2-D using LPGF, of multiscale
description in 2-D using HPGF, of EFD and of ZM, with respect to
increasing salt and pepper noise. The results represent mean
values obtained over four applications of each algorithm at each
noise level. In Fig. 12, the rectangle on graphs represents standard
deviation from the mean value and error bar represents minimum
and maximum values at data point. It is observed that HPGF-
based multiscale description performs better than LPGF-based
multiscale description, EFD and ZM. HPGF-based multiscale
description achieves 95.5% correct classification rate, whereas
LPGF-based multiscale description achieves 90.4%, ZM achieves
90% and EFD achieves 82% without adding noise to the database.
As noise increases, the performance of all algorithms decreases
and their performances degrade similarly. It is also observed that
LPGF-based multiscale description and ZM have very close per-
formances. The success of HPGF-based multiscale description in
2-D appears due to emphasizing the boundary and exterior parts
of objects and also allowing the central part contribute slightly to
classification.

There are also other techniques that used the same database
(MPEG-7 CE-Shape-1 Part B) for classification purpose. A subset of
this shape database was used by Kunttu et al. [6]. Their descrip-
tors are wavelet transform-based multiscale contour Fourier
descriptors, which is obtained by applying the Fourier transform
to the coefficients of the multiscale complex wavelet transform.
They applied classification for 30 classes without any noise in the
dataset. The selected classes are: bone, bottle, brick, car, cellular
phone, children, chopper, comma, deer, deviceO, devicel, device2,
device7, device8, face, fish, fountain, frog, glass, heart, key, Imfish,
misk, octopus, pencil, personal car, pocket, shoe, teddy and truck.
Using the leave-one-out classification with a nearest neighbor
classifier, they achieve 94.2-96.3% with respect to the length of
descriptors.

Same subset was also recently used by McNeil and Vijayakumar
[12] for classification without any noise in the dataset. In their
work, shape boundary is represented with a large number of
equally spaced points either defined by perimeter distance
(perimeter descriptors) or radial angle (radial descriptors). Then,
a probabilistic correspondence-based algorithm, which also incor-
porates with scale, translation and rotation invariance, is applied
for shape matching. They note that suitability of the perimeter
distance or radial angle for description depends on the classes in

CCR% of HPGF- and LPGF-based multiscale description in 2-D, ZM and EFD, with respect to increasing salt and pepper noise in the database.

Descriptions Salt and pepper noise density (D)

0 0.1 0.2 0.3 0.4 0.5 0.6
Multiscale description using HPGF 95.5% 93.6% 92.2% 88.5% 82.0% 71.3% 52.0%
Multiscale description using LPGF 90.4% 89.5% 85.2% 80.5% 70.3% 55.0% 41.5%
Zernike moments (ZM) 90.0% 87.9% 83.9% 78.4% 72.6% 61.7% 49.0%
Elliptic Fourier descriptors (EFD) 82.0% 78.9% 73.0% 65.9% 55.8% 43.5% 30.2%
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the dataset and these two descriptions can also be combined to
improve classification in some datasets. They used the same
testing procedure, leave-one-out classification with a nearest
neighbor classifier, to compare with the wavelet-based multiscale
contour Fourier descriptors described above. They only show the
results of the perimeter descriptors, which performs 95.6-98.0%
with respect to the number of points selected on the boundary.

Table 6

CCR% of multiscale contour Fourier descriptors [6], perimeter descriptors [12],
HPGF- and LPGF-based multiscale description in 2-D, ZM and EFD on the subset
(30 classes) without any noise.

Descriptors CCR %
Multiscale description using HPGF in 2-D 99.2%
Perimeter descriptors [12] 95.6-98.0%
Wavelet-based multiscale contour Fourier descriptors [6] 94.2-96.3%
Multiscale description using LPGF in 2-D 95.8%
Zernike moments (ZM) 92.6%
Elliptic Fourier descriptors (EFD) 87.8%

Table 7

CCR% of perimeter descriptors, radial descriptors, combined perimeter and radial
descriptors [12]. HPGF- and LPGF-based multiscale description in 2-D, ZM and EFD
on the full dataset (70 classes) without any noise.

Descriptors CCR %
Combined perimeter-radial descriptors [12] 96.2%
Multiscale description using HPGF in 2-D 95.7%
Perimeter descriptors [12] 95.7%
Multiscale description using LPGF in 2-D 91.1%
Radial descriptors [12] 91.0%
Zernike moments (ZM) 90.2%
Elliptic Fourier descriptors (EFD) 82.0%

0

They also evaluated their descriptors on the full dataset, which
includes 70 classes, without any noise in the dataset. They
achieved 95.7% and 91.0% with perimeter descriptors and radial
descriptors, respectively. They also combined perimeter and
radial descriptors and achieved 96.2% classification accuracy on
the full dataset.

On the other hand, HPGF-based multiscale description in 2-D
achieves 99.2% on the same subset using the leave-one-out
classification with a nearest neighbor classifier. This result show
that our algorithm, with HPGF-based mustiscale description,
outperforms both perimeter descriptors and multiscale contour
Fourier descriptors on the subset. We also evaluated other
algorithms on the same subset and observe that LPGF-based
multiscale description in 2-D achieves 95.8%, ZM achieves 92.6%
and EFD achieves 87.8%. Table 6 shows CCR% of the algorithms on
the subset without any noise.

On the full dataset, HPGF-based multiscale description in 2-D
achieves 95.7%, which is better than radial descriptors, same as
perimeter descriptors, and slightly less than the combined peri-
meter and radial descriptors. LPGF-based multiscale description
in 2-D achieves 91.1%, ZM achieves 90.2% and EFD achieves 82%.
Table 7 shows CCR% of the algorithms on the full dataset without
any noise.

4.2. Comparison on Swedish leaf database

We also experiment the proposed multiscale shape description
technique on Swedish leaf database [29]. This is a real and very
challenging database for shape classification experiments. It
contains isolated leaves from 15 different Swedish tree species,
with 75 leaves per species. In this dataset, there is a high between
class similarity and large inner class deformations. Fig. 13 (a)
shows examples from each leaf species in gray-scale image form.
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Fig. 13. A sample from each leaf species in the database: (a) in gray-scale image form and (b) in binary image form.
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Some species have very similar shapes but different texture,
which makes the combination of shape and texture features more
suitable for this dataset. However, in our evaluation we use only
the shape features which are obtained using the proposed multi-
scale shape description technique. For this purpose, first the gray-
scale images are thresholded to obtain binary segmentation
(shape of the leaves), and then the shape features are computed
from the binary images. Fig. 13 (b) shows examples from each leaf
species in binary image form.

Performance evaluation is employed by comparing the multi-
scale description using LPGF (average distance) and multiscale
description using HPGF (average distance) with each other as well
as with EFD and ZM. We use the same testing procedure as we use
in MPEG-7 dataset, which is leave-one-out cross-validation with
nearest neighbor classifier and the CCR% is measured with
Eq. (12). The number of descriptors for EFD is 80 and the number
descriptors for ZM is 36.

In a multiscale description using LPGF, the object size is
normalized to be 3500, which is the sum of intensities over the
image, in a 211 x 211 size image. Five different scales are also
selected for multiscale representation. The selected scales are:
01=20, 0,=15, 63=11, 64=8 and o5=>5. The size of the object
descriptor matrix is 90 x 90 at each scale.

In a multiscale description using HPGF, the object size is
similarly normalized to be 3500, which is the sum of intensities
over the image, in a 211 x 211 size image. Five different scales are
selected for multiscale representation. The selected scales are:
o1=11, 0,=8, 03=5, 04=3 and os5=1. The size of the object
descriptor matrix is 90 x 90 at each scale.

Table 8 shows the CCR% of the multiscale description in 2-D
using LPGF, of multiscale description in 2-D using HPGF, of EFD
and of ZM on the Swedish leaf dataset. It is observed that HPGF-
based multiscale description performs better than LPGF-based
multiscale description, ZM and EFD. HPGF-based multiscale
description achieves 90.2% correct classification rate, while
LPGF-based multiscale description achieves 84.6%, ZM achieves
85.0% and EFD achieves 80.8%.

4.3. Comparison of computational efficiency

We evaluate the computational efficiency of the HPGF- and
LPGF-based multiscale description, on both MPEG-7 dataset and
Swedish leaf dataset, by comparing with EFD and ZM techniques.
Feature extraction and classification times are measured by using

Table 8
CCR% of HPGF- and LPGF-based multiscale description in 2-D, ZM and EFD on the
Swedish leaf database [29] without any noise.

Descriptors CCR %
Multiscale description using HPGF in 2-D 90.2%
Zernike moments (ZM) 85.0%
Multiscale description using LPGF in 2-D 84.6%
Elliptic Fourier descriptors (EFD) 80.8%

Table 9

MATLAB 7.0 on an Intel Core 2 Quad (processor) computer, which
runs Windows Vista operating system with 2.66 GHz CPU and
4GB RAM.

4.3.1. Computational efficiency on MPEG-7 dataset

Table 9 shows the total time of feature extraction of 1400
shapes in the MPEG-7 CE-Shape-1 Part B dataset and average time
of feature extraction of each shape. Table 9 also shows the total
time for classification of 1400 shapes and the average time of
classification of each shape. In feature extraction, it is observed
that EFD is more efficient than ZM, HPGF- and LPGF-based
multiscale description (five scales for LPGF and five scales for
HPGF). Because the shape signature, in EFD, is a 1-D function that
represents the shape derived from the boundary points of a 2-D
binary image. Geometric invariance, in EFD, is also achieved after
the Fourier transform by normalizing Fourier coefficients appro-
priately. HPGF- and LPGF-based multiscale description are more
efficient than ZM in feature extraction. Although we use a multi-
scale representation (LPGF or HPGF), the proposed algorithm is
easier to compute in comparison to Zernike moments. To obtain
the Zernike moments, Zernike polynomials are computed, which
are difficult and complex. On the other hand, in our algorithm, we
rely on a polar transform and two Fourier transforms that are
computed by the Fast Fourier Transform. HPGF- and LPGF-based
multiscale description have very similar computational perfor-
mances, since they are the same algorithms with different
filtering models.

In classification, ZM is more efficient than EFD, HPGF- and
LPGF-based multiscale description. The reason is ZM uses only 36
descriptors to measure similarity between objects, which is lower
number of descriptors in comparison to other methods. EDF uses
80 descriptors to measure similarity and it is slightly less efficient
than ZM. HPGF- and LPGF-based multiscale description are
computationally more complex than ZM and EFD. Since the size
of the object descriptor matrix is 90 x 90 and we have five scales
in this evaluation. Due to the higher number of descriptors in
HPGF- and LPGF-based multiscale description, the similarity
measurement between objects takes more time than ZM and
EFD. Although HPGF-based multiscale description has higher
number of descriptors and takes more time in classification, it
has significantly better classification performance in comparison
to ZM and EFD. We also strongly believe that we can reduce the
number of descriptors by analyzing the features. We can find
efficient and persistent features over the selected scales to
increase discrimination and also reduce the number of features.

4.3.2. Computational efficiency on Swedish leaf dataset

Table 10 illustrates the total time of feature extraction of 1125
shapes in the Swedish leaf dataset and average time of feature
extraction of each shape. Table 10 also shows the total time for
classification of 1125 shapes and the average time of classification
of each leaf shape.

In feature extraction, EFD is the most efficient model, since it is
computed from a 1-D function that represents the shape

The computation time of feature extraction and classification for 1400 shapes in MPEG-7 CE-Shape-1 Part B database.

Total time of feature
extraction of 1400

Descriptors

Average time of feature
extraction of each

Total time of
classification

Average time of
classification

shapes (ms) shape (ms) of 1400 shapes (ms) of each shape (ms)
Multiscale description using HPGF in 2-D 683970 488.5 864120 617.2
Multiscale description Using LPGF in 2-D 684953 489.2 871203 622.2
Zernike moments (ZM) 965693 689.7 3369 2.4
Elliptic Fourier descriptors (EFD) 163941 1171 4602 3.2




C. Direkoglu, M.S. Nixon / Pattern Recognition 44 (2011) 2134-2146

Table 10

2145

The computation time of feature extraction and classification for 1125 shapes in Swedish leaf database.

Descriptors Total time of feature Average time of feature Total time of Average time of
extraction of 1125 extraction of each classification of 1125 classification of each
shapes (ms) shape (ms) shapes (ms) shape (ms)

Multiscale description using HPGF in 2-D 538967 479 557469 495.5

Multiscale description using LPGF in 2-D 547594 486.7 559435 497.2

Zernike moments (ZM) 727744 646.8 2230 19

Elliptic Fourier descriptors (EFD) 105643 93.9 2667 23

boundary points and the geometric invariance is also achieved
after the Fourier transform by normalizing Fourier coefficients.
HPGF- and LPGF-based multiscale description (five scales) are
more efficient than ZM in feature extraction. In ZM, Zernike
polynomials are computed, which are difficult and complex. On
the other hand, in HPGF- and LPGF-based multiscale description,
we rely on a polar transform and two Fourier transforms that are
computed by the Fast Fourier Transform. HPGF- and LPGF-based
multiscale description have very similar computational perfor-
mances, since they have the same algorithm but different filtering
models.

In classification, ZM is the most efficient model, since it uses
only 36 descriptors to measure similarity between objects. ZM
has the lowest number of descriptors in comparison to other
methods. EDF uses 80 descriptors to measure similarity and it is
slightly less efficient than ZM. HPGF- and LPGF-based multiscale
description are computationally more complex than ZM and EFD.
Since we are using five scales in this evaluation and the size of the
object descriptor matrix is 90 x 90 at each scale. Due to the higher
number of descriptors in HPGF- and LPGF-based multiscale
description, the similarity measurement between objects takes
more time than ZM and EFD. Although HPGF-based multiscale
description has higher number of descriptors and computation-
ally less efficient, it has significantly better classification accuracy
in comparison to ZM and EFD. We also strongly believe that we
can reduce the number of descriptors by analyzing the features.
We can find persistent and effective features over the selected
scales to increase discrimination and also reduce the number of
features.

5. Conclusions and future work

Mutiscale description is a promising approach for shape
recognition. Different features can be obtained at different scales
and combining these features can increase the discrimination
power between objects and therefore increase the correct classi-
fication rate. Although many boundary-based multiscale descrip-
tion techniques exist, there is no region-based multiscale
description technique in the image space. We have presented a
novel image-based multiscale description using a low-pass Gaus-
sian filter (LPGF) and a high-pass Gaussian filter (HPGF), sepa-
rately. Using the LPGF at different scales represents the inner and
central part of an object more than the boundary. On the other
hand using the HPGF at different scales represents the boundary
and exterior parts of an object more than the central part. In
addition, most of the existing multiscale description techniques
are based on low-pass filtering (such as LPGF). In our work, we
also show that the HPGF-based multiscale description in 2-D
space can perform better than the well-known techniques even in
noisy conditions.

Our algorithm starts with object size normalization and we
then compute a Fourier magnitude image that is translation
invariant. At this stage, a LPGF or a HPGF with a selection of scale
parameters is used to obtain multiscale Fourier magnitude

images. To give rotation invariance, each image of different scale
is polar mapped and then another Fourier magnitude image is
computed to obtain the proposed object descriptors. For classifi-
cation, the Euclidean distance is measured separately at each
scale, and then the average distance is computed for each object.
Multiscale description using HPGF, which represents the bound-
ary and exterior parts of an object more than the central part,
outperforms multiscale description using LPGF, elliptic Fourier
descriptors (EFD) and Zernike moments (ZM) with respect to
increasing salt and pepper noise in the database. Multiscale
description using HPGF in 2-D also performs better than wavelet
transform-based multiscale contour Fourier descriptors and per-
forms similar to the perimeter descriptors without any noise in
the dataset. Classifying objects with this new multiscale Fourier-
based object description using the HPGF in 2-D space increases
immunity to noise and discrimination power.

In the future work, we can find effective and persistent
features over the selected scales to increase discrimination and
also reduce the number of features. A new classifier can be used
instead of nearest neighbor classifier to increase correct classifi-
cation rate. In addition, we can also investigate phase information
of the Fourier transforms, which is currently discarded in our
algorithm. The phase has significant information about the image
and it could be beneficial to include it in object description.
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