Congestion Games with Failures

Penn, Michal, Polukarov, Maria and Tennenholtz, Moshe (2011) Congestion Games with Failures Discrete Applied Mathematics, 159, (15), pp. 1508-1525.


[img] PDF BCGF_DAM_13Jan2011.pdf - Accepted Manuscript
Download (401kB)


We introduce a new class of games, {\it congestion games with failures} (CGFs), which allows for resource failures in congestion games. In a CGF, players share a common set of resources (service providers), where each service provider (SP) may fail with some known probability (that may be constant or depend on the congestion on the resource). For reliability reasons, a player may choose a subset of the SPs in order to try and perform his task. The cost of a player for utilizing any SP is a function of the total number of players using this SP. A main feature of this setting is that the cost for a player for successful completion of his task is the \underline{minimum} of the costs of his successful attempts. We show that although CGFs do not, in general, admit a (generalized ordinal) potential function and the finite improvement property (and thus are not isomorphic to congestion games), they always possess a pure strategy Nash equilibrium. Moreover, every best reply dynamics converges to an equilibrium in any given CGF, and the SPs' congestion experienced in different equilibria is (almost) unique. Furthermore, we provide an efficient procedure for computing a pure strateguy equilibrium in CGFs and show that every best equilibrium (one minimizing the sum of the players' disutilities) is semi-strong. Finally, for the subclass of symmetric CGFs we give a constructive characterization of best and worst equilibria.

Item Type: Article
ISSNs: 0166-218X (print)
Organisations: Agents, Interactions & Complexity
ePrint ID: 272245
Date :
Date Event
Date Deposited: 04 May 2011 08:35
Last Modified: 17 Apr 2017 17:57
Further Information:Google Scholar

Actions (login required)

View Item View Item