B 2011

Modelling Control Process and Control Mode
with Synchronising Orthogonal State
Machines

Colin Snook!

Electronics and Computer Science
University of Southampton
Southampton, England

Abstract

In this short paper we describe early work on a case study concerning a power window control unit.
We use UML-B state machines to simultaneously model both the cyclic processing schedule and
the mode of control behaviour. We find this a useful way to visualise the model, particularly when
the state machines are animated via the Pro-B animator. We verify the state machines using the
Event-B proof tools. We envisage new developments to the UML-B tool set to improve support
for this modelling technique. The motivation for this simple but powerful form of modelling is
the immediate benefit and low cost of entry making industrial adoption of formal models more
attractive to industry.

Keywords: UML-B, State Machine, Control

1 Introduction

Development of correct software meeting the intended requirements is a pri-
mary goal of industry when developing embedded control systems. The Event-
B method provides a mechanism of achieving this using formal refinements.
During the development process, choosing and constructing a useful refine-
ment chain is a difficult problem for an industrial practitioner who is not
practiced in these techniques. Our aim is to make the Event-B method more
accessible and easier to integrate into the development methods currently used
in industry. Embedded control systems typically utilise a cyclic schedule to

1 Email: cfs@ecs.soton.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs


mailto:cfs@ecs.soton.ac.uk

SNOOK

approximate a state oriented continuous behaviour as a sequential process
executed at discrete time intervals. We propose a modelling approach using
orthogonal state machines to represent the state oriented behaviour and the
cyclic schedule.

2 Background

UML-B [7,8] is a visual ‘front-end’ for the Event-B notation [3] and includes
a state machine diagram editor. Tool support for UML-B is provided by a
plug-in to the Rodin platform [1]. State machines may be refined by adding
nested state machines [4] and can be animated via a plug-in [6] that utilises
the Pro-B [2] model checker and animator. The state machine refinement
supported by UML-B allows the model to be progressively developed in stages.
This improves understanding, and hence validity, as features can be laid down
in small steps while the Rodin provers ensure consistency. Invariants can be
added to states (i.e. the state becomes an implicit antecedent for the property)
providing another mechanism to clearly state our understanding of the model
with further consistency checking via the Rodin provers. Animation of the
state machine diagrams allows us to test that they behave as we expected.
However, although UML-B provides a strong graphical representation of the
Event-B models, it may not be sufficient alone, to integrate with industrial
development methods.

Requirement Refinement Modelling (RRM) Diagrams [5] have been pro-
posed by Satpathy and Ramish to provide a graphical view of the requirements
refinement process for embedded control processors. RRM Diagrams illustrate
both process control flow and data flow abstractions and provide a good rep-
resentation for integrating with industrial development methods but are, at
present, informal. In this research, we use UML-B to construct RRM diagrams
and to provide tool support for them.

3 Studied Case: Power Window

The case study is an automobile powered window having the following require-
ments.

R1 Both driver and passenger can control window movement using separate
up/down switches.

R2 A driver command overrides a passenger command

R3 When the glass reaches an end-stop further commands in that direction
have no impact.

R4 When the window is moving up and an obstacle is detected the window
moves down for a fixed duration



SNOOK

R5 If a button is pressed and released before a threshold time limit then the
window continues moving in that direction until it reaches an end-stop.

Fig. 1 shows a RRM diagram during the development of a power window
controller of a vehicle. It has v_dri and v_pass as inputs (standing for vali-
dated driver and validated passenger commands). The box, select_command,
is an activity which selects one of them and calls it sel_comm. The selected
command is then executed to determine the values of up_out and down_out.
These outputs determine whether the window goes up or down.

4 Interpretation as a UML-B Model

The controller executes in two orthogonal dimensions. Firstly, the controller
executes in a cyclic loop, acquiring inputs, processing them and then making
some decisions about control. Simultaneously and independently the con-
troller can be thought of as progressing in a control modes dimension. In this
dimension the control responds to inputs by changing its state and consequent
behaviour. The control modes behaviour progresses every time the processing
loop is ready to make decisions about control (i.e. ezecCommand in Fig. 2).
The refinements are summarised as follows:

PWO Introduces the cyclic process, getValidCommand; selectCommand; ex-
ecCommand (Fig. 2).

PW1 The select command transition is split into 2 cases, representing the
selection of a driver window command and the selection of a passenger
window command.

PW2 This refinement introduces the notion of modes of control. This is done
by adding a state machine that is orthogonal to the previous one (Fig. 3).
Some variables are also introduced to model the conditions that influence
the control modes. The modes of control introduced in this refinement,
concern the response to the detection of an obstacle. The transitions of
the new state machine all represent different cases of the execute command
transition from the cyclic process state machine. Hence ezxecCommand is
split into its different cases which synchronise with the transitions of the new
control mode state machine (Fig. 4). State invariants express properties
that should hold in the state, obstacle_mode. These help to ensure that the
model has been constructed correctly.

PW3 In this refinement, further details of the modes of control are added.
This is achieved by adding a nested state machine to the normal mode
thus elaborating the behaviour in the absence of obstacles. The transitions
of this new state machine represent different cases of the execCommand
transition with no obstacle present. Hence the FC_no_obstacle transition in
the process state machine is again split into all these new cases to achieve

3



SNOOK

synchronisation with the new state machine.

PW4 This refinement introduces more detail about the control when going
up or down (in the absence of obstacles). This is done by adding nested
state machines to the Going_up and Going_dn states. The two new state
machines have a similar pattern. Notice that support for state machine
instantiation would have avoided replicating these state machines.

PW5, PW6 and PWT7 These refinements provide the mechanisms used to
obtain and decode the input switches and their possible combinations. This
is done by adding a nested state machine in the executed process state,
hence refining the model of the acquisition process.

All refinements were proved using the Rodin provers. The majority of
proofs were automatic, some requiring trivial interactions which could be made
automatic by configuring the prover preferences or simply invoking a meta-
prover.? In a few cases, the proof tree was pruned and the prover directed
along a different path resulting in a quick and simple proof but one that
the automatic provers could not find. Proof uncovered many simple ‘typo’
mistakes in the model. Animation helped us understand and demonstrate the
model and is also seen as a very useful tool for model validation, but our first
choice for debugging was to use the prover. The UML-B model and Event-B

translation with proofs are available as a Rodin archive [9].

5 Future Work

We plan to improve support for this style of modelling in UML-B. The syn-
chronisation of orthogonal state machines is cumbersome because UML-B has
limited support for synchronising transitions. Synchronisation is achieved by
name matching. However this restricts synchronisation to one to one relation-
ships between the transitions of the two orthogonal state machines. Hence
synchronisation is cumbersome because every possible control mode transi-
tion had to be replicated in the control process state machine. We would
like to have a generic representation for a set of mode transitions any one of
which may be synchronised with. A more flexible version of UML-B is cur-
rently being developed which has stronger integration with Event-B. In this
version, transitions contribute their behaviour to events. Several transitions
may contribute to the same event and a particular transition may contribute
to several events. In our situation synchronisation would then be achieved by
having each transition in the mode state machine contribute to a correspond-

2 Proof statistics can be misleading due to the configurability of the Rodin automatic prover
preferences. However, out of 964 proof obligations, initially 37 required interactive proof.
This was reduced to 6 interactive proofs after adding the Relevance Filter meta prover and
raising the priority of the Atelier-B ML prover

4



SNOOK

ing event and a single transition in the process state machine contribute to all
of these events. We also plan to research into ways to support instantiation of
state machines. This would have avoided the need to repeat the nested state
machines introduced in refinement step PW4.

Control systems are often developed using Simulink /Stateflow models ob-
tained from the requirements in an ad-hoc way. RRM diagrams correspond
well with Simulink/Stateflow models. RRM control flows define the sequenc-
ing of Simulink components while RRM data flows correspond to Simulink
data flows. We intend to extend UML-B to derive Simulink/Stateflow models
automatically. Since Simulink/Stateflow models are widely used in control
applications, this would be a significant contribution to the development of
control applications in industry.

6 Conclusion

RRM diagrams model both control and data-flow abstractions of control sys-
tems. Information from them helps guide the refinement path. In this re-
search, we use UML-B to provide tool support for RRM diagrams, manually
interpreting the RRM diagrams as orthogonal, synchronising UML-B state
machines and utilising UML-B’s support for refinement via translation to
Event-B to verify the models using the Event-B provers. We also animate
the diagrams via the Pro-B animation engine in order to validate the models.

References

[1] Butler, M., Hallerstede, S.: The rodin formal modelling tool. BCS-FACS Christmas 2007
Meeting - Formal Methods In Industry, London. (December 2007)

[2] Leuschel, M., Butler, M.: ProB: A model checker for B. In Araki, K., Gnesi, S., Mandrioli, D.,
eds.: FME 2003: Formal Methods. LNCS 2805, Springer-Verlag (2003) 855-874

[3] Metayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Rodin deliverable 3.2, EU Project
IST-511599 -RODIN (May 2005)

[4] Said, M. y., Butler, M. and Snook, C.: Language and Tool Support for Class and State Machine
Refinement in UML-B. In: FM2009 - 16th International Symposium on Formal Methods, 2-6th
November 2009, Eindhoven. pp. 579-595.

[5] Satpathy M, Ramesh S.: Formal Foundation to Systematic Development of Simulink /Stateflow
models. In Proc. of the Dagstuhl Seminar on Refinement based methods for the construction
of dependable systems, 2009

[6] Savicks, V., Snook, C. and Butler, M.: Animation of UML-B Statemachines. Technical Report
(http://eprints.ecs.soton.ac.uk/18261/1/TBFMsmAnim.pdf) and presented at Rodin User and
Developer Workshop, Sept, 2010.

[7] Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans.
Softw. Eng. Methodol. 15(1) (2006) 92-122

[8] Snook, C., Butler, M.: UML-B and Event-B: An integration of languages and tools. In: The
TASTED International Conference on Software Engineering - SE2008. (February 2008)

[9] Snook, C.: Power window case study - UML-B model and Event-B translation with proofs.
Rodin Archive (http://eprints.ecs.soton.ac.uk/22287/)

5



SNOOK

v_dri up_out

Select sel_com Execute

Command Command

v_pass
=P down_out

Fig. 1. RRM diagram showing initial abstract representation of power window model

. % init 4 executed 4+ getvalidCommand (4 valiﬂateq 4 selectCommand |4~ prinritzej

% execCommand

Fig. 2. State machine in the process dimension

% ini P % EC_obs_detect 4 obstacle mode |
B Invariants
< timer=0 A timersMaxTime 0
% EC_obs_over - down_out=1
% EC_no_obstacle % EC_obs_on

Fig. 3. State machine in the control modes dimension showing refinement of the execCommand
transition from Fig 2 by orthogonal state machine

Saated 4 selectCommand_Pass oritzed
% 11 4 executedlyy getvalidCommand | Vaidate 4 prioritze
% selectCommand_Driver

7\

% EC_no_obstacle

% EC_obs_detect
% EC_obs_on
4 EC obs over

Fig. 4. Refined State machine in the control process dimension showing split execute commands
to synchronise with the transitions of the orthogonal control modes state machine (Fig. 3)



	Introduction
	Background
	Studied Case: Power Window
	Interpretation as a UML-B Model
	Future Work
	Conclusion
	References

