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ABSTRACT

Much is known about the complex network structure of the Web,
and about behavioral dynamics on the Web. A number of studies
address how behaviors on the Web are affected by different
network topologies, whilst others address how the behavior of
users on the Web alters network topology. These represent
complementary directions of influence, but they are generally not
combined within any one study. In network science, the study of
the coupled interaction between topology and behavior, or state-
topology coevolution, is known as ‘adaptive networks’, and is a
rapidly developing area of research. In this paper, we review the
case for considering the Web as an adaptive network and several
examples of state-topology coevolution on the Web. We also
review some abstract results from recent literature in adaptive
networks and discuss their implications for Web Science. We
conclude that adaptive networks provide a formal framework for
characterizing processes acting ‘on” and ‘of” the Web, and offers
potential for identifying general organizing principles that seem
otherwise illusive in Web Science.

Categories and Subject Descriptors

H.1.2 User/Machine Systems: Human information processing; J.4
Social and Behavioral Sciences: Sociology
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Design, Experimentation, Human Factors, Theory
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1. Web Behavior and Web Structure

Recently, there have been great advances in what is known about
the structure of the Web, and the dynamics of behaviors on the
Web. Some notable examples of complex topologies found on the
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Web includes small world network structure [1], power law
scaling [2], preferential attachment [3] and community structure
[4]. Examples of how differences in these topologies might affect
behavior include the influence of social networks on content
browsing behavior [5], or ‘meme propagation’ [6], i.e.,
information contagion, [7], information cascades on blogs [8],
distribution of messages [9, 10] and the spread/adoption of
innovations [11]. Some studies are able to contrast behaviors on
one topology with that of another: e.g. small world versus lattice
[12]. Within general topologies, some studies are interested in
identifying influential nodes, i.e. ‘critical/control nodes’ in a
complex network, that can trigger large cascades to spread
information [13-15].

Of course, it is well-understood that the topology of these
networks is not static [16, 17]. Studies of topology change, or
‘topological evolution’, in the Web include evolution of Web-
scale social networks [16, 18], link prediction [19], changes in
community structure/group membership [4, 20], and the effects of
follower recommender algorithms [21, 22]. So, topology affects
behavior, and topology is not static. However, each of these
different examples brings its own domain-specific assumptions
about how topology changes. For example, network topology
might change by the rule that well-connected individuals become
more well-connected over time (preferential attachment), or that
‘friends of mine become friends of each other’ (clique formation)
governed by the principle of homophily [23]. Moreover, most of
this work views topological change as an exogenous process,
having a one-way influence on behavior.

The reality is that not only is behavior on the Web affected by the
topology of the Web, but reflexively, the topology of the Web is
affected by behaviors on the Web. That is, topology change is not
an extrinsic process but the result of the distributed action of
agents or users on the network. This two-way coevolution of
structure and behavior on the Web is the topic of this paper and
we will discuss several examples below.

On the one hand, since there is still a lot more that could be
learned about how structure affects behavior and, separately, how
behavior affects structure, this two-way coupled interaction of
both processes might seem a step too far; If we don’t have
appropriate tools or theory to handle such complications, perhaps
we should leave well alone and continue with a reductionist
approach to each process separately. But to understand the



underlying governing processes, we argue that we must address
the reflexive nature of this relationship between structure and
behavior. In fact, in some ways, study of each of the independent
processes leaves ‘loose ends’ — what should we assume about the
behaviors that affect structure, and what should we assume about
the structures that affect behaviors. Whereas, when we put these
processes together, it offers the potential that each provides a
framework for understanding the context of the other. This
transition from separate processes to coupled processes also
causes us to view the Web as a complex adaptive system and not
merely as a complex network or network science subject.

Fortunately, appropriate tools and theory are rapidly developing in
the science of complex networks in general. Adaptive networks
[24, 25] is a rapidly developing field that specifically addresses
this two-way interaction of behavior and network structure, or
‘state-topology coevolution’. In this paper we discuss the merits
of taking an adaptive networks perspective of the Web and the
opportunity for expanding Web Science territory. We review
some abstract results from recent literature in adaptive networks
and discuss their implications for Web Science. We conclude that
adaptive networks provide a formal framework for characterizing
processes on the Web, and offers potential for identifying general
organizing principles such as self-organization,
robustness/resilience, and global adaptation that seem otherwise
illusive in Web Science [26-28].

2. ADAPTIVE NETWORKS

Adaptive networks is a recent term recognizing the importance of
‘state-topology coevolution’, both in general terms (Fig. 1) and in
many domains from economics to epidemiology [24, 29-31]:

Complex network research has so far addressed mostly either
"dynamics on networks" (state transition on a network with a
fixed topology) or "dynamics of networks" (topological
transformation of a network with no dynamic state changes).
In many real-world complex biological and social networks,
however, these two dynamics interact with each other and
coevolve over the same time scales. Modelling and predicting
state-topology coevolution is now recognized as one of the
most significant challenges in complex network science. [32]
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Figure 1. State-topology coevolution is the basis of adaptive
networks (see [25]).

Many general network science studies address how topology
affects behavior, e.g. how the level of cooperation in games on
networks is affected by a scale-free, lattice or community

structure. Others address topological evolution [33]. But in some
cases these use purely topological rules to govern this topological
evolution [34]. For example, the notion that friends of mine
become friends of each other is a topological rule of closure, and
for preferential attachment the current degree of a node is
sufficient to determine the probability of new links [3]. In
contrast, the idea that people might tend to make links with co-
operators (or break links with defectors) is a rule about how
behavioral state affects topology [35]. It is the latter kind of
topological change, that which is driven by behavioral states
(themselves determined by current topology, and so on), that
constitutes an adaptive network (Fig. 1) [1, 36-38].

Models of opinion networks [39, 40] provide a simple example to
make the concept of an adaptive network more concrete. Such
models concern how opinions are spread by connections on a
network. They involve two governing processes social adjustment
(change in behavior) and social segregation (change in
connections) [41]. In general, it is natural to assume that the first
process acts to update the node states by ‘infection’ of opinions,
while the latter changes links to be in contact with like-minded
actors, e.g. to support homophily [23, 42]. Both processes will
reduce the number of social links between actors of differing
opinions (either by changing opinions or by changing links)
creating self-reinforcing loops in social structure and behavior
[43-45]. Different separations of timescales between the two
processes (e.g. fast change of opinions/slow change of links, or
vice versa) can result in the formation of homogenous
communities with a uniform opinion [41] or cause the network to
split into two distinct homogenous groups (‘assortative mixing’)
[46].

We discuss some other representative examples of adaptive
networks research (not yet connected with Web Science research)
in more detail:

1. The dynamics of epidemic spreading or ‘epidemics’ is
frequently modeled as non-adaptive networks. The nodes in
these models are multi-type of usually either ‘infected’ or
‘not infected’ and connected nodes indicate the opportunity
for transfection. However, more recent models also
incorporate adaptive changes to topology — i.e. individuals
can adjust their social ties to others to move away from
infected individuals [47]. This is shown to sometimes affect
the robustness or resilience of a network to infection [47,
48].

2. Some adaptive networks models simulate the action of
playing games between agents on a network, and examples
of this include models of cooperation that involve dynamic
linking or ‘active linking” [30, 49]. Individuals in these
models are able to adjust both their strategy and their social
ties, and self-organize based on self-interest. The emerging
social network was shown to support high levels of co-
operation when individuals were able to adjust their social
ties in an adaptive network, compared to when they not able
to adjust their ties on a static network. Recent work has also
shown that individual differences between agents (diversity)
actions on an adaptive network can change the topology
further, which in this context of co-operative games resulted
in even higher levels of cooperation [35].

3. Other studies of games on networks allow individuals to
adjust their social ties in a continuous-valued fully-
connected network [50, 51]. For example, this might
represent how user’s perceptions of others change over time
[50] or the probability of interaction [52] between two



players. These changes are equivalent to changing the
(effective) strength of a connection or the weighting of a
game between two players. This work then shows that,
under the conditions studied, when users adjust the strength
of those ties selfishly (i.e. to maximize their individual
utility) they necessarily adjust them in a manner
dynamically equivalent to Hebbian learning [53,52] in a
neural network. Thus the network as a whole can exhibit
associative memory and distributed optimization behavior
merely through the decentralized, self-interested action of
the individual actors selfishly modifying connections.

Each of these models addresses adaptive network dynamics and
behavior, but the implications of such models for the Web Science
domain have not yet been addressed.

3. ADAPTIVE NETWORKS ON THE WEB

Here we detail three examples of adaptive networks in the Web
Science domain. In each case we identify the nodes, the links,
how topology affects behavior and how behavior affects topology.

Example 1: Information networks. The World Wide Web is, of
course, a network of nodes (Web pages) connected by links
(hyperlinks), known as the Web Graph [54]. The behavior of
interest is the act of visiting a Web page, and the topology of links
obviously affects this behavior by facilitating the opportunity to
move from one particular page to another quickly and easily
(without utilizing search engines). Perhaps slightly less obvious is
the opportunity for behavior to affect topology. But this may
occur when, for example, disuse causes a link to be removed, or
simply by the fact that highly visited sites attract new links. More
indirectly, if a lack of visits causes a site to be removed from the
Web, the remaining dead links to this site may be subsequently
removed.

Example 2: Social networks. Twitter! is a micro-blogging social
network, where actors can publically post a message (tweet) on
their profile page. Nodes in this network are users or news
sources, links are uni-directional, and the topology is referred to
as the ‘follower network’. These one-way social ties directly
influence the behavior on the network, i.e. the flow/dissemination
of news or tweets. A user may also, of course, decide to break a
follower link if the content of tweets is not deemed valuable —
behavior affects topology. An interesting augmentation to this
basic behavior is the ‘retweet’ behavior that facilitates the user-
filtered propagation of tweets to users that are not directly
connected to the source of the tweet. Interestingly, the retweet
mechanism provides attribution and preserves provenance of a
message. This enables another mechanism by which behavior can
then affect topology; specifically, a user receiving a retweeted
message may subsequently choose to follow the source directly.

Example 3: Collaborative filtering. Collaborative filtering and
recommender systems are now embedded within many
commercial systems such as NetFlix? and Amazon®. The nodes in
such systems are not the users but the products (movies, books).
Links between products have the meaning that there is a user that
likes/has bought/recommends both of these products. The

Twitter: http://twitter.com/ Accessed 12/5/2011
2 Netflix: http://Aww.netflix.com/ Accessed 12/05/2011

® Amazon: http://www.amazon.com/ Accessed 12/05/2011. Here
we refer to Amazon’s “users who viewed this item were also
interested in this item” feature rather than the “personal
recommender system”.

behavior of interest is both the presentation/sampling of a product
and the act of recommending or purchasing. The topology of links
influences this behavior by enabling such systems to make
targeted recommendations to users to buy or sample other
products. This completes the coupling between the purchasing
behaviors and the topology of the network that made the
recommendations that precipitated those purchases.

Direct evidence of structure affecting behavior is provided in a
large scale study of social networks [5]. Their analysis of Flikr*, a
photo sharing website, described how the user network of Flikr
was involved in content browsing behavior. They found over 80%
of the views of content came from users clicking through their
social network. Another network study demonstrated that social
network structure was affected group affiliation [20]. Recent work
by Wei et al has studied a scenario similar to our third example,
social recommendation of news, using an adaptive network model
[55].

Such examples thus describe a reflexive coupling between
structure and behavior that constitutes an adaptive network. Other
systems that might similarly offer further examples include
ecommerce sites such as eBay® (with reputation feedback) and
knowledge sharing sites such as Wikipedia® (where existing
structure affects both knowledge sharing and knowledge
accumulation), etc..

4. IMPLICATIONS

Recognizing that the Web contains adaptive networks provides
the opportunity to transfer insights from the general adaptive
networks research into the Web Science domain. Below we
discuss three of the ‘hallmarks’ of adaptive networks taken from
Blasius and Gross [56], each of which has implications for
adaptive networks in Web Science.

1. Robust topological self-organization. An adaptive networks
perspective reinforces the idea that we should think of the
Web not just as a network science topic but as a complex
adaptive system (CAS) [57, 58] with the accompanying
possibility of self-organization and ‘order for free’ [59], i.e.
the emergence of patterns in a distributed system without
any central control [60]. Blasius and Gross discuss examples
where the adaptive feedback inherent in an adaptive
network “enables the agents that form the network to
robustly organize into a state with special topological or
dynamical properties” such as self-organized criticality and
power-law distributions [56].

2. Spontaneous emergence of hierarchies and division of
labor. Adaptive networks can exhibit cascading behavioral
changes that give rise to spontaneous social hierarchies [61]
and “classes of topologically and functionally distinct nodes
can arise from an initially homogenous population”
exhibiting spontaneous division of labor [62]. Such
possibilities have implications for understanding on-line
community structure, commercial dynamics (e.g. monopoly
formation), trust [63, 64], social norms [65], social
segregation, rapid evolution of structure (e.g. emergence of
Web 2.0 applications to support new behaviors [66]).

4 Flickr: http://www.flickr.com/ Accessed 30/04/2010
% eBay: http://www.ebay.co.uk/ Accessed 12/05/2011
® Wikipedia http://www.wikipedia.org/ Accessed 12/05/2011
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3. Complex system-level dynamics. Adaptive networks (unlike
their non-adaptive counterparts) can “give rise to new
continuous and discontinuous phase transitions”. Marsili’s
model of ‘the rise and fall of a network society’, for
example, demonstrated that the move from a sparsely
connected network to a more connected one involved a
phase transition such that a small change in environment
could trigger either a “virtuous’ or ‘vicious’ cycle [67]. The
implications for Web Science could be important in
understanding the stability of services and the possibility of
radical reorganization and/or collapse, for example.

In addition, other works in the area of adaptive networks suggests
implications for social group dynamics [68], social influence,
synchronization, cooperation and network growth [24];
identification of critical point or control nodes [15], and local
events and universality [69].

The structure versus agency debate [70] at the core of sociology
provides a good analogue for the importance of an adaptive
networks perspective in Web Science. Specifically, in the modern
‘structuration’ [43] perspective, “social phenomena are treated
neither in terms purely of social structure nor in terms purely of
human agency, rather a view is adopted which treats structure and
agency as influencing each other” [45]. Similar ideas are also
current in the field of evolutionary biology where it is recognized
that we cannot understand the evolution of an organism
independently of its environmental niche, nor can we assume that
its environmental niche is fixed, but we must recognize that
organisms construct their own niches as a response to selection
but thereby also alter their selection [71]. Social niche
construction develops this idea into the domain of social
behaviors, i.e. individuals co-create their social context, which
then subsequently affects their social behavior [72, 73]. The
analogy is that processes on the Web cannot be properly
understood purely in terms of how structure affects behavior, nor
in terms of behavior independent of structure, but only as a
coupled process of ‘co-constitution’ [26]. Such ‘structurist’
perspectives are evident in the foundations of Web Science: “there
is a significant interplay between the social interactions enabled
by the Web's design, the scalable and open applications
development that is mandated to support these, and the
architectural and data requirements of these large scale Web
applications” [28].

One of the general organizing principles that appear to be relevant
to understanding structure/agency interaction in networks is the
notion of self-reinforcing loops [45] — i.e. actors tend promote
structural changes in a network that support their current behavior,
and structures enable or constrain agent behaviors to those that
support (or do not disrupt) the current structure — creating a
positive feedback loop. Interestingly, positive feedback between
structure and behavior on networks has dynamical consequences
that we understand very well in another, largely unrelated, field of
complex systems research; computational neuroscience. In neural
network research, the idea of changing a link between two
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