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Abstract

For many 2D systems, one of the independent variables plays a distinct role in the evolution of the trajectories; since often
this special independent variable is time, we call such systems ‘time-relevant’. In this paper, we introduce a stability notion for
time-relevant systems described by higher-order difference equations. We give algebraic tests in terms of the location of the
zeros of the determinant of a polynomial matrix describing the system. We also give an LMI characterization of time-relevant
stability involving only constant matrices.

1 Introduction

In this paper we study the stability of time-relevant 2D
systems, that is 2D systems where one independent vari-
able - often identified with time in many applications
- plays a distinguished role. Previous work on 2D sys-
tems has almost exclusively focused on systems where
both independent variables are on the same footing; this
made necessary the definition of the concept of “past”
and “future”, so self-evident in the 1D framework, to
the case of more than one independent variable, where
there is no obvious such splitting. An eminently reason-
able position is to let the laws describing the physical
phenomenon themselves dictate what the “direction” is
of the evolution of the system; this is the approach pi-
oneered in the 2D case in [20]. Although this approach
agrees with many applications of 2D systems (image
processing, for example), it can be argued that in many
other situations (for example in the modeling of physi-
cal systems, or in iterative learning control), time plays
a more distinguished role than the spatial variables.

The notion of stability, because of its important conse-
quences in the analysis and design of control systems
and of filters, has attracted considerable interest also in
the case of 2D systems (see for example [2,5,24]). The
case of non time-relevant 2D systems has been studied in
detail by Valcher in [24], where stability is defined with
respect to “past” and “future” cones. For time-relevant
systems, the natural direction of the independent vari-
able “time” determines what the past and the future are,
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and a reasonable definition of stability must formalize
the intuition that the trajectories of the system die out as
time goes to infinity. A sound definition of time-relevant
stability must also take into account the important role
boundary conditions play in the behavior of 2D systems.

In section 2 of this paper we address these issues and
we propose a definition of time-relevant stability corre-
sponding to the situation in which system trajectories
with “finite-energy” boundary conditions have zero en-
ergy in the limit as time goes to infinity. In section 3
we provide an algebraic characterization of square, au-
tonomous time-stable systems in terms of the location of
the zeroes of the determinant of any square polynomial
matrix describing the system. This condition is rather
difficult to check, since it involves determining the loca-
tion of the roots of a parameter-dependent polynomial.
In order to find efficient conditions we put to good use
the concepts and formalism of 1-D quadratic difference
forms and of dissipativity theory, summarized in section
4 of this paper. Equipped with these theoretical tools,
in section 5 we give an LMI characterization of time-
relevant stability for 2D systems, which involves only
constant matrices and which can be tested using stan-
dard linear algebra computations.

The present work is greatly indebted to the results illus-
trated in [25] in the case of continuous independent vari-
ables. It is also important to mention here other works
regarding time-relevant systems; those more in the spirit
of the approach followed in this paper are [21,22], while
in [27] a more algebraic approach to the issue of time-
relevant stability is illustrated.
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Notation and background material

We denote by WT the set consisting of all maps from a
set T to a set W. We call B ⊆ (Rw)Z2

a 2D linear shift-
invariant partial difference behavior if B is the set of
solutions of a finite system of constant-coefficient partial
difference equations. We denote by Lw(Z2,Rw) the set of
all 2D linear shift-invariant partial difference behaviors
with w variables, often denoted simply with Lw.

The system of constant-coefficient partial difference
equations describing B ∈ Lw can be efficiently repre-
sented using polynomial matrices in two variables as
follows. denote by σi the i-th shift operator, defined for
i = 1 as

σ1 : (Rw)Z2

→ (Rw)Z2

(σ1w)(k1, k2) := w(k1 + 1, k2) ,

and analogously for σ2; the inverse shift operators σ−1
1

and σ−1
2 are defined in the obvious way. Then B ∈ Lw

if and only if there exist nonnegative integers M and L
and matrices Rij ∈ Rp×w, i, j = −L, . . . ,M , such that

[w ∈ B]⇐⇒

 M∑
i,j=−L

Rijσ
i
1σ
j
2w = 0

 .

Define the two-variable Laurent polynomial matrix
R(ξ1, ξ−1

1 , ξ2, ξ
−1
2 ) in the indeterminates ξ1 and ξ2 as

R(ξ1, ξ−1
1 , ξ2, ξ

−1
2 ) :=

∑M
i,j=−LRijξ

i
1ξ
j
2; then we can

write
B = ker R(σ1, σ

−1
1 , σ2, σ

−1
2 ) , (1)

expressing B as the kernel of a polynomial operator in
the shifts. We call (1) a kernel representation of B.

Associating behaviors with Laurent polynomial matrices
allows the development of a calculus of representations in
which properties of a behavior are reflected in algebraic
properties of the polynomial matrices representing it. A
thorough introduction to this calculus is given in the
literature; we now briefly review only those notions of
this calculus necessary for the results presented in this
paper.

First, we introduce some notation. We denote by
Rr×w[ξ1, ξ2] (respectively, with Rr×w[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ])

the set of all r × w matrices with entries in the ring
R[ξ1, ξ2] of polynomials in 2 indeterminates, with real
coefficients (respectively in the ring R[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ]

of Laurent polynomials in 2 indeterminates with real
coefficients). For simplicity in the following we often
omit an explicit indication of the indeterminates when
referring to (Laurent) polynomial matrices. When one
of the dimensions of a matrix is not specified (but fi-
nite), we denote it with a bullet; for example, R•×w is

the set of matrices with real entries and w columns. The
set of real matrices with an infinite number of columns
(respectively rows) and w rows (respectively columns) is
denoted by Rw×∞ (respectively R∞×w). The set of real
matrices with an infinite number of rows and columns
is denoted by R∞×∞.

Inclusion and equality of behaviors are reflected in prop-
erties of the Laurent polynomial matrices associated
with their kernel representations as follows. If two behav-
iors are represented as Bi := ker Ri(σ1, σ

−1
1 , σ2, σ

−1
2 ),

with Ri ∈ R•×w[ξ1, ξ−1
1 , ξ2, ξ

−1
2 ], i = 1, 2, then B1 ⊆ B2

if and only if there exists L ∈ R•×•[ξ1, ξ−1
1 , ξ2, ξ

−1
2 ] such

that R2 = LR1. Also, B1 = B2 if and only if there exist
L1, L2 ∈ R•×•[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ] such thatR2 = L1R1 and

R1 = L2R2. If the polynomial matrices R1 and R2 have
full row rank, then B1 = B2 if and only if there exists a
unimodular matrix L ∈ R•×•[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ], i.e. a ma-

trix whose determinant is a unit in R[ξ1, ξ−1
1 , ξ2, ξ

−1
2 ],

such that R1 = LR2. Note that since the determinant
of a unimodular matrix is a unit, a unimodular matrix
is invertible in the ring it belongs to.

A set K ⊂ R × R is a cone if αK ⊂ K for all α ≥ 0; a
cone is convex if it contains, with any two points, also
the line segment between them; a convex cone is solid if
it contains an open ball of R× R.

We denote by `2(Z,Zw) (often abbreviated with `2 when
the trajectory dimension is evident from the context)
the set of square summable trajectories:

`2(Z,Zw) :=
{
w ∈ (Rw)Z |

+∞∑
k=−∞

w(k)>w(k) =
+∞∑

k=−∞

‖w(k)‖22 <∞

}
.

2 Time-relevant 2D systems

When is it reasonable to call a 2D system ‘time-
relevant’? The requirement that one of the independent
variables plays a distinguished role is of course neces-
sary; however, we believe that it is legitimate to do so
only when this special independent variable has another
desirable property, namely the fact that it imposes a
unequivocal partition of the independent variable space
in a ‘past’ and a ‘future’. In order to articulate this
point of view in a mathematically sound way, we need
to recall several notions introduced in [3,20,24].

Definition 1 Let B ∈ Lw. A subset S ⊆ Z2 is charac-
teristic for B if{

[w1, w2 ∈ B] and
[
w1|S = w2|S

]}
=⇒ [w1 = w2] .
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The following result is a straightforward consequence of
this definition and of the linearity of B.

Proposition 2 Let B ∈ Lw. A subset S ⊆ Z2 is char-
acteristic for B if and only if{

[w ∈ B] and
[
w|S = 0

]}
=⇒ [w = 0] .

Of course the trivial set S = Z2 is characteristic for ev-
ery behavior B; however, in the following we are only
interested in those behaviors with nontrivial character-
istic sets. We call these systems autonomous (see Def. 1
p. 1503 of [3] and also Def. 2.2 p. 292 of [24]).

Definition 3 A behavior B ∈ Lw is called autonomous
if it admits a characteristic set S ⊂ Z×Z whose comple-
mentary set (Z×Z)\S includes the intersectionK∩(Z×
Z) of a closed solid convex cone K of R× R with Z× Z.

It has been shown in [3] that every 2D autonomous
behavior admits a kernel representation (1) with
R ∈ R•×w[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ] of full column rank. The fol-

lowing result states that every autonomous behavior
can be decomposed (non-uniquely) as the sum of a
finite-dimensional part and of an infinite-dimensional,
“square” part, the latter being unique.

Proposition 4 Let B ∈ Lw be autonomous. There
exists a finite dimensional autonomous behavior
Bfd and a square nonsingular polynomial matrix
S ∈ Rw×w[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ] such that B = Bfd +

ker S(σ1, σ
−1
1 , σ2, σ

−1
2 ), where

Bsq := ker S(σ1, σ
−1
1 , σ2, σ

−1
2 )

is uniquely determined by B.

Proof. The result follows from Proposition 2.3 of [23].

In the sequel we follow [24] and we call behaviors Bsq as
in Proposition 4 square autonomous behaviors.

We now introduce time-relevant behaviors; of special im-
portance in this case are the sets

St1 := {(k1, k2) ∈ Z2 | k1 ≤ t1} , (2)

and their subsets

St0,t1 := {(k1, k2) ∈ Z2 | t0 ≤ k1 ≤ t1} . (3)

These are illustrated in Fig.s 1 and 2, respectively. Often
in the following we call a set Lt = St,t a vertical line.

The definition of time-relevant behavior is the following.
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Fig. 1. A set St1 , see formula (2).
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Fig. 2. A set St0,t1 , see formula (3).

Definition 5 B ∈ Lw is time-relevant if for all t ∈ Z
the sets St of the form (2) are characteristic.

Observe that linear shift-invariant finite-dimensional 2D
behaviors Bfd are time-relevant: indeed, it can be shown
that any sufficiently large (finite) rectangle in Z2 is char-
acteristic for Bfd, and consequently all the sets St are
characteristic for Bfd. From Proposition 4 it follows then
that a behavior B is time-relevant if and only if its square
part Bsq is time-relevant. Therefore, in the rest of this
section we concentrate on square autonomous behaviors.

We next give a characterization of time-relevance for
square autonomous systems; namely, we show that a
time-relevant (square, autonomous) behavior B ∈ Lw

has a special kernel representation; this will be useful in
proving several important results later on in the paper.

Proposition 6 Let B ∈ Lw be a square autonomous
behavior. Then B is time-relevant if and only if
there exists R ∈ Rw×w[ξ−1

1 , ξ2, ξ
−1
2 ] such that B =

ker R(σ−1
1 , σ2, σ

−1
2 ) and

R(ξ−1
1 , ξ2, ξ

−1
2 ) = Iw +R1(ξ2, ξ−1

2 )ξ−1
1 + . . .

+RL(ξ2, ξ−1
2 )ξ−L1 , (4)

where L ∈ N, and Ri ∈ Rw×w[ξ2, ξ−1
2 ], i = 1, . . . , L.

Proof. We begin with the following preliminary result.
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Lemma 7 Let Q ∈ Rw×w[s, ξ2, ξ−1
2 ], given by

Q(s, ξ2, ξ−1
2 ) = Q0(ξ2, ξ−1

2 ) + . . .+QL(ξ2, ξ−1
2 )sL

with QL 6= 0, be nonsingular. Then there exists a uni-
modular matrix U ∈ Rw×w[s−1, ξ2, ξ

−1
2 ] such that

U(s−1, ξ2, ξ
−1
2 )Q(s, ξ2, ξ−1

2 )

has the following properties:

(1) U(s−1, ξ2, ξ
−1
2 )Q(s, ξ2, ξ−1

2 ) ∈ Rw×w[s, ξ2, ξ−1
2 ];

(2) Q̃(s, ξ2, ξ−1
2 ) :=U(s−1, ξ2, ξ

−1
2 )Q(s, ξ2, ξ−1

2 ) is such
that Q̃(0, ξ2, ξ−1

2 ) is nonsingular.

Proof. Assume thatQ(0, ξ2, ξ−1
2 ) has not full rank; then

there exists a unimodular matrix V (ξ2, ξ−1
2 ) such that

V (ξ2, ξ−1
2 )Q(0, ξ2, ξ−1

2 ) =

[
F (ξ2, ξ−1

2 )

0

]
,

with F of full row rank, and consequently there ex-
ist Fe, H ∈ R•×•[s, ξ2, ξ−1

2 ] such that Fe(0, ξ2, ξ−1
2 ) =

F (ξ2, ξ−1
2 ) and

V (ξ2, ξ−1
2 )Q(s, ξ2, ξ−1

2 ) =

[
Fe(s, ξ2, ξ−1

2 )

sH(s, ξ2, ξ−1
2 )

]
,

or equivalently,[
I 0

0 s−1I

]
V (ξ2, ξ−1

2 )Q(s, ξ2, ξ−1
2 ) =

[
Fe(s, ξ2, ξ−1

2 )

H(s, ξ2, ξ−1
2 )

]
=: Q1(s, ξ2, ξ−1

2 ) . (5)

For future reference, denote by N0 the highest power of
s in det Q(s, ξ2, ξ−1

2 ), and by N1 the highest power of s
in det Q1(s, ξ2, ξ−1

2 ). It follows from (5) that N0 > N1.

Now check the rank of Q1(0, ξ2, ξ−1
2 ); if it is full, then

the claim of the Lemma is proved with U(s−1, ξ2, ξ
−1
2 ) =[

I 0

0 s−1I

]
V (ξ2, ξ−1

2 ) and Q̃(s, ξ2, ξ−1
2 ) = Q1(s, ξ2, ξ−1

2 ).

If not, we can apply a transformation to Q1(s, ξ2, ξ−1
2 )

analogous to the one performed in the previous step.
Since at each step k the highest power of s in the deter-
minant of Qk(s, ξ2, ξ−1

2 ) decreases, the procedure termi-
nates, yielding Q̃ with the desired properties.

We now prove the claim of the Proposition.

(If ) Assume that a representation (4) of B exists, and
observe that w ∈ B is equivalent to

w = −R1(σ2, σ
−1
2 )σ−1

1 w − · · · −RL(σ2, σ
−1
2 )σ−L1 w .

Consequently if w is zero in S0, then its restriction to
the vertical line {(1, k) | k ∈ Z} is zero. Extending this
solution to the next vertical line, the one after that, and
so on, shows that w is zero everywhere. Therefore from
Proposition 2 it follows that B is time-relevant.

(Only if ) Assume that B is time-relevant, and let R̃ ∈
Rw×w[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ] induce a kernel representation of

B, i.e. B = ker R̃(σ1, σ
−1
1 , σ2, σ

−1
2 ). If necessary, pre-

multiply R̃ on the left by a unimodular matrix of the
form ξ−K1 Iw, K ∈ N, to obtain an equivalent representa-
tion of the form

R′(ξ−1
1 , ξ2, ξ

−1
2 ) = R′0(ξ2, ξ−1

2 ) +R′1(ξ2, ξ−1
2 )ξ−1

1 + . . .

+R′L(ξ2, ξ−1
2 )ξ−L1 .

Consider

Q(s, ξ2, ξ−1
2 ) := R′0(ξ2, ξ−1

2 ) +R′1(ξ2, ξ−1
2 )s+ . . .

+R′L(ξ2, ξ−1
2 )sL ;

in view of the result of Lemma 7, we can assume without
loss of generality that R′0(ξ2, ξ−1

2 ) is nonsingular.

Now recall that the trajectories in B satisfy

R′0(σ2, σ
−1
2 )w = −R′1(σ2, σ

−1
2 )σ−1

1 w − · · ·
−R′L(σ2, σ

−1
2 )σ−L1 w .

Consequently, w ∈ B and w|S0 = 0 imply

R′0(σ2, σ
−1
2 )w(1, ·) = 0 . (6)

Now define

Z := {v ∈ (Rw)Z : ∃w ∈ B such that
w|S0 = 0 and w|L1 = v} ;

this is the set of the restrictions to the vertical line
L1 of B-trajectories which are zero in the past. Since
B is time-relevant by assumption, Z only consists of
the zero trajectory. We now proceed to show that Z =
ker R′0(σ2, σ

−1
2 ).

It follows from (6) that Z ⊂ ker R′0(σ2, σ
−1
2 ); we next

prove the converse inclusion. Let v ∈ kerR′0(σ2, σ
−1
2 )

and consider w ∈ (Rw)Z2
such that: w(k, ·) = 0, k ≤ 0,

w(1, ·) = v(·) and

R′0(σ2, σ
−1
2 )w(k, ·) =

=−R′1(σ2, σ
−1
2 )w(k − 1, ·)...−R′L(σ2, σ

−1
2 )w(k − L, ·),

4



for k ≥ 2. Note that such a trajectory exists since
R′0(σ2, σ

−1
2 ) is a surjective operator (as R′0(ξ2, ξ−1

2 )
is nonsingular). Moreover, by construction w|S0 = 0,
w ∈ B and w|L1 = v, and therefore v ∈ Z. This means
that ker R′0(σ2, σ

−1
2 ) = Z.

It follows from this argument that B is time-relevant
if and only if ker R′0(σ2, σ

−1
2 ) = {0} i.e. if and

only if the matrix R′0 is unimodular (invertible
in Rw×w[ξ2, ξ−1

2 ]). The unimodular transformation
R′0(ξ2, ξ−1

2 )−1R′(ξ−1
1 , ξ2, ξ

−1
2 ) yields the desired form of

the kernel representation. This concludes the proof of
the claim.

The result of Proposition 6 shows that B is time-relevant
if and only if the restriction ofw ∈ B to a vertical lineLt1
where t1 ∈ Z, is a linear combination of the restrictions
of w and its shifts σk2w to a finite number of similar lines
Lt0 with t0 < t1. The minimal number of such lines will
be called the time-lag of B.

3 Time-relevant stability, and its algebraic char-
acterization

In the seminal paper [24], it has been discussed that a
sound definition of stability for 2D systems needs to take
into account the “initial conditions” of trajectories. In-
deed, as pointed out in [24], when dealing with square
autonomous behaviors, which have infinite characteris-
tic sets, certain choices of the free initial conditions may
produce situations such that the corresponding trajec-
tory does not asymptotically decay to zero. Therefore,
some requirements on the initial conditions must be im-
posed.

For time-relevant systems, we require that the restric-
tions of a trajectory w ∈ B to a finite family of vertical
lines are square summable, i.e. have finite energy along
those lines. As we shall see, this is enough to ensure that
then the restriction of w to any vertical line in the “fu-
ture” is an `2-trajectory.

Proposition 8 Let B ∈ Lw be a time-relevant square
autonomous behavior with time-lag L. Assume that there
exists t0 ∈ Z and w ∈ B such that, for all k ∈ Z∩[t0, t0 +
L), w|Lk

:= w(k, ·) ∈ (Rw)Z is square-summable. Then
w|Lk

∈ `2(Z,Rw) for all k ≥ t0 + L.

Proof. This follows from the fact that the restriction of
w ∈ B to any set Lk is a linear combination of a finite
number of restrictions of w and its shifts to sets Lk′ with
k′ < k. Therefore, if the latter are `2-trajectories, so is
w restricted to Lk.

This result supports the definition of time-relevant sta-
bility that follows: a system is time-relevant stable if

whenever w ∈ B has ‘initial conditions’ of finite energy
in a set St0,t0+N−1 = ∪k=t0,...,t0+N−1Lk, then the en-
ergy of the restrictions of w along vertical lines goes to
zero with time.

Definition 9 A time-relevant behavior B ∈ Lw is time-
relevant stable if there exists N ∈ N such that

{[w ∈ B] and [w(k, ·) ∈ `2(Z,Rw) for all 0 ≤ k ≤ N − 1]}

=⇒
[

lim
k→∞

‖w(k, ·)‖`2 = 0
]
.

Note that, if it exists, the integer N of the previous def-
inition must be greater than or equal to the time lag of
the behavior. For the sake of simplicity when consider-
ing time-relevant systems we sometimes simply refer to
time-relevant stability as stability.

It is easy to see that if B is finite-dimensional, the only
trajectory which is square summable along a vertical
line is the zero trajectory. Thus, it follows from Defini-
tion 9 that a finite-dimensional behavior is always time-
relevant stable. From the decomposition result of Propo-
sition 4 it then also follows that an autonomous behav-
ior B is time-relevant stable if and only if its square part
is time-relevant stable. Consequently, in the rest of this
paper we will be focusing on square autonomous behav-
iors B.

We now give an algebraic test for the stability of a time-
relevant system.

Theorem 10 Let B ∈ Lw be a time-relevant square au-
tonomous behavior, and let R ∈ Rw×w[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ] in-

duce a kernel representation of B. The behavior B is
time-relevant stable if and only if for all ω ∈ R the Lau-
rent polynomial det R(ξ1, ξ−1

1 , eiω, e−iω) has all its roots
in the open unit disk.

Proof. We first assume that the kernel representation
is induced by a matrix R of the form (4). The claim for
the general case follows easily, as we show further on.

Note that if R is of the form (4), namely

R(ξ−1
1 , ξ2, ξ

−1
2 ) = Iw +R1(ξ2, ξ−1

2 )ξ−1
1 + . . .

+RN (ξ2, ξ−1
2 )ξ−L1 ,

then it is straightforward to see that its determinant is
of the form

d(ξ−1
1 , ξ2, ξ

−1
2 ) := det R(ξ−1

1 , ξ2, ξ
−1
2 )

= 1 + d1(ξ2, ξ−1
2 )ξ−1

1 + . . .+ dN (ξ2, ξ−1
2 )ξ−N1 ,

for some N ∈ N.
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(If) We reduce ourselves to the scalar case in the follow-
ing way, analogously to [24]. Denote by Adj(R)(ξ−1

1 , ξ2, ξ
−1
2 )

the adjoint matrix of R(ξ−1
1 , ξ2, ξ

−1
2 ), i.e.

Adj(R)(ξ−1
1 , ξ2, ξ

−1
2 )R(ξ−1

1 , ξ2, ξ
−1
2 ) = d(ξ−1

1 , ξ2, ξ
−1
2 ) Iw .

(7)
Now define Bsup := ker d(σ−1

1 , σ2, σ
−1
2 ) Iw, and note

that, because of (7), Bsup ⊃ B. Note also that w ∈ Bsup

if and only if each of the components of w satisfies the
scalar difference equation d(σ−1

1 , σ2, σ
−1
2 )w′ = 0.

Assuming that for all ω ∈ R detR(ξ−1
1 , eiω, e−iω) has

all its roots in the open unit disk, we will show that
ker d(σ−1

1 , σ2, σ
−1
2 ) is time-relevant stable; this implies

that B ⊂ Bsup is also time-relevant stable.

Denote by w′ any trajectory in ker d(σ−1
1 , σ2, σ

−1
2 ), and

define

x(k, ·) :=


w′(k −N, ·)

w′(k −N + 1, ·)
...

w′(k − 1, ·)

 .

Now it can be shown that w′ ∈ ker d(σ−1
1 , σ2, σ

−1
2 ) if

and only if there exists x such that

σ1x(k1, k2) =A(σ2, σ
−1
2 ) x(k1, k2)

w′(k1, k2) =C(σ2, σ
−1
2 )x(k1, k2) , (8)

(k1, k2) ∈ Z2, where A(σ2, σ
−1
2 ) is a companion matrix

of polynomial shift operators:

A(σ2, σ
−1
2 ) := (9)

0 1 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 1

−dN (σ2, σ
−1
2 ) −dN−1(σ2, σ

−1
2 ) · · · −d1(σ2, σ

−1
2 )


,

and

C(σ2, σ
−1
2 ) :=

[
−dN (σ2, σ

−1
2 ) · · · −d1(σ2, σ

−1
2 )
]
.

Let now w′ ∈ ker d(σ−1
1 , σ2, σ

−1
2 ) be such that w′(k, ·) ∈

`2(Z,R), 0 ≤ k ≤ N ; then the corresponding x(0, ·)
belongs to `2(Z,RN ). Observe that for every x(k, ·) ∈
`2(Z,RN ) it holds that x(k+1, ·) ∈ `2(Z,RN ), k ≥ 0, i.e.
A(σ2, σ

−1
2 ) is an operator from `2(Z,RN ) to `2(Z,RN ).

Therefore, w′(k, ·) ∈ `2(Z,R) for every k ≥ 0. Further,[
lim
k→∞

x(k, ·) = 0
]

=⇒
[

lim
k→∞

w′(k, ·) = 0
]
,

and hence[
lim
k→∞

‖x(k, ·)‖`2 = 0
]

=⇒
[

lim
k→∞

‖w′(k, ·)‖`2 = 0
]
.

Thus, the stability of Bsup = ker d(σ−1
1 , σ2, σ

−1
2 ) Iw is

proved if we show that the x-trajectories of (8) satisfy
limk→∞ x(k, ·) = 0, for every x(0, ·) ∈ `2(Z,RN ).

In order to do this, since x(k, ·) = A(σ2, σ
−1
2 )kx(0, ·),

limk→∞ x(k, ·) = 0 for all x(0, ·) ∈ `2(Z,RN ) if and only
if

lim
k→∞

‖A(σ2, σ
−1
2 )k‖∞

= lim
k→∞

supω∈R

√
ρ(A(eiω, e−iω)k>A(eiω, e−iω)k) = 0 ,

or, equivalently, for all ω ∈ R,

lim
k→∞

ρ(A(eiω, e−iω)k>A(eiω, e−iω)k) = 0 .

Consequently, limk→∞ x(k, ·) = 0 if and only if for each
fixed but otherwise arbitrary ω ∈ R

lim
k→∞

ρ(A(eiω, e−iω)k>A(eiω, e−iω)k) = 0

⇐⇒ lim
k→∞

‖A(eiω, e−iω)k‖2 = 0

⇐⇒ lim
k→∞

‖A(eiω, e−iω)kv∗‖2 = 0 for all v∗ ∈ CN .

The last statement is equivalent to saying that the com-
plex system

v(k + 1) = A(eiω, e−iω)v(k)

is stable, which in turn is equivalent to

ρ(A(eiω, e−iω)) < 1 , (10)

which again is equivalent to d′(s, eiω, e−iω) := det(Is−
A(eiω, e−iω)) having all its roots in the unit circle. Since
d(ξ−1

1 , eiω, e−iω) = ξ−N1 d′(ξ1, eiω, e−iω), it follows that
the assumption that all the roots of d(ξ−1

1 , eiω, e−iω) are
in the unit circle implies that the condition (10) holds.

(Only if): Assume that B is time-relevant stable and let
N be as in Definition 9. Further, let w ∈ B be such that

w(k, ·) ∈ `2(Z,RN ) for all 0 ≤ k ≤ N − 1.

Then, by Proposition 8, w(k, ·) ∈ `2(Z,RN ) also for
k ≥ N and, for all k ≥ 0, w(k, ·) admits a discrete-time
Fourier transform ŵ(k, eiω) :=

∑+∞
k2=−∞ w(k, k2)e−iωk2 .

Since w satisfies the equation(
R(σ−1

1 , σ2, σ
−1
2 )w

)
(k1, k2) = 0
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for all k1, k2 ∈ Z, then ŵ satisfies the equation

R(σ−1
1 , eiω, e−iω)ŵ(k, eiω) = 0 (11)

for k ≥ N .

Due to the assumption of time-relevant stability, it holds
that limk→∞ ‖w(k, ·)‖`2 = 0. Now note that

‖w(k, ·)‖`2 =
+∞∑

k2=−∞

‖w(k, k2)‖22

=
+∞∑

k2=−∞

‖w(k, k2)e−ik2ω‖22

≥ ‖
+∞∑

k2=−∞

w(k, k2)e−ik2ω‖22

= ‖ŵ(k, eiω)‖22 ,

for every fixed but otherwise arbitrary ω ∈ R. Therefore,
for all ω ∈ R it holds that limk→∞ ‖ŵ(k, eiω)‖22 = 0. This
implies that for all ω ∈ R, limk→∞ ŵ(k, eiω) = 0 and
consequently that the complex 1D system (11) is stable.
This in turn implies that detR(ξ−1, eiω, e−iω) has all its
roots in the open unit circle.

In order to conclude the proof of the Theorem, we
need to show that the result also holds for gen-
eral kernel representations of B. Consider an ar-
bitrary R ∈ Rw×w[ξ1, ξ−1

1 , ξ2, ξ
−1
2 ] such that B =

ker R(σ1, σ
−1
1 , σ2, σ

−1
2 ), and observe that it is unimod-

ularly equivalent in Rw×w[ξ1, ξ−1
1 , ξ2, ξ

−1
2 ] to a matrix

R′ of the form (4). It follows from this that det(R) is
also unimodularly equivalent to det(R′). Consequently
they share the same nonzero finite roots, and hence
det R(ξ1, ξ−1

1 , eiω, e−iω) has all its roots in the open
unit circle if and only if det R′(ξ−1

1 , eiω, e−iω) has,
which concludes the proof of the theorem.

The result of Theorem 10 suggests to verify the time-
relevant stability of a behavior ker R(σ1, σ

−1
1 , σ2, σ

−1
2 )

by checking the location of the roots of the ω-dependent
Laurent polynomial det R(ξ1, ξ−1

1 , eiω, e−iω) as ω varies
in R. We illustrate efficient ways to perform this check
in section 5 of this paper, where we develop tests for
time-relevant stability which do not involve dependency
on the variable ω. To obtain those results we will put
to strenuous use the calculus of 1-D quadratic difference
forms (1-D QDFs), briefly reviewed in the next section.

4 1-D quadratic difference forms

In [26] it has been shown that by using two-variable pol-
ynomial matrices a calculus of functionals can be devel-
oped which seamlessly integrates with the calculus of

continuous-time representations based on one-variable
polynomial algebra. This framework was extended to the
discrete-time case in [8], which we take as a basis for the
following summary.

Quadratic difference forms (QDF) are mappings from
(Rw)Z to RZ defined in the following way.

Let

Rw×w
s [ζ, η] := {Φ(ζ, η) ∈ Rw×w[ζ, η] : Φ(ζ, η) = Φ(η, ζ)>}

denote the set of symmetric real two-variable (or 2D)
w × w polynomial matrices. Given Φ(ζ, η) ∈ Rw×w

s [ζ, η]
the QDF QΦ associated with Φ is defined as

QΦ : (Rw)Z −→RZ

w 7→ QΦ(w) =
∑
k,`

(σkw)>Φk,`σ`w ,

where σ : (Rw)Z → (Rw)Z is the 1D shift, defined as
(σw)(k) := w(k + 1).

Note that Φ(ζ, η) can be identified with its coefficient
matrix, defined as

Φ̃ :=


Φ0,0 Φ0,1 . . .

Φ1,0 Φ1,1 . . .
...

...
. . .

 ;

which is an infinite matrix, but only has a finite number
of nonzero rows and columns. Moreover,

Φ(ζ, η) =
[
Iw ζIw · · ·

]
Φ̃


Iw

ηIw
...

 . (12)

Note that factorizations of the coefficient matrix of a
QDF give rise to factorizations of the corresponding two-
variable polynomial matrix. This will be used later on
in the proof of Theorem 17.

We call a QDF QΦ nonnegative , denoted QΦ ≥ 0, if

QΦ(`)(k) ≥ 0 for all ` ∈ (R•)Z and for all k ∈ Z .

We call QΦ positive , denoted QΦ > 0, if

QΦ ≥ 0 and [QΦ(`) = 0] =⇒ [` = 0] .
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A QDF QΦ is called average nonnegative if

∞∑
k=−∞

QΦ(`)(k) ≥ 0

for all finite support ` ∈ (R•)Z. QΨ is a storage function
for QΦ if the following dissipation inequality holds:

∇QΨ ≤ QΦ , (13)

where∇QΨ denotes the increment of QΨ along the (sin-
gle) independent variable, i.e. ∇QΨ(`) := QΨ(σ(`)) −
QΨ(`) and where ∇QΨ ≤ QΦ denotes QΦ − ∇QΨ ≥ 0
(as a QDF).

A QDF Q∆ is said to be a dissipation function for QΦ if

Q∆ ≥ 0 and
+∞∑

k=−∞

QΦ(`)(k) =
+∞∑

k=−∞

Q∆(`)(k)

(14)
for all finite support trajectories ` ∈ (R•)Z.

The following equivalences are well known, see Proposi-
tion 3.3 of [8].

Proposition 11 Let Φ ∈ Rw×w
s [ζ, η]. The following con-

ditions are equivalent:

(1) QΦ is average nonnegative;
(2) Φ(e−iω, eiω) ≥ 0 for all ω ∈ R;
(3) QΦ admits a storage function QΨ;
(4) QΦ admits a dissipation function Q∆.

Moreover, the following holds:

QΦ = ∇QΨ +Q∆ ; (15)

or equivalently in two-variable polynomial terms

Φ(ζ, η) = (ζη − 1)Ψ(ζ, η) + ∆(ζ, η) . (16)

The equality (15) is usually referred to as the dissipation
equality.

5 LMI conditions for time-relevant stability

LMI tests for checking various properties of 2D sys-
tems, among which stability, have been proposed in [1,6],
building on the pioneering work done in [17] for the study
of parameter-dependent inequalities. Other relevant re-
sults in this area aimed at eliminating the parameter-
dependency in stability tests for 2D systems have been
reported in [5]; applications to discrete linear repetitive
processes have been reported in [9]. In these approaches,

however, the focus is on specific types of 2D systems rep-
resentations, typically ‘state-space’ ones; in this section
instead we consider the general case of higher-order sys-
tems, using heavily the calculus of quadratic difference
forms developed in [8] and briefly recalled in the previ-
ous section.

The main line of exposition in this section is the follow-
ing. We first introduce the ω-dependent Bézoutian asso-
ciated with a polynomial d(ξ1, eiω) obtained from a poly-
nomial d ∈ R[ξ1, ξ2] by letting ξ2 = eiω. The relationship
between the positivity of the Bézoutian and the Schur-
ness of a polynomial (meaning all its roots are in the
open unit circle) is well known (see for example [7,14]),
and this provides a first test for stability. However, this
test is unsatisfactory since it requires to check the pos-
itivity of a parameter-dependent matrix; using dissipa-
tivity theory we will develop alternative tests based on
LMIs involving finite constant matrices.

In the sequel it will be convenient to consider behaviors
B whose trajectories take values in Cw. Moreover, since
the calculus of QDFs has been developed only for poly-
nomial representations, in the following without loss of
generality (i.e. possibly multiplying a given kernel rep-
resentation by a unimodular matrix) we will consider
polynomial kernel representations R ∈ Rw×w[ξ1, ξ2].

In general, complex behaviors correspond to kernel rep-
resentations induced by polynomials with complex coef-
ficients; consequently, we now introduce some new nota-
tion. Given a polynomial p ∈ C[s]

p(s) = p0 + · · ·+ pLs
L , (17)

with pL 6= 0, the reciprocal of p is defined as

pr(s) := p0s
L + · · ·+ pL = sLp(s−1) . (18)

The conjugate of the polynomial p is defined as

p(s) := p0 + · · ·+ pLs
L ,

and the Bézoutian of p is

Bp(µ, ν) :=
p(µ)p(ν)− pr(µ)pr(ν)

µν − 1
.

Now consider

d(ξ1, ξ2) = d0(ξ2) + · · ·+ dL(ξ2)ξL1 ∈ R[ξ1, ξ2] , (19)

with dL(ξ2) 6= 0 and the j-th coefficient dj ∈ R[ξ2].
Note that d(ξ1, eiω) is a polynomial in ξ1 with com-
plex coefficients, and that, since the polynomials dj ∈
R[ξ2], d(ξ1, eiω) = d(ξ1, e−iω). We denote the Bézoutian
Bd(ξ1,eiω)(µ, ν) by Bω(µ, ν), that is

Bω(µ, ν) := Bd(ξ1,eiω)(µ, ν) . (20)
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It is worth mentioning here the important role played by
the ω-dependent Bézoutian (20) in the study of stability
of 2D filters in the approach of [10,11].

Observe that Bω(µ, ν) can be written as

Bω(µ, ν) =: S(µ)>B̃(e−iω, eiω)S(ν) (21)

where S(ξ) :=
[
1 ξ · · · ξL−1

]>
and the L × L matrix

B̃(e−iω, eiω) is the coefficient matrix of Bω(µ, ν), defined
as:

B̃(e−iω, eiω) =:
B̃00(e−iω, eiω) · · · B̃0,L−1(e−iω, eiω)

B̃01(eiω, e−iω) · · · B̃1,L−1(e−iω, eiω)
... · · ·

...

B̃0,L−1(eiω, e−iω) · · · B̃L−1,L−1(e−iω, eiω)

 .

The following result can be proved using standard pol-
ynomial algebra arguments, see for example Theorem 1
p. 172 of [14] and section VI.C of [7].

Proposition 12 Let d be defined as in (19). Then
d(ξ1, eiω) is Schur for all ω ∈ R if and only if the co-
efficient matrix B̃(e−iω, eiω) of the Bézoutian Bω(µ, ν)
defined in (20) is positive definite for all ω ∈ R.

The result of Proposition 12 allows in principle to check
the time-relevant stability of a 2D system by applying
standard tests for the positive-definiteness of matrices
to the coefficient matrix B̃(e−iω, eiω).

Example 13 Consider the system with w = 2 external
variables

B = ker R(σ1, σ2) := ker

[
1 + σ1 − 1

4 + 2σ1 − 3
8σ2

1 σ1 − 1
4σ2

]
;

premultiplying R(ξ1, ξ2) by

[
1 −2

0 1

]
ξ−1
1 yields a repre-

sentation as in Proposition 6 from which it follows that
B is time-relevant. The determinant of R(ξ1, ξ2) is

d(ξ1, ξ2) := det R(ξ1, ξ2)

=
(

1
4

+
ξ2
8

)
︸ ︷︷ ︸

r0(ξ2)

+
(
−1− ξ2

4

)
︸ ︷︷ ︸

r1(ξ2)

ξ1 + 1︸︷︷︸
r2(ξ2)

· ξ2
1 .

The coefficient matrix of the Bézoutian Bω(µ, ν) of

d(ξ1, eiω) is

[
1− r0(e−iω)r0(eiω) r1(e−iω)− r0(e−iω)r1(eiω)

r1(eiω)− r0(eiω)r1(e−iω) 1

]
.

It is positive definite for all ω ∈ R if and only if the
following inequalities hold for all ω ∈ R:

1− r0(e−iω)r0(eiω)> 0
1− r0(e−iω)r0(eiω)> (r1(e−iω)− r0(e−iω)r1(eiω))

·(r1(eiω)− r0(eiω)r1(e−iω)) .

It is a matter of straightforward computations to show
that 1 − r0(e−iω)r0(eiω) = 1

64 (59 − 4 cosω) and that
(r1(e−iω)−r0(e−iω)r1(eiω))(r1(eiω)−r0(eiω)r1(e−iω)) =
549 + 92 cosω − 16

1024 cos 2ω. These two functions of ω
are positive for all ω ∈ R, and consequently we conclude
that d(ξ1, eiω) is Schur for all ω ∈ R. �

When the coefficient matrix B̃(e−iω, eiω) is of higher di-
mension than that considered in the previous example,
the positive definiteness condition is obviously more dif-
ficult to check. Therefore a different approach is required
to develop an efficient test. In the following we obtain an
LMI condition for the stability of B = ker R(σ1, σ2); in
order to do this, we need first to consider the next result.

Lemma 14 The entries B̃`,k(e−iω, eiω) of the coefficient
matrix B̃(e−iω, eiω) of the Bézoutian defined in (20) equal

B̃0,k(e−iω, eiω) = dL(eiω)dL−k(e−iω)− d0(e−iω)dk(eiω)

for k = 0, . . . , L− 1; and

B̃`,k(e−iω, eiω) = B̃`−1,k−1(e−iω, eiω)
+ dL−`(eiω)dL−k(e−iω)− d`(e−iω)dk(eiω)

for ` = 1, . . . , L− 1, k = 1, . . . , L− 1.

Proof. It follows from the definition of Bω(µ, ν) that:

(µν − 1 ) Bω(µ, ν) =
= d(µ, eiω)d(ν, eiω)− dr(µ, eiω)dr(ν, eiω)
= d(µ, e−iω)d(ν, eiω)− dr(µ, eiω)dr(ν, e−iω).

This can be reformulated in terms of coefficient matrices
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as:

(µν − 1 )
[
1 µ · · ·µL−1

]
B̃(e−iω, eiω)


1

ν
...

νL−1

 (22)

=
[
1 µ · · ·µL

]
D(e−iω, eiω)


1

ν
...

νL

 ,

with

D(e−iω, eiω) :=


d0(e−iω)

...

dL(e−iω)

[d0(eiω) · · · dL(eiω)
]

−


dL(eiω)

...

d0(eiω)

[dL(e−iω) · · · d0(e−iω)
]

Now, the left-hand side of (22) is given by

[
1 µ · · ·µL

]
N(e−iω, eiω)


1

ν
...

νL

 , (23)

with

N(e−iω, eiω) :=


0 0 0 · · ·
0 B̃0,0(e−iω, eiω) B̃0,1(e−iω, eiω) · · ·
0 B̃0,1(eiω, e−iω) B̃1,1(e−iω, eiω) · · ·
...

...
. . .



−


B̃0,0(e−iω, eiω) B̃0,1(e−iω, eiω) · · ·
B̃0,1(eiω, e−iω) B̃1,1(e−iω, eiω) · · ·

...
...

. . .

 ,

from which the claim is obtained in a straightforward
manner.

In order to obtain LMI tests for 2D stability, we now
associate to the coefficient matrix B̃(e−iω, eiω) of the

ω-dependent Bézoutian (20) a two-variable polynomial
matrix

Φ(ζ, η) = [Φ`,k(ζ, η)]`,k=0,...,L−1 ∈ RL×Ls [ζ, η]

such that Φ(e−iω, eiω) = B̃(e−iω, eiω), as follows. Define

Φ0,k(ζ, η) := dL(η)dL−k(ζ)− d0(ζ)dk(η)
Φk,0(ζ, η) := Φ0,k(η, ζ) , (24)

for k = 0, . . . , L− 1;

Φ`,k(ζ, η) := Φ`−1,k−1(ζ, η) + dL−`(η)dL−k(ζ)
− d`(ζ)dk(η) (25)

for ` = 1, . . . , L − 1, k = 1, . . . , L − 1. Use the
identities established in Lemma 14 to conclude that
B̃(e−iω, eiω) = Φ(e−iω, eiω). If Φ(e−iω, eiω) > 0 for all
ω ∈ R, the two-variable polynomial matrix Φ satis-
fies condition (2) of Proposition 11; consequently, the
corresponding QDF admits a storage function and the
dissipation equation (15) holds. This observation leads
to the following Proposition, that will be instrumental
in proving the main result of this section.

Proposition 15 Let B = ker R(σ1, σ2) with R ∈
Rw×w[ξ1, ξ2] be a square autonomous time-relevant
behavior, and define d(ξ1, ξ2) := det R(ξ1, ξ2) =:
d0(ξ2) + · · · + dL(ξ2)ξL1 ∈ R[ξ1, ξ2] with dL(ξ2) 6= 0 and
Φ(ζ, η) ∈ RL×Ls [ζ, η] as in equations (24)-(25). Then the
following statements are equivalent:

(1) B is time-relevant stable;
(2) Φ(e−iω, eiω) > 0 for all ω ∈ R;
(3) There exist polynomial matrices Ψ ∈ RL×Ls [ζ, η] and

∆ ∈ RL×Ls [ζ, η] such that the equation

Φ(ζ, η) = (ζη − 1)Ψ(ζ, η) + ∆(ζ, η) (26)

is satisfied, and moreover ∆(e−iω, eiω) > 0 for all
ω ∈ R;

(4) There exist polynomial matrices Ψ ∈ RL×Ls [ζ, η] and
F ∈ RL×L[ξ] such that equation (26) is satisfied with
∆(ζ, η) = F (ζ)>F (η), and moreover det(F (eiω)) 6=
0 for all ω ∈ R;

Proof. The equivalence of (1) and (2) follows from
Proposition 12 and the fact that Φ(e−iω, eiω) =
B̃(e−iω, eiω).

(2) =⇒ (3) Assume that Φ(e−iω, eiω) > 0 for all ω ∈
R; then it follows from Proposition 11 that matrices
Ψ and ∆ exist such that the dissipation equation (16)
holds. The second part of the claim follows by letting
ζ = e−iω, η = eiω, from which we obtain ∆(e−iω, eiω) =
Φ(e−iω, eiω) = B̃(e−iω, eiω) > 0 for all ω ∈ R.
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(3) =⇒ (2) It follows from (26) that Φ(e−iω, eiω) =
∆(e−iω, eiω) > 0.

The equivalence of (3) and (4) can be proved using stan-
dard results on the factorization of para-Hermitian Lau-
rent polynomial matrices which are positive on the unit
circle, see for example Proposition 4.1 of [8].

Example 16 Consider the time-relevant system with
w = 1 described by the equation r(σ1, σ2)w = 0 with

r(ξ1, ξ2) = ξ2
1 +

1
2
ξ1 +

1
10

(1 + 3ξ2)ξ0
1 .

The coefficient matrix B̃(e−iω, eiω) of the Bézoutian of
r(ξ1, eiω) is[

1− 1
100 (1 + 3e−iω)(1 + 3eiω) 1

2 −
1
20 (1 + 3e−iω)

1
2 −

1
20 (1 + 3eiω) 1

]
.

We define the two-variable polynomial matrix Φ(ζ, η)
from (24)-(25):

Φ(ζ, η) :=

[
1− 1

100 (1 + 3ζ)(1 + 3η) 1
2 −

1
20 (1 + 3ζ)

1
2 −

1
20 (1 + 3η) 1

]
.

Truncating the results of the solutions of the LMI at the
fourth decimal digit, let

F (ξ) :=

[
−0.1913 + 0.1568ξ −0.9565

0.9159 0.2915

]
;

it can be verified that det(F (ξ)) = 0.8203 + 0.0457ξ,
and consequently det(F (iω)) 6= 0 for all ω ∈ R. Define
∆(ζ, η) = F (ζ)>F (η), and

Ψ(ζ, η) :=

[
−0.1146 0

0 0

]
.

It can be verified that Φ(ζ, η) − F (ζ)>F (η) = (ζη −
1)Ψ(ζ, η); statement 4 of Proposition 15 is thus verified,
and hence ker r(σ1, σ2) is time-relevant stable. �

The result of Proposition 15 leads us to the following
LMI-based test for the stability of a square autonomous
time-relevant behavior B.

Theorem 17 Let B = ker R(σ1, σ2) with R ∈
Rw×w[ξ1, ξ2] be a square autonomous time-relevant be-
havior, and define Φ(ζ, η) as in equations (24)-(25). De-
note the coefficient matrix of Φ by Φ̃. Then the following
statements are equivalent:

(1) B is time-relevant stable;

(2) There exist matrices Ψ̃ ∈ R∞×∞ and F̃ ∈ RL×∞
with all but a finite number of entries different from
zero, such that:

2.1 The following linear matrix inequality holds:

Φ̃−




0 0 · · · · · ·
0 Ψ̃0,0 Ψ̃0,1 · · ·
0 Ψ̃>0,1 Ψ̃1,1 · · ·
...

...
...

. . .

−


Ψ̃0,0 Ψ̃0,1 · · ·
Ψ̃>0,1 Ψ̃1,1 · · ·

...
...

. . .


 ≥ 0 ;

(27)
2.2 The left-hand side of (27) equals F̃>F̃ , and more-

over the polynomial matrix

F̃


I

Iξ
...

 (28)

is such that det(F (iω)) 6= 0 for all ω ∈ R.

Proof. If Ψ̃ is the coefficient matrix of a two-variable
polynomial matrix Ψ(ζ, η), then the coefficient matrix
of (ζη − 1)Ψ(ζ, η) is

0 0 · · · · · ·
0 Ψ̃0,0 Ψ̃0,1 · · ·
0 Ψ̃>0,1 Ψ̃1,1 · · ·
...

...
...

. . .

−


Ψ̃0,0 Ψ̃0,1 · · ·
Ψ̃>0,1 Ψ̃1,1 · · ·

...
...

. . .

 .

Consequently, the left-hand side of (27) is the coefficient
matrix of Φ(ζ, η) − (ζη − 1)Ψ(ζ, η) = ∆(ζ, η). As no-
ticed in the discussion appearing after equation (12),
there is a one-to-one correspondence between the fac-
torization of a two-variable polynomial matrix and the
factorization of its coefficient matrix. Consequently, a
factorization F̃>F̃ of the left-hand side of (27) yields a
factorization F (ζ)>F (η) of Φ(ζ, η) − (ζη − 1)Ψ(ζ, η) =

∆(ζ, η), with F (ξ) defined as F (ξ) = F̃


I

ξI
...

. Now let

ζ = e−iω and η = eiω; then it follows that Φ(e−iω, eiω) =
F (e−iω)>F (eiω). Since by statement 2 of Proposition
15 Φ(e−iω, eiω) > 0, necessarily F has no singularities
on the unit circle, i.e. det F (eiω) 6= 0 for all ω ∈ R.
Then, the claim of the Theorem is a direct consequence
of Proposition 15.

Remark 18 Note that the result of the previous the-
orem involves infinite matrices, but with only a finite
number of nonzero rows and columns; moreover, once a
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representation of B is given, this number can be com-
puted. Consequently, the checking of the conditions of
this theorem can be performed on the corresponding fi-
nite truncations of the relevant matrices.

Example 19 Consider again the system of Example 16.
In order to verify the LMI test of Theorem 17, consider
the truncation of Φ̃ given by

Φ̃trunc :=


0.9900 0.4500 −0.0300 0

0.4500 1 −0.1500 0

−0.0300 −0.1500 0.0900 0

0 0 0 0

 ;

the corresponding truncation of the coefficient matrix of
Ψ(ζ, η) is

Ψ̃trunc =


−0.1146 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

The eigenvalues of the finite matrix corresponding to the
left-hand side of (27)

Φ̃trunc −




0 0 0 0

0 0 0 0

0 0 −0.1146 0

0 0 0 0

− Ψ̃trunc


are 1.4048, 0.4952 and 0, the latter repeated twice; more-
over, this matrix can be factored as F̃>F̃ , with F̃ such
that

F (ξ) := F̃

[
I2

I2ξ

]
=

[
−0.7678 + 0.1140ξ −0.8957

0.5347 + 0.1076ξ −0.4446

]

has the property det(F (iω)) 6= 0 for all ω ∈ R. State-
ment 2 of Theorem 17 is consequently verified. �

We now state an algorithm derived from the results pre-
sented in this section, to check the time-relevant stabil-
ity of a 2D behavior using an LMI test.

Algorithm

Input: R ∈ Rw×w[ξ1, ξ2] inducing a kernel representa-
tion of a time-relevant 2D square autonomous behav-
ior B.

Output: True if the system is time-relevant stable,
False if it is not.

Step 1: Compute d(ξ1, ξ2) := det R(ξ1, ξ2);
Step 2: Define Φ(ζ, η) as in (24)-(25);
Step 3: Solve the LMI (27) considering the relevant

(finite) truncated matrices;
Step 4: If a solution to the LMI does not exists, re-

turn False and exit: B is not time-relevant stable;
Step 5: Factorize the LHS of (27) as F̃>F̃ , and define

F (ξ) := F̃


Iw

ξIw
...

;

Step 6: If det(F ) has roots on the unit circle, then re-
turn False and exit: the system is not time-relevant
stable;

Step 7: Return True.

6 Conclusions

In this paper we have considered 2D time-relevant sys-
tems, i.e. systems described by partial difference equa-
tions in which one of the independent variables (the
“time” variable) plays a distinguished role. We have
given a definition of stability for these systems, together
with algebraic- and linear matrix inequality-based nec-
essary and sufficient conditions for time-relevant stabil-
ity.
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