
Application of Decomposition and Generic
Instantiation to a Metro System in Event-B?

Renato Silva??

School of Electronics and Computer Science
University of Southampton, UK

ras07r@ecs.soton.ac.uk

Abstract. It is believed that reusability in formal development should
reduce the time and cost of formal modelling within a production envi-
ronment. Event-B is a formal method that allows modelling and refine-
ment of systems. Generic instantiation and decomposition are techniques
that simplify formal developments by reusing existing models and avoid-
ing re-proofs. We apply these techniques in Event-B for the development
of a metro system case study based on safety properties. This work aims
to give some guidelines of a practical way to develop large systems by in-
stantiating generic models and (shared event) decomposing components
into smaller sub-components.

Key words: Formal Methods, Event-B, Reusability, Generic Instantia-
tion, Decomposition

1 Introduction

Reusability has always been sought in several areas as a way to reduce time,
cost and improve the productivity of developments [1]. Examples can be found
in areas like software, mathematics and even formal methods. The formal devel-
opment of specifications in a “top-down” style starts with an abstract model of
the envisaged system. Throughout refinements the initial model becomes less ab-
stract and more concrete, closer to an implementation. As a consequence, there
is a better view of the system as a whole and design decisions can be taken.
Nonetheless refinements of a system bring complexity and tractability problems
when the model augments in a way that becomes cumbersome to manage [2]. De-
composition [3] is precisely the process by which a single model can be split into
various sub-components in a systematic fashion. The complexity of the whole
model is decreased by studying, and thus refining, each part independently of
the others [2]. Consequently the independent sub-components can be developed
in parallel which is attractive in an industrial environment. Generic Instantia-
tion [4] is another technique that can be seen as a way of reusing components
? Part of this research was carried out within the European Commission ICT project

214158 DEPLOY (http://www.deploy-project.eu).
?? R. Silva is sponsored by a Fundação Ciência e Tecnologia (FCT-Portugal) scholar-

ship.

2 R. Silva

and solving difficulties raised by the construction of large and complex models
[2,5]. The goal is to reuse generic developments (single model or a chain of refine-
ments) and create components with similar properties instead of starting from
scratch. Reusability is applied through the use of a pattern as the basic structure
and afterwards each new component is generated through parameterisation.

These two techniques have been studied within the Event-B [6] formalism
where tool support is available in the Rodin platform [7]. In this document, we
share our experiences by applying these techniques during the development of a
metro system focusing in safety properties. We combine shared event decomposi-
tion (where sub-components interact via synchronised shared events and shared
states are not allow), generic instantiation and refinement to model particular
aspects of the system. The requirements of the system are based on real require-
ments for carriage doors of a metro system The case study is developed in the
Rodin platform using the available tools. We mainly use shared event decompo-
sition and generic instantiation. The metro system can be seen as a distributed
system. Nevertheless the modelling style suggested can be applied to a more
general use.

A brief overview of the Event-B Language is given in Section 2. We briefly
introduce decomposition and generic instantiation in Section 3 and Section 4
respectively. The metro system development is described in Section 5. We finish
with conclusions and related work in Section 6.

2 Background

Event-B is a formal modelling method for developing correct-by-construction
hardware and software systems. An Event-B specification is divided into two
parts: a static part called context and a dynamic part called machine. A ma-
chine SEES as many contexts as desired. The context consists of sets, constants
and assumptions (axioms) of the system. Sets in the context can be seen as a
collection of elements or a type definition. An Event-B model is a state transition
system where the state corresponds to variables v and transitions are represented
by a collection of events evt in machines. The most general form of an event is:
evt =̂ any t where G(t, v) then S(t, v, v′) end , where t is a set of parameters,
G(t, v) is the enabling condition (called guard) and S(t, v, v′) is a before-after
predicate computing after state v′. Essential to Event-B is the formulation of
invariants I(v): safety conditions to be preserved at all times.

To facilitate the construction of large-scale models, Event-B advocates the
use of refinement : the process of gradually adding details to a model. An Event-
B development is a sequence of models linked by refinement relations. It is said
that a concrete model refines an abstract one. Abstract variables v are linked to
concrete variables w by a gluing invariant J(v, w). Any behaviour of the concrete
model must be simulated by some behaviour of the abstract model, with respect
to the gluing invariant J(v, w). Rodin is an industrial-strength toolset supporting
Event-B. Rodin provides an integrated modelling environment with a range of

Application of Decomposition and Generic Instantiation 3

editors, modelling assistants, automatic generator of verification conditions and
a set of automated provers tasked to discharge verification conditions.

3 Generic Instantiation

The generic instantiation approach for Event-B is applied by instantiating ma-
chines. The instances inherit properties from the generic development (pattern)
and afterwards are parameterised by renaming/replacing those properties to
more specific names according to the instance. Proofs obligations are generated
to ensure that assumptions used in the pattern are satisfied in the instantia-
tion. In that sense this approach avoids re-proof pattern proof obligations in the
instantiation.

Consider a pattern that consists of a chain of refinements M1, M2,. . . Mt
as seen in Fig. 1 (the shadowed part). M1. . . Mt are instantiated, originating
IR1 . . . IRt as long as the instance IR1 refines IR0. The elements of the context
(sets and constants) seen by the M1. . . Mt are in the pattern context Ctxt. They
are replaced by instance elements that must already exist in a context seen by
the instantiated machine D0 (parameterisation context). We create a generic
Instantiated Refinement IR as seen in Fig. 1. IR instantiates the refinement

INSTANTIATED REFINEMENT IR
INSTANTIATES Mt VIA Ctxt

REFINES IR0 /* abstract machine */
SEES D0 /* context containing instance properties */
REPLACE /* replace parameters in context Ctxt */

SETS S1 := DS1, . . . , Sm := DSm /* Sets or Constants
*/

CONSTANTS C1 := DC1, . . . , Cn := DCn

RENAME /*rename vars, events and params in M1/Mt*/
VARIABLES v1 := nv1, . . . , vq := nvq

EVENTS ev1 := nev1 / ∗ optional ∗ /
p1 := np1, . . . , ps := nps

. . .
evr := nevr

END

Fig. 1. An Instantiated Refinement

Mt via the parameterisation context Ctxt. IR refines an abstract machine IR0

and sees the context D0 containing the instance properties. Generic sets and
constants (S1, . . . , Sm and C1, . . . , Cn) are replaced by instance ones existing in
D0 (DS1, . . . , DSm and DC1, . . . , DCn). Variables, event names and parameters
are renamed to fit the abstract machine IR0. During the creation of instances
validity checks are required:

1. A static validation of replaced elements is required, e.g., a type must be
replaced with a type, or a constant set and a constant with a constant.

2. All sets and constants should be replaced, i.e., no uninstantiated parameters.
3. Renaming the elements must be injective (not introducing name clashes) in

order to reuse all the existing proof obligations.
4. Replacing sets does not have to be injective. Different sets in the instance

can be replaced by the same generic set.

4 R. Silva

5. Only given sets (defined by the user) can be replaced. Built-in types such as
integer numbers Z and boolean BOOL cannot be replaced.

The instantiation of refinements reuses the pattern proof obligations in the sense
that the instantiation renames and replaces elements in the model but does
not change the model itself (nor the respective properties). The correctness of
the refinement instantiation relies on reusing the pattern proof obligations and
ensuring the assumptions in the context parameterisation are satisfied in the
instance.

4 Decomposition

In Event-B, decomposition of a component corresponds to distributing events
and variables among sub-components. Shared event decomposition does not per-
mit variable sharing and an event can be split into different sub-components. The
sub-components can be further refined independently according to the mono-
tonicity property of decomposition [8].

Figure 2 shows the shared event decomposition of machine S into machines
T and W : variable v1 is allocated to machine T and variables v2, v3 are allo-
cated to machine W). Event e2 is shared since uses both variables v1 and v2.
Therefore during the decomposition, it must be decomposed into e2′ (contain-
ing only guards and actions related to v1) and e2′′ (containing only guards and
actions related to v2). Besides alleviating problems when dealing with complex
specifications, decomposition also partition the proof obligations which are ex-
pected to be easier to be discharged in the sub-components. We follow a general

(a)

(b) (c)

Fig. 2. Shared Event Decomposition of machine S into machines T and W with
shared event e2

top-down guideline to apply decomposition:

Stage 1 Model system abstractly, expressing all the relevant global system
properties.

Stage 2 Refine the abstract model to fit the given decomposition technique
(preparation step).

Stage 3 Apply decomposition.
Stage 4 Develop independently the decomposed parts.

Application of Decomposition and Generic Instantiation 5

5 Case Study: Metro System

The metro system case study describes a formal approach for the development
of trains that circulate in a metro system. Trains circulate whenever they have
permission. When stopping to load/unload, the doors can be opened/closed. As
part of the safety requirements, all trains have an emergency button enabling its
emergency brake. Throughout refinement steps, we introduce these requirements
until we have enough information to split the model into smaller sub-components.

An overview of the entire development can be seen in Fig. 3 following the
top-down guideline suggested in the previous section. Stage 1 is expressed by
refinements Train to Train M4 where global properties are introduced. Train M4
is also used as the preparation step before the decomposition corresponding to
Stage 2. The model is decomposed into two parts: LeaderCarriage, and Carriage
as described in Stage 3. This step allows further refinements of the individual
sub-components corresponding to Stage 4. The following decompositions follow
a similar pattern.

We are interested in refining the sub-component corresponding to carriages in
order to introduce doors requirements. These requirements were extracted from
real requirements for metro carriage doors. Carriage is refined and decomposed
until it fits in a generic model GCDoor corresponding to a Generic Carriage Door
development. We then instantiate GCDoor into two instances: EmergencyDoors
and ServiceDoors benefiting from the refinements in the pattern. We describe in
more detail each of the steps of the development in the following sections.

Fig. 3. Overall view of the safety metro system development

5.1 Refinements of Train

Train is refined several times before the decomposition. The properties for each
refinement step are summarised below (due to the lack of space we do not de-
scribe them in detail1). Instead we focus on the resulting sub-component that is
further refined and after decomposed.

1 The model is available online at http://eprints.ecs.soton.ac.uk/22195/

http://eprints.ecs.soton.ac.uk/22195/

6 R. Silva

Abstract Model: The model starts with the introduction of trains that can change
speed, brake, open and close doors. A central control handles the circulation of
trains by granting permissions. A train only moves if the central control grants
permission. If a train receives a message disallowing the circulation, the train
must brake.

First Refinement of Train: In Train M1, carriages are introduced as parts of a
train. Each carriage has an individual alarm that when activated, triggers the
train alarm (enables the emergency button of the train). Each train has a limited
number of carriages. Each carriage has a set of doors and the sum of carriage
doors corresponds to the doors of a train.

Second Refinement of Train: In this refinement of Train, carriages and doors
requirements are added. We want to specify carriage doors instead of the more
abstract train doors. As a consequence, variable doors is data refined and dis-
appears. Each train contains two cabin carriages (type A) and two ordinary
carriages (type B) allocated as follows: A+B+B+A. Only one of the two cabin
carriages is set to be the leader carriage controlling the set of carriages. Trains
have states defining if they are in maintenance or if they are being driven manu-
ally or automatically. More safety requirements are introduced: if the speed of a
train is superior to the maximum speed, the emergency brake for that train must
be activated. The abstract event representing the change of speed is refined by
several concrete events and includes the behaviour of the system when a train
is above the maximum speed.

Third Refinement of Train: Some additional properties related to the allocation
of the leader carriage are defined: when a train already has a leader carriage,
then it has the correct number of carriages and the leader carriage belongs to
the set of carriages of that train. These two properties could have been included
in the previous refinement but it was chosen to be added later due to the high
number of proof obligations already existing in that refinement.

Fourth Refinement of Train: The four refinement of Train corresponds to the
preparation step before the decomposition. We want to separate the aspects
related to carriages from the aspects related to leader carriages:

Leader Carriage : Allocates the leader carriage, controls the speed of the train,
modifies the state of the train, receives the messages sent from the central,
handles the emergency button of the train.

Carriage : Add and removes carriages (events allocateCarriageTrain/
removeCarriageTrain) , opens and closes carriage doors (openDoors/closeDoors),
handles the carriage alarm (activateEmergencyCarriageButton,
deactivateEmergencyCarriageButton, deactivateEmergencyTrainButton).

Application of Decomposition and Generic Instantiation 7

5.2 Machine Carriage

Carrier set CARRIAGE represents carriages, constant MAX NUMBER CARRIAGE
defines the maximum number of carriages per train and DOOR CARRIAGE
(function between DOOR and CARRIAGE) relates doors and respective car-
riages. The latter is defined as a constant because the number of doors in a
carriage does not change. Cabin carriages are a subset of carriages as described
by axiom axm5 in Fig. 4. The variables related to carriages are allocated to
sub-component Carriage (see Fig. 4): train carriage defines which carriages be-
long to a train; carriage alarm defines if the alarm in the carriage is enabled
(TRUE) or not (FALSE); carriage door state defines if a carriage door is opened
or closed; door train carriage relates trains, carriages and respective doors. We
are interested in adding more details about the carriage doors, therefore we
further refine Carriage.

context Carriage_C0

constants DOOR_CARRIAGE CLOSED OPEN CABIN_CARRIAGE

 MAX_NUMBER_CARRIAGE NUMBER_CABIN_CARRIAGE

sets TRAIN CARRIAGE DOOR DOOR_STATE

axioms

 @axm1 partition(DOOR_STATE, {OPEN}, {CLOSED})

 @axm2 MAX_NUMBER_CARRIAGE ! "1

 @axm3 DOOR_CARRIAGE ! DOOR # CARRIAGE

 @axm4 $c·c!ran(DOOR_CARRIAGE)%DOOR_CARRIAGE&[{c}]'(

 @axm5 CABIN_CARRIAGE) CARRIAGE

 @axm6 NUMBER_CABIN_CARRIAGE ! "1

 @axm7 CABIN_CARRIAGE'(

 @axm8 CABIN_CARRIAGE) ran(DOOR_CARRIAGE)

end
!

machine Carriage sees Context_Carriage

variables train_carriage carriage_alarm

 carriage_door_state door_train_carriage

invariants

 @ Train_M1_inv3 train_carriage ! CARRIAGE " TRAIN

 @Train_M1_inv2 carriage_alarm ! CARRIAGE # BOOL

 @Train_M1_inv4 finite(train_carriage)

 @Train_M1_inv5 finite(dom(train_carriage))

 @Train_M2_inv3 door_train_carriage =

 (DOOR_CARRIAGE;train_carriage)$

 @Train_M2_inv13 carriage_door_state !

 DOOR_CARRIAGE # DOOR_STATE

 theorem @Train_M2_thm1 %c·c!ran(DOOR_CARRIAGE)

 & c!dom(train_carriage) '

DOOR_CARRIAGE$[{c}](door_train_carriage[{train_carriage(c)}]

 theorem @Train_M3_thm1 %t·t!dom(door_train_carriage)'

door_train_carriage[{t}]=DOOR_CARRIAGE$[train_carriage$[{t}]]

events

 event INITIALISATION

 then

 @act5 carriage_alarm) CARRIAGE * {FALSE}

 @act6 train_carriage) +

 @act11 carriage_door_state) DOOR_CARRIAGE * {CLOSED}

 @act12 door_train_carriage) +

 end

 event openDoors

 any t ds

 where

 @typing_ds ds ! ,(DOOR)

 @grd1 t ! TRAIN

 @grd5 t ! dom((DOOR_CARRIAGE;train_carriage)$)

 @grd8 ds (DOOR_CARRIAGE$[train_carriage$[{t}]]

 @grd10 %d·d!ds'carriage_door_state[{d}-DOOR_CARRIAGE]={CLOSED}

 @grd11 ¬ ds=+

 then

 @act1 carriage_door_state) carriage_door_state . ((ds-DOOR_CARRIAGE)*{OPEN})

 end

 event closeDoors

 any t ds closed

 where

 @typing_closed closed ! BOOL

 @typing_ds ds ! ,(DOOR)

 @grd1 t ! TRAIN

 @grd2 t ! dom(((train_carriage$);(DOOR_CARRIAGE$)))

 @grd4 ds (((train_carriage$);(DOOR_CARRIAGE$))[{t}]

 @grd5 ds (DOOR_CARRIAGE$[train_carriage$[{t}]]

 @grd6 carriage_door_state[ds*DOOR_CARRIAGE[ds]]={OPEN}

 @grd7 (/d·d!DOOR_CARRIAGE$[train_carriage$[{t}]]0ds &

carriage_door_state[{d}-DOOR_CARRIAGE]1{CLOSED}) 2 closed = FALSE

 then

 @act1 carriage_door_state) carriage_door_state . ((ds-DOOR_CARRIAGE)*{CLOSED})

 end

 event activateEmergencyCarriageButton

 any c t

Fig. 4. Context Carriage C0, variables and invariants of Carriage

5.3 Refinement of Carriage and Decomposition: Carriage M1

This refinement is a preparation step before the next decomposition. We intend
to use an existing generic development of carriage doors as a pattern and apply
a generic instantiation to our model. We use the shared event decomposition to
adjust our current model to fit the first machine of the pattern. Carriage M1
refines Carriage and after is decomposed in a way that one of the resulting
sub-components fits the generic model of carriage doors. The generic model is
described in Sect. 5.6.

Two variables are introduced in this refinement, representing the carriage
doors (carriage door) and their respective state (carriage ds) as seen in Fig. 5.
The last variable is used to data refine carriage door state that disappears.
The gluing invariants for this data refinement is expressed by invariant inv4:
the state of all the doors in carriage ds match the state of the same door in
carriage door state. As a result, some events need to be refined to fit the new
variables. For instance, in Fig. 5, act1 in event openDoors updates variable

8 R. Silvamachine Carriage_M1 // Preparation for instantiation: added variable carriage_door and carriage_ds

representing a single door and respective state. carriage_ds refines abstract var carriage_door_state

 refines Carriage sees Carriage_C0

variables carriage_alarm train_carriage carriage_door carriage_ds door_train_carriage

invariants

 @inv1 carriage_door ! DOOR

 @inv2 carriage_ds " carriage_door # DOOR_STATE

 @inv3 $c·c"dom(train_carriage) % DOOR_CARRIAGE&[{c}]!carriage_door

 @inv4 $d,c·d'c"dom(carriage_door_state) (d " dom(carriage_ds) (d"ran(door_train_carriage)

 % carriage_ds(d)= carriage_door_state(d'c)

 @inv5 door_train_carriage&"DOOR) TRAIN

 @inv6 $d·d"ran(door_train_carriage) % d " carriage_door

events

 event INITIALISATION

 then

 @act5 carriage_alarm * CARRIAGE + {FALSE}

 @act6 train_carriage * ,

 @act12 door_train_carriage * ,

 @act13 carriage_door *,

 @act14 carriage_ds *,

 end

 event openDoors refines openDoors

 any t ds

 where

 @typing_ds ds " -(DOOR)

 @grd1 t " TRAIN

 @grd5 t " dom((DOOR_CARRIAGE;train_carriage)&)

 @grd8 ds ! DOOR_CARRIAGE&[train_carriage&[{t}]] // @grd10

!d·d"ds#carriage_door_state[{d}$DOOR_CARRIAGE]={CLOSED}

 @grd11 ds ! dom(carriage_ds)

 @grd12 carriage_ds[ds]={CLOSED}

 then

 @act2 carriage_ds*carriage_ds. (ds+{OPEN}) // @act1 carriage_door_state% carriage_door_state &

((ds$DOOR_CARRIAGE)'{OPEN})

 end

 event closeDoors refines closeDoors

 any t ds closed cds

 where

 @typing_closed closed " BOOL

 @typing_ds ds " -(DOOR)

 @grd1 t " TRAIN

 @grd2 t " dom(((train_carriage&);(DOOR_CARRIAGE&)))

 @grd4 ds ! ((train_carriage&);(DOOR_CARRIAGE&))[{t}]

 /* @grd5 ds (DOOR_CARRIAGE)[train_carriage)[{t}]]

 @grd6 carriage_door_state[ds'DOOR_CARRIAGE[ds]]={OPEN} */

 @gd13 cds = carriage_ds

 @grd7 (/d·d"DOOR_CARRIAGE&[train_carriage&[{t}]]0ds (cds(d)1CLOSED) 2 closed = FALSE //

(*d·d"DOOR_CARRIAGE)[train_carriage)[{t}]]+ds , carriage_door_state[{d}$DOOR_CARRIAGE]-{CLOSED}) . closed

= FALSE

 @grd11 ds ! dom(carriage_ds)

 @grd12 carriage_ds[ds]={OPEN}

 then

 @act2 carriage_ds*carriage_ds . (ds+{CLOSED}) // @act1 carriage_door_state% carriage_door_state &

((ds$DOOR_CARRIAGE)'{CLOSED})

machine Carriage_M1 // Preparation for instantiation: added variable carriage_door and carriage_ds

representing a single door and respective state. carriage_ds refines abstract var carriage_door_state

 refines Carriage sees Carriage_C0

variables carriage_alarm train_carriage carriage_door carriage_ds door_train_carriage

invariants

 @inv1 carriage_door ! DOOR

 @inv2 carriage_ds " carriage_door # DOOR_STATE

 @inv3 $c·c"dom(train_carriage) % DOOR_CARRIAGE&[{c}]!carriage_door

 @inv4 $d,c·d'c"dom(carriage_door_state) (d " dom(carriage_ds) (d"ran(door_train_carriage)

 % carriage_ds(d)= carriage_door_state(d'c)

 @inv5 door_train_carriage&"DOOR) TRAIN

 @inv6 $d·d"ran(door_train_carriage) % d " carriage_door

events

 event INITIALISATION

 then

 @act5 carriage_alarm * CARRIAGE + {FALSE}

 @act6 train_carriage * ,

 @act12 door_train_carriage * ,

 @act13 carriage_door *,

 @act14 carriage_ds *,

 end

 event openDoors refines openDoors

 any t ds

 where

 @grd1 t " TRAIN

 @grd2 t " dom((DOOR_CARRIAGE;train_carriage)&)

 @grd3 ds ! DOOR_CARRIAGE&[train_carriage&[{t}]]

 @grd4 ds ! dom(carriage_ds)

 @grd5 carriage_ds[ds]={CLOSED}

 then

 @act1 carriage_ds*carriage_ds- (ds+{OPEN})

 end

 event closeDoors refines closeDoors

 any t ds closed cds

 where

 @grd1 t " TRAIN

 @grd2 t " dom(((train_carriage&);(DOOR_CARRIAGE&)))

 @grd4 ds !((train_carriage&);(DOOR_CARRIAGE&))[{t}]

 @gd13 cds = carriage_ds

 @grd7 (.d·d"DOOR_CARRIAGE&[train_carriage&[{t}]]/ds

 (cds(d)0CLOSED) 1 closed = FALSE

 @grd11 ds ! dom(carriage_ds)

 @grd12 carriage_ds[ds]={OPEN}

 then

 @act2 carriage_ds*carriage_ds - (ds+{CLOSED})

 end

 event activateEmergencyCarriageButton refines activateEmergencyCarriageButton

 any c t

 where

 @typing_t t " TRAIN

 @typing_c c " CARRIAGE

 @grd2 c " dom(train_carriage)

 @grd4 t = train_carriage(c)

 event allocateCarriageTrain

 refines allocateCarriageTrain

 any c t ds

 where

 @grd1 c ! CARRIAGE"dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd3 t ! dom(door_train_carriage)

 @grd4 #tr·tr ! dom(door_train_carriage)

 $ tr%t & DOOR_CARRIAGE'[{c}]

 (door_train_carriage[{tr}]=)

 @grd5 finite(train_carriage'[{t}])

 @grd6 card(dom(train_carriage * {t}))<MAX_NUMBER_CARRIAGE

 @grd7 DOOR_CARRIAGE'[{c}] (door_train_carriage[{t}]=)

 @grd8 ds = DOOR_CARRIAGE'[{c}]

 @grd9 ds(dom(carriage_ds)=)

 then

 @act1 train_carriage(c)+ t

 @act2 door_train_carriage + door_train_carriage

 , ({t} - DOOR_CARRIAGE'[{c}])

 @act3 carriage_door + carriage_door , ds

 @act4 carriage_ds + carriage_ds , (ds-{CLOSED})

 end

 event removeCarriageTrain refines removeCarriageTrain

 any c t ds

 where

 @typing_t t ! TRAIN

 @typing_c c ! CARRIAGE

 @grd1 t ! dom(door_train_carriage)

 @grd2 c.t ! train_carriage

 @grd3 carriage_alarm(c) = FALSE

 @grd16 t ! dom(door_train_carriage) // @grd8 !d·d"door_train_carriage[{t}] # carriage_ds(d)=CLOSED

//all the doors of the train are closed

 @grd10 #d·d!DOOR_CARRIAGE'[{c}] & t = door_train_carriage'(d)

 @grd11 c ! ran(DOOR_CARRIAGE)

 @grd13 ds = DOOR_CARRIAGE'[{c}]

 @grd14 ds/carriage_door

 @grd15 carriage_ds[DOOR_CARRIAGE'[{c}]] = {CLOSED}

 then

 @act1 train_carriage + {c}0train_carriage

 @act2 door_train_carriage + door_train_carriage 1DOOR_CARRIAGE'[{c}]

 @act3 carriage_door + carriage_door " ds

 @act4 carriage_ds + ds0carriage_ds

 end

 event deallocateLeaderCabinCarriageTrain refines deallocateLeaderCabinCarriageTrain

 any t lc

 where

 @typing_t t ! TRAIN

 @typing_lc lc ! 2(TRAIN - CARRIAGE)

 @grd2 finite(train_carriage'[{t}])

 @grd4 card(dom(train_carriage * {t}))=MAX_NUMBER_CARRIAGE

 end

end
!

Fig. 5. Excerpt of machine Carriage M1

carriage ds instead of the abstract variable carriage door state. Also when car-
riage doors are allocated, both the new variables are assigned as seen in actions
act3 and act4 for event allocateCarriageTrain (similar for removeCarriageTrain).

Comparing with the generic model of the carriage doors, the relevant events
to fit the instantiation are openDoors, closeDoors, allocateCarriageTrain and
removeCarriageTrain. Not by coincidence, these events manipulate variables
carriage ds and carriage door that will instantiate generic variables generic door state
and generic door respectively. The decomposition summary is described in the
Table 1.

CarriageInterface CarriageDoor
Variables carriage alarm, leader carriage carriage doors, carriage ds

train carriage, door train carriage
Events openDoors, closeDoors openDoors, closeDoors

allocateCarriageTrain allocateCarriageTrain
removeCarriageTrain removeCarriageTrain

activateEmergencyCarriageButton
deactivateEmergencyCarriageButton

deactivateEmergencyTrainButton

Table 1. Carriage M1 decomposition summary

Application of Decomposition and Generic Instantiation 9

5.4 Machine CarriageInterface

Machine CarriageInterface contains the variables that are not related to the
carriage doors. This machine handles the activation/deactivation of the carriage
alarm, the deactivation of the emergency button and the allocation/de-allocation
of the leader cabin carriage. Events openDoors, closeDoors,
allocateCarriageTrain and removeCarriageTrain are shared.

5.5 Machine CarriageDoor

Sub-component CarriageDoors contains the variables related to carriage doors
and the events result from splitting the original events as described in Table 1.
The resulting sub-events can be seen in Fig. 6.

machine CarriageDoor sees Context_CarriageDoor

variables carriage_door carriage_ds

invariants

 @Carriage_M1_inv1 carriage_door ! DOOR

 @Carriage_M1_inv2 carriage_ds " carriage_door # DOOR_STATE

events

 event INITIALISATION

 then

 @act13 carriage_door $%

 @act14 carriage_ds $%

 end

 event openDoors

 any ds

 where

 @grd1 ds ! dom(carriage_ds)

 @grd2 carriage_ds[ds]={CLOSED}

 then

 @act1 carriage_ds$carriage_ds&(ds'{OPEN})

 end

 event closeDoors

 any ds cds

 where

 @gd1 cds = carriage_ds

 @grd2 ds ! dom(carriage_ds)

 @grd3 carriage_ds[ds]={OPEN}

 then

 @act1 carriage_ds$carriage_ds

 &(ds'{CLOSED})

 end

 event allocateCarriageTrain

 any c ds

 where

 @typing_ds ds " ((DOOR)

 @typing_c c " CARRIAGE

 @grd14 ds = DOOR_CARRIAGE)[{c}]

 @grd15 ds*dom(carriage_ds)=%

 then

 @act3 carriage_door $ carriage_door + ds

 @act4 carriage_ds $ carriage_ds + (ds'{CLOSED})

 end

 event removeCarriageTrain

 any c ds

 where

 @typing_ds ds " ((DOOR)

 @typing_c c " CARRIAGE

 @grd11 c " ran(DOOR_CARRIAGE)

 @grd13 ds = DOOR_CARRIAGE)[{c}]

 @grd14 ds!carriage_door

 @grd15 carriage_ds[DOOR_CARRIAGE)[{c}]] = {CLOSED}

 then

 @act3 carriage_door $ carriage_door , ds

 @act4 carriage_ds $ ds-carriage_ds

machine CarriageDoor sees Context_CarriageDoor

variables carriage_door carriage_ds

invariants

 @Carriage_M1_inv1 carriage_door ! DOOR

 @Carriage_M1_inv2 carriage_ds " carriage_door # DOOR_STATE

events

 event INITIALISATION

 then

 @act13 carriage_door $%

 @act14 carriage_ds $%

 end

 event openDoors

 any ds

 where

 @grd1 ds ! dom(carriage_ds)

 @grd2 carriage_ds[ds]={CLOSED}

 then

 @act1 carriage_ds$carriage_ds&(ds'{OPEN})

 end

 event closeDoors

 any ds cds

 where

 @gd1 cds = carriage_ds

 @grd2 ds ! dom(carriage_ds)

 @grd3 carriage_ds[ds]={OPEN}

 then

 @act1 carriage_ds$carriage_ds

 &(ds'{CLOSED})

 end

 event allocateCarriageTrain

 any c ds

 where

 @grd1 ds = DOOR_CARRIAGE([{c}]

 @grd2 ds)dom(carriage_ds)=%

 then

 @act1 carriage_door $ carriage_door * ds

 @act2 carriage_ds $ carriage_ds*(ds'{CLOSED})

 end

 event removeCarriageTrain

 any c ds

 where

 @grd1 c " ran(DOOR_CARRIAGE)

 @grd2 ds = DOOR_CARRIAGE([{c}]

 @grd3 ds!carriage_door

 @grd4 carriage_ds[DOOR_CARRIAGE([{c}]]

 ={CLOSED}

 then

 @act1 carriage_door $ carriage_door + ds

 @act2 carriage_ds $ ds,carriage_ds

 end

end
!

Fig. 6. Events of sub-component CarriageDoors

There are two kind of carriage doors: emergency doors and service doors.
We intend to instantiate twice the generic doors development, one per kind of
door (the developments are similar for both kind of doors). Specific details for
each kind of door are added as additional refinements later on. We describe the
generic model and afterwards the instantiation.

5.6 Generic Model: GCDoor

The generic model for the carriage doors is based in two refinements: GCDoor M0
and GCDoor M1. In each refinement step, more requirements are introduced.

5.7 Abstract machine GCDoor M0

We start by adding the carriage doors and respective states. Four events model
carriage doors. The properties to be preserved are:

10 R. Silva

1. Doors can be added or removed.
2. Doors can be in the opening or closing state.
3. When adding/removing doors, they are closed by default for security reasons.

The static part of the generic development is defined in context GCDoor C0
as seen in Fig. 7. It contains sets DOOR, DOOR STATE, GEN CARRIAGE
and SIDE, representing carriage doors, defining if a door is opened or closed,
defining the carriages and defining the side of a door respectively. Constant
GEN DOOR CARRIAGE defines the relation between doors and carriages
(axm2). Machine GCDoor M0 contains variables generic door and generic door state.
The invariants of this abstraction are very weak since we just add the type vari-
ables as can be seen in Fig. 7. Property 1 is expressed by events addDoor and

!

machine GCDoor_M0 sees GCDoor_C0

variables generic_door

 generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state "

 generic_door # DOOR_STATE

events

 event INITIALISATION

 then

 @act1 generic_door $ %

 @act2 generic_door_state $ %

 end

 event openDoors

 any ds

 where

 @guard ds ! DOOR

 @guard1 ds ! dom(generic_door_state)

 @guard2 generic_door_state[ds]={CLOSED}

 @grd5 ds &%

 then

 @act1 generic_door_state$

 generic_door_state '(ds({OPEN})

 end

 event closeDoors

 any ds

 where

 @guard ds ! DOOR

 @guard1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd4 ds &%

 then

 @act1 generic_door_state$

 generic_door_state ' (ds({CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds) generic_door = %

 @grd2 ds & %

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door $ generic_door + ds

 @act2 generic_door_state $

 generic_door_state + (ds({CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds & %

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door $ generic_door,ds

 @act2 generic_door_state $

context GCDoor_C0

constants GEN_DOOR_CARRIAGE

 OPEN CLOSED LEFT RIGHT

 DOOR_SIDE

sets DOOR DOOR_STATE GEN_CARRIAGE

 SIDE

axioms

 @axm1 partition(DOOR_STATE,

 {OPEN},{CLOSED})

 @axm2 GEN_DOOR_CARRIAGE

 !DOOR"GEN_CARRIAGE

 @axm3 partition(SIDE, {LEFT},{RIGHT})

 @axm4 DOOR_SIDE ! DOOR " SIDE

end
!

!

machine GCDoor_M0 sees GCDoor_C0

variables generic_door

 generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state "

 generic_door # DOOR_STATE

events

 event INITIALISATION

 then

 @act1 generic_door $ %

 @act2 generic_door_state $ %

 end

 event openDoors

 any ds

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 ds &%

 then

 @act1 generic_door_state$

 generic_door_state '(ds({OPEN})

 end

 event closeDoors

 any ds

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd3 ds &%

 then

 @act1 generic_door_state$

 generic_door_state ' (ds({CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds) generic_door = %

 @grd2 ds & %

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door $ generic_door + ds

 @act2 generic_door_state $

 generic_door_state + (ds({CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds & %

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door $ generic_door,ds

 @act2 generic_door_state $

!

machine GCDoor_M0 sees GCDoor_C0

variables generic_door generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state "

 generic_door # DOOR_STATE

events

 event INITIALISATION

 then

 @act1 generic_door $ %

 @act2 generic_door_state $ %

 end

 event openDoors

 any ds

 where

 @guard ds ! DOOR

 @guard1 ds ! dom(generic_door_state)

 @guard2 generic_door_state[ds]={CLOSED}

 @grd5 ds &%

 then

 @act1 generic_door_state$

 generic_door_state '(ds({OPEN})

 end

 event closeDoors

 any ds

 where

 @guard ds ! DOOR

 @guard1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd4 ds &%

 then

 @act1 generic_door_state$

 generic_door_state ' (ds({CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds) generic_door = %

 @grd2 ds & %

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door $ generic_door + ds

 @act2 generic_door_state $

 generic_door_state + (ds({CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds & %

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door $ generic_door,ds

 @act2 generic_door_state $

 ds-generic_door_state

 end

Fig. 7. Machine GCDoors M0

removeDoor. Property 2 is expressed by variable generic door state and events
openDoors and closeDoors. Event openDoors is only enabled if the set of doors
ds is closed. Doors are removed in event removeDoor, if their state is CLOSED
confirming property 3. Next section describes the refinement of this machine.

5.8 Second refinement of GCDoor: GCDoor M1

In this refinement more details are introduced about the possible behaviour of
the doors. The properties to be preserved are:

1. The actions involving the doors may result from commands sent from the
central door control. These commands have a type (OPEN RIGHT DOORS,
OPEN LEFT DOORS, CLOSE RIGHT DOORS, CLOSE LEFT DOORS,
ISOLATE DOORS, REMOV E ISOLATION DOORS), a state (START ,
FAIL, SUCCESS and EXECUTED) and a target (set of doors).

2. After the doors are closed, they must be locked for the train to move.

Application of Decomposition and Generic Instantiation 11

3. If a door is open, then an opening device was used: MANUAL PLATFORM
if opened manually in a platform, MANUAL INTERNAL if opened inside
the carriage manually and AUTOMATIC CENTRAL DOOR if opened
automatically from the central control.

4. Doors can get obstructed when closed automatically (people/object obstruc-
tion). If an obstruction is detected then it should be tried to close the doors.

The context used in this refinement (GCDoor C1) extends the existing one as
seen in Fig. 8. Abstract events are refined to include the properties defined above.
Some new invariants are added as seen in Fig. 8. Property 1 is defined by new

context GCDoor_C1 extends GCDoor_C0

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR START FAIL SUCCESS EXECUTED

 OPEN_RIGHT_DOORS OPEN_LEFT_DOORS CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS

 REMOVE_ISOLATION_DOORS

sets OPENING_DEVICE COMMAND_STATE COMMAND_TYPE COMMAND

axioms

 @axm1 partition(OPENING_DEVICE, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, {AUTOMATIC_CENTRAL_DOOR})

 @axm3 partition(COMMAND_STATE, {START}, {FAIL}, {SUCCESS},{EXECUTED})

 @axm4 partition(COMMAND_TYPE, {OPEN_RIGHT_DOORS}, {OPEN_LEFT_DOORS}, {CLOSE_RIGHT_DOORS},

{CLOSE_LEFT_DOORS}, {ISOLATE_DOORS}, {REMOVE_ISOLATION_DOORS})

end
!

machine GCDoor_M1 refines GCDoor_M0 sees GCDoor_C1

variables generic_door generic_door_state locked_doors door_opening_device

obstructed_door command command_doors command_type command_state

invariants

 @inv1 locked_doors ! DOOR

 @inv2 "d·d#locked_doors $ d # dom(generic_door_state)

 % generic_door_state(d)&{OPEN}

 @inv3 door_opening_device # generic_door'OPENING_DEVICE

 @inv4 "d·d#generic_door $ generic_door_state(d)=OPEN

 %d#dom(door_opening_device)

 @inv5 obstructed_door ! dom(generic_door_state)

 @inv6 command ! COMMAND

 @inv7 command_type # command (COMMAND_TYPE

 @inv8 command_state # command (COMMAND_STATE

 @inv9 command_doors # command ()(generic_door)

 @inv10 "dos·dos#ran(command_doors) % dos *+

 @inv11 "d,opDev·d # generic_door $opDev#OPENING_DEVICE

 $ (d,opDev)#door_opening_device $ opDev=AUTOMATIC_CENTRAL_DOOR

 % (-cmd·cmd#command $ d # command_doors(cmd))

events

 event INITIALISATION extends INITIALISATION

 then

 @act5 locked_doors.+

 @act6 door_opening_device.+

 @act7 obstructed_door.+

 @act8 command . +

 @act9 command_doors .+

 @act10 command_type .+

 @act11 command_state .+

 end

 event commandOpenDoors

 any doors cmd cmd_type

 where

 @guard doors ! generic_door

 @guard1 generic_door_state[doors]={CLOSED}

 @guard2 cmd_type # {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @guard3 cmd # COMMAND/command

 @grd4 doors *+

 then

 @act1 command_state(cmd).START

 @act2 command_doors(cmd).doors

 @act3 command . command 0 {cmd}

 @act4 command_type(cmd).cmd_type

 end

 event commandCloseDoors

 any doors cmd cmd_type

 where

 @guard doors ! generic_door

 @guard1 generic_door_state[doors]={OPEN} //!d·d"doors

#generic_door_state(d)$CLOSED//

 @guard2 cmd_type # {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @guard3 cmd # COMMAND/command

 @grd4 doors *+

 then

 event lockDoor

 any d

 where

 @grd d ! generic_door"locked_doors

 @grd1 generic_door_state(d)=CLOSED

 then

 @act1 locked_doors#locked_doors $ {d}

 end

 event unlockDoor

 any d

 where

 @grd1 d ! generic_door

 @grd2 d ! locked_doors

 then

 @act1 locked_doors#locked_doors " {d}

 end

event openDoorManually refines openDoors

 any ds open_device platform occpTrns

 where

 @guard ds % generic_door"locked_doors

 @guard1 ds % dom(generic_door_state)

 @guard2 generic_door_state[ds]&{OPEN}

 @guard3 open_device ! {MANUAL_PLATFORM,MANUAL_INTERNAL}

 @grd3 platform ! PLATFORM

 @grd4 platform ! (occpTrns ' PLATFORM)

 @grd5 ds &(

 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 then

 @act1 generic_door_state#generic_door_state) (ds*{OPEN})

 @act2 door_opening_device # door_opening_device) (ds*{open_device})

 end

 event closeDoors refines closeDoors

 any ds cmd

 where

 @guard ds % DOOR

 @guard1 ds % dom(generic_door_state)

 @guard2 generic_door_state[ds]={OPEN}

 @guard3 cmd ! command

 @guard4 command_type(cmd) ! {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @guard5 command_state(cmd)=START

 @guard6 ds % command_doors(cmd)

 @grd3 ds &(

 then

 @act1 generic_door_state#generic_door_state) (ds*{CLOSED})

 end

 event addDoor extends addDoor

 end

 event removeDoor extends removeDoor

 where

 @grd6 ds'dom(door_opening_device)=(

 @grd5 +dos·dos!ran(command_doors) , ds'dos=(

 end

end

Fig. 8. Excerpt of machine GCDoors M1

variables command, command type, command state and command doors (see
invariants inv6 to inv9). Property 2 is defined by invariant inv2 (if a door is
locked, then the door is not opened) and events lockDoor/unlockDoor. Prop-
erty 3 is defined by variables door opening device, inv3 and inv11 (if a door is
opened automatically, then a command has been issued to do so). Property 4
is defined by variable obstructed door, inv5 and events doorIsObstructed and
closeObstructedDoor. The system works as follows: doors can be opened/closed
manually or automatically. To open/close a door automatically, a command must
be issued from the central door control defining which doors are affected (for
instance, to open a door automatically, event commandOpenDoors needs to
occur). A command starts with state START which can lead to a success-
ful result (SUCCESS) or failure (FAIL). Either way, it finishes with state
EXECUTED. Abstract event otherCommandDoors refers to specific com-
mands not defined in this refinement. If a door gets obstructed when being closed

12 R. Silva

automatically (event doorIsObstructed) then event closeObstructedDoor mod-
els a successful attempt to close an obstructed door. Otherwise, it needs to be
closed manually.

5.9 Instantiation of Generic Carriage Door

We use the GCDoor development as a pattern to model emergency and service
doors. The instantiation is similar for both kind of doors: specific details for each
type of door are added later. We abstract ourselves from these details and focus
in the instantiation of one of the doors: emergency doors.

The pattern context is defined by contexts GCDoor C0 in Fig. 7 and GCDoor C1
in Fig. 8. The parameterisation context used by the instance results from the
context seen by the abstract machine CarriageDoors as illustrated in Fig. 9.
CarriageDoors C0 does not contain all the sets and constants that need to be in-
stantiated. Therefore CarriageDoors C1 is created based on the pattern context
GCDoor C1.

context CarriageDoor_C0

constants CLOSED OPEN DOOR_CARRIAGE

sets DOOR DOOR_STATE CARRIAGE

axioms

 @axm1 partition(DOOR_STATE, {OPEN},

 {CLOSED})

 @axm2 DOOR_CARRIAGE ! DOOR " CARRIAGE

 @axm3 #c·c!ran(DOOR_CARRIAGE)

 $DOOR_CARRIAGE%[{c}]&'

end
!

context CarriageDoor_C1 extends CarriageDoor_C0

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR START FAIL

 SUCCESS EXECUTED OPEN_RIGHT_DOORS OPEN_LEFT_DOORS CLOSE_RIGHT_DOORS

 CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPEN_DEV COMD_ST COMD_TYPE COMD

axioms

 @axm1 partition(OPEN_DEV, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, {AUTOMATIC_CENTRAL_DOOR})

 @axm3 partition(COMD_ST, {START}, {FAIL}, {SUCCESS},{EXECUTED})

 @axm4 partition(COMD_TYPE, {OPEN_RIGHT_DOORS}, {OPEN_LEFT_DOORS}, {CLOSE_RIGHT_DOORS},

{CLOSE_LEFT_DOORS}, {ISOLATE_DOORS}, {REMOVE_ISOLATION_DOORS})

end
!

Fig. 9. Parameterisation context CarriageDoors C0 plus additional context
CarriageDoors C1

Following the steps suggested in Sect. 3, we create the instantiation refine-
ment for emergency carriage doors as seen in Fig. 10. As expected, the generic
sets and constants are replaced by the instance sets existing in contexts Car-
riageDoors C0 and CarriageDoors C1. Moreover, generic variables are renamed
to fit the instance and be a refinement of abstract machine CarriageDoors. The
same happens to generic events addDoor and removeDoor.

Comparing the abstract machine of the pattern GCDoor M0 and the last
refinement of our initial development CarriageDoors, we realise that they are
similar but not a perfect match. CarriageDoors contains some additional pa-
rameters and guards in some events resulting from the previous refinements. For
instance, event closeDoors in CarriageDoors (Fig. 11(b)) contains an additional
parameter cds compared to event closeDoors in GCDoor M0 (Fig. 11(a)). Some
customisation is required in the generic event to ensure that the instantiation
of GCDoor M0.closeDoors refines CarriageDoors.closeDoors by adding an a
parameter that match cds and respective guard grd13.

The customisation can be realised after the instantiation by adding the re-
quired elements to ensure a valid refinement. In our case, we would need to add

Application of Decomposition and Generic Instantiation 13

INSTANTIATED REFINEMENT IEmergencyDoor M1
INSTANTIATES GCDoors M1 VIA GCDoor C0 GCDoor C1
REFINES CarriageDoors /* abstract machine */
SEES CarriageDoors C0 CarriageDoors C1 /* instance contexts */
REPLACE

SETS GEN CARRIAGE := CARRIAGE DOOR := DOOR
DOOR STATE := DOOR STATE SIDE := SIDE
OPENING DEV ICE := OPEN DEV COMMAND STATE := COMD ST
COMMAND := COMD COMMAND TY PE := COMD TY PE

CONSTANTS GEN DOOR CARRIAGE := DOOR CARRIAGE
OPEN := OPEN PLATFORM := PLATFORM
CLOSED := CLOSED
. . .

RENAME /*rename variables, events and params*/
VARIABLES generic doors := carriage doors generic door state := carriage ds
EVENTS addDoor := allocateCarriageTrain removeDoor := removeCarriageTrain

END

Fig. 10. Instantiated Refinement IEmergencyDoor M1

machine GCDoor_M0 sees GCDoor_C0

variables generic_door generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state " generic_door # DOOR_STATE

event openDoors

 any ds platform occpTrns

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 platform " PLATFORM

 @grd4 platform " (occpTrns $ PLATFORM)

 @grd5 ds %&

 @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 then

 @act1 generic_door_state'generic_door_state ((ds){OPEN})

 end

 event closeDoors

 any ds

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd3 ds %&

 then

 @act1 generic_door_state'generic_door_state

 ((ds){CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds $ generic_door = &

 @grd2 ds % &

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door + ds

 @act2 generic_door_state ' generic_door_state

 + (ds){CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds % &

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door , ds

 @act2 generic_door_state '

 ds-generic_door_state

 end

(a) Event GCDoor M0.closeDoors

machine CarriageDoors sees Train_C4

variables carriage_door carriage_ds

invariants

 theorem @typing_carriage_door carriage_door ! "(DOOR)

 theorem @typing_carriage_ds carriage_ds ! "(DOOR # DOOR_STATE)

 @Carriage_M1_inv1 carriage_door $ DOOR

 @Carriage_M1_inv2 carriage_ds ! carriage_door % DOOR_STATE

events

 event INITIALISATION

 then

 @act13 carriage_door &'

 @act14 carriage_ds &'

 end

 event openDoors

 any occpTrns platform ds

 where

 @typing_platform platform ! CDV

 @typing_ds ds ! "(DOOR)

 @grd2 occpTrns ! "(CDV)

 @grd3 platform ! PLATFORM

 @grd4 platform ! (occpTrns (PLATFORM)

 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 @grd11 ds $ dom(carriage_ds)

 @grd12 carriage_ds[ds]={CLOSED}

 then

 @act2 carriage_ds&carriage_ds) (ds#{OPEN})

 end

 event closeDoors

 any ds cds

 where

 @typing_cds cds ! "(DOOR # DOOR_STATE)

 @typing_ds ds ! "(DOOR)

 @grd11 ds $ dom(carriage_ds)

 @grd12 carriage_ds[ds]={OPEN}

 @grd13 cds = carriage_ds

 then

 @act2 carriage_ds&carriage_ds) (ds#{CLOSED})

 end

(b) Event CarriageDoors.closeDoors

Fig. 11. Events CarriageDoors.closeDoors and

the additional parameter cds and guard cds = carriage ds. This is possible since
the refinement verification is local to the event and not global to the machine.
An instance machine EmergencyDoor M1 is similar to GCDoor M1 apart from
the replacements and renaming applied in IEmergencyDoor M1. That machine
can be further refined by introducing the specific details related to emergency
doors. The instantiation of the service doors follows the same steps.

Statistics: In Table 2, we describe the statistics of the development in terms
of variables, events and proof obligations (and how many were automatically
discharged) for each refinement step. This case study was carried out under the

Variables Events ProofObligations/Auto
Train 7 12 60/59
Train M1 9 14 71/54
Train M2 13 19 144/80
Train M3 12 19 63/26
Train M4 14 19 113/84
Carriage M1 5 10 29/22
GCDoor M0 2 4 5/5
GCDoor M1 9 15 79/78

Table 2. Statistics of the metro system case study

following conditions:

14 R. Silva

– Rodin v2.1
– Plug-ins: Model Decomposition plug-in v1.2.1, ProB v2.1.2
– The instantiation was done manually (tool to be developed).

Although we were interested mainly interested in safety properties, the model
checker ProB [9] proved to be very useful as a complementary tool during the
development of this case study. In some stages of the development, all the proof
obligations were discharged but with ProB we discovered that the system was
deadlocked due to some missing detail. In large developments, these situations
possibly occur more frequently. Therefore we suggest discharging the proof obli-
gations to ensure the safety properties are preserved and run the ProB model
checker to confirm that the system actually runs and does what it should do.

6 Conclusions

We model a metro system case study, starting by proving its global properties
through several refinement steps. Afterwards, the system is decomposed in two
sub-components that can be further refined independently: LeaderCarriage and
Carriage. Since we were interested in modelling carriage doors, sub-component
Carriage is refined and afterwards decomposed originating sub-component Car-
riageDoors. Benefiting from an existing generic development for carriage doors
GCDoor, we consider this development as a pattern and instantiate two kind
of carriage doors: service and emergency doors. Although the instantiation is
similar for both types of doors, the resulting instances can be further refined
independently. Our contribution is the definition of a methodology to develop
large formal methods using refinement, decomposition and generic instantiation
and respective application to a distributed system case study. We share our expe-
rience and suggest some guidelines on how to develop our case studies following
our approach. Although we use Event-B, this techniques are generic enough to
suit other formal notations and other case studies.

Formal methods has been widely used to validate requirements of real sys-
tems. The systems are formally described and properties are checked to be pre-
served whenever a system transition occurs. Sabatier [10] discusses the reuse of
formal models as a detailed component specification or as a high level require-
ment and presents some real project examples. Lutz [11] describes the reuse of
formal methods when analysing the requirements and designing the software
between two spacecrafts formal models. Blazy et al [12] reuse Gang of Four
(GoF) design pattern adapted to formal specifications for classical B. Several
reuse mechanisms are suggested like instantiation, composition and extension.
Proof obligations are also reused when the patterns are applied. Focusing on the
instantiation, this is achieved by renaming sets (machine parameters), variables
and operations. Unlike our work, this approach only defines patterns as single
abstract machine whereas we define the parameterisation to a chain of refine-
ments. Butler [13] uses the shared event approach in classical B to decompose
a railway system into three sub-components: Train, Track and Communication.
The system is modelled and reasoned as a whole in an event-based approach,

Application of Decomposition and Generic Instantiation 15

both the physical system and the desired control behaviour. Our case study fol-
lows a similar methodology applied to a metro system following the same shared
event style but with additional use of generic instantiation for the carriage doors.

In a combination of refinement and instantiation, the abstract machine and
the abstract pattern do not necessarily match perfectly. In particular, some extra
guards and parameters may exist in the abstract events resulting from previous
refinements. It is still possible to reuse the generic model. We can customise
the instance after the instantiation to ensure a valid refinement and proceed
the development (part of the requirements for our future work of developing an
instantiation tool). Although we did not use here, another interesting conclusion
is that throughout an instantiation, only a subset of generic events can be used in
opposition to use the entire set. If a refinement pattern, the subset of events are
still refined since the event refinement only depends on the abstract and concrete
events. Nevetheless this only applies for safety properties. If we are interested in
liveness and enabledness properties, the exclusion of a generic event may result
in deadlock. We intend to study these consequences in the future.

References

1. Standish, T.A.: An Essay on Software Reuse. IEEE Trans. Software Eng. 10(5)
(1984) 494–497

2. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Technical report, Deliv-
erable 3.2, EU Project IST-511599 - RODIN (May 2005)

3. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition Tool for Event-B.
Software: Practice and Experience 41(2) (February 2011) 199–208

4. Silva, R., Butler, M.: Supporting Reuse of Event-B Developments through Generic
Instantiation. In Breitman, K., Cavalcanti, A., eds.: Formal Methods and Software
Engineering. Volume 5885 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, Rio de Janeiro, Brazil (December 2009) 466–484

5. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inf. 77(1-2) (2007) 1–28

6. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

7. Rodin: RODIN project Homepage. http://rodin.cs.ncl.ac.uk (September
2008) Online; accessed 27-July-2010.

8. Butler, M.: Synchronisation-Based Decomposition for Event-B. In: RODIN Deliv-
erable D19 Intermediate report on methodology. (2006) 47–57

9. ProB: ProB. http://www.stups.uni-duesseldorf.de/ProB/overview.php

(September 2008) Online; accessed 27-July-2010.
10. Sabatier, D.: Reusing Formal Models. In: IFIP Congress Topical Sessions. (2004)

613–620
11. Lutz, R.R.: Reuse of a Formal Model for Requirements Validation. In: In Fourth

NASA Langley Formal Methods Workshop. NASA. (1997)
12. Blazy, S., Gervais, F., Laleau, R.: Reuse of Specification Patterns with the B

Method. In Springer-Verlag SEP, ed.: ZB 2003: Formal Specification and Devel-
opment in Z and B Lecture Notes in Computer Science. Volume 2651 of Lecture
Notes in Computer Science., Turku, Finland (June 2003) 40–57

13. Butler, M.: A System-based Approach to the Formal Development of Embedded
Controllers for a Railway. Design Automation for Embedded Systems 6 (2002)
355–366

http://rodin.cs.ncl.ac.uk
http://www.stups.uni-duesseldorf.de/ProB/overview.php

	Application of Decomposition and Generic Instantiation to a Metro System in Event-B
	Renato Silva
	Introduction
	Background
	Generic Instantiation
	Decomposition
	Case Study: Metro System
	Refinements of Train
	Machine Carriage
	Refinement of Carriage and Decomposition: Carriage_M1
	Machine CarriageInterface
	Machine CarriageDoor
	Generic Model: GCDoor
	Abstract machine GCDoor_M0
	Second refinement of GCDoor: GCDoor_M1
	Instantiation of Generic Carriage Door

	Conclusions

