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ABSTRACT 
 

Much is known about the complex network structure of the Web, 

and about behavioral dynamics on the Web. A number of studies 

address how behaviors on the Web are affected by different 

network topologies, whilst others address how the behavior of 

users on the Web alters network topology. These represent 

complementary directions of influence, but they are generally not 

combined within any one study. In network science, the study of 

the coupled interaction between topology and behavior, or state-

topology coevolution, is known as ‗adaptive networks‘, and is a 

rapidly developing area of research. In this paper, we review the 

case for considering the Web as an adaptive network and several 

examples of state-topology coevolution on the Web. We also 

review some abstract results from recent literature in adaptive 

networks and discuss their implications for Web Science. We 

conclude that adaptive networks provide a formal framework for 

characterizing processes acting ‗on‘ and ‗of‘ the Web, and offers 

potential for identifying general organizing principles that seem 

otherwise illusive in Web Science. 

Categories and Subject Descriptors 

H.1.2 User/Machine Systems: Human information processing; J.4 

Social and Behavioral Sciences: Sociology 

General Terms 

Design, Experimentation, Human Factors, Theory  

Keywords 

Networks, User Behavior, Adaptive, Structure, Dynamics, 

Simulation 

 

1. Web Behavior and Web Structure 

Recently, there have been great advances in what is known about 

the structure of the Web, and the dynamics of behaviors on the 

Web. Some notable examples of complex topologies found on the

  

  

 

 

Web includes small world network structure [1], power law 

scaling [2], preferential attachment [3] and community structure 

[4]. Examples of how differences in these topologies might affect 

behavior include the influence of social networks on content 

browsing behavior [5], or ‗meme propagation‘ [6], i.e., 

information contagion, [7], information cascades on blogs [8], 

distribution of messages [9, 10] and the spread/adoption of 

innovations [11]. Some studies are able to contrast behaviors on 

one topology with that of another: e.g. small world versus lattice 

[12]. Within general topologies, some studies are interested in 

identifying influential nodes, i.e. ‗critical/control nodes‘ in a 

complex network, that can trigger large cascades to spread 
information [13-15]. 

Of course, it is well-understood that the topology of these 

networks is not static [16, 17]. Studies of topology change, or 

‗topological evolution‘, in the Web include evolution of Web-

scale social networks [16, 18], link prediction [19], changes in 

community structure/group membership [4, 20], and the effects of 

follower recommender algorithms [21, 22]. So, topology affects 

behavior, and topology is not static. However, each of these 

different examples brings its own domain-specific assumptions 

about how topology changes. For example, network topology 

might change by the rule that well-connected individuals become 

more well-connected over time (preferential attachment), or that 

‗friends of mine become friends of each other‘ (clique formation) 

governed by the principle of homophily [23]. Moreover, most of 

this work views topological change as an exogenous process, 
having a one-way influence on behavior. 

The reality is that not only is behavior on the Web affected by the 

topology of the Web, but reflexively, the topology of the Web is 

affected by behaviors on the Web. That is, topology change is not 

an extrinsic process but the result of the distributed action of 

agents or users on the network. This two-way coevolution of 

structure and behavior on the Web is the topic of this paper and 

we will discuss several examples below.  

On the one hand, since there is still a lot more that could be 

learned about how structure affects behavior and, separately, how 

behavior affects structure, this two-way coupled interaction of 

both processes might seem a step too far; If we don‘t have 

appropriate tools or theory to handle such complications, perhaps 

we should leave well alone and continue with a reductionist 

approach to each process separately. But to understand the 



underlying governing processes, we argue that we must address 

the reflexive nature of this relationship between structure and 

behavior. In fact, in some ways, study of each of the independent 

processes leaves ‗loose ends‘ – what should we assume about the 

behaviors that affect structure, and what should we assume about 

the structures that affect behaviors. Whereas, when we put these 

processes together, it offers the potential that each provides a 

framework for understanding the context of the other. This 

transition from separate processes to coupled processes also 

causes us to view the Web as a complex adaptive system and not 
merely as a complex network or network science subject. 

Fortunately, appropriate tools and theory are rapidly developing in 

the science of complex networks in general. Adaptive networks 

[24, 25] is a rapidly developing field that specifically addresses 

this two-way interaction of behavior and network structure, or 

‗state-topology coevolution‘. In this paper we discuss the merits 

of taking an adaptive networks perspective of the Web and the 

opportunity for expanding Web Science territory. We review 

some abstract results from recent literature in adaptive networks 

and discuss their implications for Web Science. We conclude that 

adaptive networks provide a formal framework for characterizing 

processes on the Web, and offers potential for identifying general 

organizing principles such as self-organization, 

robustness/resilience, and global adaptation that seem otherwise 
illusive in Web Science [26-28]. 

2. ADAPTIVE NETWORKS 
Adaptive networks is a recent term recognizing the importance of 

‗state-topology coevolution‘, both in general terms (Fig. 1) and in 

many domains from economics to epidemiology [24, 29-31]: 

Complex network research has so far addressed mostly either 

"dynamics on networks" (state transition on a network with a 

fixed topology) or "dynamics of networks" (topological 

transformation of a network with no dynamic state changes). 

In many real-world complex biological and social networks, 

however, these two dynamics interact with each other and 

coevolve over the same time scales. Modelling and predicting 

state-topology coevolution is now recognized as one of the 

most significant challenges in complex network science. [32] 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. State-topology coevolution is the basis of adaptive 

networks (see [25]).  

 

Many general network science studies address how topology 

affects behavior, e.g. how the level of cooperation in games on 

networks is affected by a scale-free, lattice or community 

structure. Others address topological evolution [33]. But in some 

cases these use purely topological rules to govern this topological 

evolution [34]. For example, the notion that friends of mine 

become friends of each other is a topological rule of closure, and 

for preferential attachment the current degree of a node is 

sufficient to determine the probability of new links [3]. In 

contrast, the idea that people might tend to make links with co-

operators (or break links with defectors) is a rule about how 

behavioral state affects topology [35]. It is the latter kind of 

topological change, that which is driven by behavioral states 

(themselves determined by current topology, and so on), that 

constitutes an adaptive network (Fig. 1) [1, 36-38].  

Models of opinion networks [39, 40] provide a simple example to 

make the concept of an adaptive network more concrete. Such 

models concern how opinions are spread by connections on a 

network. They involve two governing processes social adjustment 

(change in behavior) and social segregation (change in 

connections) [41]. In general, it is natural to assume that the first 

process acts to update the node states by ‗infection‘ of opinions, 

while the latter changes links to be in contact with like-minded 

actors, e.g. to support homophily [23, 42]. Both processes will 

reduce the number of social links between actors of differing 

opinions (either by changing opinions or by changing links) 

creating self-reinforcing loops in social structure and behavior 

[43-45]. Different separations of timescales between the two 

processes (e.g. fast change of opinions/slow change of links, or 

vice versa) can result in the formation of homogenous 

communities with a uniform opinion [41] or cause the network to 

split into two distinct homogenous groups (‗assortative mixing‘) 

[46].  

We discuss some other representative examples of adaptive 

networks research (not yet connected with Web Science research) 

in more detail: 

1. The dynamics of epidemic spreading or ‗epidemics‘ is 

frequently modeled as non-adaptive networks. The nodes in 

these models are multi-type of usually either ‗infected‘ or 

‗not infected‘ and connected nodes indicate the opportunity 

for transfection. However, more recent models also 

incorporate adaptive changes to topology – i.e. individuals 

can adjust their social ties to others to move away from 

infected individuals [47]. This is shown to sometimes affect 

the robustness or resilience of a network to infection [47, 

48]. 

2. Some adaptive networks models simulate the action of 

playing games between agents on a network, and examples 

of this include models of cooperation that involve dynamic 

linking or ‗active linking‘ [30, 49]. Individuals in these 

models are able to adjust both their strategy and their social 

ties, and self-organize based on self-interest. The emerging 

social network was shown to support high levels of co-

operation when individuals were able to adjust their social 

ties in an adaptive network, compared to when they not able 

to adjust their ties on a static network. Recent work has also 

shown that individual differences between agents (diversity) 

actions on an adaptive network can change the topology 

further, which in this context of co-operative games resulted 

in even higher levels of cooperation [35]. 

3. Other studies of games on networks allow individuals to 

adjust their social ties in a continuous-valued fully-

connected network [50, 51]. For example, this might 

represent how user‘s perceptions of others change over time 

[50] or the probability of interaction [52] between two 

state affects how topology changes 
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players. These changes are equivalent to changing the 

(effective) strength of a connection or the weighting of a 

game between two players. This work then shows that, 

under the conditions studied, when users adjust the strength 

of those ties selfishly (i.e. to maximize their individual 

utility) they necessarily adjust them in a manner 

dynamically equivalent to Hebbian learning [53,52] in a 

neural network. Thus the network as a whole can exhibit 

associative memory and distributed optimization behavior 

merely through the decentralized, self-interested action of 

the individual actors selfishly modifying connections.  

Each of these models addresses adaptive network dynamics and 

behavior, but the implications of such models for the Web Science 

domain have not yet been addressed. 

3. ADAPTIVE NETWORKS ON THE WEB 
Here we detail three examples of adaptive networks in the Web 

Science domain. In each case we identify the nodes, the links, 

how topology affects behavior and how behavior affects topology. 

Example 1: Information networks. The World Wide Web is, of 

course, a network of nodes (Web pages) connected by links 

(hyperlinks), known as the Web Graph [54]. The behavior of 

interest is the act of visiting a Web page, and the topology of links 

obviously affects this behavior by facilitating the opportunity to 

move from one particular page to another quickly and easily 

(without utilizing search engines). Perhaps slightly less obvious is 

the opportunity for behavior to affect topology. But this may 

occur when, for example, disuse causes a link to be removed, or 

simply by the fact that highly visited sites attract new links. More 

indirectly, if a lack of visits causes a site to be removed from the 

Web, the remaining dead links to this site may be subsequently 

removed.    

Example 2: Social networks. Twitter1 is a micro-blogging social 

network, where actors can publically post a message (tweet) on 

their profile page. Nodes in this network are users or news 

sources, links are uni-directional, and the topology is referred to 

as the ‗follower network‘. These one-way social ties directly 

influence the behavior on the network, i.e. the flow/dissemination 

of news or tweets. A user may also, of course, decide to break a 

follower link if the content of tweets is not deemed valuable – 

behavior affects topology. An interesting augmentation to this 

basic behavior is the ‗retweet‘ behavior that facilitates the user-

filtered propagation of tweets to users that are not directly 

connected to the source of the tweet. Interestingly, the retweet 

mechanism provides attribution and preserves provenance of a 

message. This enables another mechanism by which behavior can 

then affect topology; specifically, a user receiving a retweeted 

message may subsequently choose to follow the source directly.  

Example 3: Collaborative filtering. Collaborative filtering and 

recommender systems are now embedded within many 

commercial systems such as NetFlix2 and Amazon3. The nodes in 

such systems are not the users but the products (movies, books). 

Links between products have the meaning that there is a user that 

likes/has bought/recommends both of these products. The 

                                                                 
1Twitter: http://twitter.com/  Accessed 12/5/2011 

2 Netflix: http://www.netflix.com/ Accessed 12/05/2011 

3 Amazon: http://www.amazon.com/ Accessed 12/05/2011. Here 

we refer to Amazon‘s ―users who viewed this item were also 

interested in this item‖ feature rather than the ―personal 

recommender system‖.   

behavior of interest is both the presentation/sampling of a product 

and the act of recommending or purchasing. The topology of links 

influences this behavior by enabling such systems to make 

targeted recommendations to users to buy or sample other 

products. This completes the coupling between the purchasing 

behaviors and the topology of the network that made the 

recommendations that precipitated those purchases. 

Direct evidence of structure affecting behavior is provided in a 

large scale study of social networks [5]. Their analysis of Flikr4, a 

photo sharing website, described how the user network of Flikr 

was involved in content browsing behavior. They found over 80% 

of the views of content came from users clicking through their 

social network. Another network study demonstrated that social 

network structure was affected group affiliation [20]. Recent work 

by Wei et al has studied a scenario similar to our third example, 

social recommendation of news, using an adaptive network model 

[55]. 

Such examples thus describe a reflexive coupling between 

structure and behavior that constitutes an adaptive network. Other 

systems that might similarly offer further examples include 

ecommerce sites such as eBay5 (with reputation feedback) and 

knowledge sharing sites such as Wikipedia6 (where existing 

structure affects both knowledge sharing and knowledge 

accumulation), etc.. 

4. IMPLICATIONS 

Recognizing that the Web contains adaptive networks provides 

the opportunity to transfer insights from the general adaptive 

networks research into the Web Science domain. Below we 

discuss three of the ‗hallmarks‘ of adaptive networks taken from 

Blasius and Gross [56], each of which has implications for 
adaptive networks in Web Science. 

1. Robust topological self-organization. An adaptive networks 

perspective reinforces the idea that we should think of the 

Web not just as a network science topic but as a complex 

adaptive system (CAS) [57, 58] with the accompanying 

possibility of self-organization and ‗order for free‘ [59], i.e. 

the emergence of patterns in a distributed system without 

any central control [60]. Blasius and Gross discuss examples 

where the adaptive feedback inherent in an adaptive 

network ―enables the agents that form the network to 

robustly organize into a state with special topological or 

dynamical properties‖ such as self-organized criticality and 

power-law distributions [56]. 

2. Spontaneous emergence of hierarchies and division of 

labor. Adaptive networks can exhibit cascading behavioral 

changes that give rise to spontaneous social hierarchies [61] 

and ―classes of topologically and functionally distinct nodes 

can arise from an initially homogenous population‖ 

exhibiting spontaneous division of labor [62]. Such 

possibilities have implications for understanding on-line 

community structure, commercial dynamics (e.g. monopoly 

formation), trust [63, 64], social norms [65], social 

segregation, rapid evolution of structure (e.g. emergence of 

Web 2.0 applications to support new behaviors [66]).   

                                                                 
4 Flickr: http://www.flickr.com/  Accessed 30/04/2010 

5 eBay: http://www.ebay.co.uk/ Accessed 12/05/2011 

6 Wikipedia http://www.wikipedia.org/ Accessed 12/05/2011 

http://twitter.com/
http://www.netflix.com/
http://www.amazon.com/
http://www.flickr.com/
http://www.ebay.co.uk/
http://www.wikipedia.org/


3. Complex system-level dynamics. Adaptive networks (unlike 

their non-adaptive counterparts) can ―give rise to new 

continuous and discontinuous phase transitions‖. Marsili‘s 

model of ‗the rise and fall of a network society‘, for 

example, demonstrated that the move from a sparsely 

connected network to a more connected one involved a 

phase transition such that a small change in environment 

could trigger either a ‗virtuous‘ or ‗vicious‘ cycle [67]. The 

implications for Web Science could be important in 

understanding the stability of services and the possibility of 
radical reorganization and/or collapse, for example. 

In addition, other works in the area of adaptive networks suggests 

implications for social group dynamics [68], social influence, 

synchronization, cooperation and network growth [24]; 

identification of critical point or control nodes [15], and local 
events and universality [69]. 

The structure versus agency debate [70] at the core of sociology 

provides a good analogue for the importance of an adaptive 

networks perspective in Web Science. Specifically, in the modern 

‗structuration‘ [43] perspective, ―social phenomena are treated 

neither in terms purely of social structure nor in terms purely of 

human agency, rather a view is adopted which treats structure and 

agency as influencing each other‖ [45]. Similar ideas are also 

current in the field of evolutionary biology where it is recognized 

that we cannot understand the evolution of an organism 

independently of its environmental niche, nor can we assume that 

its environmental niche is fixed, but we must recognize that 

organisms construct their own niches as a response to selection 

but thereby also alter their selection [71]. Social niche 

construction develops this idea into the domain of social 

behaviors, i.e. individuals co-create their social context, which 

then subsequently affects their social behavior [72, 73]. The 

analogy is that processes on the Web cannot be properly 

understood purely in terms of how structure affects behavior, nor 

in terms of behavior independent of structure, but only as a 

coupled process of ‗co-constitution‘ [26]. Such ‗structurist‘ 

perspectives are evident in the foundations of Web Science: ―there 

is a significant interplay between the social interactions enabled 

by the Web's design, the scalable and open applications 

development that is mandated to support these, and the 

architectural and data requirements of these large scale Web 

applications‖ [28]. 

One of the general organizing principles that appear to be relevant 

to understanding structure/agency interaction in networks is the 

notion of self-reinforcing loops [45] – i.e. actors tend promote 

structural changes in a network that support their current behavior, 

and structures enable or constrain agent behaviors to those that 

support (or do not disrupt) the current structure – creating a 

positive feedback loop. Interestingly, positive feedback between 

structure and behavior on networks has dynamical consequences 

that we understand very well in another, largely unrelated, field of 

complex systems research; computational neuroscience. In neural 

network research, the idea of changing a link between two 

neurons to reinforce the current behavioral configuration is called 

Hebbian learning [53]. This simple positive feedback principle, 

applied locally to each link based on the current behavior of the 

pair of nodes it connects, is well-known to produce global, 

network-level behaviors such as memory, associative learning, 

generalization and optimization [51]. Previous work shows that 

when individual agents modify connections of an adaptive 

network to maximize their own self-interest this causes 

topological changes that are Hebbian (because Hebbian changes 

are simply those that produce positive feedback or myopic 

exploitation of a connection). This means that the global 

behaviors well-known in neural networks may occur 

spontaneously in adaptive networks [52]. Such adaptive networks 

theory has the potential to provide a rigorous foundation for the 

‗magics of Web science‘ [28]; to properly understand the 

relationship between micro-processes and macro-phenomenon 
[28, 74]. 

5. CONCLUSIONS 
Many studies of the Web address how structure affects behavior 

and some address topological evolution, but few consider the Web 

as an adaptive network with reflexive coupling between behavior 

and structure. The study of adaptive networks is an inclusive 

framework to study both the behavior and topology of networks, 

and crucially the coupling of the two. We described several 

different types of Web networks and how they may be 

characterized as adaptive networks.  

Taking an adaptive networks approach to Web Science provides a 

framework for characterizing processes on and of networks and 

for understanding the Web as a complex adaptive system. Many 

concepts, principles and specific results from adaptive networks in 

other domains have implications for how we understand Web 

Science phenomenon. The hallmarks of adaptive networks – 

robustness, self-organization, emergence, division of labour, etc. – 

each suggest avenues for further research in the context of the 

Web. In particular, the agency/structure debate in sociology has 

synergy with adaptive networks concepts and suggests that further 

cross-disciplinary transfer may be fruitful. 

Much work still remains. Our current knowledge of the specific 

relationships between dynamic processes acting ‗on‘ and ‗of‘ the 

Web is limited. But we suggest that adaptive networks provide a 

formal framework for characterizing such processes, and offers 

potential for identifying general organizing principles that seem 

otherwise illusive in Web Science. 
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