PROCEEDINGS

SEKE 2011

The 23" International Conference on
Software Engineering &

Knowledge Engineering

Sponsored by

Knowledge Systems Institute Graduate School, USA

Technical Program
July 7-9, 2011
Eden Roc Renaissance Miami Beach, Florida, USA

Organized by

Knowledge Systems Institute Graduate School

An Approach For Retrieval and Knowledge Communication Using Medical Documents (S)
Rafael Andrade, Mario Antonio Ribeiro Dantas, Fernando Costa Bertoldi, Aldo von Wangenheim 169

Semantic Web Technologies

A WordNet-based Semantic Similarity Measure Enhanced by Internet-based Knowledge (S)
Glang Liu, Ruili Wang, Jeremy Buckley, Helen M. Zhou 175

Semantic Enabled Sensor Network Design
Jing Sun, Hai H, Wang, Hui Gu ... cossansecosssrensessersnsraesssnsasassssanssnse 179

Using Semantic Annotations for Supporting Requirements Evolution
Bruno Nandolpho Machado, Lucas de Oliveira Arantes, Ricardo de Almeida Falbo 185

Design Software Architecture Models using Ontology (S)
Jing Sun, Hai H. Wang, Tianming HUcerevsesresessssssosassnsssessnsas 191

Software Testing and Debugging

Debug Concern Navigator
Masaru Shiozuka, Naoyasu Ubayashi, Yasutaka Kameieessveeersenes 197

PAFL: Fault Localization via Noise Reduction on Coverage Vector (S)
Lei Zhao, Zhenyu Zhang, Lina Wang, Xiaodan Yincsvesoseessssssesesee . 203

Using Coverage and Reachability Testing to Improve Concurrent Program Testing Quality
Simone R. S. Souza, Paulo S. L. Souza, Mario C. C. Machado, Mdrio S. Camillo,
Adenilso Sim@o, Ed ZAIUSKA «.....vvvssceessisssssssssscsossssssssasasassssnsssssasasassssesssesssssssssssssssssesesonsassoses 207

Program Slicing Spectrum-Based Software Fault Localization
Wanzhi Wen, Bixin Li, Xiaobing Subt, JIQKQT Liceuesveeuvereesresssssossossosssssse . 213

Interface Testing Using a Subgraph Splitting Algorithm: A Case Study (S)
Sergiy Vilkomir, Ali Asghary Karahroudy, Nasseh TABIIZiccveseeessnsrerssesossssssoscsssssassasassnse 219

Machine Learning-based Software Testing: Towards a Classification Framework (S)
Mahdi Noorian, Ebrahim Bagheri, WREICRANG Doevvervevsoeresesssssessossssesssssssssessosssssssons 225

A Model-based Approach to Regression Testing of Component-based Software
Chuangi Ta0, Bixin Li, JEFTY GO ...cvveieironnrersecssorseresssessssssorsossssnssssssessesssessssasasessssssssssssosessssase 230

Using Coverage and Reachability Testing to Improve
Concurrent Program Testing Quality

Simone R. S. Souza®, Paulo S. L. Souza!, Mario C. C. Machado?,
Midrio S. Camillo!, Adenilso Simio! and Ed Zaluska?
! Instituto de Ciéncias Mateméticas e de Computagio — Universidade de Sio Paulo
P.O. 668 — Sdo Carlos — Brasil — 13560-970
{srocio, pssouza,mmachado, adenilso} @icmc.usp.br, mariocamillo@ gmail.com
? Eletronics and Computer Science — University of Southampton
ejz@ecs.soton.ac.uk

Abstract

The testing of concurrent software is a challenging task.
A number of different research approaches have investi-
gated adaptation of the techniques and the criteria defined
for sequential programs. A major problem with the testing
of concurrent software that persists is the high application
cost due to the large number of the synchronizations that
are required and that must be executed during testing. In
this paper we propose a complementary approach, using
reachability testing, to guide the selection of the tests of all
synchronization events according to a specific coverage cri-
terion. The key concept is to take advantage of both cov-
erage criteria, which are used to select test cases and also
to guide the execution of new synchronizations, and reach-
ability testing, which is used to select suitable synchroniza-
tion events to be executed. An experimental study has been
conducted and the results indicate that it is always advan-
tageous to use this combined approach for the testing of
concurrent software.

1. Introduction

Concurrent applications are inevitably more complex
than sequential ones and, in addition, all concurrent soft-
ware contains features such as nondeterminism, synchro-
nization and inter-process communication which signifi-
cantly increase the difficulty of validation and testing.

For sequential programs, many testing problems were
simplified with the introduction of testing criteria and the
implementation of supporting tools. A testing criterion is a
predicate to be satisfied by a set of test cases which can be
used as a template for the generation of test data [10].

Extending previous work on sequential program struc-

tural testing criteria, we have proposed structural testing
criteria for the validation of concurrent programs, appli-
cable to both message-passing software [14] and shared-
memory software [12]. These testing criteria are designed
to exploit information about the control, data and commu-
nication flows of concurrent programs, considering both se-
quential and parallel aspects.

The use of these criteria significantly improves the qual-
ity of the test cases, providing a coverage measure that can
be used in two important testing procedures. In the first one,
the criteria can be used to guide the generation of test cases,
where the criteria are used as guideline for test data selec-
tion. The second testing procedure is related to the evalu-
ation of a test set; in this case, the criteria can be used to
determine when the testing activity can be terminated based
on sufficient coverage of the required elements. The main
contribution of the proposed testing criteria is to provide an
efficient coverage measure for evaluating the progress of the
testing activity and the quality of test cases.

This approach uses static analysis of the program un-
der test to extract relevant information for testing, which
is straightforward to apply and generate relevant informa-
tion for coverage testing. The problem is the large number
of infeasible elements generated that must be analyzed. An
element is infeasible if there is no set of values for the pa-
rameters (the input and global variables) that cover that ele-
ment. Complete determination of infeasible elements is an
extremely difficult problem and it is not possible to deter-
mine them automatically.

Lei and Carver [7] proposed a method (based on reach-
ability testing) to obtain all of the executable synchroniza-
tions of a concurrent program (from a given execution of
the program) in a way that reduces the number of redundant
synchronizations. As this method uses dynamic informa-
tion, only feasible synchronizations are generated, which

207

is a considerable advantage. However, a difficulty with this
method is the high number of possible combinations of syn-
chronization that are generated. For complex programs,
this number is very high, which limits the practical appli-
cation of this approach. In [1], Carver and Lei proposed
a distributed reachability testing algorithm, allowing differ-
ent test sequences be executed concurrently. This algorithm
reduces the time to execute the synchronizations, but the au-
thors do not comment about the effort necessary to analyze
the results from these executions.

Let and Carver’s [7] method is essentially complemen-
tary to our approach. They do not address how to select the
test case which will be used for the initial run, while we use
the static analysis of the program to select the optimum test
cases in advance.

In this paper we propose a complementary approach, us-
ing reachability testing to target coverage testing for syn-
chronization events. The idea is to take appropriate advan-
tage of both approaches: information about synchroniza-
tions provided by the coverage criterion are used to decide
which race variants will be executed, selecting only syn-
chronizations that have not already been covered by existing
test cases. It is therefore possible to execute each synchro-
nization at least once and to use reachability testing to select
only those synchronizations that are feasible.

This paper is structured as follows. In Section 2 we de-
scribe related work on the testing of concurrent software,
presenting more details on the coverage testing and reach-
ability testing approaches. In Section 3 we present the test
strategy proposed in this paper. In Section 4, an experi-
mental study to evaluate our test strategy is presented and
the results obtained are discussed. Finally, in Section 5 we
present our conclusions together with future work.

2. Concurrent Program Testing

Traditional testing techniques are often not well-suited
to the testing of concurrent or paralle] software, in partic-
ular when nondeterminism and concurrency features are
significant. Many researchers have developed specific
testing techniques addressing such issues and in addition
there have been initiatives to define suitable testing crite-
ria [16, 18, 17, 8, 11, 15]. The detection of race conditions
and mechanisms for replay testing have also been investi-
gated [4, 7, 2, 3].

Yang [18] describes a number of challenges for the test-
ing of paralle] software: 1) developing static analysis; 2)
detecting unintentional races and deadlock in nondetermin-
istic programs; 3) forcing a path to be executed when non-
determinism might exist; 4) reproducing a test execution
using the same input data; 5) generating the control flow
graph for nondeterministic programs; 6) providing a test-
ing framework as a theoretical base for applying sequential

testing criteria to parallel programs; 7) investigating the ap-
plicability of sequential testing criteria to parallel program
testing; and 8) defining test coverage criteria based on con-
trol and data flow.

Lei and Carver [7] proposed the reachability testing for
generating all feasible synchronization sequences (and only
them). This method guarantees that every partially-ordered
synchronization will be exercised exactly once without re-
peating any sequences that have already been exercised.
The method involves the execution of the program in a
semi-deterministic way; the execution is deterministic up to
a given point, from which it runs nondeterministically. The
resulting synchronization sequence (sync-sequence), which
is feasible, is analyzed and a new feasible sequence (if
possible) is computed. The authors employ a reachability
schema to calculate the synchronization sequence automat-
ically. The reachability testing uses dynamic information to
execute all feasible synchronization sequences, generating
all race variants from one particular execution.

The reachability testing process is illustrated in Figure 1
(extracted from [7]). The figure shows a space-time diagram
in which vertical lines represent four threads of a concurrent
program. The interaction between processes is represented
by arrows from a send event to a receive event. Diagram
Qo shows the one execution of the program, generating
the synchronizations: (sT%,772), (s3*4,132), (s32,r13),
(sT4,7T3). Vi, Vu and V; are race variants of Qg and fea-
sible executions generated during reachability testing ex-
ecution. A problem here is the high number of possible
combination of synchronization that are generated and (for
complex software) this number can be very high, restricting
any practical application of the strategy. This approach has
the important advantage that it will generate only feasible
synchronization sequences, which is an important consider-
ation when reducing the cost of the testing activity.

2.1. Structural Testing for Concurrent Programs

In this section we describe our test model and criteria
for validation of message-passing software [14]. The test
model captures control, data and communication informa-
tion. The model considers that a fixed and known number
of processes n is created at the initialization of the concur-
rent application. These processes may each execute differ-
ent programs. However, each one executes its own code in
its own memory space. The concurrent program is defined
by a set of n parallel processes Prog = {p%p!,...p" " 1}.
Each process p has its own Control Flow Graph CFGP, that
is built using the same concepts as traditional software [10].
In other words, a CF'G of a process p is composed of a set
of nodes IV? and a set of edges £P. Each node n in the pro-
cess p is represented by the notation n? and corresponds to
a set of commands that are sequentially executed or can be

208

L T3
st #
s

&)
2

W Vg

T
i
o

3
7 5

T TR T3 0T4

L

55 \:;‘/

A € v
VA

Figure 1. Example of reachability testing [7]

associated to a communication primitive (send or receive).
The model considers both blocking and non-blocking re-
ceives, such that all possible interleaving between send-
receive pairs can be represented. Prog is associated with a
Parallel Control Flow Graph (PCFG), which is composed
of the CFGP (forp = 0...n— 1) and by the representation
of the communication between the processes. A synchro-
nization edge (sync-edge) (n, n;’) links a send node in a
process a to a send node in a process b. These edges repre-
sent the possibility of communication and synchronization
between processes.

A set of coverage testing criteria is defined, based on
(PCF@G): All-Nodes; All-Edges; All-Nodes-R; All-Nodes-
S and All-Edges-S (related to control and synchronization
information) and All-C-Uses; All-P-Uses; All-SUses; All-
S-C-Uses and All-S-P-Uses (related to data and commu-
nication information) [14]. The All-Edges-S criterion re-
quires that the test set executes paths that cover all the sync-
edge associations of the concurrent program under testing;
the All-S-uses criterion requires that the test set executes
paths that cover all the s-use associations. An s-use is an
association between a node n?, that contains a definition of
a variable z, and a sync-edge that contains a communica-
tions use of z.

An example of a POFG is shown in Figure 2. There
are four processes, consisting of two different codes. Syn-
chronization pairs are represented by dotted lines — for ex-
ample, the pair (2°,2™) is one sync-edge between process
p° and p™. Each sync-edge is associated with one or more
s-use associations, and related to a variable represented in
PCFG,

Nondeterminism is the key issue addressed in this
test model. As it is impossible to determine statically
when a synchronization is feasible, a conservative ap-
proach is assumed, where every pair of send and receive
events which have the appropriate types are considered

Figure 2. Example of a Parallel Control Flow
Graph

as a possible matching. Considering the example of Fig-
ure 1, the required sync-edges are: (s7%,772), (s34,77?),
(s7%,7T2), (sT%,722). (534,732, (s32,732), (s10,732),
(s34,732), (s32,783), (i3 ™), (sT7,77%), (s34,70°),
(s32,rT3), (sT4,77®). Some sync-edges are infeasible
(e.g., (sT*,733)) but are required. Using controlled exe-
cution [2], it is possible to force the execution of feasible
sync-edges.

It is not necessary to execute all combinations of possi-
ble synchronization as long as at least one execution of each
sync-edge pair is included. A problem in this approach is
the high number of infeasible sync-edges that are generated
and need to be analysed. Nevertheless, it is interesting be-
cause it uses information generated statically to direct the
selection of test cases and to assess the coverage of the
program under test. We believe that the choice of the test
case can influence the results obtained, improving the over-
all testing activity quality. This has led directly to the test
strategy presented in the next section.

3. Proposed test strategy

In this paper we propose a test strategy that combines
both reachability testing and coverage testing to execute
synchronization events. The main motivation of this strat-
egy is to improve coverage testing; however, the approach
can also be applied to improve reachability testing perfor-

209

mance. In this case, reachability testing can be applied
using an approach that selectively exercises a set of sync-
sequences according to a specified coverage testing crite-
rion. Exhaustive testing is not always practical and they
pointed out the need to use mechanisms to guide the selec-
tion of the sync-sequences during reachability testing [7].
In Figure 3 the proposed test strategy is illustrated. This
figure does not show all the steps necessary to apply the
coverage testing criterion, only those important to our strat-

egy.

G ation of the

Programungdar tasting oo susivad

f?%stdam ‘
Program - :

sxacution

|
|
i

(Generation of a variant ist V }(m ,,,,,,,,,,,,]

= '—’){ Seleetion nevw test dats l

J Y
N

{ Soiect onn vprienty romV]

Le. 2

Figure 3. Test Strategy using Reachability
Testing and Coverage Testing Criterion

First, a required elements list Reg is generated from a
given concurrent program, based on the all-s-uses and all-
edges-s criteria. An initial test dataset is produced and the
program is executed to generate an execution trace, contain-
ing a record of all the nodes and the sync-edges executed by
the test dataset. The elements covered by the test dataset ex-
ecution are marked in Reg and any required element not yet
covered identified. Usually, a procedure is used to select a
new fest dataset to improve the coverage of Hegq.

Considering reachability testing in this context, the next
step is the generation of a list V' of the variants, based on
the sync-edges executed. For each sync-edge all possible
variants are then generated. The difference here from reach-
ability testing, is that only the variants required to cover a
required element that is not yet covered are included. There-
fore, when a new variant v is selected from V/, it is verified
only if it executes a new requirement of Regq. Otherwise,

another variant is selected or a new test dataset is generated
(when V is empty). The procedure to execute a variant v
is the same as that defined by Lei and Carver [7]: the con-
trolled execution ensures that the synchronization of the v
always occurs during the execution. After execution of the
variant v, the execution trace is obtained and the required
elements covered for this execution are marked in list Req.
Considering now the variant v, new variants are generated
and added to the list of the variants V. The procedure to
execute variants or new test datasets is repeated while any
required elements remain to be covered.

4. Experimental Study

In this section, we present an experimental study that in-
dicates that the approach combining reachability and cov-
erage criteria testing improve overall testing quality. The
ValiMPI tool was used to conduct this study. ValiMPI is
a tool developed to test concurrent programs implemented
in MPI (Message Passing Interface), proposed originally to
support the coverage testing mentioned in Section 2 [13, 6].
ValiMPI functionality has been extended to implement the
reachability testing strategy proposed by Lei and Carver {7]
and hence test the strategy proposed in this paper.

Eight different MPI programs were used in this study,
implementing classical concurrency algorithms. The com-
plexity is given by the number of sends s and receives r of
each program: sieve of Eratosthenes - (7s and 9r) an algo-
rithm for finding all prime numbers up to a specified inte-
ger [9]; ged - (7s and 7r) to calculate the greatest common
divisor of three numbers, using successive subtractions be-
tween two numbers until one of them is zero; mmult - (15s
and 27r) to implement matrix multiplication using domain
decomposition; philesophers - (11s and 10r) to implement
the dining philosophers problem; pairwise - (16s and 16r)
where each process n; receives a data X; and is responsible
for computing the interactions I(X;, X;) ,for i # j. For
this, a structure with N channels is used, where each com-
munication channel represents a pair source-destination —
these channels are used to connect the N tasks into a unidi-
rectional ring; reduction - (4s and 4r) to implement the re-
duction operation of distributed data, considering add, mul-
tiplication, greater than and less than operations; gsort -
(28s and 52r) to implement quicksort, based on the paral-
lel algorithm presented in Grama [5]; and jacobi - (23s and
37r) to implement Jacobi-Richardson iteration for solving a
linear system of equations.

Three different test scenarios were executed:

1. Selection of adequate test case using coverage crite-
ria (CovT): using the criteria all-s-uses and all-edges-
s, test cases were manually generated to exercise the
required elements of these criteria, s-use associations

210

and sync-edges, respectively. Infeasible elements were
identified to evaluate the coverage of an initial test set.

2. Application of reachability testing (RT): using the
initial test set generated during Scenario CovT, reach-
ability testing was undertaken, according to the algo-
rithm proposed by Lei and Carver [7].

3. Application of our test strategy (RTCovT): using the
criteria all-s-uses and all-edges-s, (related to synchro-
nization), reachability testing was executed guided by
the required elements of these criteria, following the
steps discussed in Section 3.

Table 1 presents the sync-sequences generated by Reach-
ability Testing (column RT) and by our test strategy (col-
umn RTCovT), using two different test sets: 17, generated
by CovT and containing test cases adequate to execute both
sync-edges and s-uses; and 75, which is a subset of T} con-
taining only effective test cases (i.e. 15 contains only test
case confributing to the execution of the sync-edges). RT
executes, for each test case, all variants of the each sync-
edge, even those variants already executed previously. For
this reason, the number of the sync-sequences generated by
RT is higher than the sync-sequences generated by our test
strategy. These results indicate that is possible to reduce
the cost of the reachability testing using coverage testing.
A fundamental problem with reachability testing is to de-
cide when the testing activity can be considered complete;
our test strategy contributes to the work on this problem.
‘We compared the advantages of using our test strategy com-
pared to the alternatives discussed previously.

Table 1. Number of the sync-sequences exe-
cuted

Programs T1 T1 T2 T2
RT RTCovT RT RTCovT

sieve 10 60 13 4 20 7
ged 13 24 14 7 14 9
mmult 8 48 11 4 24 5
philosophers 1 1680 2 1 1680 2
pairwise 4 4 4 - 1 1 1
reduction 4 4 4 1 1 1
gsort 3 794 18 3 266 16
jacobi 9 1710 13 6 377 11

Table 2 shows the results of the coverage obtained using
the coverage testing (CovT) and our test strategy (RTCovT)
for all-edges-s and all-s-uses criteria. For this analysis, for
each program, the same test set 7' (generated on an ad-hoc
basis) was used to execute the two test scenarios and the
two coverage criteria. Qur test strategy (RTCovT) indicates
the potential to improve the criteria coverage because our
strategy executes a greater number of sync-edges and s-uses

than the traditional coverage testing, establishing that itis a
good strategy to reduce the overall application cost of the
test. Some of the programs in the test had no improvement
in coverage because in these cases the T set already covered
all feasible elements for the criteria.

Table 2. Coverage using coverage criteria and
the test strategy

All-Edges-S All-S-Uses
Programs CovT RTCovT CovT RTCovT
sieve 80.95% 90.48% 56.67% 76.67%
ged 100.00% | 100.00% 80.00% 85.00%
mmult 93.33% 93.33% 94.74% 94.74%
philosophers | 100.00% | 100.00% 75.00% 75.00%
pairwise 100.00% | 100.00% 83.33% 83.33%
reduction 100.00% 100.00% 100.00% 100.00%
gsort 51.61% 89.25% 43.54% 67.35%
jacobi 100.00% | 100.00% 84.06% 85.51%

Table 3 shows the results for the Jacobi algorithm exam-
ple as different test cases (tcl to {c9) are processed. Our
testing strategy always provides better test coverage and
maximal coverage is achieved after only five test cases have
been considered. Table 4 provides similar results for the
mmult algorithm example with test cases tcl to ¢c8. For
this example maximum coverage is achieved after only two
of the test cases have been considered.

Table 3. Evolution of the jacobi program cov-
erage

All-Edges-S All-S-Uses
testcases Covl RTCovT CovT RTCovT
tcl 19.30% 19.30% 8.70% 8.70%
tc2 38.60% 49.12% 26.09% 34.78%
tc3 82.46% 94.74% 60.87% 71.01%
tcd 84.21% 96.49% 68.12% 78.26%
teh 94.74% 100.00% | 78.26% 82.61%
tcB 94.74% 100.00% | 78.26% 82.61%
tcl 94.74% 100.00% | 78.26% 82.61%
tc8 100.00% | 100.00% | 82.61% 84.06%
tc9 100.00% | 100.00% | 84.06% 85.51%

5, Conclusions

In this paper we have presented a new test strategy to
validate concurrent programs, using a combination of cov-
erage criteria and reachability testing. The coverage crite-
ria are used both to select test cases and to determine the
execution of new synchronizations, while the reachability
testing is used to select appropriate synchronizations to be
executed.

211

Table 4. Evolution of the mmuilt program cov-
erage

All-Edges-5 All-8-Uses
testcases Covl RTCevT CovT RTCovT
tel 60.00% 93.33% 63.16% 89.47%
tc2 60.00% 93.33% 68.42% 94.74%
tc3 73.33% 93.33% 78.95% 94.74%
ted 86.67% 93.33% 89.47% 94.74%
ich 86.67% 93.33% 89.47% 94.74%
tch 86.67% 93.33% 89.47% 94.74%
tc? 86.67% 93.33% 89.47% 94.74%
tc8 86.67% 93.33% 94.74% 94.74%

The combination of the two approaches has the potential
to deliver significant reduction in the overall testing cost.
Due to the high number of synchronizations in a typical
concurrent program, the execution of these synchroniza-
tions using reachability testing alone can be impractical;
while in the case of the coverage criteria used by itself, these
synchronizations generate a high cost because of the num-
ber of infeasible synchronizations that must be analyzed.

The test strategy described in this paper contributes in
two ways: 1) by using structural criteria to minimize the
number of sequences in reachability testing; and 2) by guid-
ing the generation of test cases based on the structural crite-
ria, using reachability testing to increase the test coverage.
An experimental study has been undertaken to evaluate this
approach. The results indicate that is promising to adopt
this test strategy, with an improvement in test coverage in
every case considered.

Finally, we plan to evaluate the proposed test strategy in
terms of revealing faults. Preliminary results have demon-
strated that our strategy is effective in detecting faults. The
test sets discussed above were evaluated using the fault tax-
onomy presented in [4] and 84.8% of the seeded defects
were revealed on average. Further studies are being devel-
oped using different fault taxonomies and comparing the ef-
fectiveness of our strategy with the effectiveness of reacha-
bility testing.

6 Acknowledgments

The authors would like to thank CAPES and FAPESP,
Brazilian funding agencies, for the financial support, un-
der Capes process 1191/10-1 and FAPESP processes:
2008/04614-5, 2010/02839-0.

References

[1] R.Carver and Y. Lei. Distributed reachability testing of con-
current programs. Concurrency and Computation: Pracrice
and Experience, 22(18):2445-2466, 2010.

[10]

(11]

[12]

(13]

{14]

[15]

{16]

[17]

[18]

212

[2]1 R. Carver and K.-C. Tai. Replay and testing for concurrent
programs. IEEE Software, pages 7486, Mar. 1991.

S. K. Damodaran-Kamal and J. M. Francioni. Nondeter-
minacy: Testing and debugging in message passing parallel
programs. In 3rd ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 118-128, New York, May 1993.
O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Framework for testing multi-threaded java programs.
Concurrency and Computation: Practice and Experience,
15(3-5):485-499, 2003.

A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduc-
tion to Parallel Computing. Addison Wesley, 2003.

A. C. Hausen, S. R. Vergilio, S. Souza, P. Souza, and
A. Simdo. A tool for structural testing of MPI programs.
In 8th IEEE Latin-American Test Workshop, march 2007,

Y. Lei and R, H. Carver. Reachability testing of concurrent
programs. IEEE TSE, 32(6):382-403, June 2006.

S. Lu, W. Jiang, and Y. Zhou. A study of interleaving cov-
erage criteria. In Proceedings of the ACM SIGSOFT sym-
posium on the foundations of software engineering, pages
533-536, New York, NY, USA, 2007. ACM.

M. J. Quinn. Parallel Computing : Theory and Practice.
McGraw-Hill, New York, 2nd. edition, 1994.

S. Rapps and E. J. Weyuker. Selecting software test data us-
ing data flow information. IEEE Transaction Software En-
gineering, 11(4):367-375, Apr. 1985,

C. Robinson-Mallett, R. M. Hierons, J. Poore, and P, Ligges-
meyer. Using communication coverage criteria and partial
model generation to assist software integration testing. Soft-
ware Quality Conrrol, 16(2):185-211, 2008.

F. S. Sarmanho, P. S. L. Souza, S. R. S. Souza, and A. S.
Simdo. Structural testing for semaphore-based multithread
programs. In International Conference on Computational
Science, LNCS, volume 5101, pages 337-346, 2008.

S.R. S. Souza, 8. R. Vergilio, P. S. L. Souza, A. S. Simfo,
T. G. Bliscosque, A. M. Lima, and A, C. Hausen. Vali-
par: A testing tool for message-passing parallel programs.
In International Conference on Software knowledge and
Software Engineering (SEKEO05), pages 386-391, Taipei-
Taiwan, 2005.

S.R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simdo,
and A. C. Hausen. Structural testing criteria for message-
passing parallel programs. Concurrency and Computation:
Practice and Experience, 20:1893-1916, mar 2008.

J. Takahashi, H. Kojima, and Z. Furukawa. Coverage
based testing for concurrent software. In 28th International
Conference on Distributed Computing Systems Workshops,
2008., pages 533-538, June 2008.

R. N. Taylor, D. L. Levine, and C. Kelly. Structural testing
of concurrent programs. IEEE Transaction Software Engi-
neering, 18(3):206-215, Mar. 1992,

W. E. Wong, Y. Lei, and X. Ma. Effective generation of
test sequences for structural testing of concurrent programs.
In 10th IEEE International Conference on Engineering of
Complex Systems (ICECCS¢05), pages 539- 548, 2005.
C.-8.D. Yang. Program-Based, Structural Testing of Shared
Memory Parallel Programs. PhD thesis, University of
Delaware, 1999.

31

[4]

(3]

(6]

(7]

(8]

91

Copyright © 2011 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN-10: 1-891706-29-2 (paper)
ISBN-13: 978-1-891706-29-5

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street

Skokie, IL 60076, USA

Tel:+1-847-679-3135

Fax:+1-847-679-3166
Email:office@ksi.edu

http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

