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Abstract— In the Future Internet, programs will run on a 

dynamically changing collection of services, entailing the 

consumption of a more complex set of resources including 

financial resources. The von Neumann model offers no useful 

abstractions for such resources, even with refinements to 

address parallel and distributed computing devices. In this 

paper we detail the specification for a post-von Neumann 

model of metrics where program performance and resource 

consumption can be quantified and encoding of the behaviour 

of processes that use these resources is possible. Our approach 

takes a balanced view between service provider and service 

consumer requirements, supporting service management and 

protection as well as non-functional specifications for service 

discovery and composition. 
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I.  INTRODUCTION  

A (relatively) open software industry developed for non-
distributed computers largely because of the von Neumann 
model [8], which provided the first practical uniform 
abstraction for devices that store and process information. 
Given such an abstraction, one can then devise models for 
describing computational processes via programming 
languages and for executing them on abstract resources 
while controlling trade-offs between performance and 
resource consumption. These key concepts, resource 
abstraction supporting rigorous yet portable process 
descriptions, are fundamental to the development and 
widespread adoption of software assets including compilers, 
operating systems and application programs. 

In the Future Internet, programs will run on a 
dynamically changing collection of services, entailing the 
consumption of a more complex set of resources including 
financial resources (e.g. when services have to be paid for). 
The von Neumann model offers no useful abstractions for 
such resources, even with refinements to address parallel and 
distributed computing devices. In this context, we need 
something like a ‘post-von Neumann’ model of the Future 
Internet of Services (including Grids, Clouds and other 
SOA), in which: program performance and consumption of 
resource (of all types) can be quantified, measured and 
managed; and programmers can encode the behaviour of 
processes that use these resources, including trade-offs 
between performance and resource consumption, in a way 
that is flexible and portable to a wide range of relevant 
resources and services. 

In this paper, we describe the metric model developed 
within the context of the SERSCIS project. SERSCIS aims 

to develop adaptive service-oriented technologies for 
creating, monitoring and managing secure, resilient and 
highly available information systems underpinning critical 
infrastructures. The ambition is to develop technologies for 
such information systems to enable them to survive faults, 
mismanagement and cyber-attack, and automatically adapt to 
dynamically changing requirements arising from the direct 
impact of natural events, accidents and malicious attacks. 
The proof of concept (P-o-C) chosen to demonstrate the 
SERSCIS technologies is an airport-based collaboration and 
decision-making scenario. In this scenario, separate decision 
makers must collaborate using a number of dynamic 
interdependent services to deal with events such as aircraft 
arrival and turn-around, which includes passenger boarding, 
baggage loading and refuelling. The problem that decision 
makers face is that the operations are highly optimised, such 
that little slack remains in the turnaround process. If a 
disruptive event occurs, such as the late arrival of a 
passenger, then this has serious knock-on effects for the rest 
of the system that are typically difficult to handle. 

The focus for our work is therefore to support the needs 
of both service providers and consumers. Our goal is to 
allow providers to manage and protect their services from 
misbehaving consumers, as well as allowing consumers to 
specify non-functional requirements for run-time service 
discovery and composition should their normal provider 
become unreliable. In this sense, SERSCIS-Ont combines 
previous approaches from the Semantic Web community 
focusing on service composition, and from the service 
engineering community focusing on quantifying and 
managing service performance. 

The rest of the paper is organised as follows. Section II 
defines and clarifies the terminology used for metrics, 
measurements and constraints. In Section III we present the 
SERSCIS-Ont metric model. Here each metric is discussed 
in a detail along with the constraints which can be imposed 
upon these metrics. Section IV reviews the state of the art for 
related work and compares and contrasts research work done 
in adaptive system metrics with SERSCIS-Ont. Section V 
presents the results of the validation/simulation experiment 
carried out to test the applicability of the SERSCIS metrics. 
Finally we conclude the paper in Section VI 

II. METRICS MEASUREMENTS AND CONSTRAINTS 

It is important to distinguish between the terminology 
used for metrics, measurements and constraints. In Figure 1 
we show the conceptual relationships between these terms. 
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Figure 1: Metrics, Measurements and Constraints 

 

Services (or sometimes the resources used to operate them) 

are monitored to provide information about some feature of 

interest associated with their operation. The monitoring data 

by some measurement procedure applied to the feature of 

interest at some time or during some time period. Metrics 

are labels associated with this data, denoting what feature of 

interest they refer to and (if appropriate) by which 

measurement procedure they were obtained. Finally, 

monitoring data is supplied to observers of the service at 

some time after it was measured via monitoring reports, 

which are generated and communicated to observers using a 

reporting procedure. It is important to distinguish between 

monitoring data for a feature of interest, and its actual 

behaviour. In many situations, monitoring data provides 

only an approximation to the actual behaviour, either 

because the measurement procedure has limited accuracy or 

precision, or was only applied for specific times or time 

periods and so does not capture real-time changes in the 

feature of interest. Constraints define bounds on the values 

that monitoring data should take, and also refer to metrics so 

it is clear to which data they pertain. Constraints are used in 

management policies, which define management actions to 

be taken by the service provider if the constraints are 

violated. They are also used in SLA terms, which define 

commitments between service providers and customers, and 

may specify actions to be taken if the constraints are 

violated. Note that management policies are not normally 

revealed outside the service provider, while SLA terms are 

communicated and agreed between the service provider and 

customer. Constraints refer to the behaviour of services or 

resources, but of course they can only be tested by applying 

some testing procedure to the relevant monitoring data. The 

testing procedure will involve some mathematical 

manipulation to extract relevant aspects of the behaviour 

from the monitoring data. 

III. SERSCIS METRICS 

In SERSCIS, we aim to support metrics which will 
represent the base classes that capture the physical and 
mathematical nature of certain kinds of service behaviors and 
measurements. These are described below. 

A. Absolute Time 

This metric signifies when (what time and date) some 

event occurs. It can be measured simply by checking the 

time when the event is observed. Subclasses of this metric 

would be used to refer to particular events, e.g. the time at 

which a service is made available, the time it is withdrawn 

from service, etc. There are two types of constraints 

imposed on this metric. (1) a lower limit on the absolute 

time, encoding “not before” condition on the event. (2) an 

upper limit on the absolute, encoding a “deadline” by which 

an event should occur. 

B. Elapsed Time 

This metric just signifies how long it takes for some event to 

occur in response to some stimulus. It can be measured by 

recording the time when the stimulus arises, then checking 

the time when the subsequent event is observed and finding 

the difference. Subclasses of this metric would be used to 

refer to particular responses, e.g. the time taken to process 

and respond to each type of request supported by each type 

of service, or the time taken for some internal resourcing 

action such as the time for cleaners to reach an aircraft after 

it was scheduled and available. In the SERSCIS P-o-C, it 

should be possible to ask a consumer task for the elapsed 

times of all responses corresponding to the metric, and 

possibly to ask for the same thing in a wider context (e.g. 

from a service or service container). Constraints placed on 

elapsed time are (1) an upper limit on the elapsed time 

which encodes a lower limit on the performance of a 

service. (2) a lower limit which is typically used only in 

management policies to trigger actions to reduce the 

resource available if a service over-performs. If there are 

many events of the same type, one may wish to define a 

single constraint that applies to all the responses, so if any 

breaches the constraint the whole set is considered to do so. 

This allows one to test the constraint more efficiently by 

checking only the fastest and slowest response in the set. 

Sometimes it may be appropriate to define constraints that 

include more than one response time. For example, suppose 

a service supports aircraft refuelling but the amount of fuel 

supplied (and hence the time spent actually pumping fuel) is 

specified by the consumer – See Figure 2. 
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Figure 2: Service response times 

 

In this situation the service provider can’t guarantee the total 

response time T(i), because they have no control over the 

amount of time C(i) for which the fuel will actually flow 

into the aircraft. But they can control how long it takes for a 

fuel bowser to reach the aircraft after the refuelling request 

is received, and how long it takes to connect and disconnect 

the fuelling hoses and get clear after fuelling is completed, 

etc. So the service provider may prefer to specify a 

constraint on the difference between the two elapsed times. 

In SERSCIS, anything that is constrained should be a metric 

(to keep the SLA and policy constraint logic and schema 

simple), so in this situation one should define a new metric 

which might be called something like ‘fuelling operation 

time’. One then has two options to obtain its value (1) 

measure it directly so values are returned by the 

measurement procedure; or (2) define rules specifying the 

relationship between the new metric’s value and the other 

metrics whose values are measured. 

C. Counter 

This metric signifies how often events occurs since the 

start of measurement. It can be measured by observing all 

such events and adding one to the counter (which should be 

initialised to zero) each time an event occurs. In some 

situations it may be desirable to reset the counter to zero 

periodically (e.g. at the start of each day), so the metric can 

refer to the number of events since the start of the current 

period. In this case it may be appropriate to record the 

counter for each period before resetting it the retained value 

for the next period. Subclasses of this metric would be used 

to refer to particular types of events, e.g. the number of 

requests of each type supported by the service, or the 

number of exceptions, etc. In the SERSCIS P-o-C, it should 

be possible to ask a consumer task, service or container for 

the counters for each type of request and for exceptions 

arising from each type of request. Note that some types of 

request may only be relevant at the service or container 

level, and for these the counters will only be available at the 

appropriate level. Constraints here are upper and lower 

limits encoding the commitments not to send too many 

requests or generate too many exceptions or to trigger 

management actions. There are also limits on the ration 

between the numbers of events of different types. 

D. Max and Min Elapsed Time 

These metrics signify the slowest and fastest response to 
some stimulus in a set of responses of a given type, possibly 
in specified periods (e.g. per day). They can be measured by 
observing the elapsed times of all events and keeping track 
of the fastest and slowest responses in the set. Subclasses of 
this metric would be used to refer to particular types of 
response, e.g. times to process and respond to each type of 
service request, etc. In the SERSCIS P-o-C, it should be 
possible to ask a consumer task, service or container for the 
minimum and maximum elapsed times corresponding to the 
metric. Constraints on such metrics signify the range of 
elapsed times for a collection of responses. Only one type of 
constraint is commonly used: an upper limit on the 
maximum elapsed time, encoding a limit on the worst case 
performance of a service. 

E. Mean Elapsed Time 

This metrics signifies the average response to some 
stimulus for responses of a given type, possibly in specified 
periods. It can be measured by observing the elapsed times 
for all such responses, and keeping track of the number of 
responses and the sum of their elapsed times: the mean is this 
sum divided by the number of responses. Subclasses of this 
metric would be used to refer to particular types of response, 
e.g. times to process and respond to each type of service 
request, etc. In the SERSCIS P-o-C, it should be possible to 
ask a consumer task, service or container for the mean 
elapsed time corresponding to the metric.  Constraints on this 
metric are the same as those for the elapsed time metric. 

F. Elapsed Time Compliance 

This metric captures the proportion of elapsed times for 

responses of a given type that don’t exceed a specified time 

limit. Metrics of this type allow the distribution of elapsed 

times to be measured, by specifying one or more 

compliance metrics for different elapsed time limits (See 

Figure 3). 

 
Figure 3: Elapsed time distribution 
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When measuring elapsed time compliance, it is convenient 

to make measurements for all the metrics associated with a 

distribution like Figure 3. One has to observe the elapsed 

times for all relevant responses, and keep track of the 

number of responses that were within each elapsed time 

limit, and also the total number of responses. The value of 

the elapsed time compliance metric at each limit is then the 

ratio between the number of responses that didn’t exceed 

that limit and the total number of responses. Subclasses of 

this metric would be used to refer to particular types of 

responses and time limits. For example, one might define 

multiple elapsed time compliance metrics for different time 

limits for responses to each type of request supported by the 

service, and for some internal process time. In the SERSCIS 

P-o-C, it should be possible to ask a consumer task, service 

or container for the elapsed time compliance for responses 

corresponding to the metric. It may also be useful to support 

requests for all elapsed time compliance metrics for a given 

type of response, allowing the compliance of the entire 

distribution function to be obtained at once. Note that some 

types of request may only be relevant at the service or 

container level, and for these the elapsed time distribution 

function will only be available at the appropriate level. 

Constraints for this metric are normally expressed as lower 

(and sometimes upper) bounds on the value of the metric for 

specific responses and time limits.  SLA commitments 

typically involve the use of lower bounds (e.g. 90% of 

responses within 10 mins, 99% within 15 mins, etc), but 

both upper and lower bounds may appear in management 

policies (e.g. if less than 95% of aircraft are cleaned within 

10 mins, call for an extra cleaning team). 

G. Non-recoverable resource usage and usage rate 

These metrics capture the notion that services consume 
resources, which once consumed cannot be got back again 
(this is what we mean by non-recoverable). In most cases, 
non-recoverable usage is linked to how long a resource was 
used, times the intensity (or rate) of usage over that period. It 
can be measured by observing when a resource is used, and 
measuring either the rate of usage or the total amount of 
usage at each observation. Subclasses of the non-recoverable 
usage metric would be used to refer to the usage of particular 
types of resources, for example on CPU usage, 
communication channel usage, data storage usage etc. In the 
SERSCIS P-o-C, it should be possible to ask a consumer 
task, service or container for the usage rate at the last 
observation, and the total usage up to that point. Ideally this 
should trigger a new observation whose result will be 
included in the response. The response should include the 
absolute time of the last observation so it is clear whether 
how out of date the values in the response may be. Non-
recoverable resource usage is characterized by functions of 
the form: 

 �(�, �) ≥ 0 (1) 

 	�(�, �)

	�
≥ 0 

(2) 

U represents the total usage of the non-recoverable resource 

by a set of activities S up to time t. The range of U is 

therefore all non-negative numbers, while the domain spans 

all possible sets of activities using the resource, over all 

times. In fact, U is zero for all times before the start of the 

first activity in S (whenever that may have been), and its 

time derivative is also zero for all times after the last activity 

has finished. The time derivative of U represents the rate of 

usage of the non-recoverable resource. This must be well-

defined and non-negative, implying that U itself must be 

smooth (continuously differentiable) with respect to time, 

i.e. it can’t have any instantaneous changes in value.  

Constraints for non-recoverable usage and usage rate are 

typically simple bounds on their values. Both upper and 

lower bounds often appear in management policies to 

regulate actions to decrease as well as increase resources 

depending on the load on the service: 

 

 
� ≤ �(�, ��) − �(�, ��) ≤ 
� (3) 

 

represents a constraint on the minimum and maximum total 

usage for a collection of activities S in a time period from t0 

to t1, while: 

 

 
�� ≤

	�(�, �)

	�
≤ ��, ∀�: �� ≤ � ≤ �� 

(4) 

 

represents a constraint on the maximum and minimum total 

usage rate for a collection of activities S during a time 

period from t0 to t1. Note that it is possible to have a rate 

constraint (4) that allows a relatively high usage rate, in 

combination with a total usage constraint (3) that enforces a 

much lower average usage rate over some period. 

Alternatively, a contention ration could be introduced for 

usage rate constraints to handle cases where a resource is 

shared between multiple users but may support a high usage 

rate if used by only one at a time. 

H. Maximum and Minimum Usage Rate 

These metrics capture the range of variation in the usage 

rate (possibly in specified periods, which is described 

above. They can be measured by simply retaining the 

maximum and minimum values of the usage rate whenever 

it is observed by the measurement procedure. Subclasses of 

these metrics would be used to refer to maximum and 

minimum usage for particular types of resources. 

Constraints on maximum and minimum usage rate take the 

form of simple bounds on their values. Note that if we 

constrain maximum usage rate to be up to some limit, and 

the usage rate ever breaches that limit, then the constraint is 

violated however the usage rate changes later. 
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I. State 

This metric captures the current state of a service, with 
reference to a (usually finite) state model of the service’s 
internal situation (e.g. the value of stored data, the status of 
supplier resources, etc). The value of the metric at any time 
must be a state within a well-defined state model of the 
service, usually represented as a string signifying that state 
and no other. It can be measured by observing the internal 
situation of the service and mapping this to the relevant state 
from the state model.  In the SERSCIS PoC implementation, 
it should be possible to ask a task, service or container for its 
current state. Note that the state model of a service will 
normally be different from the state model of tasks provided 
by the service, and different from the state model of the 
container providing the service. State is an instantaneous 
metric – a measurement of state gives the state at the time of 
observation only. To obtain a measure of the history of state 
changes one should use state occupancy metrics or possibly 
non-recoverable usage metrics for each possible state of the 
service. Subclasses of the state metric will be needed to refer 
to particular state models and/or services. Constraints can be 
used to specify which state a service should be in, or (if the 
state model includes an ordering of states, e.g. security alert 
levels), what range of states are acceptable.  

J. State Occupancy 

This metric captures the amount of time spent by a task 
in a particular state (possibly in specified periods). It can be 
measured by observing state transitions and keeping track of 
the amount of time spent in each state between transitions. 
Note that for this to be practical one must predefine a state 
model for the task encompassing all its possible states, in 
which the first transition is to enter an initial state when the 
task is created. 

The state of a resource on a service is a function of time: 
 

 ��(�) ∈ Σ, ∀� ≥ �� (5) 

 

where Si(t) is the state of resource i at time t, ∑ is the set of 

possible states (from the resource state model) and t0 is the 

time resource i was created. Constraints on state occupancy 

are bounds on the proportion of time spent in a particular 

state, or the ratio between the time spent in one state and 

time spent in one or more other states. 

K. Data Accuracy 

This metric captures the amount of error in (numerical) 
data supplied to or from a service, compared with a reference 
value from the thing the data is supposed to describe. The 
two main aspects of interest with this particular metric are 
the precision of the data (how close to the reference value is 
the data supposed to be) and the accuracy of the data (how 
close to the reference value the data is, compared to how 
close it was supposed to be). Subclasses of data accuracy 
may be needed to distinguish between different types of data 
used to describe the thing of interest (single values, arrays 
etc), and different ways of specifying precision (precision in 

terms of standard deviation, confidence limit etc), as well as 
to distinguish between things described by the data (e.g. 
aircraft landing times, fuel levels or prices). In the SERSCIS 
P-o-C, we are only really interested in the accuracy of 
predictions for the absolute time of future events, including 
the point when an aircraft will be available so turnaround can 
start (an input to the ground handler), the point when the 
aircraft will be ready to leave, and various milestones 
between these two points (e.g. the start and end of aircraft 
cleaning, etc). Constraints on accuracy are typically just 
upper bounds on the accuracy measure, e.g. accuracy should 
be less than 2.0. Such constraints apply individually to each 
data value relating to a given reference value. 

L. Data Precision 

This is a simple metric associated with the precision 

bands for data supplied to or from a service. Data that 

describes some reference value should always come with a 

specified precision, so measuring the precision is easy – one 

just has to check the precision as specified by whoever 

supplied the data. The reason it is useful to associate a 

metric with this is so one can specify constraints on data 

precision in SLA, to prevent data suppliers evading 

accuracy commitments by supplying data very poor (wide) 

precision bands. Subclasses of data precision are typically 

needed for different kinds of things described by data, and 

different sources of that data. For example, one might define 

different metrics to describe the precision in scheduled 

arrival times (taken from an airline timetable) and predicted 

arrival times (supplied by Air Traffic Control when the 

aircraft is en-route). Note that precision (unlike accuracy) is 

not a dimensionless number – it has the same units as the 

data it refers to, so metric subclasses should specify this. In 

the SERSCIS P-o-C testbed, it should be possible to ask a 

consumer task for the precision of data supplied to or by it. 

The response should ideally give the best, worst and latest 

precision estimates for the data corresponding to the metric. 

Constraints on data precision are simple bounds on its value. 

Typically they will appear in SLA, and define the worst-

case precision that is acceptable to both parties. If data is 

provided with worse precision than this, the constraint is 

breached. This type of constraint is normally used as a 

conditional clause in compound constraint for data accuracy 

or accuracy distribution. 

M. Data Error 

This is a simple metric associated with the error in a data 

item relative to the reference value to which it relates. In 

some situations we may wish to specify and measure 

commitments for this ‘raw’ measure of accuracy, 

independently of its supposed precision. Subclasses of data 

error are typically needed for different kinds of things 

described by data, and different sources of data. In the 

SERSCIS P-o-C testbed, it should be possible to ask a 

consumer task for the error in data supplied to or by it once 

the reference value is known to the service. The response 

should ideally give the best, worst and latest error for data 
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sent/received corresponding to the metric. Constraints on 

data error are simple bounds on its value. Typically they 

will appear in SLA, and define the worst-case error that is 

acceptable to both parties. If data is provided and turns out 

to have an error worse than this, the constraint is breached. 

N. Data Accuracy Compliance 

This metric captures the proportion of data items in a 

data set provided to or from a service whose accuracy is not 

worse than a specified limit. This metric is mathematically 

similar to the elapsed time compliance metric, and as before 

we may wish to use several accuracy compliance metrics for 

the same data at different accuracy levels, to approximate a 

data accuracy distribution function. Accuracy compliance 

can be measured by keeping track of the total number of 

data items, and how many of these had accuracy up to each 

specified level. The value of the metric is then the fraction 

of data items whose accuracy is within the specified level. 

In the SERSCIS P-o-C testbed, subclasses of accuracy 

compliance are typically used to distinguish between 

different accuracy levels, types of data and methods for 

defining precision, for data forecasting the time of events. 

To construct accuracy distributions it is necessary to classify 

those events so we know which forecasts to include in each 

distribution function. It should be possible to ask consumer 

tasks, services or service containers for the value of these 

compliance metrics. Constraints on accuracy compliance 

just specify bounds on the metric, thus specifying what 

proportion of data items can have accuracy worse than the 

corresponding accuracy limit.  

O. Auditable Properties 

Auditable property metrics are used to express whether a 

service satisfies some criterion that can’t be measured, but 

can only be verified through an audit of the service 

implementation and behaviour. An auditable property will 

normally be asserted by the service provider, who may also 

provide proof in the form of accreditation based on previous 

audits in which this property was independently verified. 

Auditable properties are usually represented as State 

metrics: a state model is devised in which the desired 

property is associated with one or more states, which are 

related (out of band) to some audit and if necessary 

accreditation process. Subclasses are used to indicate 

different auditable properties and state models. Auditable 

property constraints typically denote restrictions on the 

resources (i.e. supplier services) used to provide the service. 

For example, they may specify that only in-house resources 

will be used, that staff will be security vetted, or that data 

backups will be held off site, etc. In SERSCIS, such terms 

are also referred to as Quality of Resourcing (QoR) terms. 

As with other state-based descriptions, auditable properties 

may be binary (true or false), or they may be ordered (e.g. to 

describe staff with different security clearance levels). It is 

also possible to treat Data Precision (and other data 

characteristics) as an auditable property which does not 

correspond to a state model. 

IV. RELATED WORK 

Characterizing the performance of adaptive real-time 

systems is very difficult because it is difficult to predict the 

exact run-time workload of such systems. Transient and 

steady state behavior metrics of adaptive systems were 

initially drafted in [4], where the performance of an adaptive 

was evaluated by its response to a single variation in the 

application behavior that increased the risk of violating a 

performance requirement. A very simple set of metrics are 

used: reaction time which is the time difference between a 

critical variation and the compensating resource allocation, 

recovery time by which system performance returns to an 

acceptable level, and performance laxity which is the 

difference between the expected and actual performance 

after the system returns to a steady state. These metrics are 

further specialized in [1] by the introduction of load profiles 

to characterize the types of variation considered including 

step-load (instant) and ramp-load (linear) changes, and a 

miss-ratio metric which is the fraction of tasks submitted in 

a time window for which the system missed a completion 

deadline. System performance is characterized by a set of 

miss-ratio profiles with respect to transient and steady state 

profiles. A system is said to be stable in response to a load 

profile if the system output converges as the time goes to 

infinity, while transient profiles can measure responsiveness 

and efficiency when reacting to changes in run-time 

conditions. The SERSCIS-Ont metrics provide a superset of 

these concepts, appropriate to a wider range of situations 

where accuracy and reliability may be as important as 

performance and stability. 

A more recent alternative approach to defining adaptive 

system metrics is given by [6,7]. Here the focus is on the 

system engineering concerns for adaptivity, and metrics are 

categorized into four types: architectural metrics which deal 

with the separation of concerns and architectural growth for 

adaptive systems [2], structural metrics which provide 

information about the role of adaptation in the overall 

functionality of a system (and vice versa), interaction 

metrics which measure the changes in user interactions 

imposed by adaptation, and performance metrics which deal 

with the impact of adaptation on system performance, such 

as its response time, performance latency, etc [2]. The focus 

of SERSCIS-Ont is to provide concrete and mathematically 

precise metrics covering performance and some aspects of 

interactivity, which can be used in such a wider engineering 

framework. 

The most closely related work is found in the WSMO 

initiative [3], which has also formalized metrics for resource 

dependability. This was done with the intention of providing 

QoS aware service oriented infrastructures. Semantic SLA 

modeling using WSMO focuses principally on automated 

service mediation and on the service execution 

infrastructure [3]. By adding semantic descriptions for 
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service parameters it is possible for agents to discover and 

rank services automatically by applying semantic reasoning. 

The WSMO initiative focused its modeling efforts on 

capturing service consumer requirements, which can then be 

used for service discovery. Work in [5] extends the WSMO 

ontology to include QoS and non-functional properties. This 

includes providing formal specifications for service level 

agreements including the units for measurement, price, CPU 

usage etc. However, the focus is still to support the 

description of services for orchestration purposes (service 

discovery and selection). SERSCIS-Ont is more even-

handed. It can be used for service discovery and selection, 

but it is also designed to support service operators by 

introducing service protection measures from a provider’s 

perspective such as the usage limits, service access and 

control decisions, as well as workflow adaption, etc. 

SERSCIS-Ont is thus also related to the development and 

service management specifications such as WSDM. The 

WSDM-MOWS specification [9] defines 10 metrics which 

are used to measure the use and performance of a general 

Web Service. These include NumberOfRequests,  

NumberOfFailedRequests and NumberOfSucessfulRequests 

which count the messages received by the Web Service end 

point, and whether the service handles them successfully. In 

SERSCIS-Ont we have a more general Counter metric, of 

which these WSDM-MOWS metrics can be regarded as 

subclasses specifically for Web Service management. 

WSDM-MOWS also defines ServiceTime (the time taken 

by the Web Service to process all its requests), and 

MaxResponseTime and LatestResponseTime. In SERSCIS-

Ont these would be modeled as subclasses of usage and 

elapsed time, and SERSCIS-Ont then provides additional 

metrics such as min/max/mean responses and response time 

compliance metrics. WSDM-MOWS specifies a state model 

for Web Service operation with states {UpState, DownState, 

IdleState, BusyState, StoppedState, CrashedState, 

SaturatedState}, and metrics CurrentOperationalState and 

LastOperationStateTransition all of which can be handled 

easily by SERSCIS-Ont. The one area where WSDM-

MOWS goes beyond SERSCIS-Ont is in providing metrics 

for the size of Web Service request and response messages:  

MaxRequestSize, LastRequestSize and MaxResponseSize. 

These can be modeled with difficulty using SERSCIS-Ont 

usage metrics, but if SERSCIS-Ont were applied to Web 

Service management, some extensions would be desirable. 

V. VALIDATION EXPERIMENTS 

To verify that SERSCIS-Ont really is applicable to the 

management of service performance and dependability, the 

project is conducting two types of experiments. Testbeds are 

being developed comprising SERSCIS dependability 

management tools along with emulated application services 

based on air-side operations at Vienna Airport. This will be 

a discrete event simulation in which realistic application-

level requests and responses are produced, and the full (not 

emulated) management tools will be tested using SERSCIS-

Ont metrics in service level agreements and monitoring and 

management policies. 

Until the testbed is ready, SERSCIS validation work has 

focused on the use of stochastic process simulation based on 

queuing theory [10]. A simplified Markov chain model was 

developed for a single aircraft refueling service, and the 

resulting equations solved numerically to compute the 

expected behavior. This approach is faster and easier to 

interpret than a discrete event simulation, though it uses 

simpler and less realistic models of services and their 

interactions. 

The basic model of the refueling service assumes that 

around 20 aircraft arrive per hour and need to be refueled. 

The service provider has 3 bowsers (fuel tankers) which can 

supply fuel to aircraft at a certain rate. The time taken for 

refueling varies randomly between aircraft depending on 

their needs and how much fuel they still have on landing, 

but the average time is 7.5 minutes. However, with only 3 

bowsers, aircraft may have to wait until one becomes 

available before refueling can start. The SERSCIS-Ont 

metrics used to describe this service are: 

• a counter metric for the number of aircraft refueled, and 

an associated usage rate metric for the number of 

aircraft refueled per hour; 

• a non-recoverable usage rate metric for the time the 

bowsers spend actually refueling aircraft, from which 

we can also obtain the resource utilization percentage; 

• an elapsed time metric for the amount of time spent by 

aircraft waiting for a bowser (the refueling service can’t 

control how long the refueling takes, so QoS is defined 

in terms of the waiting time only); and 

• elapsed time compliance metrics for the proportion of 

aircraft that have to wait for different lengths of time 

between 0 and 20 minutes. 

We also assume that the service will refuse an aircraft, 

i.e. tell it to use another refueling company rather than wait, 

if it would become the 10
th
 aircraft in the queue. This is 

captured by a further counter metric, which is used to find 

the proportion of arriving aircraft that are refused service. 

The first simulation considered an unmanaged service (no 

SLAs), and produced the following behavior (See Table 1): 

TABLE 1: UNMANAGED SERVICE SIMULATION 

 

Metric Value 

Service load 20 aircraft / hour 

Service throughput 19.5 aircraft / hour 

Percentage of aircraft that don’t have 

to wait 

33.6% 

Percentage that don’t  have to wait 

more than 10 mins 

74.6% 

Percentage that don’t  have to wait 

more than 20 mins 

94.4% 

Percentage of aircraft refused service 2.6% 

Mean waiting time 6.1 mins 

Resource utilization 81.2% 
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The QoS is relatively poor because the random variation 

in aircraft arrival and refueling times means queues can 

build up, leading to a high proportion of aircraft having to 

wait, and some having to wait for a long time or even being 

sent to other service providers. 

To investigate how the metrics could be used to manage 

the service, the simulation was extended so airlines must 

have an SLA with the service provider before they can use 

the service. Each SLA lasts on average 1 week, and allows 

an airline to refuel an average of 3 aircraft per hour. The 

extended model assumed about one new SLA per day would 

be signed, giving an average load roughly similar to the total 

load in the first simulation. We also assumed the service 

provider would refuse to agree more than 12 SLA at a time, 

so the load could temporarily rise up to 50% higher than the 

capacity of its resources. We wished to investigate how well 

the use of SLA as a pre-requisite for service access allowed 

such overloads to be managed. The results of this second 

simulation were as follows (See Table 2): 

 
TABLE 2: MANAGED SERVICE SIMULATION 

 

Metric Value 

Service load 0-36 aircraft / hour 

Service throughput 21.1 aircraft / hour 

Percentage of aircraft that don’t have 

to wait 

22.4% 

Percentage that don’t  have to wait 

more than 10 mins 

60.4% 

Percentage that don’t  have to wait 

more than 20 mins 

89.7% 

Percentage of aircraft refused service 4.9% 

Mean waiting time 9.4 mins 

Resource utilization 87.8% 

 

While the use of this SLA allowed the service provider to 

anticipate the load from a pool of potential consumers, it 

couldn’t improve QoS with a fixed set of resources. In fact, 

the compliance metrics are now much worse than before, 

with only a small increase in the total throughput because 

the load exceeds the resource capacity around 25% of the 

time. Further tests showed that reducing the number of SLA 

the service accepts doesn’t help much as this only lowers 

the long term average load, whereas overloads and long 

queues arise from shorter-term fluctuations. The limit would 

have to be much lower (and the throughput substantially 

lower) before the compliance metrics were good enough to 

be of interest to customers. 

The final experiment used a different type of SLA in 

which each customer can still have 3 aircraft serviced per 

hour on average, but only one at a time. To handle this, we 

used a non-recoverable usage rate metric for the number of 

aircraft in the system and specified in the SLA that this 

could not exceed 1. This simulation produced the following 

(See Table 3):  

 
TABLE 3: CONSTRAINED SLA SERVICE SIMULATION 

 

Metric Value 

Service load 0-36 aircraft / hour 

Service throughput 17.9 aircraft / hour 

Percentage of aircraft that don’t have 

to wait 

50.6% 

Percentage that don’t  have to wait 

more than 10 mins 

96.0% 

Percentage that don’t  have to wait 

more than 20 mins 

99.9% 

Percentage of aircraft refused service 0% 

Mean waiting time 3.4 mins 

Resource utilization 74.7% 

 

Evidently, if this last type of SLA were enforced by a 

suitable management procedure, it would allow the service 

to protect itself from overloads, without a huge drop in the 

service throughput. Further experiments showed that if the 

permitted long-term load per SLA were pushed up to 3.5 

aircraft per hour, the throughput would reach 19.7 aircraft 

per hour (more than the original unmanaged service), yet the 

compliance metrics would stay above 90%. This provides a 

good indication that the SERSCIS-Ont metrics can be used 

to describe service management and protection constraints, 

as well as consumer QoS measurements and guarantees. 

VI. CONCLUSIONS 

This paper describes a base metric model that provides a 

uniform abstraction for describing service behavior in an 

adaptive environment. Such an abstraction allows services 

to be composed into value chains, in which consumers and 

providers understand and can manage their use of services 

according to these metrics.  

A service provider, having analyzed the application 

service that it is offering, defines a metric ontology to 

describe measurements of the relevant service behavior. 

This ontology should refer to the SERSCIS base ontology, 

and provide subclasses of the base metrics to describe each 

relevant aspect of service behavior. Note that while each 

service provider can in principle define their own metrics 

ontology, it is may be advantageous to establish ‘standard’ 

ontologies in particular domains – this reduces the need for 

translation of reported QoS as it crosses organizational 

boundaries. 

Validation simulations provide a good indication that the 

SERSCIS-Ont metrics are useful for describing both service 

management and protection constraints, and service 

dependability and QoS guarantees. 
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