An Anti-Phishing mechanism for Single Sign-On based on QR-Code

Syamantak Mukhopadhyay

David Argles

School of Electronics \& Computer Science
University of Southampton

Introduction

- Internet \& Web 2.0
- User-centric services
- Services available Online.
- Most services require username/password for authentication \& authorization
- Too many of them to remember(25 on an average)
- Use same password !! -> Password fatigue
- Single Sign-On to the rescue

Single Sign-On

- One ring to rule them all !
- Shibboleth
- Uses SAML
- Best suited for portal or Intranet applications
- OpenID
- User can chose his/her Identity provider
- No pre-established contract required between Service Provider and Identity Provider
- Information Card \& MS Cardspace
- Different Identity sectors for different purposes.
- Identity sectors are stored in client machine!!

Single Sign-On process

Phishing \& Single Sign-On

Previous works on anti phishing

- Client side(Browser solutions)
- Personal icon from myOpenID
- VeriSign -Validation Certificate for IE7 and seatbelt for Firefox
- Use two passwords -Based on Kerberos
- Show two phishing page instead of one!!
- Use mobile SIM in authentication
- For each login generate a token and send it to the user as email
- breaks SSO, user needs to login to open email first -> Single Identity Sign On (SISO)
- Use I-PIN
- Can't be implemented globally

Proposed Model

- Avoid passwords when accessing a service
- Use QR-Code to generate one time password
- Based on the assumption that most internet users are equipped with a mobile device that has a camera.
- Uses two phase approach
- User registration phase
- User verification phase

\section*{User Registration Phase
 | ID_{A} | Username or identity
 of the User |
| :--- | :--- |
| $\mathbf{R P}_{\mathrm{A}}$ | Root password of the
 user |
| X_{A} | Secret key of the user |
| E_{QR} | Encoded QR code |
| D_{QR} | Decoded QR code |}

User Verification Phase

Proposed Model - User Interaction 1

myIdentity Provider
Single Sign-on with
QR-code
Home Login
Register Help Site Map Contact Us

Login with your Identity

Please Enter Your Username

\square Submit

Latest Updates

)" Gait biometrics still walking the walk 02/06/11 $09: 27$ from ECS News
Research on gait biometrics at the University of Southampton has passed another landmark with the first public demonstration of the technology's ability to withstand deliberate spooking
") Back to the Future for ECS
Electronic students
27/05/11 09:20 from ECS News
Second-year Electronics students were presented with a testing and unusual timetravel' challenge in this year's Systems Design Exercise. Known to generations of students as 'D4', the project was
sponsored for the second time by Detica,
wi.
") New communications role in SUSU
for ECS student Joe Mcloughlin
26/05/11 14:13 from ECS News

Proposed Model - User Interaction

2

Home Login
Register Help Site Map Contact Us

QR Code for Login

Take a picture with your Mobile

Enter Token

-Please Enter the code from your Mobile

Submit

Or
Wait for automatic login

Proposed Model - User

Perspective

User's Action

App()

- Decode the QR Code
- If web enabled mobile
- Send the decoded value using https
- Else display the decoded value to be entered manually.
- Users logs in!

Image Source :
http://www.revvedupwithduo.com/2011/03/15/are-
customers-comparison-shopping-at-your-
dealership-with-their-smartphones-hell-yea/qr-
code-mobile/

Proposed Model - Key Points

- Generation of Secret $\operatorname{key}\left(\mathrm{X}_{\mathrm{A}}\right)$ is dynamic
- X_{A} is compromised - generate again
- Reset root password
- Does not introduce any new complications in user verification phase
- Simple and usable

Proposed Model - Security Analysis

- Phishing Attack
- Root password in never disclosed during verification phase.
- Secret key is generated from Root password using one way hash.
- Hence Root password can't be derived from Secret key
- If secret key is compromised, simply generate another one.
- Other attacks
- QR-Code is generated using a random number
- Decoded value uses Timestamp - accepted only within a small time limit
- Fairly safe from both man in the middle attacks and replay attacks

Conclusion

- New SSO model with mobile QR code based onetime password schema
- Secure from phishing
- Prevents other attacks as well (replay \& man in the middle)
- Simple from users perspective
- Can be substituted in any system that uses username/password

Thank You!

Questions ?

