
1

SMT-Based Bounded Model Checking for
Embedded ANSI-C Software

Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva

Abstract —Propositional bounded model checking has been applied successfully to verify embedded software but remains limited by
increasing propositional formula sizes and the loss of high-level information during the translation preventing potential optimizations
to reduce the state space to be explored. These limitations can be overcome by encoding high-level information in theories richer
than propositional logic and using SMT solvers for the generated verification conditions. Here, we propose the application of different
background theories and SMT solvers to the verification of embedded software written in ANSI-C in order to improve scalability and
precision in a completely automatic way. We have modified and extended the encodings from previous SMT-based bounded model
checkers to provide more accurate support for variables of finite bit width, bit-vector operations, arrays, structures, unions and pointers.
We have integrated the CVC3, Boolector, and Z3 solvers with the CBMC front-end and evaluated them using both standard software
model checking benchmarks and typical embedded software applications from telecommunications, control systems, and medical
devices. The experiments show that our ESBMC model checker can analyze larger problems than existing tools and substantially
reduce the verification time.

Index Terms —Software engineering, formal methods, verification, model checking.

✦

1 INTRODUCTION

Bounded Model Checking (BMC) based on Boolean Sat-
isfiability (SAT) has been introduced as a complementary
technique to Binary Decision Diagrams (BDDs) for alle-
viating the state explosion problem [1]. The basic idea
of BMC is to check the negation of a given property at
a given depth: given a transition system M, a property
φ, and a bound k, BMC unrolls the system k times and
translates it into a verification condition (VC) ψ such that
ψ is satisfiable if and only if φ has a counterexample
of depth k or less. Standard SAT checkers can be used
to check whether ψ is satisfiable. In BMC of software,
the bound k limits the number of loop iterations and
recursive calls in the program.

In order to cope with increasing software complexity,
SMT (Satisfiability Modulo Theories) solvers can be used
as back-ends for solving the generated VCs [2], [3], [4],
[6]. Here, predicates from various decidable theories are
not encoded using propositional variables as in SAT,
but remain in the problem formulation. These theories
are handled by dedicated decision procedures. Thus,
in SMT-based BMC, ψ is a quantifier-free formula in
a decidable subset of first-order logic which is then
checked for satisfiability by an SMT solver.

• L. Cordeiro is with the Electronic and Information Research Center, Federal
University of Amazonas, Brazil.
E-mail: lucascordeiro@ufam.edu.br

• B. Fischer is with the School of Electronics and Computer Science,
University of Southampton, United Kingdom, SO17 1BJ.
E-mail: b.fischer@ecs.soton.ac.uk

• J. Marques-Silva is with the Dept. of Computer Science and Informatics,
University College Dublin, Ireland, and IST/INESC-ID, Lisbon, Portugal.
E-mail: jpms@ucd.ie

In order to reason about embedded software accu-
rately, an SMT-based BMC must consider a number
of issues that are not easily mapped into the theories
supported by SMT solvers. In previous work on SMT-
based BMC for software [2], [3], [4] only the theories
of uninterpreted functions, arrays and linear arithmetic
were considered, but no encoding was provided for
ANSI-C [5] constructs such as bit-level operations, fixed-
point arithmetic, pointers (i.e., pointer arithmetic and
comparisons) and unions. This limits its usefulness for
analyzing and verifying embedded software written in
ANSI-C. In addition, the SMT-based BMC approaches
proposed by Armando et al. [2], [3] and by Kroening [6]
do not support the checking of arithmetic overflow and
do not make use of high-level information to simplify
the unrolled formula. We address these limitations by
exploiting the different background theories of SMT
solvers to build an SMT-based BMC tool that precisely
translates program expressions into quantifier-free for-
mulae and applies a set of optimization techniques to
prevent overburdening the solver. This way we achieve
significant performance improvements over SAT-based
BMC and the previous work on SMT-based BMC [2],
[3], [4], [6].

Our work makes two major contributions. First, we de-
scribe the details of an accurate translation from single-
threaded ANSI-C programs into quantifier-free formulae
using the logics QF AUFBV and QF AUFLIRA from the
SMT-LIB [9]. Second, we demonstrate that our encoding
and optimizations improve the performance of software
model checking for a wide range of software systems,
with a particular emphasis on embedded software. Ad-
ditionally, we show that our encoding allows us to
reason about arithmetic overflow and to verify programs

2

that make use of bit-level, pointers, unions and fixed-
point arithmetic. We also use three different SMT solvers
(Boolector [17], CVC3 [16], and Z3 [18]) in order to check
the effectiveness of our encoding techniques. We consid-
ered these solvers because they were the most efficient
ones for the categories of QF AUFBV and QF AUFLIRA
in the last SMT competitions [10]. To the best of our
knowledge, this is the first work that reasons accurately
about ANSI-C constructs commonly found in embedded
software and extensively applies SMT solvers to check
the VCs emerging from the BMC of industrial embedded
software applications. We implemented our ideas in the
ESBMC1 (Efficient SMT-Based Bounded Model Checker)
tool that builds on the front-end of the C Bounded Model
Checker (CBMC) [11], [30]. ESBMC supports different
theories and SMT solvers in order to exploit high-level
information to simplify and to reduce the formula size.
Experimental results show that our approach scales sig-
nificantly better than both the SAT-based and SMT-based
CBMC model checker [11], [30], [6] and SMT-CBMC [3],
a bounded model checker for C programs that is based
on the SMT solvers CVC3 and Yices.

This paper extends our previous work [7], [8]. The
version of ESBMC described and evaluated here has
been optimized and extended. It now includes checks
for memory leaks and a generic SMT-LIB backend, in
addition to the native backends for Boolector, CVC3,
and Z3. We have also significantly expanded the exper-
imental basis and evaluate ESBMC with (resp. compare
it against) the most recent stable versions of the SMT
solvers and BMC tools. The remainder of the paper is
organized as follows. We first give a brief introduction to
the CBMC model checker and describe the background
theories of the SMT solvers that we will refer throughout
the paper. In Section 3 we present an accurate translation
from ANSI-C programs into quantifier-free formulae
using the SMT-LIB logics and explain our approach to
exploit the different background theories and solvers.
In Section 4 we present the results of our experiments
using several software model checking benchmarks and
embedded systems applications. In Section 5 we discuss
the related work and we conclude and describe future
work in Section 6.

2 BACKGROUND

ESBMC builds on the front-end of CBMC to generate
the VCs for a given ANSI-C program. However, instead
of passing the VCs to a propositional SAT solver, ES-
BMC converts them using different background theories
and passes them to an SMT solver. In this section, we
describe the main features of CBMC that we use, and
present the background theories used.

2.1 C Bounded Model Checker

CBMC implements BMC for ANSI-C/C++ programs
using SAT solvers [11]. It can process C/C++ code

1. Available at http://www.esbmc.org

using the goto-cc tool [12], which compiles the C/C++
code into equivalent GOTO-programs (i.e., control-
flow graphs) using a gcc-compliant style. The GOTO-
programs can then be processed by the symbolic exe-
cution engine. Alternatively, CBMC uses its own, inter-
nal parser based on Flex/Bison, to process the C/C++
files and to build an abstract syntax tree (AST). The
typechecker of CBMC’s front-end annotates this AST
with types and generates a symbol table. CBMC’s IRep
class then converts the annotated AST into an internal,
language-independent format used by the remaining
phase of the front-end.

CBMC uses two recursive functions that compute the
constraints (i.e., assumptions and variable assignments)
and properties (i.e., safety conditions and user-defined
assertions). In addition, CBMC automatically generates
safety conditions that check for arithmetic overflow and
underflow, array bounds violations, and NULL-pointer
dereferences, in the spirit of Site’s clean termination [13].
Both functions accumulate the control flow predicates to
each program point and use these predicates to guard
both the constraints and the properties, so that they
properly reflect the program’s semantics. CBMC’s VC
generator (VCG) then derives the VCs from these.

Although CBMC implements several state-of-the-art
techniques for propositional BMC, it still has the follow-
ing well-known limitations [3], [4]: (i) large data-paths
involving complex expressions lead to large proposi-
tional formulae due to the number of variables and the
width of data types, (ii) the loss of high-level information
during the translation prevents potential optimizations
to prune the state space to be explored, and (iii) the size
of the encoding increases with the size of the arrays used
in the program.

2.2 Satisfiability Modulo Theories

SMT decides the satisfiability of first-order formulae us-
ing a combination of different background theories and
thus generalizes propositional satisfiability by support-
ing uninterpreted functions, linear and non-linear arith-
metic, bit-vectors, tuples, arrays, and other decidable
first-order theories. Given a theory T and a quantifier-
free formula ψ, we say that ψ is T -satisfiable if and only
if there exists a structure that satisfies both the formula
and the sentences of T , or equivalently, if T ∪ {ψ} is
satisfiable [14]. Given a set Γ ∪ {ψ} of formulae over T ,
we say that ψ is a T -consequence of Γ, and write Γ |=T ψ,
if and only if every model of T ∪Γ is also a model of ψ.
Checking Γ |=T ψ can be reduced in the usual way to
checking the T -satisfiability of Γ ∪ {¬ψ}.

The SMT-LIB initiative [9] aims at establishing a
common standard for the specification of background
theories, but most SMT solvers provide functions in
addition to those specified in the SMT-LIB. Therefore, we
describe here the fragments that we found in the SMT
solvers Boolector, CVC3, and Z3 for the theory of linear,
non-linear, and bit-vector arithmetic. We summarize the

3

syntax of these background theories as follows, using
standard notations where appropriate:

F ::= F con F | ¬F |A
con ::= ∧ | ∨ | ⊕ | ⇒ | ⇔
A ::= T rel T | Id | true | false
rel ::= < | ≤ | > | ≥ | = | 6=
T ::= T op T | ∼ T | ite(F , T ,T) | Const | Id |

Extract(T, i, j)| SignExt(T, k)| ZeroExt(T, k)
op ::= + | − | ∗ | / | rem | << | >> | & | | | ⊕ |@

Here, F denotes Boolean-valued expressions with atoms
A, and T denotes terms built over integers, reals, and
bit-vectors. The logical connectives con consist of con-
junction (∧), disjunction (∨), exclusive-or (⊕), implication
(⇒), and equivalence (⇔). The bit-level operators are
and (&), or (|), exclusive-or (⊕), complement (∼), right-
shift (>>), and left-shift (<<). Extract (T, i, j) denotes bit-
vector extraction from bits i down to j to yield a new bit-
vector of size i−j+1 while @ denotes the concatenation
of the given bit-vectors. SignExt (T, k) extends a bit-
vector of size w to the signed equivalent bit-vector of size
w + k, while ZeroExt (T, k) extends the bit-vector with
zeros to the unsigned equivalent bit-vector of size w+k.
The conditional expression ite(f, t1, t2) takes a Boolean
formula f and depending on its value selects either
the second or the third argument. The interpretation
of the relational operators (i.e., <, ≤, >, ≥), the non-
linear arithmetic operators ∗, /, remainder (rem) and
the right-shift operator (>>) depends on whether their
arguments are unsigned or signed bit-vectors, integers
or real numbers. The arithmetic operators induce checks
to ensure that the arithmetic operations do not overflow
and/or underflow.

The array theories of SMT solvers are typically based
on the McCarthy axioms [19]. The function select(a, i)
denotes the value of a at index position i and store(a, i,
v) denotes an array that is exactly the same as array a
except that the value at index position i is v. Formally,
the functions select and store can then be characterized
by the following two axioms [16], [17], [18]:

i = j ⇒ select (store (a, i, v) , j) = v
i 6= j ⇒ select (store (a, i, v) , j) = select (a, j)

Note that array bounds checks need to be encoded
separately; the array theories employ the notion of un-
bounded arrays size, but arrays in software are typically
of bounded size. Section 3 shows how to generate VCs to
check for array bounds violation in programs. Equality
on array elements is defined by the theory of equality
with uninterpreted functions (i.e., a = b ∧ i = j ⇒
select (a, i) = select (b, j)) and the extensional theory
of arrays then allows reasoning about array equality as
follows [16], [17], [18]:

a = b⇐ ∀i · select (a, i) = select (b, i)
a 6= b⇒ ∃i · select (a, i) 6= select (b, i)

Tuples are used to model the ANSI-C union and struct
datatypes. They provide store and select operations sim-

ilar to those in arrays, but work on the tuple elements.
Each field of the tuple is represented by an integer con-
stant. Hence, the expression select(t, f) denotes the field
f of tuple t while the expression store(t, f, v) denotes a
tuple t that at field f has the value v and all other fields
remain the same.

In order to check the satisfiability of a formula, SMT
solvers handle the terms in the given background the-
ory using a decision procedure [22]. Pure SAT solvers,
in contrast, require replacing all higher-level operators
by bit-level circuit equivalents (also called bit-blasting),
which destroys structural word-level information in the
problem formulation and can cause scaling problems.
For example, SAT solvers do not scale well when reason-
ing on the propositional encoding of arithmetic operators
(e.g., multiplication), because the operands are treated as
arrays of w (where w represents the bit width of the data
type) unrelated propositional variables; consequently,
computational effort can be wasted during the propo-
sitional satisfiability search [15]. However, SMT solvers
are typically built on top of state-of-the-art SAT solvers
and use bit-blasting as a last resort if the more abstract
and less expensive techniques are not powerful enough
to solve the problem at hand. For example, SMT solvers
often integrate a simplifier, which applies standard alge-
braic reduction rules and contextual simplification.

3 SMT-BASED BMC FOR SOFTWARE

This section describes how we generate the VCs, in
particular the encoding techniques that we use to convert
the constraints and properties from the ANSI-C pro-
grams into the different background theories of the SMT
solvers, and our approach to decide the best encoding
and solver to be used during the verification process.

3.1 SMT-based BMC Formulation

In BMC, the program to be analyzed is modelled as
a state transition system, which is extracted from the
control-flow graph (CFG) [20]. This graph is built as part
of a translation process from program text to single static
assignment (SSA) form. A node in the CFG represents
either a (non-) deterministic assignment or a conditional
statement, while an edge in the CFG represents a possi-
ble change in the program’s control location.

A state transition system M = (S, T, S0) is an abstract
machine that consists of a set of states S, where S0 ⊆
S represents the set of initial states, and T ⊆ S × S is
the transition relation, i.e., pairs of states specifying how
the system can move from state to state. A state s ∈ S
consists of the value of the program counter pc and the
values of all program variables. An initial state s0 assigns
the initial program location of the CFG to the pc. We
identify each transition γ = (si, si+1) ∈ T between two
states si and si+1 with a logical formula γ(si, si+1) that
captures the constraints on the corresponding values of
the program counter and the program variables.

4

Given a transition system M, a property φ, and a
bound k, BMC unrolls the system k times and translates
it into a VC ψ such that ψ is satisfiable if and only if
φ has a counter-example of length k or less. The VC
ψ is a quantifier-free formula in a decidable subset of
first-order logic, which is then checked for satisfiability
by an SMT solver. In this work, we are interested in
checking safety properties of single-threaded programs.
The associated model checking problem is formulated
by constructing the following logical formula:

ψk = I(s0) ∧

k
∨

i=0

i−1
∧

j=0

γ(sj , sj+1) ∧ ¬φ(si) (1)

Here, φ is a safety property, I the set of initial states of
M and γ(sj , sj+1) the transition relation of M between
time steps j and j + 1. Hence, I(s0) ∧

∧i−1

j=0
γ(sj , sj+1)

represents the executions of M of length i and (1) can
be satisfied if and only if for some i ≤ k there exists a
reachable state at time step i in which φ is violated. If (1)
is satisfiable, then the SMT solver provides a satisfying
assignment, from which we can extract the values of
the program variables to construct a counter-example. A
counter-example for a property φ is a sequence of states
s0, s1, . . . , sk with s0 ∈ S0, sk ∈ S, and γ (si, si+1) for
0 ≤ i < k. If (1) is unsatisfiable, we can conclude that no
error state is reachable in k steps or less.

It is important to note that this approach can be used
only to find violations of the property up to the bound
k. In order to prove properties we need to compute the
completeness threshold (CT), which can be smaller than
or equal to the maximum number of loop-iterations
occurring in the program [1], [4], [23], [24]. However,
computing CT to stop the BMC procedure and to con-
clude that no counter-example can be found is as hard
as model checking. Moreover, complex programs involve
large data-paths and complex expressions. Consequently,
even if we knew CT, the resulting formulae would
quickly become too hard to solve and require too much
memory to build. In practice we can thus only ensure
that the property holds in M up to a given bound k. In
our work, we focus on embedded software because it
has characteristics that make it attractive for BMC, e.g.,
dynamic memory allocations and recursion are highly
discouraged, and that make the limitations of bounded
model checking less stringent.

3.2 Tool Architecture

Figure 1 shows the main software components of ES-
BMC. The white boxes (except for the SMT solver) rep-
resent the components that we reused from the CBMC
model checker without any modification while the gray
boxes with dashed lines represent the components that
we modified in order to (i) generate VCs to check for
memory leaks (implemented in GOTO program, see Sub-
section 3.5.7), (ii) to simplify the unrolled formula (im-
plemented in GOTO symex, see Subsections 3.3 and 3.4)
and (iii) to perform an up-front analysis in the CFG of

the program to determine the best encoding and solver
for a particular program (implemented in GOTO symex,
see Subsection 3.5.8). The GOTO program component
converts the ANSI-C program into a GOTO-program,
which simplifies the representation (e.g., replacement
of switch and while by if and goto statements), and
handles the unrolling of the loops and the elimination
of recursive functions. The GOTO symex component
performs a symbolic simulation of the program. The gray
boxes with solid lines represent new components that
we implemented to encode the given constraints and
properties of an ANSI-C program into a global logical
context, using the background theories supported by
the SMT solvers. We also implemented new components
to interpret the counter-example generated by the sup-
ported SMT solvers. These software components must
be implemented in the back-end to support each new
SMT solver.

In the back-end of ESBMC, we build two sets of
quantifier-free formulae C (for the constraints) and P
(for the properties) so that C encodes the first part of ψk

(more precisely, I (s0) ∧
∨k

i=0

∧i−1

j=0
γ (sj , sj+1)) and ¬P

encodes the second part (more precisely,
∨k

i=0
¬φ (si)).

After that, we check C |=T P using an SMT solver. If the
answer is satisfiable, we have found a violation of the
property φ, which is encoded in ψk. If not, the property
holds up to the bound k.

3.3 Illustrative Example

We use the code shown in Figure 2 as a running example
to illustrate the process of transforming a given ANSI-C
program into SSA form and then into the quantifier-free
formulae C and P shown in (2) and (3) respectively. This
code implements a simplified version of the character
stuffing technique, which avoids resynchronization after
a transmission error by enclosing each frame with the
ASCII character sequences DLE STX and DLE ETX [25].
Note that this syntactically valid ANSI-C program con-
tains two subtle errors. In line 28 it writes to an address
outside the allocated memory region of the array out.
Additionally, the assert macro in line 29 fails when the
ASCII character NUL is transmitted, i.e., when the con-
dition of the while loop (line 11) does not hold. To detect
this error, we use a non-deterministic input, i.e., we set
the third position of array in (line 6) using nd uchar(),
which can return any value in the range from zero to
255.

In reasoning about this C program, ESBMC checks 25
properties related to array bounds and overflow, and
the user-specified assertion in line 29. ESBMC originally
generates 63 VCs, but with the simplifications described
in Section 3.4, only 9 remain. The first eight VCs check
the bounds of the array out in lines 15, 18 and 28 and
the last VC checks the user-specified assertion in line 29;
note that the VCs to check the bounds of the array out
are not simplified away due to the non-determinism in
the array in, which does not allow checking statically

5

G O T O
s y m e x

S e l e c t
S M T s o l v e r

c o n v e r t c o n t r a i n t s

c o n v e r t p r o p e r t i e s

L o g i c a l
C o n t e x t

I n te rp re t
c o u n t e r - e x a m p l e

S M T
s o l v e r

P r o p e r t y
h o l d s u p t o
b o u n d k

P r o p e r t y
v i o l a t i on

P a r s e
t r e e

I R e p
t r e e s

G O T O
p r o g r a m

t y p e
c h e c k

c o n t r o l - f l o w
g r a p h

C / C + +
s o u r c e

S c a n

S S A
f o r m

s y m b o l i c
e x e c u t i o n

O K

Fig. 1: Overview of the ESBMC architecture.

1 # define DLE 16
2 # define STX 2
3 # define ETX 3
4 uchar nd uchar () ;
5 i n t main (void) {
6 uchar in [6] = {DLE, STX , nd uchar () ,
7 DLE, ETX , ’ \0 ’ } ;
8 uchar out [6] ;
9 i n t i = 0 ;

10 i n t j = 0 ;
11 while (in [i] != ’ \0 ’) {
12 switch (in [i]) {
13 case (DLE) :
14 i f (in [i +1]==STX | | in [i +1]==ETX) {
15 out [j] = in [i] ;
16 } else {
17 out [j] = in [i] ;
18 out [++ j] = DLE ;
19 } ;
20 break ;
21 default :
22 out [j] = in [i] ;
23 break ;
24 }
25 i ++;
26 j ++;
27 }
28 out [j] = ’ \0 ’ ;
29 a s s e r t (out [4]==ETX | | out [5]==ETX) ;
30 return 0 ;
31 }

Fig. 2: ANSI-C program with two violated properties.

whether the if statement in line 14 is true or false. In this
particular example, CBMC v3.8 generates 136 VCs out of
which 48 remain after simplification. The limited static
analysis capability of CBMC thus leads to a substantially
higher overhead in the solver.

However, before actually checking the properties, ES-
BMC unrolls the program using the simplification de-
scribed in Section 3.4 and converts it into SSA form, as
shown in Figure 3; note that the variable declarations
as well as the return-statement are not shown. The
SSA form only consists of conditional and unconditional

assignments, where the left-hand side variable of each
original assignment (e.g., i = 0), is replaced by a new
variable (e.g., i1), as well as assertions. removed. The
SSA notation uses WITH as symbolic representation of
the array store operator described in Section 2.2, i.e., a
WITH [i := v] is equivalent to store(a, i, v).

C :=





































in1 = store(store(store(store(store(store(in0,
0, 16), 1, 2), 2, nd uchar1), 3, 16), 4, 3), 5, 0)
∧ i1 = 0 ∧ j1 = 0 ∧ out1 = store (out0, 0, 16)
∧ i2 = 1 ∧ j2 = 1 ∧ out2 = store (out1, 1, 2)
∧ g1 = nd uchar1 6= 0
∧ g2 = ¬ (nd uchar1 = 16)
∧ out3 = store (out2, 2, nd uchar1)
∧ j4 = 3
∧ . . .
∧ j10 = ite (¬g1, j3, j9)
∧ out11 = store (out10, j10, 0)





































(2)

P :=





j5 ≥ 0 ∧ j5 < 6 ∧ j7 ≥ 0 ∧ j7 < 6
∧ j8 ≥ 0 ∧ j8 < 6 ∧ j10 ≥ 0 ∧ j10 < 6
∧ (select (out11, 4) = 3 ∨ select (out11, 5) = 3)





(3)

After this transformation, we build the constraints and
properties as shown in formulae (2) and (3) using the
background theories of the SMT solvers. Furthermore,
we add Boolean variables (or definition literals) for each
clause of the formula P in such a way that the definition
literal is true iff a given clause of P is true. These
definition literals are used to identify the VCs. In the
example we add constraints as follows:

l0 ⇔ j5 ≥ 0

l1 ⇔ j5 < 6

· · ·

l9 ⇔ ((select (out, 4) = 3) ∨ (select (out, 5) = 3))

and rewrite (3) as:

¬P := ¬l0 ∨ ¬l1 ∨ . . . ∨ ¬l9 (4)

6

1 in1 == {16 , 2 , nd uchar1 , 16 , 3 , 0}
2 i 1 == 0
3 j 1 == 0
4 out1 == (out0 WITH [0 : = 1 6])
5 i 2 == 1
6 j 2 == 1
7 out2 == (out1 WITH [1 : = 2])
8 i 3 == 2
9 j 3 == 2

10 g1 == (nd uchar1 != 0)
11 g2 == ! (nd uchar1 == 16)
12 out3 == (out2 WITH [2 : = nd uchar1])
13 j 4 == 3
14 out4 == (out3 WITH [3 : = 1 6])
15 out5 == out2
16 j 5 == j 3
17 out6 == (out5 WITH [j 5 := nd uchar1])
18 out7 == (! g2 ? out4 : out6)
19 j 6 == (! g2 ? j 4 : j 5)
20 i 4 == 3
21 j 7 == 1 + j 6
22 out8 == (out7 WITH [j 7 : = 1 6])
23 i 5 == 4
24 j 8 == 1 + j 7
25 out9 == (out8 WITH [j 8 : = 3])
26 i 6 == 5
27 j 9 == 1 + j 8
28 out10 == (! g1 ? out2 : out9)
29 i 7 == (! g1 ? i 3 : i 6)
30 j 1 0 == (! g1 ? j 3 : j 9)
31 out11 == (out10 WITH [j 1 0 : = 0])

Fig. 3: The program of Figure 2 in SSA form.

Note that the language-specific safety properties (e.g.,
out-of-bounds array indexing) and the user-specified
properties that hold trivially in the code are already
simplified away (e.g., by keeping track of the size of the
array during the symbolic execution of the code). For
instance, there is no need to generate VCs that check
for array bounds violations on in, since i only takes the
values from 0 to 4 when it is used in indexing the array,
and the validity of the bounds checks can be evaluated
statically.

We also simplify C and P by using local and recursive
transformations in order to remove functionally redun-
dant expressions and redundant literals as follows:

a ∧ true = a a ∧ false = false

a ∨ false = a a ∨ true = true

a⊕ false = a a⊕ true = ¬a
ite (true, a, b) = a ite (false, a, b) = b
ite (f, a, a) = a ite (f, f ∧ a, b) = ite (f, a, b)

Finally, the formula C∧¬P is passed to an SMT solver
to check satisfiability. Our approach is slightly different
from that of Armando et al. [3], who transform the ANSI-
C code into conditional normal form as an intermediary
step to encode C and P while we encode them directly
from the SSA form.

3.4 Code Simplification and Reduction
We observed during development that constant propa-
gation and forward substitution techniques [20] signifi-
cantly improve the performance of ESBMC over a wide
range of embedded software applications. We exploit
the constant propagation technique to replace pointers
to objects that are constants by the respective constant
and to replace store operations that update the content
of arrays, structs, and unions with constant values by
these values.

1 . . .
2 void puts (const char ∗ s) {
3 while (∗ s) {
4 putc (∗ s ++) ;
5 }
6 }
7 . . .
8 puts (” b l i t : success ”) ;

Fig. 4: Code fragment of blit.

Figure 4 shows an example extracted from the Pow-
erstone benchmark [37] to illustrate how constant prop-
agation works for pointers in ESBMC. The function puts
defined in line 2 is in line 8 called with a pointer to an
array of constants, but CBMC’s VCG still generates VCs
to check for the bounds of the pointer s, as explained
in Section 3.5.6. During the unrolling phase, we check
whether the last value assigned to a pointer is a constant,
and if so, we replace it by the constant and pass the
modified expression to a simplifier, which is able to
perform simple deductions before generating a VC to
be encoded by the back-end.

We also propagate the store-operations for arrays,
structs, and unions up to a certain level. Figure 5 shows
an example extracted from the EUREKA benchmark [35]
to illustrate how constant propagation works for arrays.
In line 2, we initialize the first position of array a with a
constant. In each iteration of the for loop, we add the
value of the loop counter i to the last value written
in array a and write the result to the next position
of a (see line 4). After the loop, we check whether
the assertion in line 6 holds. However, after unrolling
the loop we obtain a VC involving a large expression
store(. . . (store(store(store(a0, 0, 1), 1, 2), 2, 4), 3, 7), . . .) of
nested store operations for a. Since all arguments except
a0 are constants, we can in principle check statically
whether the assertion in line 6 holds. In practice, how-
ever, the model checker becomes slower than the SMT
solvers in propagating these constants if the expressions
become too large. In our benchmarks, we observed a
substantial improvement in performance if we propagate
the known constants up to six nested store operations
(note that the value six was the optimum value that we
obtained empirically with ESBMC using a large set of
benchmarks). We thus reduce substantially the number
of VCs, but we leave the harder cases for the SMT
solvers.

7

1 . . .
2 a [0] = 1 ;
3 for (i =1 ; i<N; i ++){
4 a [i]= a [i −1] + i ;
5 }
6 a s s e r t (a [i −1]<2∗1000);
7 . . .

Fig. 5: Code fragment of SumArray.

We also observed that several applications repeat the
same expression at many different places, especially after
loop unrolling, in a way that the value of the operands
does not change in between the occurrences. This can be
detected easily in the SSA form and used for caching
and forward substitution. Figure 6 shows a fragment
of the Fast Fourier Transform (FFT) algorithm, extracted
again from the SNU-RT benchmark [27], as an example
of where the forward substitution technique can be
applied. This occurs because the SSA representations of
the two outermost for loops (in lines 6-15 and lines 8-14,
respectively) will eventually contain several copies of the
innermost for loop (lines 10-13), and thus the right-hand
side of the assignment in line 11 is repeated several times
in the SSA form, depending on the unwinding bound
used to model check this program. Note that constant
propagation means that the occurrence of i in line 11 is
replaced by constant values. In the different copies of
the unrolled outer loops we thus get multiple copies of
the right-hand side that are identical in the SSA form.

1 typedef s t r u c t {
2 f l o a t rea l , imag ;
3 } complex ;
4 i n t n=1024;
5 complex x [1 0 2 4] , ∗ x i ;
6 for (l e =n/2; le >0; l e /=2) {
7 . . .
8 for (j =0 ; j<l e ; j ++) {
9 . . .

10 for (i = j ; i<n ; i = i +2∗ l e) {
11 x i = x + i ;
12 . . .
13 }
14 }
15 }

Fig. 6: Code fragment of Fast Fourier Transformation.

For example, if we set the unwinding bound k to 1024
(which is required because the upper bound n of the
innermost for-loop is equal to 1024, see line 4), the for-
loop in lines 6-15 will contain nine copies of the for-
loop in lines 8-14, where the variable le will assume the
values 512, 256, 128, . . . , 1. In combination with constant
propagation, the expression x + i that is assigned to the
pointer index xi is thus repeated up to nine times for
each (propagated) value that i takes in the for-loop in
lines 10-13. We thus include all expressions into a cache
so that when a given expression is processed again in

the program, we only retrieve it from the cache instead
of creating a new copy using a new set of variables.

3.5 Encodings

This section describes the encodings that we use to
convert the constraints and properties from the ANSI-
C program into the background theories of the SMT
solvers.

3.5.1 Scalar Data Types
We provide two approaches to model unsigned and
signed integer data types, either as integers provided
by the corresponding SMT-LIB theories or as bit-vectors
of a particular bit width. For the encodings, we use
the scalar datatypes supported by the front-end. The
ANSI-C datatypes int, long int, long long int, and char
are considered as signedbv with different bit widths (de-
pending on the machine architecture) and the unsigned
versions of these datatypes are considered as unsignedbv.
We also support the C enumeration declaration (which
is considered as c enum) and we encode it as an integer
type since the values of the enumeration are already
generated by the front-end and obey normal scoping
rules. For double and float we currently only support
fixed-point arithmetic using fixedbv, but not full floating-
point arithmetic; see the following section for more
details.

The encoding of the relational (e.g., <, ≤, >, ≥) and
arithmetic operators (e.g., +, −, /, ∗, rem) depends on the
encoding of their operands. In the SAT-based version of
CBMC [11], [30], the relational and arithmetic operators
are transformed into propositional equations using a
carry chain adder, and the size of their encoding thus
depends on the size of the bit-vector representation
of the scalar data types. In the SMT-based version of
CBMC [6] only bit-vectors are used and the capabilities
of the SMT solvers to model program variables through
the corresponding numerical domains such as Z are not
exploited, while the SMT-based BMC approach proposed
by Armando et al. [3] does not support the encoding of
fixed-point numbers.

We support all type casts, including conversion be-
tween integer and fixed-point types. These conversions
are performed using the functions Extract , SignExt and
ZeroExt described in Section 2.2. Similarly, upon deref-
erencing, the object that a pointer points to is converted
using the same word-level functions. The datatype bool
is converted to signedbv and unsignedbv using ite . In
addition, signedbv and unsignedbv variables are converted
to bool by comparing them to constants whose values
represent zero in the corresponding types.

3.5.2 Fixed-Point Arithmetic
Embedded applications from domains such as discrete
control and telecommunications often require arithmetic
over non-integral numbers. However, an encoding of the
full floating-point arithmetic into the BMC framework

8

leads to large formulae; instead, we over-approximate
it by fixed-point arithmetic, which might introduce be-
haviour that is not present in a real implementation.
We use two different representations to encode non-
integral numbers, binary (when dealing with bit-vector
arithmetic) and decimal (when dealing with rational
arithmetic). In this way, we can explore the different
background theories of the SMT solvers and trade off
speed and accuracy as further described in Section 3.5.8.

We encode fixed-point numbers using the integral and
fractional parts separately [28]. Given a rational number
that consists of an integral part I with m bits and a
fractional part F with n bits, we represent it by 〈I.F 〉
and interpret it as I + F/2n. For instance, the number
0.75 can be represented as 〈0000.11〉 in base 2 while 0.125
can represented as 〈0000.001〉.

We encode fixed-point arithmetic using bit-vector
arithmetic as in the binary encoding, but we assume that
the operands have the same bitwidths both before and
after the radix point. If this is not the case, we pad the
shorter bit sequence and add zeros from the right (if
there are bits missing in the fractional part), e.g., 0.75
+ 0.125 = 〈0000.1100〉 + 〈0000.0010〉) or from the left (if
there are bits missing before the radix point).

We encode fixed-point arithmetic using rational arith-
metic by rounding the fixed-point numbers to rationals
in base 10. We extract the integral and fractional parts
and convert them to integers I and F , respectively;
we then divide F by 2n, round the result to a given
number of decimal places, and convert everything to a
rational number in base 10. For example, with m = 2,
n = 16, and six places decimal precision, the number
3.9 (11.1110011001100110) is converted to I = 3, and
F = 58982/216, and finally to 3899994/100000. As a
result, the arithmetic operations are performed in the
domain of Q instead of R and there is no need to add
missing bits to the integer and fractional parts.

In general, the drawback is that some numbers are not
precisely represented with fixed-point arithmetic. As an
example, if m = 4 and n=4, then the closest numbers
to 0.7 are 0.6875 (〈0000.1011〉) and 0.75 (〈0000.1100〉).
As a result, the number needs to be rounded and the
deviation might eventually change the control flow of
the program.

3.5.3 Arithmetic Overflow and Underflow
Arithmetic overflow and underflow are frequent sources
of bugs in embedded software. ANSI-C, like most pro-
gramming languages, provides basic data types that
have a bounded range defined by the number of bits
allocated to them. Some model checkers treat program
variables either as unbounded integers (e.g., Blast [62])
or do not generate VCs related to arithmetic overflow
(e.g., SMT-CBMC [3], SMT-based CBMC [6] and F-
Soft [4]), and can consequently produce false positive
results. In our work, we generate VCs related to arith-
metic overflow and underflow following the ANSI-C
standard. This requires that, on arithmetic overflow of

unsigned integer types (e.g., unsigned int), the result must
be interpreted using modular arithmetic as r mod 2w,
where r is the expression that caused overflow and w
is the bit-width of the result type [5]. Hence, in this
encoding the result of the expression is one greater
than the largest value that can be represented by the
result type. This semantics can be encoded trivially
using the background theories of the SMT solvers. For
each unsigned integer expression, we generate a literal
lunsigned overflow to represent the validity of the unsigned
operation and add the constraint:

lunsigned overflow ⇔ (r − (r mod 2w)) < 2w

The ANSI-C standard does not define any behaviour
on arithmetic overflow of signed types (e.g., int, long
int), and only states that integer division-by-zero must
be detected. In addition to division-by-zero detection, we
consider arithmetic overflow of signed types on addi-
tion, subtraction, multiplication, division and negation
operations by defining boundary conditions. For exam-
ple, we define a literal loverflow∗

x,y
that is true iff the

multiplication of x and y exceeds LONG MAX (i.e.,
x ∗ y > LONG MAX) and another literal lunderflow∗

x,y

that is true iff the multiplication of x and y is below
LONG MIN. We use a literal lres op∗ to denote the
validity of the signed multiplication with the following
constraint:

lres op∗ ⇔ (¬loverflow∗

x,y
∧ ¬lunderflow∗

x,y
)

The overflow and underflow checks on the remaining
operators are encoded in a similar way.

3.5.4 Arrays
Arrays are encoded in a straight-forward manner using
the SMT domain theories, since the WITH operator
and index operator [] can be mapped directly to the
functions store and select of the array theory presented
in Section 2.2 [11], [29]. For example, the assignment a′

= a WITH [i := v] is encoded with a store operation a′

= store (a, i, v) while x = a[i] is encoded with a select
operation x = select (a, i). In the array theory, the arrays
are unbounded, but in a program, if an array index is
out of bounds, the value selected is undefined and an
out-of-bounds write can cause a crash. In order to check
for array bounds violations, we simply keep track of the
size of the array and generate VCs that are provable iff
the indexing expression is within the array’s bounds.

1 i n t i , a [N] ;
2 . . .
3 for (i =0 ; i<N; i ++)
4 a [i +1]=2∗ i ;
5 . . .

Fig. 7: Array out of bounds example.

As an example, consider the code fragment shown in
Figure 7. In order to check for the array bounds in line

9

4 of Figure 7, we create a VC to check the array index
i only for the last iteration of the for-loop since for all
i with i < N − 1 we can statically infer that there is
no array bounds violation. This VC does not require the
array theory and can be written as follows:

i < N ⇒ (i+ 1 < N) (5)

Armando et al. [3] also encode programs with arrays
using the array theory of the SMT solvers, but they do
not generate VCs to check for array bounds violation.
The SAT-based version of CBMC generates such VCs
but the underlying array representation is fundamentally
different. Each array a of size s is replaced by s different
scalar variables a0, a2, . . . , as−1 and a′ = store(a, i, v) is
then represented by the following formula [11], [30]:

s−1
∧

j=0

a′j = ((i = j) ∧ v) ∨ (¬ (i = j) ∧ aj) (6)

Similarly, b = select(a, i) is represented as follows:

s−1
∧

j=0

(i = j) ⇒ (b = aj) (7)

The size of the propositional formulae (6) and (7)
depends on the bit-width of the scalar data types and the
size of the arrays occurring in the program, as observed
by [3]. In addition, all high-level structure present in the
original formula is lost. In contrast, our approach yields
more compact VCs and keeps the inherent structure.

3.5.5 Structures and Unions

Structures and unions are encoded using the theory of
tuples in SMT and we map update and access operations
to the functions store and select of the theory of tuples
presented in Section 2.2. Let w be a structure type, f be
a field name of this structure, and v be an expression
matching the type of f. The expression store(w,f,v) returns
a tuple that is exactly the same as w except that the value
of field f is v; all other tuple elements remain the same.
Formally, if w’=store(w,f,v) and j is a field name of w,
then:

w′.j =

{

v if j = f,
w.j if j 6= f

(8)

We encode unions in a similar way. The difference is
that we add an additional field l to indicate the number
of the field that was used last for writing into the union.
This is used to insert the required type-cast operations
if any subsequent read access uses a different field.

In contrast, the SMT-based BMC approach proposed
by Armando et al. [3] does not support unions;
Clarke [11], [30] and Kroening [6] encode structs and
unions by concatenating and extracting the fields. This
approach, however, might be less scalable because high-
level information is lost and therefore, needs to be re-
discovered by the SAT or SMT solver (possibly with a
substantial performance penalty).

3.5.6 Pointers

In ANSI-C, pointers (and pointer arithmetics) are used
as alternative to array indexing: ∗(p + i) is equal to
a[i], if p has been assigned a (see Figure 8). The
front-end of CBMC removes all pointer dereferences
during the unwinding phase and treats pointers as
program variables. CBMC’s VCG uses the predicate
SAME OBJECT to represent that two pointer expressions
point to the same memory location or same object.
Note that SAME OBJECT is not a safety property, but
is mainly used to produce sensible error messages. The
VCG generates safety properties that check that (i) the
pointer offset does not exceed the object bounds (repre-
sented by LOWER BOUND and UPPER BOUND) and
(ii) the pointer is neither NULL nor an invalid object
(represented by INVALID POINTER). Our approach is
similar to the encoding of CBMC into propositional logic,
but we use the background theories such as tuples,
integer and bit-vector arithmetic while CBMC encodes
them by concatenating and extracting the bit-vectors,
which operates at the bit-level and does not exploit the
structure provided by the higher abstraction levels and
is thus less scalable.

We encode pointers using two fields of a tuple p such
that p.o encodes the object the pointer points to, while
the p.i encodes an offset within that object. Note that the
object can be an array, a struct, or a scalar and that the
interpretation of p.i depends on the type of the object: for
arrays, it denotes the index, for structs the field, and for
scalar it is fixed to zero. Note further that we update the
object field p.o dynamically (using the store operation of
the tuple theory) to accommodate changes of the object
that the pointer points to.

Formally, let pa and pb be pointer variables pointing
to the objects a and b. We encode SAME OBJECT by a
literal lsame object with the following constraint:

lsame object ⇔ (pa.o = pb.o) (9)

A pointer p may point to a set of objects during its
lifetime. We thus check the SAME OBJECT property
whenever we check the value pointed by pointer p or
whether the offset of p is within the bounds of an object
a. This means that we generate lsame object for each
expression that uses p as array indexing. Formally, in
order to check the pointer index, we define the upper
and lower bound of an object b by bu and bl respectively.
We then encode the properties LOWER BOUND and
UPPER BOUND by creating two literals llower bound and
lupper bound with the following constraints:

llower bound ⇔ ¬ (pa.i < bl) ∨ ¬ (pa = pb)

lupper bound ⇔ ¬ (pa.i ≥ bu) ∨ ¬ (pa = pb) (10)

To check invalid pointers, the NULL pointer is encoded
as a unique identifier denoted by η and an invalid
object is denoted by ν. If p denotes a pointer expression,
we encode the property INVALID POINTER by a literal

10

linvalid pointer with the following constraint:

linvalid pointer ⇔ (p.o 6= ν) ∧ (p.i 6= η) (11)

As example, consider the C program of Figure 8 where
the pointer p points to the array a as shown in line
3. We build the constraints and properties shown in
(12) and (13) so that the assignment p=a in line 3 is
converted into a tuple p. The second and third conjuncts
p1 = store (p0, 0, a) and p2 = store (p1, 1, 0) of (12) store
the object (i.e., array a) and the index 0 at the first two
positions of the tuple p.

C :=





















i0 = 0 ∧ p1 = store (p0, 0, a)
∧ p2 = store (p1, 1, 0) ∧ g1 = (x1 = 0)
∧ a1 = store(a0, i0, 0)
∧ a2 = a0
∧ a3 = store(a2, 1 + i0, 1)
∧ a4 = ite(g1, a1, a3)
∧ p3 = store (p2, 1, select (p2, 1) + 2)





















(12)

P :=









i0 ≥ 0 ∧ i0 < 2
∧ 1 + i0 ≥ 0 ∧ 1 + i0 < 2
∧ select (p3, select (p3, 1)) = a
∧ select (select (p4, 0) , select (p4, 1)) = 1)









(13)
In order to check the property specified in line

8, we first add the value 2 to p.i (i.e., p3 =
store (p2, 1, select (p2, 1) + 2) shown in the last expres-
sion of (12)) and then check whether p and a point to
the same memory location (as shown in the next to last
expression of (13)). As p.i exceeds the size of the object
stored in p.o, (i.e., array a), then the SAME OBJECT
property is “violated” and thus the assert macro in
line 8 fails because a[2] is unconstrained (i.e., it is a free
variable as described in Section 3.5.4).

1 i n t main () {
2 i n t a [2] , x , i =0 , ∗p ;
3 p=a ;
4 i f (x==0)
5 a [i] = 0 ;
6 else
7 a [i +1]=1 ;
8 a s s e r t (∗ (p+2)==1) ;
9 }

Fig. 8: C program with pointer to an array.

Structures consisting of n fields with scalar data types
are also manipulated like an array with n elements. This
means that the front-end of CBMC allows us to encode
the structures by using the usual update and access
operations. If the structure contains arrays, pointers and
scalar data types, then p.i points to the object within
the structure only. As an example, Figure 9 shows a C
program that contains a pointer to a struct consisting of

two fields (an array a of integer and a char variable b). As
the struct y is declared as global in Figure 9 (see lines 1-4),
its members must be initialized before performing any
operation [5], as shown in the first two lines of (14). The
assignment p = &y (see line 7 of Figure 9) is encoded by
assigning the structure y to the field p1.o and the value
0 to the field p1.i.

1 s t r u c t x {
2 i n t a [2] ;
3 char b ;
4 } y ;
5 i n t main (void) {
6 s t r u c t x ∗p ;
7 p=&y ;
8 p−>a [1] = 1 ;
9 p−>b= ’ c ’ ;

10 a s s e r t (p−>a [1] = = 1) ;
11 a s s e r t (p−>b== ’ c ’) ; / / ASCII 99
12 }

Fig. 9: C program with pointer to a struct.

C :=













y0.b := 0
∧ y1 := store(store(y0.a, 0, 0), 1, 0)
∧ p1.o := y ∧ p1.i := 0
∧ y2 := store(y1, a, store(y1.a, 1, 1))
∧ y3 := store(y2, b, 99)













(14)

P :=

[

select(select(y3, a), 1) = 1
∧ select(y3, b) = 99

]

(15)

3.5.7 Dynamic Memory Allocation

Although dynamic memory allocation is discouraged
in embedded software, ESBMC is capable of model
checking programs that use it through the ANSI-C
functions malloc and free. We model memory just as
an array of bytes and exploit the arrays theories of
SMT solvers to model read and write operations to
the memory array on the logic level. ESBMC checks
three properties related to dynamic memory allocation;
in particular, it checks whether (i) the argument to any
malloc, free, or dereferencing operation is a dynamic
object (IS DYNAMIC OBJECT), (ii) the argument to any
free or dereferencing operation is still a valid object
(VALID OBJECT), and (iii) whether the memory allo-
cated by the malloc function is deallocated at the end
of an execution (DEALLOCATED OBJECT) [31]. The last
check extends the CBMC’s VCG.

Formally, let po be a pointer expression that points to
the object o of type t and let m be a memory array of type
t and size n, where n represents the number of elements
to be allocated. In our encoding, the representation of
each dynamic object do contains a unique identifier ρ that
indicates the objects “serial number” in the sequential
order of all dynamically allocated objects (i.e., 0 ≤ ρ < k,
where k represents the total number of dynamic objects).

11

Each dynamic object consists of the memory array m,
the size in bytes of m, the unique identifier ρ. and the
location in the execution where m is allocated, which is
used for error reporting.

To detect invalid reads/writes, we check whether do
is a dynamic object and also whether po is within the
bounds of the memory array. Let i be an integer variable
that indicates the position in which the object pointed to
by po must be stored in the memory array m. We encode
IS DYNAMIC OBJECT as a literal lis dynamic object with
the following constraint:

lis dynamic object ⇔

(

k−1
∨

n=0

do.ρj = n

)

∧ (0 ≤ i < n) (16)

To check for invalid objects, we add one additional bit
field ν to each dynamic object to indicate whether it is
still alive or not. We set ν to true when the function malloc
is called to denote that the object is alive. When the
function free is called, we set ν to false to denote that the
object is no longer alive. We then encode VALID OBJECT
as a literal lvalid object with the following constraint:

lvalid object ⇔ (lis dynamic object ⇒ do.ν) (17)

To detect forgotten memory, we check, at the end of
the (unrolled) program, for each dynamic object whether
it has been deallocated by the function free. We can thus
use the existing flag, encoding DEALLOCATED OBJECT
as a literal ldeallocated object with the following constraint:

ldeallocated object ⇔ (lis dynamic object ⇒ ¬do.ν) (18)

Note that the difference between VALID OBJECT and
DEALLOCATED OBJECT is the location at which they
are checked: VALID OBJECT is checked for each access
to a pointer variable, while DEALLOCATED OBJECT is
checked only immediately before the (unrolled) program
terminates. Note further that both allocation location and
size of each dynamic object are immutable whereas the
bit field ν is updated when the functions malloc and free
are called.

3.5.8 Exploiting Representative Datatypes

Modern SMT solvers provide ways to model the pro-
gram variables either as bit-vectors or as elements of an
abstract numerical domain (e.g., Z, Q, or R). If the pro-
gram variables are modelled as bit-vectors of a fixed size,
then the result of the analysis can be precise (w.r.t. the
ANSI-C semantics), depending on the size considered
for the bit-vectors. In contrast, if the program variables
are modelled using the abstract numerical domains,
then the result of the analysis is independent from the
actual binary representation, but it may not be precise
when arithmetic expressions are involved. As example
consider the following small C program from [11], [30]
as shown in Figure 10.

This program nondeterministically selects two values
of type unsigned char and uses bitwise AND, right- and

1 i n t main () {
2 unsigned char a , b ;
3 unsigned i n t r e s u l t =0 , i ;
4 a=nd uchar () ;
5 b=nd uchar () ;
6 for (i =0 ; i <8; i ++)
7 i f ((b>>i)&1)
8 r e s u l t +=(a<<i) ;
9 a s s e r t (r e s u l t ==a∗b) ;

10 }

Fig. 10: A C program that uses shift-and-add to
multiply two numbers.

left-shift operations to multiply them. Reasoning about
this program by means of integer arithmetic produces
wrong results if the bit-level operators are treated as
uninterpreted functions (UFs). Although UFs simplify
the proofs, they ignore the semantics of the operators
and consequently make the formula weaker. In addition,
the majority of the software model checkers (e.g., SMT-
CBMC [3] and BLAST [62]) fail to check the assertion in
line 9. On the other hand, bit-vector arithmetic allows
us to encode bit-level operators in a more accurate way.
However, in our benchmarks, we noted that the majority
of VCs are solved faster if we model the basic datatypes
as Z and R. Consequently, we have to trade off between
speed and accuracy which are two competing goals in
formal verification of software using SMT.

Based on the extent to which the SMT solvers sup-
port the domain theories and on experimental results
obtained with a large set of benchmarks, we developed
a simple but effective heuristic to determine the best rep-
resentation for the program variables as well as the best
SMT solver to be used in order to check the properties
of a given ANSI-C program. Our default representation
for encoding the constraints and properties of ANSI-C
programs are integers and reals, respectively, and our
default solver is Z3. We then explore the CFG represen-
tation of the program. If we find expressions that involve
bit operations (e.g., <<, >>, &, |, ⊕) or typecasts from
signed to unsigned datatypes and vice-versa, we encode
the corresponding variables as bit-vectors and either
switch the SMT solver to Boolector (if no pointers are
used) or we keep Z3 (if pointers are used). We adopted
this strategy because we are able to implement the theory
of tuples on top of Z3 to model pointers and thus exploit
the structure provided by the word-level instead of bit-
level models (i.e., instead of concatenating and extracting
bit-vectors, which is the approach used by CBMC [11],
[30] and has not shown success in practice due to the loss
of structure associated with the translation process) [32].

4 EXPERIMENTAL EVALUATION

The experimental evaluation of our work consists of
five parts. After describing the setup in Section 4.1, we
compare in Section 4.2 the SMT solvers Boolector, CVC3,
and Z3 to identify the most suitable SMT solver for

12

further development and experiments. In Section 4.3,
we evaluate the simplification techniques proposed in
Section 3.4. In Section 4.4 we check the error detection
capability of ESBMC over a large set of both correct and
buggy ANSI-C programs. In the last two sections, we
evaluate ESBMC’s performance relative to that of two
other ANSI-C BMC tools. In Section 4.5, we compare ES-
BMC and SMT-CBMC, using SMT-CBMC’s own bench-
mark suite, while we compare ESBMC and CBMC in the
final Section 4.6, using a variety of programs, including
embedded software used in telecommunications, control
systems, and medical devices.

4.1 Experimental Setup

We used benchmarks from a variety of sources to evalu-
ate ESBMC’s precision and performance, which include
embedded systems benchmark suites and applications as
well as other testsuites and applications, including the
SAT solver PicoSAT [42], the open-source applications
flex [43] and git-remote [44], and a flasher manager appli-
cation [45]. We also extracted one particular application
from the CBMC manual [11] that implements the multi-
plication of two numbers using bit-level operations.

The PowerStone [37] suite contains graphics appli-
cations, paging communication protocols and bit shift-
ing applications. The SNU-RT [27] suite consists of
matrix and signal processing functions such as matrix
multiplication and decomposition, quadratic equations
solving, cyclic redundancy check, fast fourier trans-
form, LMS adaptive signal enhancement, and JPEG en-
coding. We use the non-deterministic version of these
benchmarks where all inputs are replaced by non-
deterministic values. We also a cubic equation solver
from the MiBench [41] suite. The HLS suite [33] contains
programs that implement the encoder and decoder of the
adaptive differential pulse code modulation (ADPCM).

The NXP [40] benchmarks are taken from the set-top
box of NXP Semiconductors that is used in high defini-
tion internet protocol and hybrid digital TV applications.
The embedded software of this platform relies on the
Linux operating system and makes use of different ap-
plications such as (i) LinuxDVB that is responsible for
controlling the front-end, tuners and multiplexers, (ii)
DirectFB that provides graphics applications and input
device handling and (iii) ALSA that is used to control
the audio applications.

The NECLA [36] and VERISEC [34] benchmarks are
not specifically related to embedded software, but they
allow us to check ESBMC’s error-detection capability
easily since they provide ANSI-C programs with and
without known bugs. Here, we use the suffix “-bad”
to denote the subset with seeded errors, and “-ok”
to denote the supposedly correct (“golden”) versions.
The programs make use of dynamic memory allocation,
interprocedural dataflow, aliasing, pointers typecast and
string manipulation. In addition, we used some pro-
grams from the well-known Siemens [39] test suite,

including pattern matching and string processing, statis-
tics, and aerospace applications. The EUREKA [3] bench-
marks finally contain programs that allow us to assess
the scalability of the model checking tools on problems
of increasing complexity [3].

All experiments were conducted on an otherwise idle
Intel Xeon 5160, 3GHz server with 4 GB of RAM running
Linux OS. For all benchmarks, the time limit has been set
to 3600 seconds for each individual property. All times
given are wall clock time in seconds as measured by the
unix time command.

4.2 Comparison of SMT solvers

As a first step, we compared to which extent the SMT
solvers support the domain theories that are required for
SMT-based BMC of ANSI-C programs. For this purpose,
we analyzed the SMT solvers Boolector (V1.4), CVC3
(V2.2), and Z3 (V2.11). In the theory of linear and non-linear
arithmetic, CVC3 and Z3 do not support the remainder
operator, but they allow us to use axioms to define it.
Currently, Boolector does not support the theory of linear
and non-linear arithmetic at all. In the theory of bit-vectors,
CVC3 does not support the division and remainder op-
erators for bit-vectors representing signed and unsigned
integers. However, in all cases, axioms can be used in
order to define the missing operators. Boolector and Z3
support all word-level, bit-level, relational, arithmetic
functions over unsigned and signed bit-vectors. In the
theories of arrays and tuples, the verification problems
only involve selecting and storing elements from/into
arrays and tuples, respectively, and both domains thus
comprise only two operations. These operations are fully
supported by CVC3 and Z3; Boolector supports only the
theory of arrays but not that of tuples.

We then used 15 ANSI-C programs to compare the
performance of Boolector, CVC3, and Z3 as ESBMC back-
ends. The programs 1-8 allow us to assess the scalability
of the model checking tools on problems of increasing
complexity [3] and the programs 9-15 contain typical
ANSI-C constructs found in embedded software, i.e.,
they contain linear and non-linear arithmetic and make
heavy use of bit operations.

Table 1 shows the results of the comparison. Here, L
is the number of lines of code, B the unwinding bound,
and P the number of properties verified, for each ANSI-
C program. We checked for language-specific safety
properties (e.g., pointer safety, array bounds, division
by zero) as well as user-specified properties. For each
solver, we provide the total time (in seconds) to check
all properties of each program at the same time, using
the specified unwinding bound, as well as the solver
time itself. The difference between both times is spent
in the ESBMC front-end. In addition, we provide (in
brackets) the timings using the SMT-LIB interface instead
of the native API of the solver. The fastest time for each
program is shown in bold. We also indicate whether
ESBMC fails during the verification process, either due

13

CVC3 (v2.2) Boolector (v1.4) Z3 (v2.11)

Program L B P Solver Total Solver Total Solver Total

1 EUREKA.BubbleSort 43 35 17 14 (3) 17 (5) <1 (<1) 2 (2) <1 (<1) 2 (3)

43 70 17 Mb (16) Mb (33) 3 (1) 16 (17) 3 (1) 16 (17)

43 140 17 Mb (Mb) Mb (Mb) 85 (53) 282 (311) 65 (11) 265 (269)

2 EUREKA.SelectionSort 34 35 17 17 (2) 18 (3) <1 (<1) 1 (1) <1 (<1) 1 (1)

34 70 17 Mb (8) Mb (17) 1 (<1) 9 (10) 1 (1) 9 (11)

34 140 17 Mb (42) Mb (209) 10 (3) 161 (171) 12 (6) 165 (173)

3 EUREKA.InsertionSort 34 35 17 2 (3) 4 (5) <1 (<1) 3 (3) <1 (<1) 3 (3)

34 70 17 3 (11) 14 (24) 4 (<1) 15 (13) 2 (1) 12 (14)

34 140 17 21 (67) 194 (283) 193 (3) 350 (219) 42 (7) 212 (222)

4 EUREKA.BellmanFord 49 20 33 <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

5 EUREKA.Prim 79 8 30 <1 (1) 5 (2) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

6 EUREKA.StrCmp 14 1000 6 4 (444) 11 (454) 192 (248) 195 (257) 32 (37) 35 (46)

7 EUREKA.SumArray 12 1000 7 <1 (106) 1 (107) <1 (<1) 1 (1) 9 (<1) 10 (1)

8 EUREKA.MinMax 19 1000 9 Tb (Mb) Tb (Mb) 38 (2) 42 (7) 2 (1) 6 (7)

9 SNU-RT.Fibonacci 40 30 4 <1 (<1) 39 (38) <1 (<1) 39 (38) <1 (<1) 39 (38)

10 SNU-RT.bs 95 15 7 <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

11 SNU-RT.lms 258 202 23 97 (17) 225 (324) <1 (<1) 303 (307) 3 (<1) 306 (307)

12 MiBench.Cubic 66 5 5 <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

13 CBMC.BitWise 18 8 1 3 (6) 3 (6) 7 (8) 7 (8) 30 (26) 30 (26)

14 HLS.adpcm encode 149 200 12 <1 (21) 6 (26) <1 (<1) 6 (6) <1 (<1) 6 (6)

15 HLS.adpcm decode 111 200 10 <1 (24) 3 (27) <1 (<1) 3 (3) <1 (<1) 3 (3)

TABLE 1: Results of the comparison between CVC3, Boolector and Z3. Time-outs are represented with T in the
Time column; Examples that exceed available memory are represented with M in the Time column.

to a time out (T) or due to memory overflow (M). All
failures occurred in the back-end (i.e., solver), which is
indicated by the subscript b.

As we can see in Table 1, if we use the native API of
the solvers, Z3 usually runs slightly faster than Boolector
and CVC3; however, both CVC3 and Boolector are faster
for some programs. Generally the difference between
the solvers (in particular between Boolector and Z3) are
small, although CVC3 fails for some examples. If we use
the SMT-LIB interface, the situation changes, and Boolec-
tor runs slightly faster than Z3 and CVC3. However,
similar to case of the native API, it is not always the
fastest solver; again, the differences are generally small,
and even smaller than when using the native API.

Generally, the native API is slightly faster than the
SMT-LIB interface, although the difference is small.
However, there are a few notable exceptions. Using the
SMT-LIB interface, CVC3 scales better for BubbleSort and
SelectionSort, but slows down substantially for StrCmp
and SumArray. We manually inspected the respective
VCs and found that their structure is essentially the
same. We conclude that the SMT-LIB interface of CVC3
lacks some optimization during the preprocessing. Sim-
ilarly, Boolector speeds up for InsertionSort using the
SMT-LIB API, but the structure of the VCs using both
APIs is also the same; similarly, we conclude that the
SMT-LIB interface enables some optimization during the
preprocessing.

We decided to continue the development with Z3 and
Boolector using both the native and SMT-LIB APIs since

CVC3 does not scale so well and fails to check the three
benchmarks BubbleSort, SelectionSort and MinMax.

4.3 Performance Improvement

We evaluate the effectiveness of the simplification tech-
niques described in Section 3.4 using 174 programs,
with a total size of 70K lines of code, taken from
the benchmark suites Siemens, SNU-RT, PowerStone,
NECLA and NXP. With all optimizations enabled, ES-
BMC can check all 174 programs in 439 seconds, which
serves as our baseline. We then evaluate the effect of
the simplifications by disabling them one at a time as
follows: constant propagation of store operations for
arrays, structs and unions (CP store); constant propaga-
tion for constant strings (CPString); forward substitution
(FS); and removal of functionally redundant literals and
variables (FRLV). We set the time out to 180 seconds
because it is longest time to check a given program with
all optimizations enabled.

Surprisingly, ESBMC performs better when we dis-
able the removal of functionally redundant literals and
variables (FRLV) and checks all 174 programs in 423
seconds. We can thus conclude that the SMT solvers
already eliminate the functionally redundant literals and
variables during the preprocessing phase in a more
efficient way. Fortunately, all other simplifications pay
off. Using CP store , ESBMC checks 170 programs in 1059
seconds and times out in four programs. With CPString ,
it checks 173 programs in 590s and times out in one

14

program, and with FS , it checks 171 programs in 972
seconds and times out in three programs. The optimiza-
tions are complementary in the sense that disabling each
one of them causes ESBMC to time out on different
programs. Moreover, their effect is not only restricted
to the programs that ESBMC fails to check when they
are disabled: on the remaining 166 programs, disabling
CP store causes an average slow-down of more than
30%, although the effects are less pronounced, or even
reversed, for disabling CPString and FS , with a slow-
down of approx. 8%, and a speed-up of approx. 4%,
respectively.

4.4 Error-Detection Capability

As a third step, we analyze to which extent ESBMC
is able to handle and detect errors in standard ANSI-
C benchmarks. Table 2 summarizes the results. Here,
N is the number of programs in the benchmark suite,
while ΣL and ΣP give its total size (in lines of code)
and the total number of claims checked, respectively. The
table again shows both the solver and total verification
time. In the last three columns, Ne is the number of pro-
grams in which ESBMC has detected violations of safety
properties and user-specified assertions, “true” reports
the number of property violations that correspond to
true, confirmed faults, “false” reports the number of false
negatives produced by ESBMC.

The EUREKA suite only contains correct programs.
However, in the NECLA and VERISEC suites, ESBMC
is able to detect errors related to buffer overflow, alias-
ing, dynamic memory allocation, and string manipu-
lation; in particular, it detects all seeded errors in the
versions NECLA-bad and VERISEC-bad. Moreover, ES-
BMC could verify two programs that were originally
in NECLA-bad but did not contain any seeded errors;
the benchmark creators confirmed that these programs
were misclassified and subsequently changed the error
seeding.

Surprisingly, ESBMC also detects errors in the sup-
posedly correct golden versions. In NECLA-ok, ESBMC
finds three property violations in two programs, which
have been confirmed as true faults by the benchmark
creators [46]. The first is an array bounds violation,
caused by an indexing expression x%32 that can become
negative for negative inputs x. The other two are also
related to array bounds violations, but are caused by
repeated in-place updates of a buffer using the strcat-
function, which also appends a new NULL-character
at the end of the new string formed by the concate-
nation of both arguments; this NULL-character then
causes the violation in the last iteration of the loop.
In VERISEC-ok, ESBMC finds 15 property violations in
nine programs, which have also been confirmed by the
benchmark creators [47]. All violations are related to
arithmetic overflow on the typecast operation caused by
assignments of the form c=i, where c is declared as a char
and i as an int.

In the WCET test suite, ESBMC finds four property
violations in two programs, which we inspected man-
ually. Two violations point to possible overflows that
stem from assignments between incompatible datatypes
(e.g., long int vs. int), which are indeed errors; a fur-
ther violation points to a potential division by zero
error, which is unlikely to be uncovered by testing, as
it requires an entire array to be randomly initialized
with zeroes. The final property indicates an arithmetic
overflow in an expression StopTime-StartTime, but this
is a false negative, since both variables are guaranteed
to be positive at runtime, and moreover, StopTime is
always larger than StartTime. This false negative can
be suppressed by adding an assumption on the return
values to the ttime-function that is used to compute both
variables. Finally, ESBMC finds array bounds violations
and overflows in arithmetic expressions in four of the
SNU-RT benchmarks and invalid pointers in one of the
PowerStone benchmarks; we confirmed by inspection
that these are indeed faults.

4.5 Comparison to SMT-CBMC

This subsection describes the evaluation of ESBMC
against another SMT-based BMC tool developed by
Armando et al. [3]. For the evaluation, we took the
official benchmark of the SMT-CBMC tool [35]; Table 3
summarizes the results. The timings in brackets again
refer to the SMT-LIB interface. Note that results given for
ESBMC differ from those in Table 1: since SMT-CBMC
does not generate any checks for safety properties we
used both systems only to check the single user-specified
property. SMT-CBMC has been invoked by setting man-
ually the file name and the unwinding bound (i.e.,
SMT-CBMC -file Module -bound B). Furthermore, we
compared SMT-CBMC with its default solver (i.e, CVC3
2.2) against ESBMC using both its default solver (i.e., Z3
2.11) as well as CVC3 2.2.

If CVC3 is used as the SMT solver, both tools run
out of memory and thus fail to analyze BubbleSort for
large N (N=140). SMT-CBMC runs out of time when
analyzing the program SelectionSort and StrCmp while
ESBMC runs out of time for the program MinMax.
ESBMC outperforms SMT-CBMC by a factor of 6-90 for
those benchmarks that do not fail. However, if Z3 is
used as solver for ESBMC, the difference between both
tools becomes more noticeable and ESBMC generally
outperforms SMT-CBMC by a factor of 10-200.

4.6 Comparison to SAT-based CBMC

CBMC [11] is one of the most widely used BMC tools
for ANSI-C. It has recently been extended by an SMT
backend [6], and in our comparison we tried to use
the SMT solvers Z3 and Boolector (by invoking --z3
or --boolector) for evaluating both tools CBMC and
ESBMC. However, the SMT-based CBMC version failed
to check all benchmarks reported in Table 4 due to prob-
lems in the SMT back-end. Consequently, we compare

15

Time Properties Errors

Testsuite N ΣL ΣP S
o

lv
er

T
o

ta
l

P
as

se
d

V
io

la
te

d

Ne tr
u

e

fa
ls

e

1 EUREKA 8 821 437 224 755 437 0 - - -

2 NECLA-ok 30 891 254 98 172 212 3 2 3 0

NECLA-bad 10 342 112 37 47 87 25 10 25 0

3 VERISEC-ok 80 4521 2114 128 211 2094 15 9 15 0

VERISEC-bad 83 4569 2024 127 226 1808 216 83 216 0

4 PowerStone 9 2857 2031 728 816 2014 17 1 12 0

5 SNU-RT 20 3320 828 15 570 799 29 4 29 0

6 WCET 10 3430 726 7 73 722 4 2 3 1

TABLE 2: Results of the error-detection capability of ESBMC.

ESBMC (Z3) ESBMC (CVC3) SMT-CBMC [3]

Module L B P Solver Total Solver Total Total

1 EUREKA.BubbleSort 43 35 1 <1 (<1) 2 (2) 15 (3) 16 (3) 100

43 70 1 3 (1) 13 (15) Mb (16) Mb (30) 407

43 140 1 68 (11) 259 (265) Mb (Mb) Mb (Mb) M

2 EUREKA.SelectionSort 34 35 1 <1 (<1) <1 (<1) <1 (<1) <1 (<1) T

34 70 1 <1 (<1) 8 (9) <1 (7) 8 (15) T

34 140 1 10 (4) 157 (162) 2 (34) 160 (193) T

3 EUREKA.BellmanFord 49 20 1 <1 (<1) <1 (<1) <1 (<1) <1 (<1) 43

4 EUREKA.Prim 79 8 1 <1 (<1) <1 (<1) <1 (<1) <1 (<1) 96

5 EUREKA.StrCmp 14 1000 1 25 (30) 27 (38) 3 (253) 7 (261) T

6 EUREKA.SumArray 12 1000 1 9 (<1) 25 (<1) <1 (108) <1 (108) 98

7 EUREKA.MinMax 19 1000 1 2 (1) 6 (6) Tb (Mb) Tb (Mb) 65

TABLE 3: Results of the comparison between ESBMC and SMT-CBMC.

our approach only against the SAT-based CBMC version,
which is able to support most of the benchmarks from
Table 4; in particular, compared CBMC v3.8 and ESBMC
v1.15. We invoked both tools by manually setting the
file name, the unwinding bound, the checks for array
bounds, pointer safety, division by zero, and arithmetic
over- and underflow.2 Table 4 reports the results in the
usual format.

As we can see in Table 4, SAT-based CBMC is not able
to check the module pocsag due to memory limitations;
it times out in five cases and fails in four cases due to
errors in the front-end, and in another five cases due
to errors in the back-end. ESBMC runs out of time to
check the modules qurt and ludcmp, but it is able to check
seven (of eight) properties of the module qurt and fif-
teen additional benchmarks in comparison to SAT-based
CBMC. Both CBMC and ESBMC find errors in the SNU-
RT (as confirmed in Section 4.4) and NXP benchmark
suites. However, ESBMC finds additional confirmed er-
rors (see Section 4.4 again) in the WCET, SNU-RT, and
PowerStone benchmarks, while CBMC produces false
negatives or fails. In the case of print tokens2, ESBMC

2. The tools where invoked as follows: cbmc file --unwind
B --bounds-check --div-by-zero-check --pointer-check
--overflow-check --string-abstraction and esbmc file
--unwind B --overflow-check --string-abstraction.

runs out of memory if we try to increase the unwinding
bound to 82, but if we restrict the verification to the
function get token, it finds an array-bounds violation in
the golden version. We extracted the counterexample
provided by ESBMC and used it to confirm that this
is a true fault. ESBMC also finds additional errors in
flasher manager (violation of a user-specified assertion),
exStbHwAcc (arithmetic overflow on typecast), and ad-
pcm encode (array-bounds violation) applications. More-
over, SAT-based CBMC also produces false negatives for
the golden version of the programs ex30 and ex33 by
reporting non-existing bugs related to dynamic object
upper bounds and invalid pointers. We can also see that
ESBMC not only has a better precision than SAT-based
CBMC, but it also runs slightly faster than the SAT-
based CBMC in those benchmarks that it does not fail.
The results in Table 4 thus allow us to assess quantita-
tively that ESBMC improves substantially precision and
scales significantly better than CBMC for problems that
involve tight interplay between non-linear arithmetic, bit
operations, pointers and array manipulations, which are
typical for embedded systems software.

5 RELATED WORK

SMT-based BMC is gaining popularity in the formal
verification community due to the advent of sophisti-

16

SAT-based CBMC (v3.8) [11] ESBMC (v1.15)

Time Properties Time Properties

Module L B P S
o

lv
er

T
o

ta
l

P
as

se
d

V
io

la
te

d

F
ai

l

S
o

lv
er

T
o

ta
l

P
as

se
d

V
io

la
te

d

F
ai

l

1 Siemens.print tokens2 510 81∗ 135 <1 <1 135 0 0 <1 (<1) <1 (<1) 135 0 0

(get token) 51 82 76 Tb Tb 0 0 135 29 (35) 60 (65) 134 1 0

2 Siemens.replace 564 1∗ 199 †f †f - - - <1 (<1) <1 (<1) 199 0 0

3 Siemens.tot info 406 30∗ 73 †f †f - - - 32 (3) 98 (79) 73 0 0

4 Siemens.tcas 173 4 38 <1 <1 38 0 0 1 (<1) 2 (1) 38 0 0

5 Siemens.space 9125 126∗ 2016 <1 4 2016 0 0 <1 (<1) 3 (3) 2016 0 0

6 WCET.statistics 157 ∞ 29 †f †f - - - 1 (<1) 53 (53) 27 2 0

7 WCET.statemate 1273 3 6 <1 <1 6 0 0 <1 (<1) <1 (<1) 6 0 0

8 SNU-RT.crc new 125 ∞ 13 <1 6 12 1 0 <1 (<1) 8 (8) 12 1 0

9 SNU-RT.fft1k new 158 ∞ 39 †b †b 35 0 4 <1 (1) 56 (57) 39 0 0

10 SNU-RT.fibcall new 83 50∗ 2 <1 <1 1 1 0 <1 (<1) <1 (<1) 1 1 0

11 SNU-RT.fir new 316 ∞ 25 5 6 25 0 0 <1 (<1) 2 (2) 25 0 0

12 SNU-RT.insertsort new 94 13 20 †b †b 0 0 20 8 (<1) 8 (2) 14 6 0

13 SNU-RT.lms new 256 ∞ 35 †b †b 29 0 6 3 (<1) 24 (24) 35 0 0

14 SNU-RT.ludcmp new 142 ∞ 79 Tb Tb 84 0 4 Tb (Tb) Tb (Tb) 84 0 4

15 SNU-RT.qurt new 159 ∞ 8 Tb Tb 2 0 6 Tb (Tb) Tb (Tb) 7 0 1

16 PowerStone.bcnt 83 17 153 2 3 153 0 0 2 (2) 2 (2) 153 0 0

17 PowerStone.blit 95 1 133 <1 <1 133 0 0 <1 (<1) <1 (<1) 129 4 0

18 PowerStone.pocsag 521 42 187 Mf Mf - - - 4 (<30) 22 (48) 186 1 0

19 NECLA.ex30 45 101 16 <1 2 12 4 0 <1 (<1) 3 (3) 16 0 0

20 NECLA.ex33 35 100 13 <1 <1 6 7 0 <1 (<1) <1 (<1) 13 0 0

21 NXP.exStbKey 558 4 33 <1 4 33 0 0 <1 (<1) 1 (1) 33 0 0

22 NXP.exStbHDMI 1508 15∗ 138 500 706 138 0 0 316 (†b) 429 (†b) 138 0 0

23 NXP.exStbLED 430 50∗ 102 72 122 102 0 0 48 (68) 80 (79) 102 0 0

24 NXP.exStbHwAcc 1432 3 239 2 6 238 1 0 <1 (†b) 1 (†b) 238 1 0

25 NXP.exStbResolution 353 50 79 †b †b 0 0 70 26 (59) 59 (61) 70 0 0

26 NXP.exStbFb 689 10 218 484 825 167 0 0 52 (†b) 101 (†b) 167 0 0

27 NXP.exStbCc 331 3 21 <1 3 19 2 0 <1 (<1) <1 (<1) 19 2 0

28 picosat 8160 23∗ 3142 Tf Tf - - - 27 (†b) 79 (†b) 3142 0 0

29 flex 14192 2∗ 10002 †f †f - - - 3492 (†b) 3526 (†b) 10002 0 0

30 git-remote-gitkrb5 6288 5∗ 174 †b †b 0 0 174 196 (†b) 225 (†b) 174 0 0

31 flasher manager 521 21 26 2 4 26 0 0 25 (22) 29 (27) 25 1 0

32 HLS.adpcm encode 150 100 25 Tb Tb 0 0 25 <1 (<1) 6 (6) 24 1 0

TABLE 4: Results of the comparison between CBMC and ESBMC. Internal errors in the respective tool are
represented with † in the Time column. The subscripts f and b indicate whether the errors occurred in the

front-end or back-end, respectively. We give the smallest unwinding bound that is sufficient to prove or falsify the
properties (i.e., produces no unwinding violation); a superscript ∗ on the unwinding bound indicates that the

bound is insufficient, but cannot be increased with the available memory.

cated SMT solvers built over efficient SAT solvers [16],
[17], [18]. Previous work related to SMT-based BMC [4],
[48], [3] combined decision procedures for the theories
of uninterpreted functions, arrays and linear arithmetic
only, but did not encode key constructs of the ANSI-C
programming language such as bit operations, floating-
point arithmetic and pointers.

Ganai and Gupta describe a verification framework for
BMC which extracts high-level design information from
an extended finite state machine (EFSM) and applies
several techniques to simplify the BMC problem [4], [24].

However, the authors flatten structures and arrays into
scalar variables in such a way that they use only the
theory of integer and real arithmetic in order to solve
the VCs. Armando et al. also propose a BMC approach
using SMT solvers for C programs [3]. However, they
only make use of linear arithmetic (i.e., addition and
multiplication by constants), arrays, records and bit-
vectors in order to solve the VCs. As a consequence,
their SMT-CBMC prototype does not address important
constructs of the ANSI-C programming language such as
non-linear arithmetic and bit-shift operations. Kroening

17

also encodes the VCs generated by the front-end of
CBMC by using the bit-vector arithmetic and does not
exploit other background theories of the SMT solvers
to improve scalability [6]. Donaldson et al. present an
approach to compute invariants in BMC of software by
means of k-induction [49]. Their method, however, is
highly customized for checking assertions representing
DMA operations in the Cell processor, which requires
only a small number of loop iterations and thus allows
k-induction to work well with a small value of k. Xu
proposes the use of SMT-based BMC to verify real-time
systems by using TCTL to specify the properties [48].
The author considers an informal specification (written
in English) of the real-time system and then models the
variables using integers and reals and represents the
clock constraints using linear arithmetic expressions.

De Moura et al. present a bounded model checker
that combines propositional SAT solvers with domain-
specific theorem provers over infinite domains [50]. Dif-
ferently from other related work, the authors abstract
the Boolean formula and then apply a lazy approach to
refine it in an incremental way. This approach is applied
to verify timed automata and RTL level descriptions.
Jackson et al. [51] discharge several VCs from programs
written in the Spark language to the SMT solvers CVC3
and Yices as well as to the theorem prover Simplify. The
idea of this work is to replace the Praxis prover by CVC3,
Yices and Simplify in order to generate counter-example
witnesses to VCs that are not valid. In [52], Jackson
and Passmore extend [51] by implementing a tool to
automatically discharge VCs using SMT solvers. The
authors observed significant performance improvement
of the SMT solvers when compared to the Praxis prover.
Jackson and Passmore, however, focus on translating
VCs into SMT from programs written in the SPARK
language (which is a subset of the Ada language) instead
of ANSI-C programs.

Software model checking is executed on an abstraction
of the actual program. Model checking the abstraction
of a program is sound, but necessarily incomplete. Ab-
straction refinement is a general technique for proving
properties with software model checkers [60]. Thus,
abstraction refinement allows extending the usual bug-
hunting uses of software model checkers. In practice, a
well-known approach is counterexample-guided abstrac-
tion refinement (CEGAR) [64]. A number of approaches
have been developed for CEGAR [60], including in-
terpolation [63]. Examples of modern software model
checkers implementing CEGAR with interpolation in-
clude BLAST [62] and ARMC [61].

Recently, a number of static checkers have been de-
veloped in order to trade off scalability and precision.
Calysto is an automatic static checker that is able to
verify VCs related to arithmetic overflow, null-pointer
dereferences and assertions specified by the user [53].
The VCs are passed to the SMT solver SPEAR which sup-
ports boolean logic, bit-vector arithmetic and is highly
customized for the VCs generated by Calysto. However,

Calysto does not support floating-point operations and
unsoundly approximates loops by unrolling them only
once. As a consequence, soundness is relinquished for
performance. Saturn is another automatic static checker
that scales to larger systems, but with the drawback of
losing precision by supporting only the most common
integer operators and performing at most two unwind-
ings of each loop [54]. In contrast to [53], [54], the
extended static checker for Java (ESC/JAVA) is a semi-
automatic verification tool, which requires the program-
mer to supply loop, function, and class invariants and
thus limits its acceptance in pratice [55]. In addition,
ECS/Java employs the Simplify theorem prover [56]
to verify user-supplied invariants and thus important
constructs of the programming language (e.g., bitwise
operation) are often encoded imprecisely using axioms
and uninterpreted functions.

6 CONCLUSIONS

In this work, we have investigated SMT-based verifi-
cation of ANSI-C programs, with a focus on embed-
ded software. We have described a new set of en-
codings that allow us to reason accurately about bit
operations, unions, fixed-point arithmetic, pointers and
pointer arithmetic and implemented it in the ESBMC
tool. Our experiments constitute, to the best of our
knowledge, the first substantial evaluation of SMT-based
BMC on industrial applications. The results show that
ESBMC outperforms CBMC [11] and SMT-CBMC [3]
if we consider the verification of embedded software.
ESBMC is able to model check ANSI-C programs that
involve tight interplay between non-linear arithmetic,
bit operations, pointers and array manipulations. In
addition, it was able to find undiscovered bugs in the
NECLA, PowerStone, Siemens, SNU-RT, VERISEC and
WCET benchmarks related to arithmetic overflow, buffer
overflow, invalid pointers and pointer arithmetic.

SMT-CBMC still has limitations not only in the ver-
ification time (due to the lack of simplification based
on high-level information), but also in the encodings of
important ANSI-C constructs used in embedded soft-
ware. CBMC is a SAT-based BMC tool for full ANSI-
C, but it has limitations due to the fact that the size of
the propositional formulae increases significantly in the
presence of large data-paths and high-level information
is lost when the VCs are converted into propositional
logic (preventing potential optimizations to reduce the
state space to be explored). Its prototype SMT-based
back-end is still unstable and fails on a large fraction
of our benchmarks.

We are currently extending ESBMC to support the
verification of multi-threaded software in embedded
systems [57], [58]. For future work, we also intend to
investigate the application of termination analysis [59]
and incorporate reduction methods to simplify the k-
model.

18

Acknowledgments
We thank D. Kroening, C. Wintersteiger, and L. Platania for
many helpful discussions about the CBMC and SMT-CBMC
model checking tools, C. Barrett, R. Brummayer and L. de
Moura for analyzing the VCs, and F. Ivancic and M. Chechik
for checking the bugs discovered in the NECLA and VERISEC
suites. We also thank the anonymous reviewers for their com-
ments, which helped us to improve the draft version of this
paper.

This research was supported by EPSRC grants

EP/E012973/1 (NOTOS) and EP/F052669/1 (Cadged Code)

and by the EC FP7 grants ICT/217069 (COCONUT) and

IST/033709 (VERTIGO). Lucas Cordeiro was also supported

by an ORSAS studentship.

REFERENCES

[1] A. Biere. Bounded model checking. In Handbook of Satisfiability,
pp. 457–481. 2009.

[2] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,”
in SPIN, LNCS 3925, pp. 146–162, 2006.

[3] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,”
in Int. J. Softw. Tools Technol. Transf., vol. 11, no. 1, pp. 69–83, 2009.

[4] M. K. Ganai and A. Gupta, “Accelerating high-level bounded
model checking,” in Intl. Conf. on Computer-Aided Design (ICCAD),
pp. 794–801, 2006.

[5] ISO, ISO/IEC 9899:1999: Programming languages C, International
Organization for Standardization, 1999.

[6] D. Kroening, CBMC 3.3 released – preliminary support for SMT
QF AUFBV. http://groups.google.co.uk/group/cprover: The
CProver Group, 2009.

[7] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based
bounded model checking for embedded ANSI-C software,” in
Intl. Conf. on Automated Software Engineering (ASE), pp. 137–148,
2009.

[8] ——, “Continuous verification of large embedded software using
SMT-based bounded model checking.” in Intl. Conf. and Workshops
on Engineering of Computer-Based Systems (ECBS), pp. 160–169,
2010.

[9] SMT-LIB, The Satisfiability Modulo Theories Library,
http://combination.cs.uiowa.edu/smtlib, 2009.

[10] A. Stump and M. Deters, Satisfiability Modulo Theories Competition,
http://www.smtcomp.org/, 2010.

[11] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS 2988, pp. 168–176, 2004.

[12] C. Wintersteiger, Compiling GOTO-Programs,
http://www.cprover.org/goto-cc/, 2009.

[13] R. L. Sites, “Some thoughts on proving clean termination of
programs.” Stanford, CA, USA, Tech. Rep., 1974.

[14] A. R. Bradley and Z. Manna, The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer, 2007.

[15] M. Bozzano and et al. “Encoding RTL constructs for MathSAT:
a preliminary report,” Electr. Notes Theor. Comput. Sci., vol. 144,
no. 2, pp. 3–14, 2006.

[16] C. Barrett and C. Tinelli, “CVC3,” in Intl. Conf. on Computer Aided
Verification (CAV, LNCS 4590, pp. 298–302, 2007.

[17] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver
for bit-vectors and arrays,” in Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), LNCS 5505,
pp. 174–177, 2009.

[18] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS 4963, pp. 337–340, 2008.

[19] J. Mccarthy, “Towards a mathematical science of computation,”
in IFIP Congress. North-Holland, pp. 21–28, 1962.

[20] S. S. Muchnick, Advanced compiler design and implementation. Mor-
gan Kaufmann Publishers Inc., 1997.

[21] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman, “Compu-
tational challenges in bounded model checking,” Software Tools for
Technology Transfer (STTT), vol. 7, no. 2, pp. 174–183, 2005.

[22] L. M. de Moura and N. Bjørner, “Satisfiability modulo theories:
An appetizer,” in Brazilian Symposium on Formal Methods (SBMF),
LNCS 5902, pp. 23–36, 2009.

[23] E. Clarke, D. Kroening, O. Strichman, and J. Ouaknine, “Com-
pleteness and complexity of bounded model checking,” in Intl.
Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI), LNCS 2937, pp. 85–96, 2004.

[24] M. K. Ganai and A. Gupta, “Completeness in SMT-based BMC
for software programs,” in Design, Automation, and Test in Europe
(DATE), IEEE, pp. 831–836, 2008.

[25] A. S. Tanenbaum, Computer networks: 4th edition. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2002.

[26] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate
abstraction of ANSI–C programs using SAT,” in Formal Methods
in System Design (FMSD), vol. 25, pp. 105–127, 2004.

[27] S.-S. Lim, Seoul National University Real-Time Benchmarks Suite,
http://archi.snu.ac.kr/realtime/benchmark/, 2009.

[28] D. Kroening and O. Strichman, Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

[29] D. Gries and G. Levin, “Assignment and procedure call proof
rules,” ACM Trans. Program. Lang. Syst., vol. 2, no. 4, pp. 564–579,
1980.

[30] D. Kroening, E. Clarke, and K. Yorav, “Behavioral consistency
of C and Verilog programs using bounded model checking,” in
Technical Report, CMU-CS-03-126, 2003.

[31] J. A. Clause and A. Orso, “Leakpoint: pinpointing the causes of
memory leaks,” in Intl. Conf. on Software Engineering (ICSE) (1),
pp. 515–524, 2010.

[32] D. Kroening and S. A. Seshia, “Formal verification at higher levels
of abstraction,” in Intl. Conf. on Computer-Aided Design (ICCAD),
pp. 572–578, 2007.

[33] S. Gupta, High Level Synthesis Benchmarks Suite,
http://mesl.ucsd.edu/spark/benchmarks.shtml, 2009.

[34] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A buffer overflow
benchmark for software model checkers,” in Intl. Conf. on Auto-
mated Software Engineering (ASE), pp. 389–392, 2007.

[35] L. Platania, Eureka Benchmark Suite, http://www.ai-
lab.it/eureka/bmc.html, 2009.

[36] S. Sankaranarayanan, NECLA Static Analysis Benchmarks.
http://www.nec-labs.com/research/system/, 2009.

[37] J. Scott, L. H. Lee, A. Chin, J. Arends, and B. Moyer, “Designing
the low-power m*core architecture,” in Intl. Symp. Computer Archi-
tecture Power Driven Microarchitecture Workshop, IEEE, pp. 145–150,
1998.

[38] A. Ermedahl and J. Gustafsson, Worst-case execution time project /
Benchmarks, http://www.mrtc.mdh.se/projects/wcet/, 2009.

[39] T. Ostrand, Siemens Corporate Research, http://sir.unl.edu/portal/,
2010.

[40] NXP, High definition IP and hybrid DTV set-top box STB225.
http://www.nxp.com/, 2009.

[41] MiBench Version 1.0, http://www.eecs.umich.edu/mibench/,
2009.

[42] A. Biere, “Picosat essentials,” Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), vol. 4, no. 2-4, pp. 75–97, 2008.

[43] M. Ramanathan, flex, http://sir.unl.edu/portal/, 2010.
[44] J. Morse, Kerberos Git, https://www.studentrobotics.org/trac/wiki

/Kerberos/Git, 2011.
[45] N. L. Vinh, The Flasher Manager Application,

http://users.polytech.unice.fr/ rueher/Benchs/FM/, 2010.
[46] F. Ivancic, Personal communication, 2011.
[47] M. Chechik, Personal communication, 2011.
[48] L. Xu, “SMT-based bounded model checking for real-time sys-

tems,” in Intl. Conf. on Quality Software (QSIC), IEEE, pp. 120–125,
2008.

[49] A. Donaldson, D. Kroening, and P. Rümmer, “Automatic analysis
of scratch-pad memory code for heterogeneous multicore proces-
sors,” in Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), LNCS 6015, pp. 280–295, 2010.

[50] L. M. de Moura, H. Rueß, and M. Sorea, “Lazy theorem proving
for bounded model checking over infinite domains,” in Intl. Conf.
on Automated Deduction (CADE), LNCS 2392, pp. 438–455, 2002.

[51] P. B. Jackson, B. J. Ellis, and K. Sharp, “Using SMT solvers to
verify high-integrity programs,” in 2nd Workshop on Automated
Formal Methods, pp. 60–68, 2007.

[52] P. B. Jackson and G. O. Passmore, Proving SPARK Verification
Conditions with SMT solvers. Technical Report, University

19

of Edinburgh, http://homepages.inf.ed.ac.uk/pbj/papers/vct-
dec09-draft.pdf, 2009.

[53] D. Babić and A. J. Hu, “Calysto: Scalable and Precise Extended
Static Checking,” in Intl. Conf. on Software Engineering (ICSE), pp.
211–220, 2008.

[54] Y. Xie and A. Aiken, “Scalable error detection using Boolean
satisfiability,” Special Interest Group on Programming Languages
(SIGPLAN) Not., pp. 351–363, 2005.

[55] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended static checking for Java,” in Programming
Language Design and Implementation (PLDI), pp. 234–245, 2002.

[56] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover
for program checking,” J. ACM, vol. 52, no. 3, pp. 365–473, 2005.

[57] L. Cordeiro, “SMT-based bounded model checking for multi-
threaded software in embedded systems.” in Intl. Conf. on Software
Engineering (ICSE), Doctoral Symposium, pp. 373–376, 2010.

[58] L. Cordeiro and B. Fischer, “Verifying multi-threaded software
using SMT-based context-bounded model checking,” To appear in
33rd Intl. Conf. on Software Engineering (ICSE), 2011.

[59] R. C. Andreas, B. Cook, A. Podelski, and A. Rybalchenko, “Termi-
nator: Beyond safety,” in Intl. Conf. on Computer Aided Verification
(CAV), LNCS 4144, pp. 415–418, 2006.

[60] R. Jhala, R. Majumdar, “Software model checking,” in ACM
Comput. Surv., vol. 41, no. 4, pp. 1–54, 2009.

[61] A. Podelski, A. Rybalchenko, “ARMC: The Logical Choice for
Software Model Checking with Abstraction Refinement,” in Prac-
tical Aspects of Declarative Languages (PADL), pp. 245–259, 2007.

[62] D. Beyer, T. Henzinger, R. Jhala, R. Majumdar, “The software
model checker Blast,” in Int. J. Softw. Tools Technol. Transf. vol. 9,
no. 5-6, pp. 505-525, 2007.

[63] K. McMillan. Interpolation and sat-based model checking. in Intl.
Conf. on Computer Aided Verification (CAV), LNCS 2725, pages 1–13,
2003.

[64] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, “Counterexample-
Guided Abstraction Refinement,” in Intl. Conf. on Computer Aided
Verification (CAV), LNCS 1855, pp. 154-169

Lucas Cordeiro received the B.Sc. degree in
electrical engineering and the M.Sc. degree in
computer engineering from the Federal Univer-
sity of Amazonas (UFAM), in 2005 and 2007,
respectively. He received the Ph.D. degree in
computer science from University of Southamp-
ton in 2011. Currently, he is an assistant profes-
sor in the Electronic and Information Research
Center at UFAM. His work focuses on software
verification, bounded (and unbounded) model
checking, satisfiability modulo theories and em-

bedded systems.

Bernd Fischer received his PhD degree in
Computer Science in 2001 from the University of
Passau, Germany. From 1998 to 2006, he was
a research scientist with USRA/RIACS at the
NASA Ames Research Center. Since 2006 he
is a Senior Lecturer for computer science at the
University of Southampton. His current research
interests include code generation, programming
languages, formal methods, software reliability,
and software verification.

Joao Marques-Silva (M’95-SM’03) received a
Ph.D. degree from the University of Michigan,
Ann Arbor, USA, in 1995, and the Habilitation
degree in computer science from the Technical
University of Lisbon in 2004. He is currently
Stokes Professor of Computer Science and In-
formatics, University College Dublin (UCD), Ire-
land. He is also Professor of Computer Science
at Instituto Superior Tecnico (IST), Portugal. His
research interests include algorithms for con-
straint solving and optimization, and applications

in formal methods, artificial intelligence, operations research, and bioin-
formatics.

