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IV. CONCLUSION

We have investigated the stability of neural networks with
two additive time-varying delay components. By constructing
a new Lyapunov functional and estimating the derivative of
the Lyapunov functional less conservatively, a new delay-
dependent stability criterion was derived. When one of the
two time-delays is constant, a new stability criterion was also
given for neural networks with interval time-varying delays.
An example demonstrated the reduced conservatism of the
stability criteria.
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Modeling of Complex-Valued Wiener Systems Using
B-Spline Neural Network

Xia Hong and Sheng Chen

Abstract— In this brief, a new complex-valued B-spline neural
network is introduced in order to model the complex-valued
Wiener system using observational input/output data. The
complex-valued nonlinear static function in the Wiener system
is represented using the tensor product from two univariate B-
spline neural networks, using the real and imaginary parts of
the system input. Following the use of a simple least squares
parameter initialization scheme, the Gauss–Newton algorithm is
applied for the parameter estimation, which incorporates the
De Boor algorithm, including both the B-spline curve and the
first-order derivatives recursion. Numerical examples, including a
nonlinear high-power amplifier model in communication systems,
are used to demonstrate the efficacy of the proposed approaches.

Index Terms— B-spline, complex-valued neural networks, De
Boor algorithm, system identification, Wiener system.

I. INTRODUCTION

A popular approach to nonlinear systems identification is to
use the so-called block-oriented nonlinear models which com-
prise the linear dynamic models and static or memoryless non-
linear functions [1]–[4]. For example, the Wiener model com-
prises a linear dynamic model followed by a nonlinear static
functional transformation. The Wiener model is a reasonable
model for any linear systems with a nonlinear measurement
device, nonlinear high power amplifier (HPA) in broadband
communication transmitters [5], or some industrial/biological
systems [6]–[11]. The model characterization/representation of
the unknown nonlinear static function in the Wiener model is
fundamental to its identification, control, and/or other signal
processing applications. Various approaches have been devel-
oped in order to capture the a priori unknown nonlinearity in
the Wiener system including the nonparametric method [12],
subspace model identification methods [11], fuzzy model-
ing [13], and the parametric method [1], [7], [9].

With its best conditioning property, the B-spline curve has
been widely used in computer graphics and computer-aided
geometric design [14]. The B-spline curves consist of many
polynomial pieces, offering versatility. The early work on
the construction of B-spline curve is mathematically involved
and numerically unstable [15]. The De Boor algorithm uses
recurrence relations and is numerically stable [15]. The B-
spline basis functions for nonlinear systems modeling have
been widely applied [16]–[19].

Many signal processing applications involve complex-
valued functional representations for signals and systems.
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Complex-valued artificial neural networks have been studied
theoretically and applied widely in nonlinear signal and data
processing [20]–[27]. Note that most artificial neural networks
cannot be automatically extended from a real domain to a
complex domain because the resultant model would in general
violate the Cauchy–Riemann conditions, which means the
training algorithms become unusable. A number of analytic
functions were introduced for the fully complex-valued mul-
tilayer perceptrons [21]. Alternatively, the problem can be
avoided by two real-valued artificial neural networks, one
processing the real part and the other processing the real imag-
inary part. In this brief, we propose a general complex-valued
B-spline neural network for the modeling of the complex-
valued Wiener system. Specifically, the complex-valued non-
linear static function in the Wiener system is modeled on the
basis of the tensor product constructed from the two univariate
B-spline neural networks which use the real and imaginary
parts of the system input, respectively. We point out that the
proposed approach is different from the existing complex-
valued neural network based on spline functions [20], [28],
[29] in either model representation or the identification algo-
rithms (see the discussions at the end of Section II). It is shown
that, by minimizing the mean square error (MSE) between
the model output and the system output, the Gauss–Newton
algorithm is readily applicable for the parameter estimation
in the proposed model. We introduce the use of a simple
least squares parameter initialization scheme, followed by the
Gauss–Newton algorithm incorporating the De Boor recursion
for both curve and the first-order derivatives. The motivation
of the proposed methods is twofold. Firstly, this extends the
B-spline model to accommodate a general complex-valued
Wiener systems. Secondly, the proposed model based on B-
spline functions has a significant advantage over many other
modeling paradigms in that this enables stable and efficient
evaluations of functional and derivative values, as required
in nonlinear optimization algorithm, e.g., the Gauss–Newton
algorithm used in this brief. The efficacy of the proposed
approaches is demonstrated by using numerical examples.
In particular, a nonlinear HPA system modeling example,
which is crucial in any linearization techniques of broadband
communication systems employing power-efficient nonlinear
HPA transmitter [30], [31], is included.

II. COMPLEX-VALUED WIENER SYSTEM AND THE

PROPOSED COMPLEX-VALUED B-SPLINE

NEURAL NETWORK

A. Complex-Valued Wiener System

The complex-valued Wiener system consists of a cascade
of two subsystems: a linear filter of order n representing the
memory effect on the input signal as the first subsystem,
followed by a nonlinear memoryless function �(•) : C → C
as the second subsystem. The system can be represented by

w(t) = H (z)y(t)

= y(t)+ h1 y(t − 1) · · · + hn y(t − n) (1)

d(t) = � (w(t))+ ξ(t) (2)

with z transfer function H (z) defined by

H (z) =
n∑

i=0

hi z
−i , h0 = 1 (3)

where d(t) = dR(t) + j · dI (t) ∈ C is the system output and
y(t) = yR(t) + j · yI (t) ∈ C is the system input. j = √−1.
ξ(t) = ξR(t)+ jξI (t) ∈ C is assumed to be a white complex-
valued noise sequence independent of y(t). Both ξR(t) and
ξI (t) are zero mean and have a variance of σ 2. w(t) = wR(t)+
j · wI (t) ∈ C is the output of linear filter subsystem and the
input to the nonlinear subsystem. hi = hi,R + j · hi,I , (i =
1, . . . , n) are complex-valued coefficients of the linear filter.
n is assumed to be known. Denote h = [h1, ..., hn]T ∈ Cn .

From (1)
⎧
⎪⎪⎨
⎪⎪⎩

wR(t) = yR(t)+
n∑

i=1
(hi,R yR(t − i)− hi,I yI (t − i))

wI (t) = yI (t)+
n∑

i=1
(hi,I yR(t − i)+ hi,R yI (t − i))

(4)

and for i = 1, . . . , n, we have
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂wR (t)
∂hi,R

= yR(t − i)
∂wR (t)
∂hi,I

= −yI (t − i)
∂wI (t)
∂hi,R

= yI (t − i)
∂wI (t)
∂hi,I

= yR(t − i).

(5)

Without significantly losing generality, the following
assumptions are initially made about the problem.

Assumption 1: �(•) is a one-to-one mapping, i.e., it is an
invertible and continuous function.

Assumption 2: dR(t), dI (t), wR(t), and wI (t) are upper and
lower bounded by some finite real values.

Our aim is to identify the system for the above Wiener
model, i.e., given an observational input/output data set DN =
{y(t), d(t)}K

t=1, to identify the underlying nonlinear function
�(•) and to estimate the parameters hi ’s of the linear filter.
Note that the signal w(t) between the two subsystems are
unavailable. In this brief, we introduce a complex-valued
B-spline network in order to model �(•), as introduced in
the following.

B. New Complex-Valued B-Spline Neural Network

Consider the modeling of a complex mapping a = f (b) =
f (u + jv) : C → C, where u, v are real numbers.

Assumption 3: u is bounded by Umin < u < Umax, and v is
bounded by Vmin < v < Vmax, where Umin, Umax, Vmin, and
Vmax are assumed known finite real values.

De Boor’s algorithm is a fast and numerically stable algo-
rithm for evaluating B-spline spline curves. A set of univariate
B-spline basis functions based on u, which is the real part of
b, is parameterized by the order of a piecewise polynomial
of order (k − 1), and also by a knot vector which is a set
of values defined on the real line which break it up into
a number of intervals. Supposing that there are MR basis
functions, the knot vector is specified by (MR +k) knot values,
{U1,U2, . . . ,UMR+k}. At each end, there are k knots satisfying
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Fig. 1. Visualizing De Boor algorithm.

the condition of being external to the input region, and as a
result the number of internal knots is (MR − k). Specifically

U1 < U2 < Uk = Umin < Uk+1 < Uk+2 < · · · < UMR

< Umax = UMR+1 < · · · < UMR+k . (6)

Given the predetermined knot vector, a set of MR

B-spline basis functions can be formed by using De Boor
recursion [15], given by

B(�,0)l (u) =
{

1, if Ul ≤ u < Ul+1

0, otherwise
(7)

l = 1, . . . , (MR + k)

B(�,i)l (u) = u−Ul
Ui+l −Ul

B(�,i−1)
l (u)

+ Ui+l+1−u
Ui+l+1−Ul+1

B(�,i−1)
l+1 (u),

l = 1, . . . , (MR + k − i)

⎫
⎪⎬
⎪⎭

i = 1, . . . , k. (8)

The derivative of the B-spline basis function B(�,k)l (u) can
be readily computed as

d

du
[B(�,k)l (u)] = k

Uk+l − Ul
B(�,k−1)

l (u)

− k

Uk+l+1 − Ul+1
B(�,k−1)

l+1 (u) (9)

l = 1, . . . ,MR .

De Boor recursion can be graphically illustrated with ref-
erence to Fig. 1, in which the superscript (�) used in (7)
and (8) has been removed from the plot for clarity. Note
that the early work on the construction of B-spline curve is
mathematically involved. Hence, another advantage of using
De Boor’s recursion is the flexibility in terms of the evaluations
of functional and derivative values, since it can cope with
different settings such as number of knots and polynomial
order.

Similarly, a set of univariate B-spline basis functions can
be established based on v, which is the imaginary part of b.
Supposing that the order of the piecewise polynomial is
predetermined also as (k −1), a knot vector is then defined on
the imaginary line in a similar manner. Supposing that there
are MI basis functions, the knot vector is then specified by
(MI +k) knot values, {V1, V2, . . . , VMI +k}. At each end, there
are k knots satisfying the condition of being external to the

input region, and as a result the number of internal knots is
(MI − k). Specifically

V1 < V2 < Vk = Vmin < Vk+1 < Vk+2 < · · · < VMI

< Vmax = VMI +1 < · · · < VMI +k . (10)

Similarly, a set of MI B-spline basis functions are given by

B(�,0)m (v) =
{

1, if Vm ≤ v < Vm+1
0, otherwise

(11)

m = 1, . . . , (MI + k)

B(�,i)m (v) = v−Vm
Vi+m−Vm

B(�,i−1)
m (v)

+ Vi+m+1−v
Vi+m+1−Vm+1

B(�,i−1)
m+1 (v),

m = 1, . . . , (MI + k − i)

⎫
⎪⎬
⎪⎭

i = 1, . . . , k. (12)

The derivative of B-spline basis function B(�,k)m (v) can be
readily computed as

d

dv
[B(�,k)m (v)] = k

Vk+m − Vm
B(�,k−1)

m (v)

− k

Vk+m+1 − Vl+1
B(�,k−1)

m+1 (v) (13)

m = 1, . . . ,MI .

Using the tensor product between the two sets of univariate
B-spline basis functions of B(�,k)l (u)’s and B(�,k)m (v)’s [18], a
set of new B-spline basis functions B(k)l,m(b) can be formed and
used in the complex-valued B-spline neural network, given by

a = f (b) = f (u, v) =
MR∑
l=1

MI∑
m=1

B(k)l,m(b)ωl,m

=
MR∑
l=1

MI∑
m=1

B(�,k)l (u)B(�,k)m (v)ωl,m (14)

where ωl,m ∈ C (l = 1, . . . ,MR , m = 1, . . . ,MI ) are
complex-valued weights. Equation (14) can be decomposed as
two real-valued neural networks, i.e., a = aR + j · aI , where

aR =
MR∑
l=1

MI∑
m=1

B(�,k)l (u)B(�,k)m (v)Re(ωl,m) (15)

aI =
MR∑
l=1

MI∑
m=1

B(�,k)l (u)B(�,k)m (v)Im(ωl,m). (16)

Because of the piecewise nature of B-spline functions, for
any point functional evaluation there are only k basis functions
with nonzero values for each of the real and the imaginary
part, leading to k2 nonzero terms in both (15) and (16). This
is advantageous as k can be set quite low. The computational
cost of De Boor recursion is in O(k2). Thus the computational
cost of calculating both (15) and (16) scales up to about
three times of the De Boor recursion, including both real and
imaginary parts evaluation and the tensor product calculations.
Notably, there is a minimal additional cost for derivative
evaluation, as (9) and (13) can be regarded as a byproduct
of the De Boor recursion. Note that there are also only k
nonzero first-order derivative terms in each of (9) and (13).

Complex-valued neural networks based on different spline
functions have been researched [20], [28], [29], and our
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approach is clearly different in terms of either model repre-
sentation or the identification algorithms. In [20], the model
construction is based on a different type of spline function of
Campmull–Rom cubic spline basis. The network introduced
in [28] based on natural cubic splines is very limited because
it only has complex weights, but do not take complex signal
at all. Note that the basis functions in [20] and [28] do not
have the property of partition of unity (convexity), which is a
desirable property in achieving numerical stability. The work
in [29] is more related to ours as it uses B-spline function.
It is initially based on the concept of a splitting function
a = fR(u) + j. f I (v), where fR(u) are f I (v) is univariate
real functional mapping. A generalized splitting function is
also introduced, for which, due to the different construction
approaches, it is not easy to establish an equivalence to our
model or otherwise. Despite this, we point out that in [20],
[28], and [29] the basis functions are constructed on the basis
of cubic models without making use of De Boor recursion,
which is highly relevant in our proposed system identification
algorithm in order to achieve computational efficiency,
numerical stability, and modeling flexibility. Finally, [20],
[28], [29] has been used in the problem of system identification
of the complex-valued Wiener system considered in this brief.

III. SYSTEM IDENTIFICATION ALGORITHM BASED ON

THE COMPLEX-VALUED B-SPLINE NEURAL NETWORK

Consider the system identification of the complex-valued
Wiener system given by (1) and (2) based on a block of train-
ing data {y(t), d(t)}K

t=1. For notational simplicity, assuming
that a set of knots are appropriately set based on both the
real and imaginary parts of w(t) [see (6) and (10)] and that
the associated polynomial degree is still denoted as (k − 1)
and the number of basis functions for both the real and
imaginary parts are still denoted by MR and MI , the complex-
valued B-spline neural network used in representing �(•) is
given by

d̂(t) = � (w(t)) =
MR∑
l=1

MI∑
m=1

B(�,k)l (wR(t))B
(�,k)
m (wI (t))ωl,m .

(17)
Denoting d̂(t) = d̂R(t)+ j · d̂I (t), (17) is decomposed into

two real valued networks as

d̂R(t) =
MR∑
l=1

MI∑
m=1

B(�,k)l (wR(t))B
(�,k)
m (wI (t))Re(ωl,m) (18)

d̂I (t) =
MR∑
l=1

MI∑
m=1

B(�,k)l (wR(t))B
(�,k)
m (wI (t))Im(ωl,m). (19)

Denote the total number of terms in (18) or (19) as M =
MR · MI . Let the error between the Wiener system output d(t)
and the B-spline network output d̂(t) be denoted by e(t) =
d(t)− d̂(t) = eR(t)+ j · eI (t) ∈ C. Our task is to estimate h
and ωl,m ’s. This could be achieved by minimizing

J =
K∑

t=1

[eR(t)]2 +
K∑

t=1

[eI (t)]2 (20)

using the Gauss–Newton algorithm. As the objective function
of (20) is highly nonlinear, it is important that h and ωl,m ’s
are properly initialized so that it is close to optimal solution.
Hence a simple least squares parameter initialization scheme
is introduced in Sections III-A and III-B.

A. Initialization of the Linear Filter Parameters hi ’s

The initialization of the linear filter parameters is illustrated
with reference to Fig. 2(a). Denote the inverse function of
�(•) or �−1(•), as ϕ(•). Consider also using the proposed
complex-valued B-spline neural network (14) for the modeling
of ϕ(•). For notational simplicity, it is assumed that the
polynomial degree used is still denoted as (k − 1) and the
numbers of basis functions used in the modeling of the real and
imaginary parts are still denoted as MR and MI , respectively.
With the two knot vectors for the real and imaginary parts
being set based on dR(t) and dI (t), respectively, we have

ϕ (d(t)) =
MR∑
l=1

MI∑
m=1

B(k)l,m (d(t)) αl,m (21)

where αl,m ∈ C, (l = 1, . . . ,MR , m = 1, . . . ,MI ) are
complex-valued weights. Let the error between w(t) and
ϕ (d(t)) be defined as ε(t). Note that Fig. 2(a) describes the
error feedback for parameter optimization, in which w(t) is
used as the target for ϕ (d(t)).

Applying (1) and (2) yields

y(t) = −
n∑

i=1

hi y(t − i)−
MR∑
l=1

MI∑
m=1

B(k)l,m (d(t)) αl,m + ε(t)

= [p(x(t))]T ϑ + ε(t) (22)

where x(t) = [−y(t − 1), . . . ,−y(t − n), d(t)]T , ϑ =
[ϑ1, . . . , ϑM+n]T = [−h1, . . ., −hn, α1,1, . . ., αl,m , . . . ,
αMR ,MI ]T ∈ CM+n . p(x(t)) = [p1(x(t)), . . ., pM+n(x(t))]T =
[−y(t − 1) ,. . . ,−y(t − n),B(k)1,1 (d(t)) , . . . , B(k)l,m (d(t)) , . . . ,

B(k)MR,MI
(d(t))]T ∈ CM+n.

Over the training dataset, (22) can be written in matrix
form as

y = Pϑ + ε (23)

where y = [y(1), . . . , y(K )]T , ε = [ε(1), . . . , ε(K )]T , and
P is the regression matrix P = [p(x(1)),. . ., p(x(K ))]T .
The parameter vector ϑ can be found as the least squares
solution of

ϑ L S =
(

PH P
)−1

PH y. (24)

A subvector of the resultant ϑ L S , consisting of its first n
elements, forms our initial estimate ĥ(0).

B. Initialization of the B-Spline Network Weights ωl,m’s

The initialization of the B-spline network weights ωl,m ’s is
illustrated in Fig. 2(b). Consider generating an auxiliary signal
{ŵ(t)}K

t=1 over training dataset {y(t), d(t)}K
t=1, based on the

initialized parameter estimates ĥ(0), given by

ŵ(t) = y(t)+ ĥ(0)1 y(t − 1)+ ĥ(0)2 y(t − 2)+ · · ·+ ĥ(0)n y(t − n).
(25)
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Fig. 2. Successive initialization for (a) linear filter parameters hi ’s and
(b) B-spline network weights ωl,m ’s.

A block of training dataset {ŵ(t), d(t)}K
t=1 will be used

in the parameter initialization for modeling of the nonlinear
memoryless function. Using (17), but with w(t) replaced by
its estimates ŵ(t), we have

d(t) =
dR∑
l=1

MI∑
m=1

B(k)l,m

(
ŵ(t)

)
ωl,m + e(t)

= [q(ŵ(t))]T ω + e(t) (26)

where ω = [ω1,1, . . . , ωl,m , . . . , ωMR ,MI ]T ∈ CM , q(ŵ(t)) =
[q1(ŵ(t)), . . . , qM (ŵ(t))]T = [B(k)1,1

(
ŵ(t)

)
, . . . , B(k)l,m

(
ŵ(t)

)
,

. . ., B(k)MR ,MI

(
ŵ(t)

)]T ∈ CM . Over the training dataset, (26)
can be written in matrix form

d = Qω + e (27)

where d = [d(1), . . . , d(K )]T , e = [e(1), . . . , e(K )]T and
Q = [q(ŵ(1)), . . . ,q(ŵ(K ))]T . The least squares solution of
ω given by

ωL S =
(

QH Q
)−1

QH d (28)

is used as the initial estimate of ω̂
(0). Note that the initial

parameter estimates obtained are only near, but not, optimal.
For example, in the noisy environment, they are not consistent.
This is because the B-spline basis functions (regressors) in
(21) are subject to the output noise, such that the output noise
will in general propagate to the parameter estimates, yielding
a bias. However, our final parameter estimates via minimizing
(20) are optimal in the sense that these are the maximum
likelihood estimates in the case that ξ(t) is Gaussian. The
final parameter estimate is obtained using the Gauss–Newton
algorithm combined with the De Boor algorithm, as presented
below.

C. Gauss–Newton Algorithm Combined with the De Boor
Algorithm

Define θ = [θ1, θ2, . . ., θ2(M+n)]T = [Re(ω1,1), . . . ,
Re(ωl,m ), . . . ,Re(ωMR ,MI ), Im(ω1,1),. . . , Im(ωl,m) , . . .,
Im(ωMR ,MI ), h1,R, . . . , hn,R, h1,I , . . . , hn,I ]T ∈ �2(M+n).
Note that the first 2M elements in θ (0) are formed

using the real and imaginary parts of ω̂
(0), and the

last 2n elements in θ (0) are formed using the real and
imaginary parts of ĥ(0). Denote ε = [ε1, ε2, . . . , ε2K ]T =
[eR(1), . . . , eR(K ), eI (1), . . . , eI (K )]T ∈ �2K .

Denote an iteration step variable by a superscript (τ ). With
the initial value θ (0), the iteration formula is given by

θ (τ )= θ (τ−1) + α

{[
J(τ )

]T
J(τ )

}−1 [
J(τ )

]T
ε
(
θ (τ−1)

)
(29)

where α > 0 is a small positive step size. J denotes the
Jacobian of ε(θ) and is given by J = ({∂εp/∂θq}), p =
1, . . . , 2K , q = 1, . . . , 2(M+n). For p = 1, . . . , K , and t = p

∂εp

∂θq
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂eR(t)
∂Re(ωl,m )

= −B(�,k)l (wR(t))B
(�,k)
m (wI (t)),

for q = 1, . . . ,M
∂eR(t)

∂Im(ωl,m )
= 0, for q = M + 1, . . . , 2M

∂eR(t)
∂hi,R

= −∑MR
l=1

∑MI
m=1(

d
dwR(t)

[
B(�,k)l (wR(t))

]
B(�,k)m (wI (t))yR(t − i)

+B(�,k)l (wR(t)) d
dwI (t)

[B(�,k)m (wI (t))]yI (t − i)
)

Re(ωl,m)

for q = 2M + 1, . . . , 2M + n, (i = q − 2M)
∂eR(t)
∂hi,I

= −∑MR
l=1

∑MI
m=1(

d
dwR(t)

[B(�,k)l (wR(t))]B(�,k)m (wI (t))(−yI (t − i))

+B(�,k)l (wR(t)) d
dwI (t)

[B(�,k)m (wI (t))]yR(t − i)
)

Re(ωl,m)

for q = 2M + n + 1, . . . , 2(M + n)(i = q − 2M − n)

(30)

but for p = K + 1, . . . , 2K , and t = (p − K )

∂εp

∂θq
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂eI (t)
∂Re(ωl,m )

= 0 for q = 1, . . . ,M
∂eI (t)

∂Im(ωl,m )
= −B(�,k)l (wR(t))B

(�,k)
m (wI (t))

for q = M + 1, . . . , 2M
∂eI (t)
∂hi,R

= −∑MR
l=1

∑MI
m=1(

d
dwR(t)

[B(�,k)l (wR(t))]B(�,k)m (wI (t))yR(t − i)

+B(�,k)l (wR(t)) d
dwI (t)

[B(�,k)m (wI (t))]yI (t − i)
)

Im(ωl,m)

for q = 2M + 1, . . . , 2M + n (i = q − 2M)
∂eI (t)
∂hi,I

= −∑MR
l=1

∑MI
m=1(

d
dwR(t)

[B(�,k)l (wR(t))]B(�,k)m (wI (t))(−yI (t − i))

+B(�,k)l (wR(t)) d
dwI (t)

[B(�,k)m (wI (t))]yR(t − i)
)

Im(ωl,m)

for q = 2M + n + 1, . . . , 2(M + n) (i = q − 2M − n)

(31)

in which (5) has been applied. Note we propose that
De Boor algorithm [(7)–(9) and (11)–(13)] is applied in
evaluating all entries for (30) and (31). Effectively, this
enables stable and efficient evaluations of B-spline functional
and derivative values, which would be very difficult for many
other nonlinear models including some spline-functions-
based nonlinear models. The iterative equation (29) can be
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TABLE I

RESULTS OF LINEAR SUBSYSTEM PARAMETER

ESTIMATION (EXAMPLE 1)

True parameters Initial estimates Final estimates

h1 0.7692 0.7692 + j0.0001 0.7692 + j7 × 10−6

h2 0.1538 0.1537 − j0.0002 0.1538 + j1 × 10−5

h3 0.0769 0.0772 − j0.0001 0.0769 + j7 × 10−6

terminated when θ (τ ) converges, or by predetermining a
sufficiently large number of iterations.

Summary of the System Identification Algorithm: The sys-
tem identification algorithm can be summarized as follows.

1) Predetermine two sets of knot vectors that break the
domain of dR(t) and dI (t) up, with k knots satisfying
the condition of being external to the regions for dR(t)
and dI (t) at each end.

2) Form P and y, and apply (24). Obtain h(0) as the
subvector of the resultant ϑ L S , consisting of the first
n elements.

3) Construct an auxiliary signal {ŵ(t)}K
t=1 based on (25).

4) Predetermine two sets of knot vectors that break the
domain wR(t), wI (t) up respectively, with k knots
satisfying the condition of being external to regions of
wR(t) and wI (t) respective at each end.

5) Form Q and d, obtain ω(0) using (28).
6) Form θ (0) from the real and imaginary parts of h(0) and

ω(0).
7) Apply the Gauss–Newton algorithm (29)–(31).

The optimization of model output with respect to the num-
ber/location of knots is an intractable mixed-integer problem,
for which an iterative trial-and-error approach can be used to
yield a good model (but not optimal). For a prior unknown
system, the initial knots’ location should be set as evenly
spread out in the input region. With the number of knots and
their location determined, conventional nonlinear optimization
algorithms are applicable, e.g., the proposed algorithm. In
practice, the number of knots is predetermined to produce
a model as small as possible (to avoid overfitting) that can
still provide good modeling capability. A simple iteration of
the proposed approach can be used. The number of knots is
increased, and the model performance is monitored until the
improvement becomes insignificant. For many problems, the
model performance is not sensitive to the location of knots
to a large extent if these are evenly spread out. However, if
there is severe local nonlinearity, the location of knots can be
empirically set by the user by inserting more knots at higher
density in regions with high curvatures. These regions can
be identified by trial and error (through identifying the data
points with high modeling errors) during an iterative modeling
process.

IV. EXPERIMENTAL RESULTS

Example 1: Consider a complex-valued Wiener system con-
sisting of a linear filter H (z) = 1 + 0.7692z−1 + 0.1538z−2 +

−1 0 1 2 3 4
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Input of the B-spline neural network
Output of the B-spline neural network

Fig. 3. Modeling results of the combined complex mapping of rotation and
translation (Example 1).

0.0769z−3, followed by a combined complex mapping of
rotation and translation, given by

� (w(t)) = w(t) exp
(
− j

π

4

)
+ 1.5 + 1.5 j. (32)

Two thousand training data samples and 500 validations data
samples d(t) were generated by using (1), (2), and (32). y(t)
was a uniformly distributed complex random variable with
yR(t) ∈ [−0.5, 0.5] and yI (t) ∈ [−0.5, 0.5]. The variance of
the additive noise to the system output is set as zero (σ 2 = 0).
The polynomial degree of the B-spline basis functions for both
the real and imaginary parts was set as two (i.e., k = 3,
piecewise quadratic). The knot sequence

[−0.5, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.3, 2.5, 2.7, 3.5]
is initially set for both dR(t) and dI (t) in order to generate
basis functions used in (21). The knot sequence

[−2,−1.2,−1,−0.8,−0.5, 0, 0.5, 0.8, 1, 1.2, 2]
is then set for both wR(t) and wI (t) in order to generate basis
functions used in (17). The parameter estimation results are
shown in Table I for the linear subsystem. Fig. 3 plots data
samples from the B-spline neural network model data samples,
which clearly matches the complex mapping (32). The MSE
between d(t) and d̂(t) over the validation dataset is very small
at 2.4635 × 10−4.

Example 2: We further illustrate the modeling of the
complex-valued Wiener system using a HPA model with
high importance in communication systems. The HPA model
consists of a linear filter followed by a nonlinearity of the
traveling wave tube (TWT) [5]. For the baseband HPA model,
the input to the TWT nonlinearity can be expressed as

w(t) = |w(t)| exp( j � w(t)) = rw(t) exp( jφw(t)) (33)

where rw(t) and φw(t) denote the amplitude and phase of
w(t), respectively. The output of TWT, � (w(t)), is distorted
in both amplitude and phase, with the distortion dependent
mainly on the input signal amplitude, i.e., rw(t). So � (w(t))
can be expressed by [5]

� (w(t)) = |� (w(t)) | exp( j� (w(t))) = r�(t) exp( jφ�(t))
(34)
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Fig. 4. TWT nonlinearity modeling results (Example 2). (a) Amplitude
distortion with respect to the amplitude of the input. (b) Phase shift with
respect to the amplitude of the input.

where r�(t) and φ�(t) denote the amplitude and phase of
� (w(t)), respectively, and these are given by

r�(t) =
{

α1rw(t)
1+α2r2

w(t)
, 0 ≤ rw(t) ≤ rSat

�max, rw(t) > rSat
(35)

φ�(t) = φw(t)+ β1r2
w(t)

1 + β2r2
w(t)

(36)

where α1, α2, β1, β2 are unknown parameters. rSat = √
1/α2

and �max = α1/2
√
α1.

Two thousand training data samples and 500 validations data
samples d(t) were generated by using (1) and (2) [via (35) and
(36)], where H (z) = 1+0.7692z−1+0.1538z−2+0.0769z−3,
in which the TWT nonlinearity is used to generate the training
dataset and specified by α1 = 3, α2 = 1.2, β1 = π/12, β2 =
0.25. y(t) was uniformly distributed complex random variable
with yR(t) ∈ [−0.75, 0.75] and yI (t) ∈ [−0.75, 0.75]. The
variances of the additive noise to the system output are set
as σ 2 = 0 (noise free) and σ 2 = 0.052 (high noise),
respectively.

The polynomial degree of the B-spline basis functions
for both the real and imaginary parts was set as two (i.e.,
k = 3, piecewise quadratic). The system identification algo-
rithm outlined in Section III were carried out, with the
following predetermined knot sequences. The knot sequence

[−2.25,−1.8,−1.5,−1.2,−0.75, 0, 0.75, 1.2, 1.5, 1.8, 2.25]
is initially set for both dR(t) and dI (t) in order to generate
basis functions used in (21). The knot sequence

[−7.5,−3,−1.2,−0.75,−0.3, 0, 0.3, 0.75, 1.2, 3, 7.5]
is then set for both wR(t) and wI (t) in order to generate basis
functions used in (17).

The modeling results are shown in Table II for the linear
subsystem. It is seen that the proposed system identification
method is consistently effective in capturing the true model
parameters. In order to demonstrate the nonlinear approxima-
tion capability, the model predictions of the B-spline model
� (w(t)) in the polar coordinate system were reconstructed
over the validation dataset, and this is compared with the
true model used to generate the data set in Fig. 4(a) and (b),
using the noise-free case dataset. It is seen that the proposed
approaches have excellent approximation results for modeling
the complex-valued nonlinear static function.

TABLE II

RESULTS OF LINEAR SUBSYSTEM PARAMETER ESTIMATION

(EXAMPLE 2). (a) NOISE FREE. (b) HIGH NOISE

(a)
True parameters Initial estimates Final estimates

h1 0.7692 0.7254 − j0.0012 0.7656 + j0.0001

h2 0.1538 0.1405 + j0.0002 0.1526 + j7 × 10−6

h3 0.0769 0.0691 − j0.0046 0.0764 + j0.0003

(b)
True parameters Initial estimates Final estimates

h1 0.7692 0.6913 − j0.001 0.7655 − j0.0003

h2 0.1538 0.1352 + j0.0004 0.1527 − j0.0006

h3 0.0769 0.0629 − j0.0072 0.0748 + j0.0011

V. CONCLUSION

A new complex-valued B-spline neural network model has
been proposed for the modeling of general complex-valued
Wiener system. The complex-valued nonlinear static function
in the Wiener system is modeled on the basis of the tensor
product from two univariate B-spline neural networks that are
constructed using the real and imaginary parts of the system
input. For parameter estimation, the Gauss–Newton algorithm
has been applied by incorporating the De Boor algorithm,
using both curve and the first-order derivatives recursion.
A simple least squares parameter initialization scheme was
also included for completeness. The efficacy of the proposed
approaches has been demonstrated using modeling examples,
which included a nonlinear HPA with high importance in
communication systems.
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