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Abstract— We develop a semi-blind adaptive space-time shift
keying (STSK) based multiple-input multiple-output system
using a low-complexity iterative channel estimation and data
detection scheme. We first employ the minimum number of
STSK training blocks, which is related to the number of
transmitter antennas, to obtain a rough least square chan-
nel estimate (LSCE). Low-complexity single-stream maximum
likelihood (ML) data detection is then carried out based on
the initial LSCE and the detected data are utilised to refine
the decision-directed LSCE. We show that a few iterations are
sufficient to approach the optimal ML detection performance
obtained with the aid of perfect channel state information.

I. I NTRODUCTION

A unified multiple-input multiple-output (MIMO) archi-
tecture based on the generic space-time shift keying (STSK)
concept [1], [2] has recently been proposed, which includes
spatial modulation (SM) and space shift keying (SSK) [3]–
[6], orthogonal space-time block codes [7], Bell Lab’s lay-
ered space-time scheme [8] as well as linear dispersion codes
[9] as its special cases. Unlike the SM and SSK schemes
[3]–[6], which only utilise the spatial dimension, the STSK
scheme exploits both the space and time dimensions. More
specifically, the STSK system is based on the activation
of the appropriately indexed space-time dispersion matrices
within each STSK block duration, instead of the indexed
antennas at each symbol duration, as in the SM and SSK
systems of [3]–[6]. The STSK scheme is capable of striking
a flexible diversity versus multiplexing gain trade off, which
is achieved by optimising both the number and size of
the dispersion matrices as well as the number of transmit
and receive antennas. In particular, the STSK system is
capable of exploiting both transmit and receive diversity
gains, unlike the SM and SSK schemes, which can only
attain a receive diversity gain. Moreover, like the SM system,
the STSK scheme does not impose inter-antenna, i.e. inter-
channel interference (ICI). Consequently, the single-antenna
based maximum likelihood (ML) detector of [5] can readily
be employed in the STSK system to attain optimal ML
detection at a low complexity. In this contribution, we study
the coherent STSK (CSTSK) based MIMO system.

In general, the ability of a coherent MIMO system to
approach its capacity heavily relies on the accuracy of the
channel state information (CSI). Training based adaptive
schemes are capable of accurately estimating a MIMO
channel at the expense of considerable reduction in system
throughput, since a large training overhead is required to

obtain a reasonably accurate CSI estimate. Blind methods not
only impose high complexity and slow convergence, but also
suffer from unavoidable estimation and decision ambiguities
[10]. Semi-blind methods offer attractive practical meansof
implementing adaptive MIMO systems. In the semi-blind
methods of [11]–[14], a few training symbols are used to pro-
vide an initial MIMO channel estimate. Then the channel es-
timator as well as the data detector iteratively exchange their
information, where the channel estimator relies on decision-
directed adaptation. In the scheme of [15], [16], aided by
an initial training-based MIMO channel estimate, blind joint
ML data detection and channel estimation is carried out by
a computational intelligence based optimisation algorithm.
In these studies, however, the MIMO systems induce ICI,
and ML data detection has to be carried out, for example,
with the aid of sphere-decoding based algorithms [17], [18],
which may be computationally expensive. High-complexity
ML data detection coupled with a large number of iterations
to achieve convergence imposes considerable computational
requirements in these previous semi-blind methods.

We exploit the inherent low-complexity of ML data de-
tection in STSK systems and propose a semi-blind iterative
channel estimation and data detection scheme for CSTSK
systems. In order to maintain a high system throughput, the
minimum number of STSK training blocks, which is deter-
mined by the number of transmitter antennas, is utilised to
provide a rough least square channel estimate (LSCE). Then
low-complexity single-antenna based ML data detection is
carried out based on the initial LSCE, and the detected data
are then re-modulated and used for the decision-directed
LSCE update. Our results demonstrate that a few iterations,
typically no more than five, are sufficient to approach the
optimal detection performance obtained with perfect CSI.
The remainder of this contribution is organised as follows.
Section II describes the CSTSK system model and the low-
complexity optimal ML data detection algorithm, while the
proposed semi-blind iterative channel estimation and data
detection scheme is presented in Section III. Simulation
results are given in Section IV, and our conclusions are
summarised in Section V.

II. COHERENTSTSK SYSTEM MODEL

We consider the CSTSK based MIMO system [2], which
employsNT antennas at the transmitter andNR antennas at
the receiver for communication in a frequency-flat Rayleigh
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Fig. 1. Transmitter structure of the coherent STSK scheme.

fading environment. LetC denote the field of complex
numbers,Tn be the number of time slots, andi indicate
the STSK block index. Fig. 1 depicts the CSTSK system’s
transmitter, where the information bit sequence is first coded
by a standard channel coder, and the coded bit sequence are
then mapped into the STSK signal matricesS(i) ∈ C

NT ×Tn .
Specifically, each STSK blockS(i) is given by [1], [2]

S(i) = s(i)A(i), (1)

where
s(i) ∈ S = {sl ∈ C, 1 ≤ l ≤ L} (2)

is the complex-valued symbol of the conventional modulation
scheme employed, such asL-PSK or L-QAM, which is
associated withlog2(L) input bits, while

A(i) ∈ A = {Aq ∈ C
NT ×Tn , 1 ≤ q ≤ Q} (3)

is selected from theQ pre-assigned dispersion matricesAq,
1 ≤ q ≤ Q, according tolog2(Q) input bits. Themth row’s
elements ofS(i) are transmitted from themth transmitter
antenna inTn time slots. Since a total oflog2(L ·Q) bits are
mapped to each STSK block, the normalised throughput per
time-slot,R, of this CSTSK scheme can be expressed as

R =
log2(Q · L)

Tn

[bits/symbol]. (4)

The design of dispersion matrices is an important research
subject entirely in itself [19]. To maintain a unity average
transmission power for each STSK block, each of theQ
dispersion matrices must meet the power constraint of

tr
[
AH

q Aq

]
= Tn, 1 ≤ q ≤ Q, (5)

where tr[·] denotes the matrix trace operator. Given the
CSTSK parameters of(NT , NR, Tn, Q) as well as the con-
stellation sizeL, a numerical search is adopted in [2] to
obtain the set ofQ dispersion matricesA by maximising the
discrete-input continuous-output memoryless channel capac-
ity [20] subject to the constraints (5).

The received signal matrixY(i) ∈ C
NR×Tn can be

expressed by the following MIMO model

Y(i) = HS(i) + V(i), (6)

where H ∈ C
NR×NT and V(i) ∈ C

NR×Tn denote the
channel matrix and theith noise matrix, respectively. We
assume that each element ofH obeys the complex-valued
Gaussian distribution with zero mean and a variance of0.5
per dimension, which is denoted asCN (0, 1). The channel
matrix H is assumed to remain constant for at leastTn

time slots. Each element ofV(i) obeys the complex-valued

zero-mean Gaussian distribution ofCN (0, No) with a noise
variance ofNo/2 per dimension. The signal to noise ratio
(SNR) of the system is defined as SNR= Es/No, whereEs

is the average symbol energy of the modulation scheme (2).
We introduce the following notations

y(i) = vec[Y(i)] ∈ C
NRTn×1 (7)

H = ITn
⊗ H ∈ C

NRTn×NT Tn (8)

v(i) = vec[V(i)] ∈ C
NRTn×1 (9)

Θ =
[
vec[A1] · · · vec[AQ]

]
∈ C

NT Tn×Q, (10)

where vec[·] is the vector stacking operator,IM theM ×M
identity matrix and⊗ the Kronecker product. Further define
the equivalent transmitted signal vectork(i) ∈ C

Q×1 as

k(i) = [0 · · · 0
︸ ︷︷ ︸

q−1

s(i) 0 · · · 0
︸ ︷︷ ︸

Q−q

]T , (11)

where the modulated symbols(i) is situated in theqth ele-
ment. The indexq corresponds to the index of the dispersion
matrix Aq activated during theith STSK block, and the
transmitted signal vectork(i) takes its value from the set

K = {kq,l ∈ C
Q×1, 1 ≤ q ≤ Q, 1 ≤ l ≤ L}, (12)

which contains theQ·L legitimate transmitted signal vectors,

kq,l = [0 · · · 0
︸ ︷︷ ︸

q−1

sl 0 · · · 0
︸ ︷︷ ︸

Q−q

]T , 1 ≤ q ≤ Q, 1 ≤ l ≤ L, (13)

where sl is the lth symbol in theL-point constellationS.
With the notations (7) to (11), the signal model equivalent
to (6) is

y(i) = HΘk(i) + v(i). (14)

When H is known at the receiver, data detection can be
carried out very efficiently [2]. This is because the equivalent
system model (14) is free from the effects of ICI, and the
low-complexity single-antenna based ML detector of [5] can
readily be applied to achieve optimal data detection. Let(q, l)
correspond to the specific input bits of a STSK block, which
are mapped to thelth symbolsl and theqth dispersion matrix
Aq. Then the ML estimates(q̂, l̂) are given by

(q̂, l̂) = arg min
1≤q≤Q

1≤l≤L

‖y(i) − HΘkq,l‖
2

= arg min
1≤q≤Q

1≤l≤L

‖y(i) − sl

(
HΘ

)

q
‖2, (15)

where
(
HΘ

)

q
denotes theqth column of the matrixHΘ.

The detected bits are passed through the channel decoder to
recover the corresponding information bits.

The calculation of
(
HΘ

)

q
for 1 ≤ q ≤ Q

requires QTnNR4NT real-valued multiplications and
QTnNR(4NT − 2) real-valued additions. In a slow-fading
environment, this calculation can be reused during the
channel’s coherent time. The detection of a STSK block or
log2(Q · L) bits using (15) requires6LQNRTn real-valued
multiplications andLQ(6NRTn − 1) real-valued additions.
Let the channel’s coherence time be the duration ofτ STSK
blocks. Then the total complexity of detectingτ log2(Q ·L)
bits is detailed in Table I and summarised as follows

CML ≈ 4QTnNR

(
3τL + 2NT

)
[Flops]. (16)



TABLE I

COMPLEXITY OF DETECTINGτ STSK BLOCKS, ASSUMING THAT THE CHANNEL’ S COHERENT TIME LASTS THE DURATION OFτ STSK BLOCKS.

Operation Real-valued multiplications Real-valued additions
calculating

`

HΘ
´

q
, 1 ≤ q ≤ Q 4QTnNRNT 4QTnNRNT − 2QTnNR

detecting one STSK block 6LQTnNR 6LQTnNR − LQ
total complexity of detectingτ log

2
(Q · L) bits QTnNR(6τL + 4NT ) QTnNR(6τL + 4NT − 2) − τLQ

III. SEMI-BLIND ITERATIVE CHANNEL ESTIMATION AND

DATA DETECTION

Assume that the number of available training blocks isM
and the training data are arranged as

YtM =
[
Y(1) Y(2) · · · Y(M)

]
(17)

StM =
[
S(1) S(2) · · · S(M)

]
. (18)

Then the LSCE based on(YtM ,StM ) is given by

ĤLSCE = YtMSH
tM

(
StMSH

tM

)
−1

. (19)

To maintain a high system throughput, we should only use
the minimum number of STSK training blocks. In order for
StMSH

tM to have the full rank ofNT , it is necessary that
M · Tn ≥ NT and this requires a minimum of

M =
⌈NT

Tn

⌉

(20)

training blocks, where⌈x⌉ denotes the integer ceiling oper-
ation that is larger than or equal tox. Thus we will choose
the number of initial training blocks according to (20). For
example, ifNT = 4 andTn = 2, then the minimum number
of STSK training blocks isM = 2. Given such a small
training data set, the accuracy of the LSCE (19) will be poor
and the achievable bit error ratio (BER) of the ML detector
(15) based on this rough CSI estimate will also be poor.
We propose to use the following iterative channel estimation
and data detection scheme to improve the detection and
estimation performance. Let the observation data for the ML
detector be denoted as

Ydτ =
[
Y(1) Y(2) · · · Y(τ)

]
(21)

and fix the number of iterations toImax.
Semi-Blind Iterative Algorithm

1) Set the iteration indext = 0 and the channel estimate
H̃(t) = ĤLSCE;

2) Given H̃(t), perform ML data detection onYdτ

and carry out the channel decoding on the detected
bits. The corresponding detected information bits, af-
ter passing through the channel coder again, are re-
modulated to yield

Ŝ(t)
eτ =

[
Ŝ(t)(1) Ŝ(t)(2) · · · Ŝ(t)(τ)

]
; (22)

3) Update the channel estimate with

H̃(t+1) = Ydτ

(
Ŝ(t)

eτ

)H
(

Ŝ(t)
eτ

(
Ŝ(t)

eτ

)H
)
−1

; (23)

4) Set t = t + 1: If t < Imax, go to Step 2); otherwise,
stop.

The total complexity of this semi-blind iterative channel
estimation and data detection process is proportional to
Imax ·

(
CML + CCD

)
, with CCD being the complexity of

the channel decoder. Our empirical results show that a small

number of iterations is sufficient for the iterative procedure to
converge, and typicallyImax ≤ 5. For medium to high SNR
values this iterative procedure is capable of converging tothe
optimal ML detection performance obtained under perfect
CSI. In fact, if the initial channel estimatẽH(0) can yield a
BER below 0.1, the decision-directed channel estimator of
Step 3) is capable of improving the accuracy of the channel
estimate. This in turn significantly enhances the BER of the
ML data detection in Step 2). Therefore, a few iterations are
sufficient to attain the optimal ML solution. For low SNR
values, however, some degradation from the optimal ML
performance may be expected, particularly when the initial
BER is higher than 0.1. In such a situation, increasing the
minimum training blocks of (20) by just one block will often
ensure the convergence to the ML solution.

IV. SIMULATION STUDY

The achievable performance was assessed using three
metrics: the estimated mean square error (MSE) defined by

JMSE(H̃) =
1

τ · NR · Tn

τ∑

i=1

‖Y(i) − H̃ Ŝ(i)‖2, (24)

the mean channel estimation error (MCE) given by

JMCE(H̃) =
1

NR · NT

‖H − H̃‖2, (25)

and the achievable BER, wherẽH is the channel estimate,
Ŝ(i) are the ML-detected and re-modulated data, andH

denotes the true MIMO channel matrix. All the results
were averaged over 100 channel realisations. A systematic
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Fig. 2. BER of the proposed semi-blind scheme with 2 initial training
STSK blocks, in comparison with the training-based cases using M = 2,
3 and30 training STSK blocks as well as the case of perfect channel state
information, for the(4, 4, 2, 4) system with QPSK modulation.



convolution code with the code rate2/3 and was used.
Decoding was carried out by the hard-input hard-out Viterbi
algorithm. The length of STSK data blocks for performing
ML detection wasτ = 200.
Example One. We considered a CSTSK scheme having the
parameters of(NT = 4, NR = 4, Tn = 2, Q = 4) and
the QPSK of constellation sizeL = 4. The achievable BER
performance associated with assuming perfect CSI is given
in Fig. 2 as the benchmark. The training-based ML detection
performance usingM = 2, 3 and 30, respectively, are also
shown in Fig. 2 for comparison. It can be seen that the
LSCEs obtained using onlyM = 2 and 3 STSK training
blocks were inadequate and, to approximate the true ML
detection performance, more than 30 training STSK blocks
were required. The performance of the proposed semi-blind
scheme usingM = 2 initial training STSK blocks was
then investigated. Figs. 3 and 4 characterise the convergence
performance of the semi-blind iterative scheme in terms of
the estimated MSE and MCE, respectively, for three different
SNR values. The results shown in Figs. 3 and 4 indicate
that reliable convergence was achieved in no more than five
iterations. Furthermore, it can be seen from Fig. 2 that the
estimated MSE converged to the noise floorNo.
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Fig. 3. Convergence of the estimated MSE for the proposed semi-blind
scheme with 2 initial training STSK blocks, given different values of
Es/No, for the (4, 4, 2, 4) system with QPSK modulation.
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Fig. 4. Convergence of the MCE for the proposed semi-blind scheme with
2 initial training STSK blocks, given different values ofEs/No, for the
(4, 4, 2, 4) system with QPSK modulation.
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Fig. 5. BER of the proposed semi-blind scheme with 3 initial training
STSK blocks, in comparison with the training-based cases using M = 2,
3 and30 training STSK blocks as well as the case of perfect channel state
information, for the(4, 4, 2, 4) system with QPSK modulation.

The BERs of the semi-blind iterative scheme are also
shown in Fig. 2. For this MIMO system, there wereNR ·
NT = 16 complex-valued channel taps. Two training STSK
blocks corresponded to 8 training bits, and this represented
a training overhead of 0.5 bit per channel. The semi-blind
iterative scheme under such a low training overhead was able
to approach the optimal ML performance for SNR values
higher than 5 dB, as can be seen clearly in Fig. 2. For
SNR ≤ 5 dB, some degradation from the optimal BER
performance was observed. This was not surprising, since the
BER achieved by the rough initial LSCE was higher than 0.1
for SNR≤ 5 dB. Having better initial LSCE should be able
to improve the performance. We also employedM = 3 initial
STSK training blocks for the iterative semi-blind scheme,
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Fig. 6. BER of the proposed semi-blind scheme with 2 initial training
STSK blocks, in comparison with the training-based cases using M = 2
and 10 training STSK blocks as well as the case of perfect channel state
information, for the(4, 2, 2, 4) system with 16QAM modulation.



which still represented a very low training overhead of less
than 1 bit per channel. The results obtained are shown in
Fig. 5, where it can be seen that the BER performance of
the semi-blind scheme now closely approximated the optimal
BER performance even at low SNR values.
Example Two. We next considered a CSTSK system having
the parameters of(NT = 4, NR = 2, Tn = 2, Q = 4) and
the 16QAM of constellation sizeL = 16. Fig. 6 depicts
the BERs obtained by the training-based ML detector using
M = 2 and10, respectively, as well as the BERs of the semi-
blind iterative scheme with 2 initial training STSK blocks,
using the performance of the ML detector associated with the
perfect CSI as the benchmark. The convergence performance
of the semi-blind iterative scheme with 2 initial training
STSK blocks, in terms of the estimated MSE and MCE,
are plotted in Figs. 7 and 8, respectively, for three different
SNR values.

V. CONCLUSIONS

A semi-blind iterative scheme of joint channel estimation
and data detection has been proposed for STSK based MIMO
systems. The proposed scheme is semi-blind as it utilises
the minimum number of training STSK blocks to provide a
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Fig. 7. Convergence of the estimated MSE for the proposed semi-blind
scheme with 2 initial training STSK blocks, given different values of
Es/No, for the (4, 2, 2, 4) system with 16QAM modulation.

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

Iterations

M
ea

n 
C

ha
nn

el
 E

rr
or

 

 

SNR=10 dB
SNR=15 dB
SNR=20 dB

Fig. 8. Convergence of the MCE for the proposed semi-blind scheme with
2 initial training STSK blocks, given different values ofEs/No, for the
(4, 2, 2, 4) system with 16QAM modulation.

rough initial LSCE for aiding the joint iterative procedure.
The proposed semi-blind joint channel estimation and ML
data detection scheme is inherently low-complexity. It has
been shown that the iterative procedure converges quickly,
typically no more than five iterations, to the optimal ML data
detection performance obtained under the perfect CSI.
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