Semi-Blind Adaptive Space-Time Shift Keying Systems Based aatlte
Channel Estimation and Data Detection

Peichang Zhang, Indrakshi Dey, Shinya Sugiura and Sheng Chen
School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
E-mails: {pz39g09, id2g09, ss07r, sg@ecs.soton.ac.uk

Abstract— We develop a semi-blind adaptive space-time shift obtain a reasonably accurate CSI estimate. Blind methods no
keying (STSK) based multiple-input multiple-output system  only impose high complexity and slow convergence, but also
using a low-complexity iterative channel estimation and data suffer from unavoidable estimation and decision ambigsiti

detection scheme. We first employ the minimum number of - . .
STSK training blocks, which is related to the number of [10]. Semi-blind methods offer attractive practical meahs

transmitter antennas, to obtain a rough least square chan- implementing adaptive MIMO systems. In the semi-blind
nel estimate (LSCE). Low-complexity single-stream maximum methods of [11]-[14], a few training symbols are used to pro-

likelihood (ML) data detection is then carried out based on vide an initial MIMO channel estimate. Then the channel es-
the initial LSCE and the detected data are utilised to refine timator as well as the data detector iteratively exchangi th

the decision-directed LSCE. We show that a few iterations are . f fi h the ch | estimat i dexisi
sufficient to approach the optimal ML detection performance Information, where the channel estimator refies on deasio

obtained with the aid of perfect channel state information. directed adaptation. In the scheme of [15], [16], aided by
an initial training-based MIMO channel estimate, blindhjoi
l. INTRODUCTION ML data detection and channel estimation is carried out by

A unified multiple-input multiple-output (MIMO) archi- a computational intelligence based optimisation algarith
tecture based on the generic space-time shift keying (STSK) these studies, however, the MIMO systems induce IClI,
concept [1], [2] has recently been proposed, which includeend ML data detection has to be carried out, for example,
spatial modulation (SM) and space shift keying (SSK) [3]-with the aid of sphere-decoding based algorithms [17],,[18]
[6], orthogonal space-time block codes [7], Bell Lab’s lay-which may be computationally expensive. High-complexity
ered space-time scheme [8] as well as linear dispersiorscoddL data detection coupled with a large number of iterations
[9] as its special cases. Unlike the SM and SSK schemés achieve convergence imposes considerable computhtiona
[3]-[6], which only utilise the spatial dimension, the STSKrequirements in these previous semi-blind methods.
scheme exploits both the space and time dimensions. MoreWe exploit the inherent low-complexity of ML data de-
specifically, the STSK system is based on the activatiotection in STSK systems and propose a semi-blind iterative
of the appropriately indexed space-time dispersion nmegric channel estimation and data detection scheme for CSTSK
within each STSK block duration, instead of the indexedystems. In order to maintain a high system throughput, the
antennas at each symbol duration, as in the SM and SSHinimum number of STSK training blocks, which is deter-
systems of [3]-[6]. The STSK scheme is capable of strikingnined by the number of transmitter antennas, is utilised to
a flexible diversity versus multiplexing gain trade off, whi provide a rough least square channel estimate (LSCE). Then
is achieved by optimising both the number and size dbw-complexity single-antenna based ML data detection is
the dispersion matrices as well as the number of transnuarried out based on the initial LSCE, and the detected data
and receive antennas. In particular, the STSK system #e then re-modulated and used for the decision-directed
capable of exploiting both transmit and receive diversity. SCE update. Our results demonstrate that a few iterations,
gains, unlike the SM and SSK schemes, which can onlypically no more than five, are sufficient to approach the
attain a receive diversity gain. Moreover, like the SM syste optimal detection performance obtained with perfect CSI.
the STSK scheme does not impose inter-antenna, i.e. int8ihe remainder of this contribution is organised as follows.
channel interference (ICI). Consequently, the singlexam& Section Il describes the CSTSK system model and the low-
based maximum likelihood (ML) detector of [5] can readilycomplexity optimal ML data detection algorithm, while the
be employed in the STSK system to attain optimal MLproposed semi-blind iterative channel estimation and data
detection at a low complexity. In this contribution, we stud detection scheme is presented in Section Ill. Simulation
the coherent STSK (CSTSK) based MIMO system. results are given in Section IV, and our conclusions are

In general, the ability of a coherent MIMO system tosummarised in Section V.
approach its capacity heavily relies on the accuracy of the
channel state information (CSI). Training based adaptive
schemes are capable of accurately estimating a MIMO We consider the CSTSK based MIMO system [2], which
channel at the expense of considerable reduction in systeamploysN, antennas at the transmitter ang; antennas at
throughput, since a large training overhead is required tie receiver for communication in a frequency-flat Rayleigh

II. COHERENTSTSK SYSTEM MODEL



Coherent STSK block

zero-mean Gaussian distribution @\ (0, N,) with a noise
variance of N, /2 per dimension. The signal to noise ratio

(SNR) of the system is defined as SNRE,/N,,, whereE
Source iY . -
Channel space-tmp ¢ 1S the average symbol energy of the modulation scheme (2).
Q-’ coding mapper _Y We introduce the following notations
y(i) =vedY(i)] e N (7
H=1; oH ¢ CNrTxNrTu  (g)
Fig. 1. Transmitter structure of the coherent STSK scheme. V(z) _ vec[V(z‘)] c CNrTnx1 (9)

NrT, X
fading environment. LetC denote the field of complex © = [vedA,] - vedAo]] echie, (10
numbers,T,, be the number of time slots, andindicate where ve¢] is the vector stacking operatdn, the M x M
the STSK block index. Fig. 1 depicts the CSTSK system’&lentity matrix andz the Kronecker product. Further define
transmitter, where the information bit sequence is firstecbd the equivalent transmitted signal vectofi) € CO*! as
by a standard channel coder, and the coded bit sequence are

. . T
then mapped into the STSK signal matri&g) € CN7*7T». k(@) =10~ 0 5() 0= O, (11)
Specifically, each STSK bloc&(:) is given by [1], [2] ¢t Q-a
) , ) where the modulated symbe(i) is situated in thejth ele-
S(i) = s(i) A7), @) ment. The index corresponds to the index of the dispersion
where matrix A, activated during theth STSK block, and the
s(i)eS={s€C,1<I<L} (2) transmitted signal vectdk(i) takes its value from the set

. . . _ Qx1
is the complex-valued symbol of the conventional modutatio K = {kq1 € C¥77, 1<¢<Q, 1 <I<L}, (12
scheme employed, such dsPSK or L-QAM, which is  which contains the)- L legitimate transmitted signal vectors,

associated withog, (L) input bits, while T
kgy=[0--0s0---0",1<¢<Q,1<I<L, (13)
A(ye A={A, e CN*Tn 1 < g <Q} (3) o 0.

is selected from th€) pre-assigned dispersion matricas, Wwheres; is the ith symbol in theL-point constellationsS.

1 < ¢ < Q, according tdog,(Q) input bits. Themth row’s ~ With the notations (7) to (11), the signal model equivalent
elements ofS(i) are transmitted from thenth transmitter to (6) is o

antenna iril, time slots. Since a total dbg, (L - Q) bits are y(i) = HO k(i) + v(i). (14)
mapped to each STSK block, the normalised throughput PG 11 is known at the receiver, data detection can be

time-slot, R, of this CSTSK scheme can be expressed as carried out very efficiently [2]. This is because the equaval
~ logy(Q- L) system model (14) is free from the effects of ICI, and the
- T, low-complexity single-antenna based ML detector of [5] can

The design of dispersion matrices is an important researéﬁad"y be applied to achieve optimal data detection (e

subject entirely in itself [19]. To maintain a unity averagecorrespond to the specific input bits of a STSK block, which

transmission power for each STSK block, each of the are mapped to thith symbolsl and theq_th dispersion matrix
dispersion matrices must meet the power constraint of Aq. Then the ML estimateg], ) are given by

R [bits/symbol] (4)

A _ . _— _7 2
w[ATA] =T, 1<q<Q, ) (@:0) = arg min [[y(i) - HOkg,l|
1<I<L
where tf-] denotes the matrix trace operator. Given the = arg min [y(i)— s (ﬁ@))qHQ’ (15)
CSTSK parameters ofNy, Ng, T, Q) as well as the con- 1222

stellation sizeL, a numerical search is adopted in [2] O here (ﬁg) denotes therth column of the matrixi ©.

obtain the set of) dispersion matricesl by maximising the rpq getected bits are passed through the channel decoder to
discrete-input continuous-output memoryless channedcap recover the corresponding information bits

ity [20] subject to the constraints (5). The calculation of (H®) for 1 < ¢ < Q

The received signal _mathY(z) € CNexT» can be requires QT, Ngr4dNr real-vglued multiplications and
expressed by the following MIMO model QT,Nr(4Np — 2) real-valued additions. In a slow-fading
Y (i) = HS(i) + V(i), (6) environment, this calculation can be reused during the
channel’s coherent time. The detection of a STSK block or
where H € CVr*"7 and V(i) € CVexT» denote the o0 (- L) bits using (15) requireLQNT, real-valued
channel matrix and théth noise matrix, respectively. We multiplications andLQ(6NT,, — 1) real-valued additions.
assume that each element Hf obeys the complex-valued | gt the channel’s coherence time be the duration &TSK
Gaussian distribution with zero mean and a variance.®f pjocks. Then the total complexity of detectindog, (Q - L)

per dimension, which is denoted d8/(0,1). The channel pjts is detailed in Table | and summarised as follows
matrix H is assumed to remain constant for at ledst

time slots. Each element &f (i) obeys the complex-valued Cur = 4QT, Nk (37L + 2Nr) [Flops] (16)



TABLE |
COMPLEXITY OF DETECTINGT STSKBLOCKS, ASSUMING THAT THE CHANNEL' S COHERENT TIME LASTS THE DURATION OFr STSKBLOCKS.

Operation Real-valued multiplications Real-valued additions
calculating(ﬁ@)q, 1<q¢<Q 4QTNr Ny 4QTwNrN7 — 2QT, Ng
detecting one STSK block 6LQT,Ng 6LQT,Nr — LQ
total complexity of detecting log, (Q - L) bits QT Ngr(67L+ 4N7p) | QT NR(67L +4Np —2) — 7LQ

1. SEMI-BLIND ITERATIVE CHANNEL ESTIMATION AND  number of iterations is sufficient for the iterative procesto

DATA DETECTION converge, and typically,,., < 5. For medium to high SNR
Assume that the number of available training blockafs Vvalues this iterative procedure is capable of convergirtgéo
and the training data are arranged as optimal ML detection performance obtained under perfect
CSI. In fact, if the initial channel estimad(?) can yield a
Your = [Y(1)Y(2) - Y(M)] (17)  BER below 0.1, the decision-directed channel estimator of
Siv = [S(l) S(2) --- S(M)]. (18) Step 3) is capable of improving the accuracy of the channel

. estimate. This in turn significantly enhances the BER of the

Then the LSCE based oY ¢ar, Sear) is given by ML data detection in Step 2). Therefore, a few iterations are
Hisce = YourSH, (StMSf{M)_l. (19) sufficient to attain the optimal MIT solution. For Iow SNR

o . values, however, some degradation from the optimal ML

To maintain a high system throughput, we should only usgerformance may be expected, particularly when the initial

the minimum number of STSK training blocks. In order forggr s higher than 0.1. In such a situation, increasing the
StarSt} to have the full rank ofNz, it is necessary that minimum training blocks of (20) by just one block will often

M - T, > Nr and this requires a minimum of ensure the convergence to the ML solution.
N
M = [TTW (20) IV. SIMULATION STUDY

The achievable performance was assessed using three

training blocks, wherdz| denotes the integer ceiling oper- . X :
metrics: the estimated mean square error (MSE) defined by

ation that is larger than or equal o Thus we will choose
the number of initial training blocks according to (20). For . 1 T o

example, if Ny = 4 and T}, = 2, then the minimum number Juse(H) = N Z 1Y (i) —HS@)|]*, (24)
of STSK training blocks isM = 2. Given such a small R

training data set, the accuracy of the LSCE (19) will be poothe mean channel estimation error (MCE) given by

and the achievable bit error ratio (BER) of the ML detector ) 1 )

(15) based on this rough CSI estimate will also be poor. Juce(H) = ———||H - H|)?, (25)
We propose to use the following iterative channel estinmatio Ng - Nt

and data detection scheme to improve the detection aa@d the achievable BER, whelg is the channel estimate,
estimation performance. Let the observation data for the Mg(i) are the ML-detected and re-modulated data, &hd

detector be denoted as denotes the true MIMO channel matrix. All the results
Yy, = [Y(l) Y(2) - Y(T)] 1) were averaged over 100 channel realisations. A systematic
.=
and fix the number of iterations th,,,.. 10° : : e
- . . B -©-2 STSK training blocks
Semi-Blind Iterative Algorithm 8- g:-e\e\ -3 STSK training blocks
1) Set the iteration index= 0 and the channel estimate i a0 -A-30 STSK training blocks
H® —H : 108, a9 |-6-Semi-blind iterative
= I1.8CE, ‘ “ﬁ\“ ‘B O, |—e—Perfect CSI

2) Given H®), perform ML data detection onYg,
and carry out the channel decoding on the detected 1072

bits. The corresponding detected information bits, af- &
ter passing through the channel coder again, are re- .,
modulated to yield B0 o ]
S0 =[80(1) 80 - SU0]; (22) . Lo
10 ¢ Newd 4
3) Update the channel estimate with o
— \N v
O =y (50)(S060)7) ey e e
4) Sett =t + 1: If t < I,.x, 9O t0o Step 2); otherwise, . “E" Q\
stop. 0% 2 4 6 8 0 12 14

. . . . . . SNR (dB
The total complexity of this semi-blind iterative channel (_ )_ ] L
. 2. BER of the proposed semi-blind scheme with 2 initialnirey

estimation and data d_eteCtlon prpcess IS propor_tlonal SK blocks, in comparison with the training-based casesgudi = 2,
Loy - (CML + CCD), with Ccp being the complexity of 3 and30 training STSK blocks as well as the case of perfect chanags st
the channel decoder. Our empirical results show that a sméiformation, for the(4, 4,2, 4) system with QPSK modulation.



convolution code with the code rate/3 and was used.
Decoding was carried out by the hard-input hard-out Viterbi
algorithm. The length of STSK data blocks for performing
ML detection wasr = 200.

Example One We considered a CSTSK scheme having the
parameters of Ny = 4, Np = 4,7, = 2,QQ = 4) and

the QPSK of constellation sizé = 4. The achievable BER
performance associated with assuming perfect CSl is given
in Fig. 2 as the benchmark. The training-based ML detection
performance usind/ = 2, 3 and 30, respectively, are also
shown in Fig. 2 for comparison. It can be seen that the
LSCEs obtained using only/ = 2 and 3 STSK training
blocks were inadequate and, to approximate the true ML
detection performance, more than 30 training STSK blocks
were required. The performance of the proposed semi-blind
scheme usingdM = 2 initial training STSK blocks was
then investigated. Figs. 3 and 4 characterise the conveegen
performance of the semi-blind iterative scheme in terms of

the estimated MSE and MCE, respectively, for three differerrig. 5.

10 : " : :
é_ o -©-2 STSK training blocks
~a ‘9\& -8-3 STSK training blocks
a SN -A-30 STSK training blocks
10 4 e —e—Perfect CSI H
A “u ‘o_|-9-Semi-blind Iterative
1077 4
x
w10k 1
o
107 |
107°% |
1076 I I VIS L Al L Al L

0

2

6 8
SNR (dB)
BER of the proposed semi-blind scheme with 3 initialnirey

SNR values. The results shown in Figs. 3 and 4 indicateTSK blocks, in comparison with the training-based casesgusf = 2,

that reliable convergence was achieved in no more than fiﬁﬁa

iterations. Furthermore, it can be seen from Fig. 2 that the
estimated MSE converged to the noise fldgy.

nd30 training STSK blocks as well as the case of perfect chanag st
rmation, for the(4, 4, 2,4) system with QPSK modulation.

The BERs of the semi-blind iterative scheme are also

10t ‘ shown in Fig. 2. For this MIMO system, there weléy -
—=—SNR=0 dB Np = 16 complex-valued channel taps. Two training STSK
—>—SNR=5dB blocks corresponded to 8 training bits, and this represente
—h— = . . . . .
) [~ SNR=10dB a training overhead of 0.5 bit per channel. The semi-blind
5 iterative scheme under such a low training overhead was able
E to approach the optimal ML performance for SNR values
S 00l | higher than 5 dB, as can be seen clearly in Fig. 2. For
3 SNR < 5 dB, some degradation from the optimal BER
c . . . .
g performance was observed. This was not surprising, sirece th
= BER achieved by the rough initial LSCE was higher than 0.1
for SNR < 5 dB. Having better initial LSCE should be able
A to improve the performance. We also employd= 3 initial
o ‘ ‘ STSK training blocks for the iterative semi-blind scheme,
% 2 8 10
Iterations o
Fig. 3. Convergence of the estimated MSE for the proposed Bknai- 10 —e—Perfect CSI
scheme with 2 initial training STSK blocks, given differenalves of 3 —*—2 training STSK blocks
Es/N,, for the (4,4, 2,4) system with QPSK modulation. 1 -4-10 training STSK blocks
107 —=—Semi-blind iterative
10 :
—=SNR=0 dB
——SNR=5 dB 107 .
1 ——SNR=10 dB
§ \\L & oo ]
o, -1
310 4
=
g 10k ,
c 107t 1
g
10 8
10°% P i
. ‘
1074 ; ; : 10 5 10 15 25
0 2 4 6 8 10 SNR (dB)
Iterations Fig. 6. BER of the proposed semi-blind scheme with 2 initialnire

Fig. 4. Convergence of the MCE for the proposed semi-blin@sehwith  STSK blocks, in comparison with the training-based casesgusi = 2
2 initial training STSK blocks, given different values &/N,, for the  and 10 training STSK blocks as well as the case of perfect chanmgé st

(4,4,2,4) system with QPSK modulation.

information, for the(4, 2,2,4) system with 16QAM modulation.



which still represented a very low training overhead of lessough initial LSCE for aiding the joint iterative procedure
than 1 bit per channel. The results obtained are shown the proposed semi-blind joint channel estimation and ML
Fig. 5, where it can be seen that the BER performance dfta detection scheme is inherently low-complexity. It has
the semi-blind scheme now closely approximated the optimbkeen shown that the iterative procedure converges quickly,
BER performance even at low SNR values. typically no more than five iterations, to the optimal ML data

Example Two. We next considered a CSTSK system havingletection performance obtained under the perfect CSI.

the parameters of Ny = 4, Np = 2,7, = 2,Q = 4) and
the 16QAM of constellation sizd, = 16. Fig. 6 depicts
the BERs obtained by the training-based ML detector using!]
M = 2 and10, respectively, as well as the BERs of the semi-
blind iterative scheme with 2 initial training STSK blocks, [2]
using the performance of the ML detector associated with the
perfect CSI as the benchmark. The convergence performan
of the semi-blind iterative scheme with 2 initial training
STSK blocks, in terms of the estimated MSE and MCE, 4l
are plotted in Figs. 7 and 8, respectively, for three diffiere
SNR values. [5]
V. CONCLUSIONS 6]
A semi-blind iterative scheme of joint channel estimation
and data detection has been proposed for STSK based MIM
systems. The proposed scheme is semi-blind as it utilises
the minimum number of training STSK blocks to provide a

(8]
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Fig. 7. Convergence of the estimated MSE for the proposed bkkmai-
scheme with 2 initial training STSK blocks, given differenalves of  [14]
Es/No, for the (4,2,2,4) system with 16QAM modulation.
——SNR=10 dB (15]
—=—SNR=15 dB}
—— =
SNR=20 dB [16]
S
wm
©
= [17]
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Fig. 8. Convergence of the MCE for the proposed semi-blingsehwith
2 initial training STSK blocks, given different values & /N,, for the
(4,2,2,4) system with 16QAM modulation.
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