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Abstract— In the Future Internet, programs will run on a
dynamically changing collection of services, entailing the
consumption of a more complex set of resources including
financial resources. The von Neumann model offers no useful
abstractions for such resources, even with refinements to
address parallel and distributed computing devices. In this
paper we detail the specification for a post-von Neumann
model of metrics where program performance and resource
consumption can be quantified and encoding of the behaviour
of processes that use these resources is possible. Our approach
takes a balanced view between service provider and service
consumer requirements, supporting service management and
protection as well as non-functional specifications for service
discovery and composition.

Keywords-adaptive metrics; SOA; measurements;constraints;
QoS

1. INTRODUCTION

A (relatively) open software industry developed for non-
distributed computers largely because of the von Neumann
model [8], which provided the first practical uniform
abstraction for devices that store and process information.
Given such an abstraction, one can then devise models for
describing computational processes via programming
languages and for executing them on abstract resources
while controlling trade-offs between performance and
resource consumption. These key concepts, resource
abstraction supporting rigorous yet portable process
descriptions, are fundamental to the development and
widespread adoption of software assets including compilers,
operating systems and application programs.

In the Future Internet, programs will run on a
dynamically changing collection of services, entailing the
consumption of a more complex set of resources including
financial resources (e.g. when services have to be paid for).
The von Neumann model offers no useful abstractions for
such resources, even with refinements to address parallel and
distributed computing devices. In this context, we need
something like a ‘post-von Neumann’ model of the Future
Internet of Services (including Grids, Clouds and other
SOA), in which: program performance and consumption of
resource (of all types) can be quantified, measured and
managed; and programmers can encode the behaviour of
processes that use these resources, including trade-offs
between performance and resource consumption, in a way
that is flexible and portable to a wide range of relevant
resources and services.

In this paper, we describe the metric model developed
within the context of the SERSCIS project. SERSCIS aims
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to develop adaptive service-oriented technologies for
creating, monitoring and managing secure, resilient and
highly available information systems underpinning critical
infrastructures. The ambition is to develop technologies for
such information systems to enable them to survive faults,
mismanagement and cyber-attack, and automatically adapt to
dynamically changing requirements arising from the direct
impact of natural events, accidents and malicious attacks.
The proof of concept (P-0-C) chosen to demonstrate the
SERSCIS technologies is an airport-based collaboration and
decision-making scenario. In this scenario, separate decision
makers must collaborate using a number of dynamic
interdependent services to deal with events such as aircraft
arrival and turn-around, which includes passenger boarding,
baggage loading and refuelling. The problem that decision
makers face is that the operations are highly optimised, such
that little slack remains in the turnaround process. If a
disruptive event occurs, such as the late arrival of a
passenger, then this has serious knock-on effects for the rest
of the system that are typically difficult to handle.

The focus for our work is therefore to support the needs
of both service providers and consumers. Our goal is to
allow providers to manage and protect their services from
misbehaving consumers, as well as allowing consumers to
specify non-functional requirements for run-time service
discovery and composition should their normal provider
become unreliable. In this sense, SERSCIS-Ont combines
previous approaches from the Semantic Web community
focusing on service composition, and from the service
engineering community focusing on quantifying and
managing service performance.

The rest of the paper is organised as follows. Section II
defines and clarifies the terminology used for metrics,
measurements and constraints. In Section III we present the
SERSCIS-Ont metric model. Here each metric is discussed
in a detail along with the constraints which can be imposed
upon these metrics. Section IV reviews the state of the art for
related work and compares and contrasts research work done
in adaptive system metrics with SERSCIS-Ont. Section V
presents the results of the validation/simulation experiment
carried out to test the applicability of the SERSCIS metrics.
Finally we conclude the paper in Section VI

II. METRICS MEASUREMENTS AND CONSTRAINTS

It is important to distinguish between the terminology
used for metrics, measurements and constraints. In Figure 1
we show the conceptual relationships between these terms.
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Figure 1: Metrics, Measurements and Constraints

Service
(or resource)

Services (or sometimes the resources used to operate them)
are monitored to provide information about some feature of
interest associated with their operation. The monitoring data
by some measurement procedure applied to the feature of
interest at some time or during some time period. Metrics
are labels associated with this data, denoting what feature of
interest they refer to and (if appropriate) by which
measurement procedure they were obtained. Finally,
monitoring data is supplied to observers of the service at
some time after it was measured via monitoring reports,
which are generated and communicated to observers using a
reporting procedure. It is important to distinguish between
monitoring data for a feature of interest, and its actual
behaviour. In many situations, monitoring data provides
only an approximation to the actual behaviour, either
because the measurement procedure has limited accuracy or
precision, or was only applied for specific times or time
periods and so does not capture real-time changes in the
feature of interest. Constraints define bounds on the values
that monitoring data should take, and also refer to metrics so
it is clear to which data they pertain. Constraints are used in
management policies, which define management actions to
be taken by the service provider if the constraints are
violated. They are also used in SLA terms, which define
commitments between service providers and customers, and
may specify actions to be taken if the constraints are
violated. Note that management policies are not normally
revealed outside the service provider, while SLA terms are
communicated and agreed between the service provider and
customer. Constraints refer to the behaviour of services or
resources, but of course they can only be tested by applying
some testing procedure to the relevant monitoring data. The
testing procedure will involve some mathematical
manipulation to extract relevant aspects of the behaviour
from the monitoring data.

III.  SERSCIS METRICS

In SERSCIS, we aim to support metrics which will
represent the base classes that capture the physical and
mathematical nature of certain kinds of service behaviors and
measurements. These are described below.
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A. Absolute Time

This metric signifies when (what time and date) some
event occurs. It can be measured simply by checking the
time when the event is observed. Subclasses of this metric
would be used to refer to particular events, e.g. the time at
which a service is made available, the time it is withdrawn
from service, etc. There are two types of constraints
imposed on this metric. (1) a lower limit on the absolute
time, encoding “not before” condition on the event. (2) an
upper limit on the absolute, encoding a “deadline” by which
an event should occur.

B. Elapsed Time

This metric just signifies how long it takes for some event to
occur in response to some stimulus. It can be measured by
recording the time when the stimulus arises, then checking
the time when the subsequent event is observed and finding
the difference. Subclasses of this metric would be used to
refer to particular responses, e.g. the time taken to process
and respond to each type of request supported by each type
of service, or the time taken for some internal resourcing
action such as the time for cleaners to reach an aircraft after
it was scheduled and available. In the SERSCIS P-o0-C, it
should be possible to ask a consumer task for the elapsed
times of all responses corresponding to the metric, and
possibly to ask for the same thing in a wider context (e.g.
from a service or service container). Constraints placed on
elapsed time are (1) an upper limit on the elapsed time
which encodes a lower limit on the performance of a
service. (2) a lower limit which is typically used only in
management policies to trigger actions to reduce the
resource available if a service over-performs. If there are
many events of the same type, one may wish to define a
single constraint that applies to all the responses, so if any
breaches the constraint the whole set is considered to do so.
This allows one to test the constraint more efficiently by
checking only the fastest and slowest response in the set.
Sometimes it may be appropriate to define constraints that
include more than one response time. For example, suppose
a service supports aircraft refuelling but the amount of fuel
supplied (and hence the time spent actually pumping fuel) is
specified by the consumer — See Figure 2.
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In this situation the service provider can’t guarantee the total
response time T(i), because they have no control over the
amount of time C(i) for which the fuel will actually flow
into the aircraft. But they can control how long it takes for a
fuel bowser to reach the aircraft after the refuelling request
is received, and how long it takes to connect and disconnect
the fuelling hoses and get clear after fuelling is completed,
etc. So the service provider may prefer to specify a
constraint on the difference between the two elapsed times.
In SERSCIS, anything that is constrained should be a metric
(to keep the SLA and policy constraint logic and schema
simple), so in this situation one should define a new metric
which might be called something like ‘fuelling operation
time’. One then has two options to obtain its value (1)
measure it directly so values are returned by the
measurement procedure; or (2) define rules specifying the
relationship between the new metric’s value and the other
metrics whose values are measured.

C. Counter

This metric signifies how often events occurs since the
start of measurement. It can be measured by observing all
such events and adding one to the counter (which should be
initialised to zero) each time an event occurs. In some
situations it may be desirable to reset the counter to zero
periodically (e.g. at the start of each day), so the metric can
refer to the number of events since the start of the current
period. In this case it may be appropriate to record the
counter for each period before resetting it the retained value
for the next period. Subclasses of this metric would be used
to refer to particular types of events, e.g. the number of
requests of each type supported by the service, or the
number of exceptions, etc. In the SERSCIS P-0-C, it should
be possible to ask a consumer task, service or container for
the counters for each type of request and for exceptions
arising from each type of request. Note that some types of
request may only be relevant at the service or container
level, and for these the counters will only be available at the
appropriate level. Constraints here are upper and lower
limits encoding the commitments not to send too many
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requests or generate too many exceptions or to trigger
management actions. There are also limits on the ration
between the numbers of events of different types.

D. Max and Min Elapsed Time

These metrics signify the slowest and fastest response to
some stimulus in a set of responses of a given type, possibly
in specified periods (e.g. per day). They can be measured by
observing the elapsed times of all events and keeping track
of the fastest and slowest responses in the set. Subclasses of
this metric would be used to refer to particular types of
response, e.g. times to process and respond to each type of
service request, etc. In the SERSCIS P-o0-C, it should be
possible to ask a consumer task, service or container for the
minimum and maximum elapsed times corresponding to the
metric. Constraints on such metrics signify the range of
elapsed times for a collection of responses. Only one type of
constraint is commonly used: an upper limit on the
maximum elapsed time, encoding a limit on the worst case
performance of a service.

E. Mean Elapsed Time

This metrics signifies the average response to some
stimulus for responses of a given type, possibly in specified
periods. It can be measured by observing the elapsed times
for all such responses, and keeping track of the number of
responses and the sum of their elapsed times: the mean is this
sum divided by the number of responses. Subclasses of this
metric would be used to refer to particular types of response,
e.g. times to process and respond to each type of service
request, etc. In the SERSCIS P-0-C, it should be possible to
ask a consumer task, service or container for the mean
elapsed time corresponding to the metric. Constraints on this
metric are the same as those for the elapsed time metric.

F. FElapsed Time Compliance

This metric captures the proportion of elapsed times for
responses of a given type that don’t exceed a specified time
limit. Metrics of this type allow the distribution of elapsed
times to be measured, by specifying one or more
compliance metrics for different elapsed time limits (See
Figure 3).
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Figure 3: Elapsed time distribution
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When measuring elapsed time compliance, it is convenient
to make measurements for all the metrics associated with a
distribution like Figure 3. One has to observe the elapsed
times for all relevant responses, and keep track of the
number of responses that were within each elapsed time
limit, and also the total number of responses. The value of
the elapsed time compliance metric at each limit is then the
ratio between the number of responses that didn’t exceed
that limit and the total number of responses. Subclasses of
this metric would be used to refer to particular types of
responses and time limits. For example, one might define
multiple elapsed time compliance metrics for different time
limits for responses to each type of request supported by the
service, and for some internal process time. In the SERSCIS
P-0-C, it should be possible to ask a consumer task, service
or container for the elapsed time compliance for responses
corresponding to the metric. It may also be useful to support
requests for all elapsed time compliance metrics for a given
type of response, allowing the compliance of the entire
distribution function to be obtained at once. Note that some
types of request may only be relevant at the service or
container level, and for these the elapsed time distribution
function will only be available at the appropriate level.
Constraints for this metric are normally expressed as lower
(and sometimes upper) bounds on the value of the metric for
specific responses and time limits. SLA commitments
typically involve the use of lower bounds (e.g. 90% of
responses within 10 mins, 99% within 15 mins, etc), but
both upper and lower bounds may appear in management
policies (e.g. if less than 95% of aircraft are cleaned within
10 mins, call for an extra cleaning team).

G. Non-recoverable resource usage and usage rate

These metrics capture the notion that services consume
resources, which once consumed cannot be got back again
(this is what we mean by non-recoverable). In most cases,
non-recoverable usage is linked to how long a resource was
used, times the intensity (or rate) of usage over that period. It
can be measured by observing when a resource is used, and
measuring either the rate of usage or the total amount of
usage at each observation. Subclasses of the non-recoverable
usage metric would be used to refer to the usage of particular
types of resources, for example on CPU usage,
communication channel usage, data storage usage etc. In the
SERSCIS P-0-C, it should be possible to ask a consumer
task, service or container for the usage rate at the last
observation, and the total usage up to that point. Ideally this
should trigger a new observation whose result will be
included in the response. The response should include the
absolute time of the last observation so it is clear whether
how out of date the values in the response may be. Non-
recoverable resource usage is characterized by functions of
the form:

Ues,t) =0 (1)
wen _, @)
dt
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U represents the total usage of the non-recoverable resource
by a set of activities S up to time #. The range of U is
therefore all non-negative numbers, while the domain spans
all possible sets of activities using the resource, over all
times. In fact, U is zero for all times before the start of the
first activity in S (whenever that may have been), and its
time derivative is also zero for all times after the last activity
has finished. The time derivative of U represents the rate of
usage of the non-recoverable resource. This must be well-
defined and non-negative, implying that U itself must be
smooth (continuously differentiable) with respect to time,
i.e. it can’t have any instantaneous changes in value.

Constraints for non-recoverable usage and usage rate are
typically simple bounds on their values. Both upper and
lower bounds often appear in management policies to
regulate actions to decrease as well as increase resources
depending on the load on the service:

Lo <U(S, ty) —U(S, ty) <L, 3)

represents a constraint on the minimum and maximum total
usage for a collection of activities S in a time period from ¢,
to t;, while:

au(s,t) “)
OSTSMI'Vt:tOStStl

represents a constraint on the maximum and minimum total
usage rate for a collection of activities S during a time
period from #, to #;. Note that it is possible to have a rate
constraint (4) that allows a relatively high usage rate, in
combination with a total usage constraint (3) that enforces a
much lower average usage rate over some period.
Alternatively, a contention ration could be introduced for
usage rate constraints to handle cases where a resource is
shared between multiple users but may support a high usage
rate if used by only one at a time.

H. Maximum and Minimum Usage Rate

These metrics capture the range of variation in the usage
rate (possibly in specified periods, which is described
above. They can be measured by simply retaining the
maximum and minimum values of the usage rate whenever
it is observed by the measurement procedure. Subclasses of
these metrics would be used to refer to maximum and
minimum usage for particular types of resources.
Constraints on maximum and minimum usage rate take the
form of simple bounds on their values. Note that if we
constrain maximum usage rate to be up to some limit, and
the usage rate ever breaches that limit, then the constraint is
violated however the usage rate changes later.
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1. State

This metric captures the current state of a service, with
reference to a (usually finite) state model of the service’s
internal situation (e.g. the value of stored data, the status of
supplier resources, etc). The value of the metric at any time
must be a state within a well-defined state model of the
service, usually represented as a string signifying that state
and no other. It can be measured by observing the internal
situation of the service and mapping this to the relevant state
from the state model. In the SERSCIS PoC implementation,
it should be possible to ask a task, service or container for its
current state. Note that the state model of a service will
normally be different from the state model of tasks provided
by the service, and different from the state model of the
container providing the service. State is an instantaneous
metric — a measurement of state gives the state at the time of
observation only. To obtain a measure of the history of state
changes one should use state occupancy metrics or possibly
non-recoverable usage metrics for each possible state of the
service. Subclasses of the state metric will be needed to refer
to particular state models and/or services. Constraints can be
used to specify which state a service should be in, or (if the
state model includes an ordering of states, e.g. security alert
levels), what range of states are acceptable.

J. State Occupancy

This metric captures the amount of time spent by a task
in a particular state (possibly in specified periods). It can be
measured by observing state transitions and keeping track of
the amount of time spent in each state between transitions.
Note that for this to be practical one must predefine a state
model for the task encompassing all its possible states, in
which the first transition is to enter an initial state when the
task is created.

The state of a resource on a service is a function of time:

S;(t) XVt >t, (5)

where Sj(?) is the state of resource i at time ¢, ) is the set of
possible states (from the resource state model) and ¢, is the
time resource i was created. Constraints on state occupancy
are bounds on the proportion of time spent in a particular
state, or the ratio between the time spent in one state and
time spent in one or more other states.

K. Data Accuracy

This metric captures the amount of error in (numerical)
data supplied to or from a service, compared with a reference
value from the thing the data is supposed to describe. The
two main aspects of interest with this particular metric are
the precision of the data (how close to the reference value is
the data supposed to be) and the accuracy of the data (how
close to the reference value the data is, compared to how
close it was supposed to be). Subclasses of data accuracy
may be needed to distinguish between different types of data
used to describe the thing of interest (single values, arrays
etc), and different ways of specifying precision (precision in
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terms of standard deviation, confidence limit etc), as well as
to distinguish between things described by the data (e.g.
aircraft landing times, fuel levels or prices). In the SERSCIS
P-0-C, we are only really interested in the accuracy of
predictions for the absolute time of future events, including
the point when an aircraft will be available so turnaround can
start (an input to the ground handler), the point when the
aircraft will be ready to leave, and various milestones
between these two points (e.g. the start and end of aircraft
cleaning, etc). Constraints on accuracy are typically just
upper bounds on the accuracy measure, e.g. accuracy should
be less than 2.0. Such constraints apply individually to each
data value relating to a given reference value.

L. Data Precision

This is a simple metric associated with the precision
bands for data supplied to or from a service. Data that
describes some reference value should always come with a
specified precision, so measuring the precision is easy — one
just has to check the precision as specified by whoever
supplied the data. The reason it is useful to associate a
metric with this is so one can specify constraints on data
precision in SLA, to prevent data suppliers evading
accuracy commitments by supplying data very poor (wide)
precision bands. Subclasses of data precision are typically
needed for different kinds of things described by data, and
different sources of that data. For example, one might define
different metrics to describe the precision in scheduled
arrival times (taken from an airline timetable) and predicted
arrival times (supplied by Air Traffic Control when the
aircraft is en-route). Note that precision (unlike accuracy) is
not a dimensionless number — it has the same units as the
data it refers to, so metric subclasses should specify this. In
the SERSCIS P-o0-C testbed, it should be possible to ask a
consumer task for the precision of data supplied to or by it.
The response should ideally give the best, worst and latest
precision estimates for the data corresponding to the metric.
Constraints on data precision are simple bounds on its value.
Typically they will appear in SLA, and define the worst-
case precision that is acceptable to both parties. If data is
provided with worse precision than this, the constraint is
breached. This type of constraint is normally used as a
conditional clause in compound constraint for data accuracy
or accuracy distribution.

M. Data Error

This is a simple metric associated with the error in a data
item relative to the reference value to which it relates. In
some situations we may wish to specify and measure
commitments for this ‘raw’ measure of accuracy,
independently of its supposed precision. Subclasses of data
error are typically needed for different kinds of things
described by data, and different sources of data. In the
SERSCIS P-0-C testbed, it should be possible to ask a
consumer task for the error in data supplied to or by it once
the reference value is known to the service. The response
should ideally give the best, worst and latest error for data
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sent/received corresponding to the metric. Constraints on
data error are simple bounds on its value. Typically they
will appear in SLA, and define the worst-case error that is
acceptable to both parties. If data is provided and turns out
to have an error worse than this, the constraint is breached.

N. Data Accuracy Compliance

This metric captures the proportion of data items in a
data set provided to or from a service whose accuracy is not
worse than a specified limit. This metric is mathematically
similar to the elapsed time compliance metric, and as before
we may wish to use several accuracy compliance metrics for
the same data at different accuracy levels, to approximate a
data accuracy distribution function. Accuracy compliance
can be measured by keeping track of the total number of
data items, and how many of these had accuracy up to each
specified level. The value of the metric is then the fraction
of data items whose accuracy is within the specified level.
In the SERSCIS P-0-C testbed, subclasses of accuracy
compliance are typically used to distinguish between
different accuracy levels, types of data and methods for
defining precision, for data forecasting the time of events.
To construct accuracy distributions it is necessary to classify
those events so we know which forecasts to include in each
distribution function. It should be possible to ask consumer
tasks, services or service containers for the value of these
compliance metrics. Constraints on accuracy compliance
just specify bounds on the metric, thus specifying what
proportion of data items can have accuracy worse than the
corresponding accuracy limit.

O. Auditable Properties

Auditable property metrics are used to express whether a
service satisfies some criterion that can’t be measured, but
can only be verified through an audit of the service
implementation and behaviour. An auditable property will
normally be asserted by the service provider, who may also
provide proof in the form of accreditation based on previous
audits in which this property was independently verified.
Auditable properties are usually represented as State
metrics: a state model is devised in which the desired
property is associated with one or more states, which are
related (out of band) to some audit and if necessary
accreditation process. Subclasses are used to indicate
different auditable properties and state models. Auditable
property constraints typically denote restrictions on the
resources (i.e. supplier services) used to provide the service.
For example, they may specify that only in-house resources
will be used, that staff will be security vetted, or that data
backups will be held off site, etc. In SERSCIS, such terms
are also referred to as Quality of Resourcing (QoR) terms.
As with other state-based descriptions, auditable properties
may be binary (true or false), or they may be ordered (e.g. to
describe staff with different security clearance levels). It is
also possible to treat Data Precision (and other data
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characteristics) as an auditable property which does not
correspond to a state model.

IV. RELATED WORK

Characterizing the performance of adaptive real-time
systems is very difficult because it is difficult to predict the
exact run-time workload of such systems. Transient and
steady state behavior metrics of adaptive systems were
initially drafted in [4], where the performance of an adaptive
was evaluated by its response to a single variation in the
application behavior that increased the risk of violating a
performance requirement. A very simple set of metrics are
used: reaction time which is the time difference between a
critical variation and the compensating resource allocation,
recovery time by which system performance returns to an
acceptable level, and performance laxity which is the
difference between the expected and actual performance
after the system returns to a steady state. These metrics are
further specialized in [1] by the introduction of load profiles
to characterize the types of variation considered including
step-load (instant) and ramp-load (linear) changes, and a
miss-ratio metric which is the fraction of tasks submitted in
a time window for which the system missed a completion
deadline. System performance is characterized by a set of
miss-ratio profiles with respect to transient and steady state
profiles. A system is said to be stable in response to a load
profile if the system output converges as the time goes to
infinity, while transient profiles can measure responsiveness
and efficiency when reacting to changes in run-time
conditions. The SERSCIS-Ont metrics provide a superset of
these concepts, appropriate to a wider range of situations
where accuracy and reliability may be as important as
performance and stability.

A more recent alternative approach to defining adaptive
system metrics is given by [6,7]. Here the focus is on the
system engineering concerns for adaptivity, and metrics are
categorized into four types: architectural metrics which deal
with the separation of concerns and architectural growth for
adaptive systems [2], structural metrics which provide
information about the role of adaptation in the overall
functionality of a system (and vice versa), interaction
metrics which measure the changes in user interactions
imposed by adaptation, and performance metrics which deal
with the impact of adaptation on system performance, such
as its response time, performance latency, etc [2]. The focus
of SERSCIS-Ont is to provide concrete and mathematically
precise metrics covering performance and some aspects of
interactivity, which can be used in such a wider engineering
framework.

The most closely related work is found in the WSMO
initiative [3], which has also formalized metrics for resource
dependability. This was done with the intention of providing
QoS aware service oriented infrastructures. Semantic SLA
modeling using WSMO focuses principally on automated
service mediation and on the service execution
infrastructure [3]. By adding semantic descriptions for
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service parameters it is possible for agents to discover and
rank services automatically by applying semantic reasoning.
The WSMO initiative focused its modeling efforts on
capturing service consumer requirements, which can then be
used for service discovery. Work in [5] extends the WSMO
ontology to include QoS and non-functional properties. This
includes providing formal specifications for service level
agreements including the units for measurement, price, CPU
usage etc. However, the focus is still to support the
description of services for orchestration purposes (service
discovery and selection). SERSCIS-Ont is more even-
handed. It can be used for service discovery and selection,
but it is also designed to support service operators by
introducing service protection measures from a provider’s
perspective such as the usage limits, service access and
control decisions, as well as workflow adaption, etc.
SERSCIS-Ont is thus also related to the development and
service management specifications such as WSDM. The
WSDM-MOWS specification [9] defines 10 metrics which
are used to measure the use and performance of a general
Web  Service. These include NumberOfRequests,
NumberOfFailedRequests and NumberOfSucessfulRequests
which count the messages received by the Web Service end
point, and whether the service handles them successfully. In
SERSCIS-Ont we have a more general Counter metric, of
which these WSDM-MOWS metrics can be regarded as
subclasses specifically for Web Service management.
WSDM-MOWS also defines ServiceTime (the time taken
by the Web Service to process all its requests), and
MaxResponseTime and LatestResponseTime. In SERSCIS-
Ont these would be modeled as subclasses of usage and
elapsed time, and SERSCIS-Ont then provides additional
metrics such as min/max/mean responses and response time
compliance metrics. WSDM-MOWS specifies a state model
for Web Service operation with states {UpState, DownState,
IdleState, BusyState, StoppedState, CrashedState,
SaturatedState}, and metrics CurrentOperationalState and
LastOperationStateTransition all of which can be handled
easily by SERSCIS-Ont. The one area where WSDM-
MOWS goes beyond SERSCIS-Ont is in providing metrics
for the size of Web Service request and response messages:
MaxRequestSize, LastRequestSize and MaxResponseSize.
These can be modeled with difficulty using SERSCIS-Ont
usage metrics, but if SERSCIS-Ont were applied to Web
Service management, some extensions would be desirable.

V.  VALIDATION EXPERIMENTS

To verify that SERSCIS-Ont really is applicable to the
management of service performance and dependability, the
project is conducting two types of experiments. Testbeds are
being developed comprising SERSCIS dependability
management tools along with emulated application services
based on air-side operations at Vienna Airport. This will be
a discrete event simulation in which realistic application-
level requests and responses are produced, and the full (not
emulated) management tools will be tested using SERSCIS-
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Ont metrics in service level agreements and monitoring and

management policies.

Until the testbed is ready, SERSCIS validation work has
focused on the use of stochastic process simulation based on
queuing theory [10]. A simplified Markov chain model was
developed for a single aircraft refueling service, and the
resulting equations solved numerically to compute the
expected behavior. This approach is faster and easier to
interpret than a discrete event simulation, though it uses
simpler and less realistic models of services and their
interactions.

The basic model of the refueling service assumes that
around 20 aircraft arrive per hour and need to be refueled.
The service provider has 3 bowsers (fuel tankers) which can
supply fuel to aircraft at a certain rate. The time taken for
refueling varies randomly between aircraft depending on
their needs and how much fuel they still have on landing,
but the average time is 7.5 minutes. However, with only 3
bowsers, aircraft may have to wait until one becomes
available before refueling can start. The SERSCIS-Ont
metrics used to describe this service are:

e a counter metric for the number of aircraft refueled, and
an associated usage rate metric for the number of
aircraft refueled per hour;

e a non-recoverable usage rate metric for the time the
bowsers spend actually refueling aircraft, from which
we can also obtain the resource utilization percentage;

e an clapsed time metric for the amount of time spent by
aircraft waiting for a bowser (the refueling service can’t
control how long the refueling takes, so QoS is defined
in terms of the waiting time only); and

e clapsed time compliance metrics for the proportion of
aircraft that have to wait for different lengths of time
between 0 and 20 minutes.

We also assume that the service will refuse an aircraft,
i.e. tell it to use another refueling company rather than wait,
if it would become the 10™ aircraft in the queue. This is
captured by a further counter metric, which is used to find
the proportion of arriving aircraft that are refused service.

The first simulation considered an unmanaged service (no
SLAs), and produced the following behavior (See Table 1):

TABLE 1: UNMANAGED SERVICE SIMULATION

Metric Value
Service load 20 aircraft / hour
Service throughput 19.5 aircraft / hour
Percentage of aircraft that don’t have 33.6%

to wait

Percentage that don’t have to wait 74.6%
more than 10 mins

Percentage that don’t have to wait 94.4%
more than 20 mins

Percentage of aircraft refused service 2.6%
Mean waiting time 6.1 mins
Resource utilization 81.2%




ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

The QoS is relatively poor because the random variation
in aircraft arrival and refueling times means queues can
build up, leading to a high proportion of aircraft having to
wait, and some having to wait for a long time or even being
sent to other service providers.

To investigate how the metrics could be used to manage
the service, the simulation was extended so airlines must
have an SLA with the service provider before they can use
the service. Each SLA lasts on average 1 week, and allows
an airline to refuel an average of 3 aircraft per hour. The
extended model assumed about one new SLA per day would
be signed, giving an average load roughly similar to the total
load in the first simulation. We also assumed the service
provider would refuse to agree more than 12 SLA at a time,
so the load could temporarily rise up to 50% higher than the
capacity of its resources. We wished to investigate how well
the use of SLA as a pre-requisite for service access allowed
such overloads to be managed. The results of this second
simulation were as follows (See Table 2):

TABLE 2: MANAGED SERVICE SIMULATION

could not exceed 1. This simulation produced the following
(See Table 3):

TABLE 3: CONSTRAINED SLA SERVICE SIMULATION

Metric Value

Service load 0-36 aircraft / hour

Service throughput 17.9 aircraft / hour

Percentage of aircraft that don’t have 50.6%
to wait

Percentage that don’t have to wait 96.0%
more than 10 mins

Percentage that don’t have to wait 99.9%

more than 20 mins

Percentage of aircraft refused service 0%

Mean waiting time 3.4 mins

Resource utilization 74.7%

Metric Value
Service load 0-36 aircraft / hour
Service throughput 21.1 aircraft / hour
Percentage of aircraft that don’t have 22.4%

to wait

Percentage that don’t have to wait 60.4%

more than 10 mins

Percentage that don’t have to wait 89.7%

more than 20 mins

Percentage of aircraft refused service 4.9%

Mean waiting time 9.4 mins
Resource utilization 87.8%

While the use of this SLA allowed the service provider to
anticipate the load from a pool of potential consumers, it
couldn’t improve QoS with a fixed set of resources. In fact,
the compliance metrics are now much worse than before,
with only a small increase in the total throughput because
the load exceeds the resource capacity around 25% of the
time. Further tests showed that reducing the number of SLA
the service accepts doesn’t help much as this only lowers
the long term average load, whereas overloads and long
queues arise from shorter-term fluctuations. The limit would
have to be much lower (and the throughput substantially
lower) before the compliance metrics were good enough to
be of interest to customers.

The final experiment used a different type of SLA in
which each customer can still have 3 aircraft serviced per
hour on average, but only one at a time. To handle this, we
used a non-recoverable usage rate metric for the number of
aircraft in the system and specified in the SLA that this
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Evidently, if this last type of SLA were enforced by a
suitable management procedure, it would allow the service
to protect itself from overloads, without a huge drop in the
service throughput. Further experiments showed that if the
permitted long-term load per SLA were pushed up to 3.5
aircraft per hour, the throughput would reach 19.7 aircraft
per hour (more than the original unmanaged service), yet the
compliance metrics would stay above 90%. This provides a
good indication that the SERSCIS-Ont metrics can be used
to describe service management and protection constraints,
as well as consumer QoS measurements and guarantees.

VI. CONCLUSIONS

This paper describes a base metric model that provides a
uniform abstraction for describing service behavior in an
adaptive environment. Such an abstraction allows services
to be composed into value chains, in which consumers and
providers understand and can manage their use of services
according to these metrics.

A service provider, having analyzed the application
service that it is offering, defines a metric ontology to
describe measurements of the relevant service behavior.
This ontology should refer to the SERSCIS base ontology,
and provide subclasses of the base metrics to describe each
relevant aspect of service behavior. Note that while each
service provider can in principle define their own metrics
ontology, it is may be advantageous to establish ‘standard’
ontologies in particular domains — this reduces the need for
translation of reported QoS as it crosses organizational
boundaries.

Validation simulations provide a good indication that the
SERSCIS-Ont metrics are useful for describing both service
management and protection constraints, and service
dependability and QoS guarantees.
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