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PI nanocomposite films containing surface modified nanoparticles by employing silane coupling agent
were prepared using in-situ dispersion polymerization process. The surface potential decay measure-
ments on films were investigated over the different negative corona-charged voltages and times in
a controlled environment where temperature and relative humidity were kept at 21 °C and 45%,
respectively. There is a significant change in the surface potential decay characteristics after nano-fillers

were introduced into polyimide. The surface potential decay pattern depends also on the amount of
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nano-fillers. The possible surface potential decay and corona resistance mechanisms responsible for the
observed phenomena were discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Polymer nanocomposites have attracted wide interest as
a method of enhancing polymer properties and extending their
applications. Surface potential decay has been used widely as a tool
to monitor charge transport and trapping characteristics of insu-
lating materials. Since the early 1960, there has been more interest
in the surface potential decay of corona-charged polymeric mate-
rials in the open circuit configuration. The earlier surface potential
decay research was on corona-charged polyethylene film which
was given in some details by leda and co-workers [1]. One of the
interesting phenomena in the observation of surface potential
decay is the cross-over phenomenon, namely, the decay curves
starting with different initial surface potentials cross each other
during the decay process [2—5]. Over the years, many researchers
have focused their studies on surface potential decay of corona-
charged polymeric materials and various theories and models
have been proposed to explain the cross-over phenomenon with
various hypotheses such as field-dependant injection [6], charge
trapping/detrapping process [7] and bulk polarization [8].
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Though many experimental results were presented so far, the
physical mechanism of charge decay has not clearly been under-
stood. leda et al. explained the decay curves only for low initial
potentials using Ohm'’s law and predicted an exponentially surface
potential decay [1,9]. Batra et al. assumed field-independent
mobilities and demonstrated that the cross-over phenomenon is
not associated with the finite depth of penetration [10]. Wintle
et al. has developed theories that include field-independent
mobilities of various forms as well as trapping [11].

Generally, due to clear characteristics of charge transporting and
trapping in insulating materials under corona charging, the
measurement of the surface potential decay has been proved to be
a simple and useful technique. The technique involves with
depositing charge on the surface of a polymer by means of a dc
corona discharge and monitoring charge decay over a period of
time using contactless probe. Many experiments on the charge
transport in insulating polymers have been carried out using the
surface potential decay method [12,13]. However, most of surface
potential decay researches were on the single polymers such as
polyethylene, epoxy, polypropylene and polyethylene tere-
phthalate, little attention has been paid to surface potential decay
in polymer nanocomposites [14—17].

In recent years, polyimide (PI) has received more and more
attention in electrical and electronic industries due to its high
thermal and chemical stability, good mechanical property and
excellent electrical properties in a wide range of temperatures
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[18—21]. However, due to the rapid development of electrical
engineering and electronic technology, it imposes more stringent
requirements to the materials. The single tradition materials are
facing more challenge, especially, they do not always withstand the
damaging effects of corona, which can cause ionization and even-
tual breakdown of an insulation material or system when the
voltage stress reaches to a critical level. To improve the insulating
lifespan of high-voltage electrical equipment to resist the corona
attack, there is strong interest in insulated polymer materials with
good thermal stability and excellent corona resistance [22,23]. Due
to the development of nano-technology and nano-materials,
polymer nanocomposites are put forward as a kind of novel
composite materials with improved insulating characteristics
[24,25]. In this work, Polyimide/TiO, (PI/TiO;) nanocomposite films
containing surface modified nano-TiO, particles by employing
silane coupling agent were prepared using in-situ dispersion
polymerization process. Surface potential decay characteristics of
both pure PI film and PI/TiO2 nanocomposite films (one-layer) were
investigated over the different negative corona charging voltages
and corona charging times using a needle-grid-ground electrode
system under a controlled environment with temperature and
relative humidity at 21 °C and 45%, respectively. To investigate the
influence of interface on surface potential decay, surface potential
decays for four kinds of two-layer samples were also carried out.
Results of the repeated experiments show that the potential decay
is faster for higher initial potential and longer charging time. It has
been found that there is a significant influence of nanoparticles on
the surface potential decay characteristics of PI nanocomposite
films. The surface potential decay curves depend also on the
amount of nano-TiO, particles. The schematic depiction of the
possible charge transporting in different layer samples were
presented.

2. Experiment details
2.1. Fabrication of the polyimide nanocomposite films

Both pure PI films and PI/TiO, nanocomposite films were
prepared using in-situ dispersion polymerization process in the
laboratory. Prior to use, the surface of the nano-TiO; particles with
a mean diameter of ~50 nm was treated with y-amino-
propyltriethoxy silane (KH550) as a coupling agent in order to
disperse the nano-TiO; particles into PI matrix homogeneously. The
PI/TiO2 nanocomposite films were prepared by addition of the
nano-TiO, particles (from 5 to 15 wt.%) into N, N-dimethylaceta-
mide (DMAc) with the monomers of pyromellitic dianhydride
(PMDA) and 4, 4’-oxy dianiline (ODA). Then the mixture was cast
onto a cleaned glass plate and was held in the vacuum oven at room
temperature to let the trapped air escape. After polyamid acid (PAA)
was converted to PI by the thermal imidization, the Pl/inorganic
nanocomposite films were obtained. As a control experiment, the
pure PI film was also prepared employing the same process. The
thickness of all the films was close to 70 pm.

2.2. Corona charging setup and potential decay measurement

A schematic experimental setup in a controlled environment
with temperature and relative humidity at 21 °C and 45%, respec-
tively, is shown in Fig. 1a.

The samples were negatively charged on their free surface
using a typical needle-grid-ground corona charging setup which
consists of a high-voltage needle electrode, a wire mesh grid
electrode and a rotatable earthed electrode. The needle electrode
which connected to a negative dc high-voltage supply was situated
above the grounded metallic plate. The grid electrode which was

connected to a different negative dc high-voltage supply was sit-
uated between the needle electrode and the grounded plate. The
distance between the needle and the mesh and between the mesh
and the ground plate was 4.5 cm and 1.5 cm, respectively. The area
of the mesh and the sample was 150 cm? and 25 cm?, respectively.
In this way, a suitable electric field could be generated in the gap
between the grid and the surface of the sample. After negative
corona charging, the sample was quickly moved with the rotating
system toward a compact JCI 140 static monitor to observe the
surface potential decay. The duration of moving the rotating system
is around 2 s. However, the readings from the JCI 140 static monitor
are not the direct values of the surface potential of the samples,
a calibration should be made. A film with a thin gold coated is
connected to a dc voltage. Readings from the JCI 140 static monitor
are taken when varying the applied voltage. A liner relationship
was obtained between the readings and the applied voltage as
shown in Fig. 1b. According the equation inset in the Fig. 1b, the
reading from the JCI 140 static monitor can be converted into the
values of surface potential.

3. Results and discussion

Negative polarity was initially applied to corona charging elec-
trode and the absolute value was used in the present paper when
surface potential and time characteristics were plotted.

3.1. Surface potential decay of one-layer films

Influence of different corona charging voltages and charging
times on surface potential decay characteristic of one-layer films
were studied.
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Fig. 1. (a) A schematic image of the experimental setup used for corona charging and
surface potential measurement, (b) Calibration for the JCI 140 static monitor.



J. Zha et al. / Journal of Electrostatics 69 (2011) 255—260

5
a Pure PI films
=2kV, 4min
4r — -4kV, 4min
-7kV, 4min

Surface potential (kV)
[ w

1 . .
0 5 10 15 20 25 30
Decay time (min)
6
C — pure -7kv, 4min
5t —5% -7kv, 4min
10% -7kv, 4min
4

w

—15% -7kv, 4min

Surface potential (kV)
~

= —
uf

10 15 20 25 30
Decay time (min)

=
W

257
2.0
b PU/TIO -15wt.% films
z 150 —-2kV, 4mfn
b — -4kV, 4min
% -7kV, 4min
£1.0
g
p
€05
= \
w
0.0 s : ‘ :
0 5 10 15 20 25 30
Decay time (min)
of d —o- 2KV, 4min A
e 4KV, dmin 7 S*
$08r ~+-7kV, 4min -~/
= P /S
206t A
- 2 LS
5 ,/
g 0.4r P
a & =
02} oo %
o =) —0
0.0~ : . :
0 5 10 15

Consentration of nano-TiO, (wt.%)

Fig. 2. Surface potential decay curves for various initial potential for one-layer samples (a) pure PI film, (b) PI/TiO,-15 wt.% nanocomposite film under 4 min corona charging, (c)
Surface potential decay curves for one-lay nanocomposite films with different concentration of the nano-TiO, particles loading at a grid potential of —7 kV for 4 min corona
charging, (d) Decay rate curves for different charging levels, as a function of nano-TiO, concentrations.

3.1.1. Influence of different corona charging voltages

The potential decay of corona-charged pure PI films with
a thickness of 70 pum under different negative charging voltages for
4 min is shown in Fig. 2a. It can be seen that decay curves starting
with different initial surface potentials do not cross each other
during the decay process. Surface potential decay curves show
a monotonic decrease with the increasing decay time while the
different rates of decay is observed, namely, the surface potential of
the samples with initial high potential decays faster than that with
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lower surface potential. At low initial potential (—2 kV), the surface
potential is stable. It suggests that charges remain deeply trapped
at the surface of the films. However, at high initial potential
(=4 kV, —7 kV), the surface potential decay is clearly observed with
different rates of decay, and this trend becomes more obvious by
raising the initial potential. This phenomenon has also been
observed by other researchers [1,2,14,15] and it can be concluded
that the more deposited charges inject into the bulk under higher
electric field.
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Fig. 3. Surface potential decay curves for different corona charging time for one-layer samples (a) pure PI film, (b) PI/TiO,-15 wt.% nanocomposite film at a grid potential of —7 kV.
(c) Decay rate curves for different charging times, as a function of nano-TiO, concentrations.
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Fig. 4. Surface potential decay for two-layer samples at a grid potential of —7 kV for
4 min corona charging, where the number 1, 2, 3, 4 highlight the two-layer samples:
pure—pure, pure-15 wt.%, 15 wt.%-pure and 15 wt.%—15 wt.%; &= PI/TiO,-15 wt.% film, =
Pure PI film.

The similar surface potential decay phenomenon of PI/TiO,-
15 wt.% nanocomposite films with a thickness of 70 um is also
shown in Fig. 2b. A fast initial decay at all charge deposit initial
potentials was observed. Surface potential cross-over phenomenon
has also been observed. However, cross-over occurs very early. The
decay rate of PI/TiO,-15 wt.% nanocomposite films decreases faster
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than that of pure PI films. This might be due to conductivity
enhancement with incorporation of the TiO, nanoparticles [26],
resulting in easier and faster charge transport in the bulk. Fast
charge decay has been also observed in space charge measurement
of the same nanocomposite films [27].

In order to clearly understand the rate of potential decay, the
decay curves of nanocomposite films with different concentration
of the nano-TiO; particles loading were compared, as shown in
Fig. 2c. To give a better description and an effective evaluation on
potential decay, the parameter D is introduced as follows:

U(to) — U(®)
U(to)

Where U(tp) and U(t) are the potentials indicating the first decay
point and the last decay point, respectively. D is the decay rate of
the films. Under the same charging conditions, decay rate curves for
different charging levels, as a function of nano-TiO, concentrations
are presented in Fig. 2d.

The rate of decay becomes more faster with the concentration of
the nano-TiO; particles. When the concentration of the nano-TiO;
particles is higher (=15 wt.%), the surface potential of the nano-
composite film decays very fast and approaches to zero at the end
of the measurement, as shown in Fig. 2b. This behavior may be
attributed to the fact that the partial injection of the deposited
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charges into the bulk depends on the level of concentration of the
nano-TiO, particles.

3.1.2. Influence of different corona charging times

In Fig. 3 the influence of charging times on the characteristic of
the potential decay of pure PI film, PI/TiO,-5 wt.% nanocomposite
film and PI/TiO,-15 wt.% nanocomposite film is shown. According
to Equation (1), decay rate curves for different charging times, as
a function of the nano-TiO, concentrations are also presented in
Fig. 3c. Several features should be noted. Firstly, the initial decay of
surface potential is more rapid, and this is followed by a slower
decay. Secondly, for the charging time from 30 s to 4 min, the first
recorded value of the surface potential of the PI/TiO,-15 wt.%
nanocomposite film is well below than that of the PI/TiO,-5 wt.%
nanocomposite film. There are two possible reasons (i) the surface
potential never reaches to the grid electrode potential; (ii) there is
a rapid decay process taken place. From Fig. 3, it seems that the
latter is responsible for the lower initial observed surface potential.
Of course, the feature is closely associated with the material
composition. When the charging time is increased from 30 s to
4 min, there is very weak impact on surface potential decay of pure
PI films, as shown in Fig. 3a. However, the influence of corona
charging duration on surface potential decay of PI/TiO-15 wt%
nanocomposite films is remarkable, as shown in Fig. 3b. It indicates
that the charges injected from the needle electrode could be easily
held in the pure PI film.

3.2. Surface potential decay of two-layer films

Considering all surface potential decay curves of nanocomposite
films change little after 15 min, the decay duration was set as 15 min
for all other decay measurements. Surface potential decay of four
kinds of two-layer samples (70 pm + 70 um) was carried out and the
results are shown in Fig. 4. All samples were subjected to a negative
corona charging at a grid potential of —7 kV for 4 min. The surface
potential was observed for 15 min after the corona charging supply
was switched off. The decay rate of pure—pure sample is slower than
that of 15 wt.%—15 wt.% sample and the cross-over phenomenon is
still observed. This may be due to the different abilities of charges
transporting in the bulk of different films, while the thickness and
interface should also play an important role [4,5].

3.3. Mechanism of charge transporting during the surface potential
decay

In this section, all samples were subjected to a negative corona
charging at a grid potential of —7 kV for 4 min. The surface potential
was observed for 15 min after the corona charging supply was
switched off.

In order to understand the charge movement of the multi-layer
films, two measurements were carried out for comparison. 1) The
potential decay of two-layer films was continuously monitored for
15 min. 2) The potential of two-layer films was firstly monitored for
1 min, and then the bottom layer was continuously monitored after
the top layer was carefully removed. The time required to tear off
the top layer and transfer the bottom layer for potential decay
measurement is around 10 s. When the top layer was removed, the
surface potential decay of the bottom layer could still be observed
as shown in Fig. 5.

The interface between the two layers and the ability of charge
transporting may have a great effect on the surface potential decay.
The possible mechanism of charge transporting in the four different
two-lay samples is fully presented in Fig. 5e. The charges will
accumulate on the surface of the top layer when the negative voltage
applied with the duration of 4 min. For pure PI film, a few charges are

transferred into the bulk of top layer and then some charges are
transferred into the bulk of bottom layer during the process of
corona charging. These charges easily be hold in the bulk of pure PI
films, so the potential decay curves of two-layer and the bottom layer
are similar but with different initial potential, as shown in Fig. 5a and
e. Compared with Fig. 5a, the rapid rate of decay is apparently
observed in Fig. 5d due to both the top layer and the bottom layer are
PI/TiO,-15 wt.% nanocomposite films. The bulk injection become
more easily in the PI/TiO,-15 wt.% nanocomposite film since the
nano-TiO, particles can build up a conductive network in the
nanocomposite film [28]. The charges injected into the bulk could
hardly be hold and the surface potential of the PI/TiO,-15 wt.%
nanocomposite film decays very fast and approaches to zero when
the top layer is carefully torn off, as shown in Fig. 5b,d and e.

3.4. Corona resistance of Pl nanocomposite films

With the results of surface potential decay above, it can be
assumed that the ability of transporting the electrons in the pure PI
film is weaker than that in the PI/TiO; nanocomposite films. The
presence of nano-TiO, particles has remarkably modified charge
transportation. In our previous work, the improved corona-
resistant characteristic in the PI/TiO, nanocomposite films were
analyzed employing the model of the effect of nano-TiO, particles
on the degradation endurance of the PI/TiO; nanocomposite films,
which was relative to the corona aging lifespan and subsequent
breakdown strength [29]. Based on the present results, an alter-
native explanation is proposed as schematically shown in Fig. 6.

For the needle electrode at negative polarity, electrons are
injected into the bulk of the films and would be move through the
material under the electric field. These electrons in the pure PI film
play two important roles. One role is that a few electrons would be
trapped into deep or shallow traps by scattering. The second role is
that most electrons obtain the energy due to non-radiative transi-
tion [30], and then it can be transferred to another electron and
make it become a hot electron, as shown in Fig. 6a. The hot electron
can have sufficient energy to break the polymer chains. The energy
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will be released after dissociating a molecule into free radicals and
transferred to a third electron and make it become another hot
electron. The process is repeating in the bulk of the film, leading to
a process of aging.

However, when the nano-TiO; particles dispersed into PI matrix,
there are also two possible mechanisms in the films, as shown in
Fig. 6b. Firstly, electrons would be easily transferred under the
electric field due to the formation of the conductive network by the
nano-TiO, particles in the bulk. The nano-TiO, particles would
possibly hold free volume and the large traps to decrease the
amount of free volume. Secondly, it takes an effect on the dissipa-
tion of the accumulated electric energy and the probability for an
electron becoming a hot electron is much lower. And thus avoids
the direct collision of the chains by the charged particles and
decreasing the chance of their initiation of dielectric breakdown. So
the corona aging lifespan of the nanocomposite films also increased
with incorporation of the nano-TiO; particles.

4. Conclusion

In summary, polyimide nanocomposite films loaded with
different concentration of the nano-TiO, particles were fabricated
using in-situ dispersive polymerization. The surface potential
decays in these nanocomposite films (both one-layer and two-
layer) have been investigated by using the corona charging setup.
The main conclusions are as follows.

The surface potential of the samples (both one-layer and two-
layer) with initial high potential decays faster than that with
lower surface potential. There is a significant influence of nano-
particles on the surface potential decay characteristics of PI nano-
composite films. The surface potential decay curves depend also on
the amount of nano-TiO, particles.

The incorporation of the nano-TiO, particles can build up
a conductive network in the nanocomposite film, which increases
the chance of charge transporting in the bulk. The corona resistance
of the nanocomposite films could be improved with the nano-TiO;
particles loading.
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