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Abstract— An adaptive semi-blind space-time equaliser (STE) and soft decision-directed (SDD) scheme for narrowband
has recently been proposed based on a concurrent gradient- MIMO systems that employ high-order QAM signalling. A
Newton constant modulus algorithm and soft decision-directed SG-based semi-blind adaptive scheme however suffers from

scheme for dispersive multiple-input multiple-output (MIMO) . . .
systems that employ high-throughput quadrature amplitude slow convergence and high steady-state misadjustmenty whe

modulation signalling. We investigate the performance of this Operating in frequency selective MIMO systems.
adaptive semi-blind STE operating in Rayleigh fading MIMO Recently, a gradient-Newton (GN) semi-blind concurrent
systems. Our results obtained show that the tracking perfor- CMA and SDD algorithm [20] was proposed to adapt the
mance of this semi-blind adaptive algorithm is close to that of - g1g yhat gperates in frequency selective MIMO systems. For
the training-based recursive least squares algorithm. This study . .
therefore, demonstrates that the proposed semi-blind algorithm stationary MIMO systems, the results reported in [20] have
offers a practical means to adapt a STE in the hostile dispersive demonstrated that this semi-blind GN-CMA+SDD adaptive
Rayleigh fading MIMO environment. STE converges to the optimal minimum mean square error
(MMSE) STE solution at a fast rate that is very close to
the training-based RLS algorithm. No result however has
Multiple-input multiple-output (MIMO) techniques are been produced for this semi-blind GN-CMA+SDD based
capable of offering a high channel capacity in interferenceadaptive STE operating in time-varying MIMO channels. The
free scenarios, but their achievable performance is lomie  contribution of this paper is that we investigate the tragki
the multi-user interference. For frequency selective MIMGherformance of this adaptive semi-blind STE operating in
systems, space-time equalisers (STEs) [1]-{7] offer agceff dispersive Rayleigh fading MIMO systems. Our results show
tive means of suppressing both intersymbol interference athat the tracking performance of this semi-blind adaptive
co-channel interference. To further improve the achievabhlgorithm is close to that of the continuously training-dwhs
bandwidth efficiency, high-throughput quadrature amgitu RLS algorithm. Considering the fact that the continuously
modulation (QAM) schemes [8] have become popular iitraining-based RLS STE is impossible to realise and its
numerous wireless network standards. For example, the 1§smbol error rate (SER) offers a low bound of the system’s
QAM and 64-QAM schemes were adopted in the recerdchievable performance, this demonstrates that the semi-
WiMax standard [9]. Adaptive implementation of STE carblind GN-CMA+SDD algorithm offers a practical means
be realised using training based adaptive algorithms, aschto adapt a STE in the hostile dispersive fading MIMO
the recursive least squares (RLS) algorithm [10]. Howeveenvironment.
a large number of training symbols is required to properly
train a STE, which considerably reduces the achievable I[l. SYSTEM MODEL AND STE STRUCTURE
system throughput. Under dispersive MIMO environments,

e . L . Consider the space-division multiple-access (SDMA) in-
the STE’s input signal is highly correlated and the stoobast. duced MIMO system, where each of theusers is equipped

g;as(gsr}égss(t;)mbea;r?igjzrp;\ggﬂﬁg%hn;i’ﬁséurghfz)sngh;gsvilgw_ith a single transmit antenna and the receiver is assisted b

. T a P-element antenna array. Denote the symbol-rate channel
vergence and high steady-state misadjustment [10]. . . .
) . ) L impulse response (CIR) connecting tte transmit antenna

Blind adaptive methods do not require training symbol% the pth receive antenna at the symbol indexas
and, therefore, do not reduce the achievable system thmugR P y
put. However, pure blind adaptive STEs impose high com- Cpa(k) = [copa(k) crpq(k) - Cnp1pq(B)]T, (1)
plexity and suffer from slow convergence. Moreover, they re
sult in unavoidable estimation and decision ambiguitiéd,[1 where for notational simplicity we have assumed that each
[12]. An effective means of resolving these ambiguitiesdis tof the P x () CIRs has the same length af,. Magnitudes
employ a few training symbols, leading to the attractiveisemof the CIR taps are uncorrelated Rayleigh processes, and
blind schemes. Many SG-based adaptive semi-blind methodach CIR tap has a root mean poweryd.5 + j1/0.5. The
[13]-[19] have been proposed for frequency nonselectiveormalised Doppler frequency of the system is denoted by
MIMO systems. In particular, the work of [19] has developedf;, and continuously fluctuating fading is assumed, which
a SG-based concurrent constant modulus algorithm (CMAyrovides a different fading magnitude and phase for each

I. INTRODUCTION



CIR tap ¢; ., at eachk. The symbol-rate received signalfor 1 < p < P and1 < ¢ < Q. Similarly, the STE for

samplesz,(k), 1 <p < P, can be expressed as

Q nc—1

zp(k) = Z Z Ciop,q(k)sq(k — i) +ny(k),

q=1 =0

)

where n,(k) is a complex-valued Gaussian white noisewq(k) =1

process withE[|n,(k)|*] = 202, s,(k) is thekth transmitted
symbol of userg with the symbol energyZ||s,(k)|?] = o2,
and s, (k) takes the values from th&/-QAM symbol set

Sé{si,lzui—i-jul, 1<4,l<VM} 3)

with the real-part symbokR([s; ;] = uv; = 2i — vVM — 1 and

the imaginary-part symbak(s, ;] = w; = 2l —v M —1. The

average signal-to-noise ratio (SNR) is defined as

S Sy Elell (k)epg(k))o?  neo? @
2QPo?2 o202

The STE for detecting theth user’s data is given by

nca2

SNR=

P D-1

yq(k) = Z Z w;’k,p,q(k)mp(k - 7’)7

p=1 =0

(®)

which is used to produce an estimaig(k — 7,) of the
transmitteds,, (k—7,), whereD is the temporal filter's length,
w; p,q(k) are the weights of the STE at the symbol index
and0 < 1, < D + n¢ — 2 is the decision delay.

Define the overall received signal vectot(k) =
e (k) xJ (k) - xE(k)]T, where

xp(k) = [wp(k) zp(k — 1) ap(k — D + 1)]T7 (6)

detecting thegth user’s data can be expressed as

yq(k) = wy' (k)x(k)

: (12)

where the overall weight vector of the STE/ats given by
Wi (k) Wi (k) wE  (k)]T with

Wp,q(k) = [wo,p,q(k) w1,p,q(k) - wD*LP#}(k)]T'
The dimension of the STE is therefofétg = P - D.

(13)

1. SEMI-BLIND GN-CMA+SDD ALGORITHM

Let the number of available training symbols bg and
denote the available training data as

{ Xy = [x(1) x(2) -+ x(K)], .

Sk,q = [8q(1 = 7g) 8¢(2 —7g) - 54(K — 7).

The least squares (LS) estimate of the STE’s weight vector
based on{X ,5k 4} is readily given as

(14)

—1 x
we(0) = (XxXK)  XgSj, (15)

In order to maintain throughput, the number of training {silo
should be as small as possible. To ensure K]ﬁtXII{( has

a full rank, on the other hand{ should be chosen to be
slightly larger thanNgsrg, the dimension ok (k). Because

the training data withk' =~ Ngrg are generally insufficient,
the initial LS weight vector (15) may not be sufficiently
accurate to open the eye. Therefore, decision direct adap-
tation is generally unsafe. Also directly applying the SG-
CMA+SDD blind scheme of [21] to adapt the STE (12)
with w,(0) of (15) as the initial weight vector suffers from

for 1 < p < P. Thenx(k) can be expressed by the well-g|o\ convergence and high steady-state MSE misadjustment,

known MIMO model

x(k) = C(k) s(k) + n(k) ™
wheren(k) = [nT (k) n¥ (k) - - n5 (k)T with
n, (k) = [ny(k) np(k —1)---ny(k =D+ 1)]T  (8)

becausex(k) is highly correlated. In the work [20], a GN-
CMA+SDD algorithm was proposed to adjust the STE (12)
with w,(0) of (15) as the initial weight vector, which is
capable of converging fast and accurately to the optimal
MMSE STE solution under a stationary environment.

In the GN-CMA+SDD based STE, the STE's weight

for 1 < p < P, the transmitted symbol vector of all the usersvector is split into two parts, yieldingv, (k) = w, (k) +

s(k) = [s{ (k) s5 (k) ---s5(k)]T with
sq(k) = [s4(k) sq(k —1)---5,(k — D —nc +2)]T, (9)

for 1 < ¢ < @, and the overall system’s CIR matrix

81,1(2) gl,z(Z) gl,Q(Z)
Olk) = 2,:1( ) 2,?( ) 2,?( ) (10)
CP,.l(k) CP,.Q(k) CP,.Q('ZC)

with the D x (D + n¢ — 1) CIR matrix associated with the

userg and the receive antennagiven by the Toeplitz form
cl (k) 0 0

p,q

11)

wy q(k). The initial w,. and w,, are simply set to
wqc(0) = wy.q4(0) = 0.5w4(0), wherew,(0) is given by
(15). A GN algorithm uses the inverse of the autocorrelation
matrix of x(k) to modify the stochastic gradient [22], [23].
Just like in the RLS algorithm, this inverse matrix can be
updated recursively according to [10]

P(k) = \"'"P(k—1) = X 'g(k)x"(k)P(k—1) (16)

with
B AP (k- 1)x(k)
1A IXE(R)P(E - D)x(k)’
where0 < A < 1 is the forgetting factor [10]. The initial
P(0) can be set td®(0) = (XKX%)_l.

The weight vectorw, . is updated using the GN-CMA
according to

g(k) 17

Wqclk+1) = wg (k) + pemaP(k)e* (k)x(k) (18)
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Fig. 1. Influence of (a) the forgetting factor with ucya = 0.01, uspp = 0.65 and p = 0.4, (b) the CMA step sizeucya With A = 0.985,
uspp = 0.65 and p = 0.4, (c) the SDD step sizgspp With A = 0.985, ucma = 0.01 and p = 0.4, and (d) the cluster width with A = 0.985,
nema = 0.01 and uspp = 0.65, to the average MSE of the semi-blind GN-CMA+SDD algorithmegi SNR of 20 dB and averaged over 50 runs.

with Jumap (wy(k), k) = plog (p(wy(k),yqe(k))). In particular,

e(k) = y, (k) (A — |yq(k)|2) , (19) the GN-SDD algorithm updates, ; according to
wherey, (k) = wi(k)x(k), A = E [|sq(k)|*] /E [sq(k)|?] OJimar(wy(k), k)
and pcnva IS the step size of the CMA. This GN-CMA Wo,d(k + 1) = wg.a(k) + psppP (k) oWy ’
algorithm reduces to the conventional SG-CMA [24], [25] (22)
if P(k) is replaced with an identity matrix. It is well- whereugpp is the step size of the SDD, and

known that the step size for the SG-CMA must be chosen

sufficiently small to avoid divergence, particularly in @hly 9.7y \vap(wy(k), k) 1 & 2 _lyg®)—srml?
correlated signal environment. By contrast, the step sfze o OWg.a = In Z Z € B

the GN-CMA algorithm can be set to a value much larger ’ r=mlm=2l

than the step size of the SG-CMA counterpart. X (8r,m = Yq(K))"x(k), (23)

The weight vectorw, 4 is updated using the GN-SDD ith
scheme, which is now summarised. The complex phas&{Jt 0 ol

L . ; : lyg (k) —sr,m?

plane is divided into thé///4 rectangular regions, and each Iy = Z Z et enm

regionS;; contains four symbol points as defined by S5 ! ' (24)

Sip = {srm, 7=20=1,2,m =21 - 1,21}, (20) This GN-SDD algorithm reduces to the SG-SDD algorithm

wherel < 4,1 < /M /2. If the STE’s outputy, (k) € Si, of [21], [26] by replacingP (k) with an identity matrix. Note

a local approximation of the marginal probability densitythat, for the SG-SDD algorithm, the step sizepp has

function (PDF) ofy, (k) is given by [21], [26] significant influence on the performance of the algorithm,

, o as t(l)lo ITrge ]\c/alue IopségD reslults in divergence while too

. L 1 _lvgm=—srml? small value ofuspp leads to slow convergence. By contrast,

P(Wq(k), yq(k)) = Z Z %e B » 1) for the GN-SDD algorithmuspp can be set to a much larger
r=2imlm=21=1 value than for the step size of the SG-SDD counterpart. The

where p is the cluster width associated with the fourperformance of the GN-SDD algorithm is not overly sensitive

clusters of eachS;;. The SDD scheme [21], [26], [27] to the cluster widtlp, defined in the context of the local PDF

is designed to maximise the local marginal PDF criteriorf21), as in the case of the SG-SDD [19], [21], [26].
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Fig. 2. Influence of the forgetting factox to the average MSE of the Sample
training-based RLS algorithm, given SNR of 20 dB and averagest 50 iy 3. Tracking performance comparison of the training-tdRES, semi-
runs. blind SG-CMA+SDD and semi-blind GN-CMA+SDD based STES, inne

of the average MSE, given SNR20 dB and averaged over 50 runs.
IV. SIMULATION STUDY

The mean square error (MSE) value for the STE of (12§luster width and forgetting factor were chqsenpas 0.4
with the We|ght Vectomq(k) can be expressed by and \ = 0985, for the GN-CMA+SDD algo”thm. We also

tested the SG-CMA+SDD based STE, whose algorithmic pa-
Inse(wq(k), k) = o2 (1=wi (k)C)q, (k) —wy (K)CJ, (K))  rameters were chosen to be the step sizega = 5 x 10~
002 and uspp = 0.0003, while the cluster widthp = 0.4, based
+0§W§I(k) <C(k)CH(k) + UQn I) wy(k), (25) ona similar experimental procedure. For the training-dase
o RLS algorithm the forgetting factor was set }o= 0.995
whereI denotes theVyrg, x (Q - (D+n¢ — 1)) dimensional &ccording to the results depicted in Fig. 2.
identity matrix, ¢, = (¢ — 1)(D + n¢ — 1) + (1, + 1) and Fig. 3 plots the learning curves of _the_ training-based RLS,
C|; theith column of C. Then the average MSE semi-blind SG-CMA+SDD and semi-blind GN-CMA+SDD
based STEs, in terms of the average MSE over all the
18 @ = 3 users, given the SNR value of 20 dB. It can be
Jamse(W(k), k) = ) > Tuse(wy(k), k), (26)  seen from Fig. 3 that the tracking performance of the semi-
a=1 blind GN-CMA+SDD algorithm was close to that of the
over all the@ users can be used to investigate the trackcontinuously training-based RLS algorithm. Fig. 3 also-con
ing performance of an adaptive STE, wheW (k) = firms that the semi-blind SG-CMA+SDD algorithm suffered
[w1(k) wa(k)---wq(k)] denotes the weight matrix of all from slow convergence and excessively high steady-state
the @ STEs. Since/ysk(w,(k), k) is a stochastic quantity, misadjustment in the highly dispersive and fading MIMO
whose value depends on the channel realisation, averagigignal environment. The SERs of the training-based RLS,
over a number of different runs is necessary. Ultimatelg, thsemi-blind SG-CMA+SDD and semi-blind GN-CMA+SDD
SER can be simulated to assess the STE’s performance. based STEs are depicted in Fig. 4 (a) to (c), for the users

The simulated system support€dl = 3 users with the one to three, respectively. The results obtained in Fig. 4
16-QAM modulation andP = 4 receive antennas. Each of demonstrate that the SER performance of the semi-blind GN-

the P- Q = 12 CIRs hadn¢ = 3 taps. The STE's temporal CMA+SDD based STE was close to that of the continuously
filter order wasD = 5. The three decision delays of the threetraining-based RLS STE. This is very significant, consiuigri
STEs were set to; = 75 = 73 = 2. Note that there was the fact that the continuously training-based RLS STE is
a trade off in choosing an appropriate temporal filter lengtinpossible to realise and its SER offers a low bound of the
D. A larger D offered potentially better performance butsystem’s achievable performance.
resulted in longer adaptation period and higher steadg-sta
misadjustment, which was a particular problem for time-
varying channels. As the system was under continuously A semi-blind STE has been investigated for frequency
fluctuating fading, the CIRs were changed at e&chifhe selective Rayleigh fading MIMO systems that employ high
RLS based STE benchmark kept training continuously, whicthroughput QAM signalling. A minimum number of training
was obviously impractical to implement in reality but ofdr symbols, approximately equal to the dimension of the STE,
a lower bound of the system’s achievable performance. is used to provide a rough LS estimate of the STE weight
In the simulation, the normalised Doppler frequency wasector for the initialisation. A concurrent GN-CMA+SDD
fa = 107°, and the number of the training symbols waslind adaptive scheme is then adopted to adapt the STE.
K = 24, which was slightly larger than the STE’s dimensionThis semi-blind STE scheme has a complexity similar to
Nsrg. Appropriate algorithmic parameters were found emthat of the training-based RLS algorithm. Our simulation
pirically. According to the results plotted in Fig. 1, thegt results involving a continuously fluctuating fading MIMO
sizes were set tacya = 0.01 and uspp = 0.65, while the  channel have demonstrated that the tracking performance of

S

V. CONCLUSIONS
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Fig. 4. SER performance comparison of the training-based RES)i-
blind SG-CMA+SDD and semi-blind GN-CMA+SDD based STEs: (sgmu [21]
one, (b) user two, and (c) user three.

this semi-blind GN-CMA+SDD algorithm is close to that of

22
the continuously training-based RLS algorithm. 2]

(23]
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