

Abstract—. The advancements in distributed computing have

driven the emergence of service-based infrastructures that
allow for on-demand provision of IT assets. However, the
complexity of characterizing an application’s behavior, and as a
result the potential offered level of Quality of Service (QoS),
introduces a number of challenges in the data collection and
analysis process on the Service Providers’ side, especially for
real time applications. The aforementioned complexity is
increased due to additional factors that influence the
application’s behavior, such as real time scheduling decisions,
percentage of a node assigned to the application or application-
generated workload. In this paper, we present a framework
developed under the IRMOS EU-funded project that enables
the sampling and gathering of the necessary dataset in order to
analyze an application’s behavior. Processing of the resulting
dataset is also conducted in order to extract useful conclusions
regarding CPU allocation and scheduling decisions effect on the
QoS. We demonstrate the operation of the proposed framework
and evaluate its performance and effectiveness using an
interactive real-time multimedia application, namely a web-
based eLearning scenario.

I. INTRODUCTION

 In the light of rising computing paradigms such as Cloud
computing ([1]), new value chains are emerging for
outsourced hosting and execution of interactive multimedia
applications. The latter have strict requirements on quality of
service in order to operate effectively (e.g. latency,
bandwidth and jitter for video streaming, or processing
power for interactive special effects rendering). Actors in the
value chain emerge where value can be added, e.g. at the
infrastructure level through virtualized storage, networking
and compute resources (IaaS), at the application level
through offering a specific software tool on a pay-per-use
basis (SaaS) and in-between these two levels, comes the
possibility of Platform as a Service (PaaS).

 Manuscript received April 11, 2010. .This work is partially funded

by the European Commission as part of the European IST 7th Framework
Program through the project IRMOS under contract number 214777.

G. Kousiouris and D. Kyriazis are with the National Technical
University of Athens 9, Heroon Polytechniou Str 15773 Athens, Greece,
Tel.+302107722546;e-mail:gkousiou@mail.ntua.gr,dkyr@telecom.ntua.gr.

F. Checconi is with the Scuola Superiore S.Anna, Pisa, Italy. Mail:
fabio@gandalf.sssup.it

A. Mazzetti is with Giunti Labs, Italy, Mail:
a.mazzetti@giuntilabs.com.

Z. Zlatev and Juri Papay are with the IT Innovation Centre, University of
Southampton, UK. Mail: {zdz, jp} @it-innovation.soton.ac.uk

T. Voith is with Alcatel Lucent Deutchland AG, mail:
Thomas.Voith@alcatel-lucent.com

For the above value chain to support applications with
real-time attributes, careful planning is required, so that
neither under-provisioning (likely failure of the application
to execute) nor massive over-provisioning (unnecessarily
high costs) occur.

Furthermore, extensive use of techniques for incorporating
applications with different characteristics in the
infrastructure creates a burden with regard to the
investigation of the application’s behavior. Such techniques
may include the use of virtualization, specialized scheduling
and sharing of resources between different components.
Conclusively, extensive data sets must be collected in an
automated way so that conclusions regarding an
application’s behavior with varying resource allocations may
be investigated.

In this paper, a process for gathering extensive datasets
from applications inside the EU-funded project IRMOS
([11]) is described. This gathering incorporates state of the
art components such as virtual machines (VMs) and real time
schedulers, based on a variation of a number of parameters
that are relevant to the investigated application and to the
hardware configuration of the nodes of execution. Analysis
and results regarding the effect of these parameters (such as
changing scheduling granularity) to the application QoS
levels are presented, in order to let the Service Provider (SP)
use the fittest settings for the application under
consideration. The resulting data sets will be made available
to the general public for reusability purposes.

II. RELATED WORK

Similar work to the one presented in this paper is
described in this section. In [2], DynBench is introduced, as
a benchmark for distributed real time applications
infrastructures. This creates dynamic conditions for the
testing of the infrastructures. While promising, this
framework is mainly oriented towards investigating the limits
of the infrastructure and not towards understanding
application behavior with different configurations.

In [3], VSched is presented, an EDF-based scheduling
algorithm. In this work, an analysis is conducted on
application performance with the scheduler in question,
investigating the effect of scheduling decisions and
concurrent virtual machines execution. The analysis is very
thorough and interesting, however no framework is presented
for obtaining the necessary data sets.

In [4], DIANE is presented for Grid-based user level

Distributed Interactive Real-time Multimedia Applic ations: A
Sampling and Analysis Framework

George Kousiouris, Fabio Checconi, Alessandro Mazzetti, Zlatko Zlatev, Juri Papay, Thomas
Voith, Dimosthenis Kyriazis

scheduling with a focus on applications. However these
applications are more centered around execution end time
and not on real time interactivity.

A very interesting work is presented in [5] , where the
users of a virtual machine are given the opportunity to
increase through a simple interface their allocated CPU,
based on their experience with the application. The cost of
the increase is shown, so that the user may decide on the fly.
While it is a very promising approach and would eliminate a
vast number of issues with regard to application QoS levels,
its main drawback is in cases of workflows. Inside a
workflow, a degradation in performance may be due to a
bottleneck on various nodes executing a part of it. The user
will most likely be unaware of the location of the bottleneck,
especially in cases of non experts.

Another interesting work with regard to real time
scheduling and virtualization appears in [12]. In this case,
the schedulability of concurrent virtual machines is
investigated, in relation to the application deadlines met. Our
work differs from this due to the fact that in this paper one of
the major goals is to investigate application behavior with
regard to changing scheduler assignments. The same applies
for the work presented in [13], which compares different
scheduling algorithms. The framework presented here is
more application centric but can also be used for comparison
purposes of the effect of these schedulers on application
performance.

The remainder of the paper is structured as follows. In
Section III, the role of the proposed framework for
application sampling and analysis inside the IRMOS
Framework is presented, along with details regarding the
parameters of concern. In Section IV, the testbed used for
the automatic collection of data is described, while in
Section V the description of the process is presented. Finally,
we present an analysis on the created data set, with a focus
on the effect of the altered parameters on the application
QoS level (Section VI) and conclusions (Section VII).

III. ROLE OF SAMPLING IN IRMOS

The major goal of IRMOS (Interactive Real-Time
Applications on Service Oriented Infrastructures) is to
enable the utilization of distributed infrastructures such as
SOIs for interactive soft real time applications. In order for
this to be accomplished, the most significant challenge is to
offer guaranteed levels of QoS to the applications running
inside the framework. However, these software components
may be in many cases proprietary. Acquisition of sufficient
information in order to deduce conclusions for their behavior
can only be achieved through a macroscopic view. What is
more, it is assumed that the applications are not written
specifically for operation as IRMOS services, but rather,
software components already in general use wrapped up as
SaaS applications. As a consequence the actual internal
operation of the application will be very difficult to be
ascertained and used for the purposes of performance

modeling. One way to collect this type of information is
through executing the application for a variety of different
parameters and determine their effect on the QoS output..
Through this information the IRMOS provider will be able
to have an idea regarding what kind of resources should be
allocated in order to meet the QoS levels requested by the
client. Processing of these data for interpolation may be
performed in a variety of ways (analytical modeling,
statistical analysis, queueing theory, artificial intelligence
etc.) however we consider this part out of scope for this
paper.

For real time applications, the basic aim is to provide QoS
guarantees. These may be either extremely strict, with no
possibility to fall below the specified levels (hard real time
constraints) or more relaxed, allowing for a predefined
percentage of the QoS output to be above the wanted levels
(soft real time constraints) ([8]) . In IRMOS, the second case
is considered. So, what is critical, is to have a probabilistic
approach that covers the needed levels.
The data sets needed for the creation of these probability
distributions are obtained by general experimentation and
sampling activities that are described in this work.
Application runs can be performed for a series of workloads,
with different application setup, on a variety of hardware
configurations. More details regarding the modelling
approach followed in the project can be found in [9].

A. Sampling Parameters

The parameters for which these sampling tests will be
conducted depend on both the hardware on which the
application is executed and the application parameters that
will be toggled during real life executions.

For the hardware parameters, different CPU percentage
assignments can be given with varying granularity. The
granularity concerns the time period in which this percentage
is assigned and can vary from a few milliseconds to seconds
typically. This affects the performance of an application (for
the same percentages of CPU allocation) in many ways since
different needs must be met in each occasion. For example,
for interactive real time cases, the application must be able to
be activated in specific time intervals in order to give the
user the notion of interactivity. This period may be different
from case to case. However frequent task switching in the
CPU results in increased overheads for the switching process
and the restoration of each task’s status. So a trade-off must
be achieved between the two cases. On the other hand, on
applications such as scientific simulations this effect may be
different. These applications are typically time consuming
and have no need for interactivity. Thus, the larger this
granularity is, the better the application behavior in terms of
overall execution time will be, since with reduced task
switching, cache utilization will be improved.

Other parameters have to do with the workload produced
by the application. Different executions may produce
different amount of work for the processor to handle. The
effect of these factors must also be investigated in the
context of service oriented infrastructures. For example, in a

server based application, this parameter is determined by the
number of users that produce requests towards the server.
The higher this value is, the more requests are generated and
the more strenuous to the resources the application will be.

IV. SAMPLING TEST-BED

The sampling test-bed consists of a number of necessary
components in order to alter the aforementioned parameters.
These include the Virtual Machine inside which the
application resides and is executable on all nodes of the
infrastructure. The second necessary component is the real
time scheduler used, that allocates the CPU share to the VM
process and alters the granularity of this assignment. Finally,
the application that is installed inside the VM is needed in
addition to an external simulator. The latter is used in order
to create application workload. More details regarding the
role of each component are given in the following sections.

A. Virtualization Approach

Expanding network connectivity and the growing bulk of
data demands for larger infrastructures, which are able to
react dynamically on computing, networking and storage
needs. The concept, which provides “on demand” services
by sharing infrastructure resources and maintaining
reliability and scalability, is associated with the term
“cloud”. On the 32th IETF meeting in 1995 ([10]) the term
cloud has been already used for the telecommunication
infrastructure – now known as telco cloud – dealing with IP
routing over large “shared media” networks. Sharing the
computing resources over time (perceived already by John
McCarthy in 1961) is experiencing now a renaissance due to
the virtualization technologies. Virtualization of computing
resources allows running multiple operating systems time-
shared on a single computer in so called virtual machines.
The independence of the virtual machine from the real
hardware allows it to provide the computing as an
infrastructure service on demand on any real host with
enough free computing power. The virtual machine needs to
be light-weight for movement and for instant availability.
The three main pillars computing, data storage and
networking can be provided as a service on demand as long
as there are some guarantees associated with it. The cloud
infrastructure service - Infrastructure as a Service (IaaS)
means that the infrastructure can be utilized as a service
without expertise or control over the technology
infrastructure ensuring certain guarantees. The guarantees for
computing belong to virtual machines experiencing certain
CPU time over the complete service time. This is an
inevitable prerequisite for enabling a real-time application
inside a virtual machine with certain CPU time guarantees. A
real-time capable OS of the virtual machine makes it
possible to run real-time tasks inside.
Inside the IRMOS framework, the Kernel-based Virtual
Machine tool is used. For each application a VM is created
that covers its functional requirements (OS, specific internal
tools etc.) and which then can be executed on all nodes of a
distributed infrastructure. Through the use of VMs, other

parameters may easily be altered such as number of
underlying cores used, memory size, CPU model etc.

B. Host Scheduler Description

In order to provide scheduling guarantees to the VMUs, we
used a hybrid deadline/priority (HDP) real-time scheduler
([6]) developed within the IRMOS consortium for the Linux
kernel. This scheduler provides temporal isolation among
multiple possibly complex software components, such as
entire VMUs. It uses a variation of the Constant Bandwidth
Server (CBS) algorithm, ([7]) based on Earliest Deadline
First, for ensuring that each group of processes/threads is
scheduled for Q time units (the budget) every interval of P
time units (the period). The CBS algorithm has been
extended for supporting multi-core (and multi-processor)
platforms, achieving a partitioned scheduler where the set of
tasks belonging to each group may migrate across the
associated CBS scheduler instances across processors,
according to the usual load-balancing heuristic of Linux.
Furthermore, whenever each (partition of a) reservation is
scheduled on each core, the associated tasks are scheduled
according to their real-time priorities.
The scheduler exhibits an interface towards user-space
applications based on the cgroups framework, which allows
for configuration of kernel-level parameters by means of a
filesystem-based interface. This interface has been wrapped
within a Python API, in order to make the real-time
scheduling services accessible from within the IRMOS
platform. The parameters that are exposed by the scheduler
are the C and D values, where C is the amount of computing
time assigned to the VM every D interval.

C. Application Description and Preparation

The application under investigation is an eLearning mobile
instant content delivery, in which real-time requirements are
combined with service oriented architecture. In this scenario
a user can receive on his/her mobile phone some eLearning
contents relevant to the position where she is (e.g. walking
near to historical monument). It consists of a Tomcat based
e-learning application that incorporates a MySQL database
(Figure 2). The application is able to receive queries with
GPS data from a client, search internally in the database and
respond with an elearning object identifier that corresponds
to the provided GPS coordinates (Figure 1). It is provided as
a war file and installed inside the VM. The real-time
requirement is mainly the response time in each request and
depends on the number of concurrent users and the size of
the downloaded contents.
 Furthermore, it must provide a way for the sampling
framework to gather the reported data with regard to the
values of interest. In the examined application, this transition
of information was implemented with two potential ways.
The first one was an XML report available through a URL.
The sampling framework polled this URL with a given
frequency and the XML report was stored and processed
afterwards. The second option was for the application to

store on its own the reports inside a MySQL database, from
which the sampling framework could retrieve them.

Figure 1

Figure 2: Application Design

D. Application Client Simulation Description s

In order to simulate application parameters, a client
simulator is also necessary. This simulator can toggle the
number of users performing queries on the server, thus
varying the server load. By having different server loads and
different hardware configurations we can have an analysis of
their effect on the expected QoS output (in this case the
response time of the server to the users).

One significant advantage of the test-bed is that the
components described are decoupled from one another. This
makes it flexible, so that these components (like schedulers,
different virtualization tools or applications) can be replaced
with different versions, thus making comparisons between
them easy.

V. COLLECTION AND PROCESSING FRAMEWORK

In order for the collection of the samples to be conducted
as automatically as possible, a number of actions have been
implemented. First of all, the application client simulator is
started, with a fixed number of users, whose created traffic is
simulated. Afterwards a Java-based program resides on the
physical host level of the infrastructure. This code is
responsible for retrieving the reported monitoring data from
the application. This can be done with two ways. The first
case is to call the URL provided by the application and
described above in order to collect the XML reports
produced by the latter. The reports from every sample of one
configuration are appended in a single XML file, whose
name is indicative of the scheduling parameters used for the
execution (C and D). Each sample is taken in a specific

period, expressed through a parametric delay inserted
between consecutive calls to the URL. This sampling
frequency could be adjusted in case of periodic applications
in order to obey to the Nyquist-Shannon theorem so that
from the samples collected the entire distribution can be
created. The second case is through the MySQL database, in
which the reports from the application are timestamped and
stored. For every configuration the start and end time are
saved, and based on this information the application data that
were stored during this interval are retrieved.

Furthermore, in the same code, a Java-system interface is
implemented in order to be able to change the configuration
of the scheduling parameters through the interface script
described in Section IV.B. This way, consecutive
configurations are tested automatically and their result in the
QoS parameter of the application (response time) is
recorded. During the time of each configuration, the
previously examined retrieval framework takes the necessary
measurements. The change in the scheduling parameters is
two-fold, it involves the C/D value, which is the percentage
of CPU assigned to the VMU (which can be considered in a
way as a simulation of different CPU speeds) but also the
granularity of D. This granularity is expected to affect
application performance, as stated in Section III. Even with
the same %CPU assignment, a very large value of D would
result in a highly non-responsive service, especially for
interactive applications, due to the large interval of
deactivation. For other applications with no interactivity, e.g.
scientific simulations, a large number of D could prove to be
useful, due to reduction in task switches and better cache
utilization.

In conclusion, the Java class is responsible for altering the
C, D parameters (both ratio and absolute values), for
connecting to the application interface (URL available XML
reports or MySQL DB), for extracting the reported values,
for processing them in order to produce the necessary
statistics (in this case mean response time and standard
deviation) and for creating the final output. This output is
CSV files, that contain matrices that can directly be used by
performance estimation methods. These include columns
with the different number of users, different C, D parameters
and the extracted statistics.

Finally, the number of users in the client simulator is
changed and the process is initialized again. Due to the
elastic form of the testbed, other parameters may also be
investigated easily, such as the memory assignment to the
VM, configured at the VM startup. In this particular
application memory requirements were not extensive that is
why it was decided not to investigate this parameter.

The structure of the sampling framework appears in
Figure 3.
 In order to extract the necessary information that is needed
in the modeling approach followed inside IRMOS as
described in Section III, the sampled response times of the
eLearning server are gathered for each execution and
statistical metrics are extracted. These can be used for the
construction of the PDFs of the QoS output in consideration,
for use in the next stages of modeling. The basic metrics that

are extracted are the mean value and the standard deviation
of the response times.

Figure 3: Sampling Framework

VI. RESULTS

In this section, the results from the performed experiments
are depicted. The range of values that were altered is:

• Number of Users: 30-150
• C/D (CPU share) : 20-100% with a step of 20
• D: 10000- 560000 (µsec) with a step of 50000

Measurements were taken and the gathered values for

each configuration were collected. An average of 800
response times was collected for each different setup, in
order to extract their mean and standard deviation values. An
indicative set of these measurements is depicted in the
following figures, from which useful conclusions can be
drawn.

The effect of changing granularity on the deviaton of the
response time values can be observed in Figure 4. This is
expected since with high values of D, the service has long
active and inactive periods. If the requests fall in the active
interval, they will be satisfied quickly but if they fall in the
inactive one then they will have to wait until this has
finished. This effect decreases as allocated CPU share
increases, since in these cases the CPU is almost dedicated to
the application and whenever a request arrives it is served.
The mean response time, as shown in Figure 5, seems not to
be affected greatly given that the percentage of CPU
assigned is the same.

0
50

100
150
200

250
300
350
400
450

D V al ue

20% CPU Shar e

40% CPU Shar e

60% CPU Shar e

80% CPU Shar e

100% CPU Shar e

Figure 4: Standard Deviation with regard to changing D

for 90 users

40% CPU Shar e

0

50

100

150

200

250

300

D V al ue

40% CPU Shar e

Figure 5: Mean value with regard to changing D for 70

users and 40% CPU share

In Figure 6, the comparison between the collected values
of response times is shown for two different numbers of
users. The difference especially in the maximum values of
the distributions depicts the effect of the application
workload in the response times.

Figure 6: Comparison of different number of users (blue
30, green 50) for the same resources (40% of the CPU)
and same D

In Figure 8 all the different configurations are shown for

two different numbers of users. In this case, each group of
columns (the first high one followed by 4 lower ones)
represents one D configuration for different percentages. The
high bar is for low utilization and while the utilization
increases the response time decreases. In the horizontal axis
the different D configurations represent increasing D values.

 From these measurements it seems interesting that the
fittest granularity (D) selected depends also on the
percentage of the CPU assigned to the application. In this
occasion, for low percentages of utilization it is best to
assign values near the middle of the investigated interval
(10000-560000), as is depicted in Figures 7 and 8. For
higher percentages of utilization, lower values of D are more
beneficial for the response times of the application.
Furthermore, from Figure 7 the effect of the increased CPU
share allocation to the response time can be observed.

0

100

200

300

400

500

600

D V al ue

20% CPU shar e

40% CPU shar e

60% CPU shar e

80% CPU shar e

100% CPU shar e

Figure 7: Mean Response Time for different D’s and
CPU shares for 110 users

The data set that was produced from the process described

in this paper and that was the basis for the above figures will
be made available to the community, following the initiative
for reusable data sets.

VII. SUMMARY

In this paper, a sampling and analysis framework, used
within the IRMOS project has been described. The aim of
this framework is to easily gather extensive datasets
regarding an e-Learning application and its real time

requirements, in relation to characteristics such as the
number of users of the application and the hardware
allocation to it. This framework utilizes state of the art
techniques in virtualization and real time scheduling, and the
corresponding analysis of the results aids Service Providers
in understanding the application’s behavior. It is also flexible
in order to be used in distributed infrastructures with no need
for alterations for the deployment in a variety of nodes. This
in turn can lead to enhanced allocation strategies. For the
future, one interesting aspect to investigate would be the
interference between co-scheduled VMs.

ACKNOWLEDGMENT

This research is partially funded by the European
Commission as part of the European IST 7th Framework
Program through the project IRMOS under contract number
214777.

Comparison between Mean Times for different number of users

0

100

200

300

400

500

600

700

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Execut io ns

50 users

30 users

Figure 8

REFERENCES

[1] http://www.cloudcomputing.org/
[2] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula, R.

Brucks, E. Huh. DynBench: A Dynamic Benchmark Suite for
Distributed Real-Time Systems. IPDPS Workshop on Embedded HPC
Systems and Applications. S. Juan, Puerto Rico, 1999

[3] Lin, B., Dinda, P.: Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling. In: Proc. of the
IEEE/ACM Conf. on Supercomputing, p. 8, Nov. 2005

[4] Germain, C., Loomis, C., Mo´scicki, J.T., Texier, R.: Scheduling for

responsive Grids. J. Grid Computing 6(1), 15–27 (2008)
[5] Lin, B. and Dinda, P. A. 2006. Towards Scheduling Virtual Machines

Based On Direct User Input. In Proceedings of the 2nd international
Workshop on Virtualization Technology in Distributed Computing
(November 17 - 17, 2006). Virtualization Technology in Distributed
Computing. IEEE Computer Society, Washington, DC, 6. DOI=
http://dx.doi.org/10.1109/VTDC.2006.15

[6] Fabio Checconi, Tommaso Cucinotta, Dario Faggioli, Giuseppe
Lipari, "Hierarchical Multiprocessor CPU Reservations for the Linux
Kernel," in Proceedings of the 5th International Workshop on

Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT 2009), Dublin, Ireland, June 2009

[7] Luca Abeni and Giorgio Buttazzo, “Integrating Multimedia
Applications in Hard Real-Time Systems,” in Proc. IEEE Real-Time
Systems Symposium, Madrid, Spain, 1998

[8] .Liu, C. L. and Layland, J. W. 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM 20, 1
(Jan. 1973), 46-61. DOI= http://doi.acm.org/10.1145/321738.321743

[9] Matthew Addis, Zlatko Zlatev, Bill Mitchell, Mike Boniface,
Modelling Interactive Real-time Applications on Service Oriented
Infrastructures, Proceedings of 2009 NEM Summit, ISBN 978-3-00-
028953-8

[10] http://www.ietf.org/proceedings/32/charters/rolc-charter.html
[11] http://www.irmosproject.eu/
[12] Cucinotta, T., Anastasi, G., Abeni, L.: Real-time virtual machines. In:

Proceedings of the 29th IEEE Real-Time System Symposium (RTSS
2008) – Work in Progress Session, Barcelona (December 2008)

[13] B. Brandenburg and J. Anderson. A comparison of the M-PCP, D-
PCP, and FMLP on LITMUSRT. In Proc. of the 12th International
Conference On Principles Of Distributed Systems, pp. 105–124,
2008.

