DejaView

Alex L. Wood
Dirk de Jager
Geoff V. Merrett
Bashir M. Al-Hashimi
Kieron O’Hara
Nigel Shadbolt
Wendy Hall

A low-power, distributed, pervasive system for supporting memory

Mobile Health at MobiHoc ‘11
May 16 2011
Outline

• Motivation
 – Peoples’ memory problems
 – Electronic memory aids

• Our system: DejaView
 – Our new design
 – Tests, power consumption, latency
 – Trials and future work
Motivation
Peoples’ memory problems

• **Disease, injury:** dementia, traffic accidents, alcoholism...

• **Memory failure a key sign of Alzheimer’s**

• **Memory impairment in 70% of head trauma cases**

• **Affects employability, socialising, quality of life**
Memory assistance

• Remembering future plans: jobs, chores, appointments (prospective memory)

• Remembering about the past (retrospective)
 – With recalling past experiences of holidays, events (episodic memory)
 – Knowing facts, such as peoples’ names, dates, places (semantic memory)

• All affected separately in different people
Prospective aids

Various kinds in the literature

- Automated pager/SMS messages
- Pre-recorded voice reminders
- Mobile phone calendars
- PDAs with custom software
- A robot which studies its owner
Retrospective aids

iRemember, Rememberance Agent, Forget-me-not...

- Some primitive context-awareness
- Real-time or delayed feedback
- Very task-orientated, mostly for work
- Some task aids (e.g. for cooking)
SenseCam

- Photos reviewed later
- Improvements in studies
- Lots of photos to sort through

SenseCam effect graph from *The use of a wearable camera, SenseCam, as a pictorial diary to improve autobiographical memory in a patient with limbic encephalitis: a preliminary report; Berry, Kapur, et al. (2007)*
SenseCam extensions

- Grouping images by similarity
- Face recognition
- Activity detection with accelerometer
- Tagging with GPS data
- Adding a compass
- Detecting people with Bluetooth

SenseCam effect graph from *The use of a wearable camera, SenseCam, as a pictorial aid to improve autobiographical memory in a patient with limbic encephalitis: a preliminary report*; Berry, Kapur, et al. (2007)
Discussion

- Lots of thoroughly-studied prospective aids
- Limited number of retrospective aids
- Very few real-time aids, and only basic context-awareness
- Promising results from studies of SenseCam

- No system exists to provide real-time retrospective aid based on intelligently-inferred context
Our system: DejaView
DejaView system concept

Rule updates

Shard

Rule updates

Shard

Notifications

Internet service

Review software

External services

External data
Design requirements

• Three-tier architecture means we must optimise for **latency**
 - on the device
 - in transmission

• Wearable device must last for a day without charge, so must be **low power**
 - vary frequency of taking photos
 - use only effective sensors
An example

Mr. Jones is speaking to his neighbour, Anne, but can’t remember when or where he last saw her.

The system recognises her face and retrieves information on when they last met, where they were, who with, etc.

You last saw Anne on Wednesday afternoon at Lily’s house with Roger and Colin. You are going for lunch together tomorrow at one o’clock.
Information we need

• We can help with retrieval of memories by providing good cues
 – people
 – places
 – objects
 – actions

• These have been studied in the literature

• Shown to be very important in SenseCam studies

• Need to select appropriate sensors to detect and capture them
Example behaviour

Recognised faces. Talking to Ian, Steve, Richard. Remind the user when and where they last spoke to these people. Increase photo capture rate.

Detect we are indoors. Calendar shows an appointment in fifteen minutes. Remind the user of the appointment and where they are.

Recognise objects. We are in the kitchen. Has the user put milk back in the fridge before leaving the room? A memorable action may be performed.
Sensors considered

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Energy/S</th>
<th>Vol. (mm³)</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone</td>
<td>84.4nJ</td>
<td>22</td>
<td>Person</td>
</tr>
<tr>
<td>Compass</td>
<td>450nJ</td>
<td>21</td>
<td>Action</td>
</tr>
<tr>
<td>Light level</td>
<td>672nJ</td>
<td>1</td>
<td>Place</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>39.4μJ</td>
<td>15</td>
<td>Action</td>
</tr>
<tr>
<td>PIR</td>
<td>24.3mJ</td>
<td>1621</td>
<td>Person</td>
</tr>
<tr>
<td>Heart rate</td>
<td>10.8μJ</td>
<td>1416</td>
<td>Health</td>
</tr>
<tr>
<td>Humidity</td>
<td>56μJ</td>
<td>96</td>
<td>Place</td>
</tr>
<tr>
<td>Temperature</td>
<td>2.25mJ</td>
<td>36</td>
<td>Place</td>
</tr>
<tr>
<td>GPS</td>
<td>743mJ</td>
<td>1142</td>
<td>Place</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>120J</td>
<td>131040</td>
<td>Health</td>
</tr>
</tbody>
</table>
The wearable device

- Very low-power MCU
- Interrupt-driven design
- Dynamic clock control
- Dynamic power control
- Multiple voltages
- Dynamic ‘rules’ determine when to take a photo
Phone software

- The Android phone runs a background service which
 - adds GPS information
 - adds time information
 - saves images to its SD card
 - transmits the photos to the Internet service over 3G or Wi-Fi

- Also runs an app to provide feedback to the user
Internet services

• The Internet service
 – runs uploaded images against Web services
 – makes images available for review through Web interface
Testing and evaluation
Current implementation

- Device takes photo based on sensors
- Photos uploaded to server
- Face.com checks photo for faces
- Any faces found are identified on phone
Energy use of device

<table>
<thead>
<tr>
<th>Phase</th>
<th>I (mA)</th>
<th>t (s)</th>
<th>E (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
<td>114</td>
<td>7.30</td>
<td>3.40</td>
</tr>
<tr>
<td>Transfer</td>
<td>72.5</td>
<td>7.94</td>
<td>2.36</td>
</tr>
<tr>
<td>Sensing</td>
<td>25.8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval</th>
<th>I (mA)</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>15s</td>
<td>53.1</td>
<td>15.1h</td>
</tr>
<tr>
<td>30s</td>
<td>39.5</td>
<td>20.3h</td>
</tr>
<tr>
<td>60s</td>
<td>32.6</td>
<td>24.5h</td>
</tr>
</tbody>
</table>

Diagrams

Current draw (mA)
- Sensing: 114 mA for 7.30s
- Transfer: 72.5 mA for 7.94s
- Average: 25.8 mA

Lifetime (hours)

- SenseCam
- DejaView

Capture interval (s)

System latency

- Moving photo to SRAM much faster with new camera
- Bluetooth performance improved recently
Conclusion
Future work

• Finishing new model of wearable device
 – reduced latency (by around 50%)
 – higher-resolution photos

• Intelligent processing to extract more information for lower energy and latency overheads

• Optimise the energy trade-offs between on-device processing and delegation to higher layers

• Talking to clinicians about trialling on patients with memory disorders
Summary

• We have developed a novel, pervasive healthcare system to proactively support failing memory.

• We have presented a low-power, wearable sensor device to provide real-time information to the system.