
An Agent Based Voting System for E-Learning Course Selection Involving 

Complex Preferences 

Ali M. Aseere, David E. Millard, Enrico H. Gerding 

School of Electronics and Computer Science 

University of Southampton, UK 
{ama07r,dem,eg}@ecs.soton.ac.uk 

 

1. Introduction 

In many educational organizations there exist 

restrictions on which courses might run, due to the 

overheads of running too many courses. Now, in the 

context of personalized learning, where students are 

taking more control of their learning, we would like the 

decision about which courses are run to be made 

collectively by the students, while taking into account 

their individual preferences. Multiagent systems are a 

powerful technology to tackle this complexity and to 

enable flexible course selection systems because of 

features such as autonomy, responsibility, social ability 

and intelligence [1, 2]. In particular, voting systems 

can be used to reach a socially desirable decisions, 

while taking into account individual preferences [3] 

In this paper, we use a voting protocol introduced in 

our previous work [4], which combines features from 

single transferable vote (STV) and cumulative voting 

[5]. Specifically, this protocol takes advantage of the 

features of cumulative voting to express the 

preferences using points and, at the same time, allows 

for multiple rounds to avoid wastage by allowing the 

transfer of points in a similar way to the transfer of 

votes in STV. In addition, we introduced a number of 

voting strategies that can be used by the student agents 

in the system. However, different from our previous 

work, where courses were independent, we extend this 

work by considering a more complex setting with 

combinatorial student preferences. 

Combinatorial preferences have been mostly studied 

within the context of combinatorial auctions, although 

there are a couple of papers that consider such 

preferences in a voting setting [6, 7]. In these works, 

agents are assumed to vote for given bundles of 

candidates. Since enumerating all possible 

combinations of candidates is typically infeasible, the 

main problem is then which of these bundles should be 

selected by the system and voted on by the agents. Our 

paper takes a different approach and uses a multi-round 

voting protocol, where in each round the candidate 

with the least number of votes is eliminated. 

Furthermore, it uses an agent-based approach where in 

both combinatorial voting and auctions there are a 

number of languages for representing preferences. 

Some of these languages are tailored to represent 

cardinal preferences while others represent ordinal 

preferences.  Expressing preferences that allows agents 

to specify preferences concisely and clearly include the 

OR-language and XOR-language  from combinatorial 

auctions [8]. In this paper, we use the same principle as 

the languages discussed above, but limit the number of 

combinations only by consider interdependencies 

between two courses.  

2. The Multiagent System 

Figure 1 shows the entities and objects that form the 

system. Our system consists of a single university 

agent (UA) and several student agents (SAs). The SA 

contains the student’s preferences (in our experiments 

we automatically generate these according to the 

parameters of the experiment) and also an appropriate 

voting strategy. Then the SAs and the UA use a voting 

procedure to interact with each other and determine 

which courses to run.  

 
Figure 1. System architecture 

The voting protocol proceeds in several rounds as 

follows. Each SA initially receives an equal and fixed 

number of points. In each round, each SA can allocate 

some or all of their available points to the available 

courses. After that, the UA cancels the course with the 

lowest cumulative points. Then, the UA refunds the 

points for the cancelled course and informs all the SAs 

about the cancelled course, and the current cumulative 

points allocated to the remaining courses (this 

information about how others have voted collectively 

can then be used by the agent's voting strategy to place 

votes in subsequent rounds). The protocol proceeds to 

the next round and SAs can vote again using their 



remaining points (this includes the refunded points and 

any points left in the previous rounds). The process is 

repeated until the desired number of courses is 

remaining. For more details see [4].  

2.1 Student Preferences 

The student preferences are modeled using a utility 

function. Importantly, the utility of a course may 

depend of which other courses are running. We have 

two types of relationship: complementary (AND) and 

substitute (OR). In more detail, two courses, A and B, 

are complementary when the student is only interested 

in choosing course A if course B is running, and vice 

versa. Conversely, courses A and B are substitutes if a 

student is interested in course A or course B, but not 

both.  We assume that each student has a (possibly 

different) set of rules, where each represents either an 

AND or an OR relationship between a pair of courses.  

Given this, the utility function of a student is 

modeled as follows. Let   {          } denote the 

set of courses, and   ⃗⃗⃗   {            } the individual 

utilities (in case there are no rules) for these courses, 

where m is the total number of available courses to 

choose from. Furthermore, let     denote the set of 

OR rules, which specifies a set of pairs of courses 

        and, similarly,      denotes the set of AND 

rules. To avoid conflicts, we assume that each course is 

only part of one rule. Therefore, the same course 

cannot appear both in an OR rule and an AND rule. 

Then, the utility for a set of running courses is 

calculated as follows. For any running course    that 

does appear in a rule, the utility is simply the sum of 

the individual utilities    of those courses.  For any pair 

of courses (     )      , if both courses are running, 

the utility for the pair is            . If only one of 

them is running, then the utility is equal to the 

individual utility for that course. For any pair of 

courses (     )       , if both courses are running, 

the utility for the pair is       . Otherwise, the utility 

is zero. The total utility is then the sum of the 

individual courses without rules, and the pairs with 

rules. Using this utility, we then calculate the student 

satisfaction by taking the utility as a percentage of the 

utility the student would achieve when all the courses 

would be running.  

2.2 Strategies  

In this paper we use the same strategies from [4] but 

extend the more advanced strategies to take the 

complex preferences into account.  

Equal share: This strategy is used as a benchmark 

and simply allocates an equal number of votes to each 

course, regardless of the student’s preference. 

Formally, the total number of points to be allocated to 

course j, is given by        , where RP denotes the 

total number of points remaining. 

 Proportional: This strategy allocates all the points 

proportionally to the utility for individual courses. 

Furthermore, the strategy takes the AND rule into 

account by not placing any votes if their counterpart 

has been cancelled. Formally, let C' denote the set of 

courses that are not cancelled, and that contain no 

courses from any AND rule where one of them is 

cancelled. Then, the total number of points to be 

allocated to course       is: 

   
  

∑        

     

Intelligent: This more sophisticated strategy tries to 

predict the probability that a course will be cancelled 

based on the number of points currently allocated to 

each course from previous rounds. Furthermore, it 

considers the rules between courses when calculating 

this probability. This strategy does not spend all the 

points in the first round, in order to take advantage of 

the information that is received in subsequent rounds. 

Otherwise, it would only have the points returned from 

cancelled courses to use in these rounds. In the last 

voting round, it allocates all remaining points. 

Furthermore, in first round, because the strategy does 

not have any information about courses, it distributes 

half of the points using the proportional strategy as 

explained above.  

The strategy tries to estimate the probabilities of 

courses being cancelled for a given allocation of 

points, using a softmax function [9]. Then, given these 

probabilities, it tries to estimate the expected utility for 

a given distribution of points. Finally, it uses a search 

algorithm to find the point allocation which maximizes 

expected satisfaction. Formally, the probability that a 

course i is going to be cancelled is given by: 

            ⃗   
 

         
∑         

 
   

  
 

∑  

         
∑         

 
   

  
  

   

 

Where     is the cumulative number of points which 

have so far been allocated to course    (including 

points from other agents), and    is the number of 

points that the SA is planning to allocate to course    

in the current voting round, and  ⃗  is the vector of 

points to be allocated. Furthermore,   is a constant 

which enables a range of different strategies. For 

example, if    , then each course is equally likely to 

be cancelled, irrespective of the cumulative number of 

points currently allocated. At the other extreme, as 

   , the course with the lowest total number of 

points will be cancelled with probability 1, and all 

other courses will be cancelled with probability 0.  

We now show how we can use this probability to 

calculate the expected utility, EU, of an SA, given the 



vector of points,  ⃗ , and taking into account both AND 

and OR relationship. Suppose we have an AND 

relationship between     and   . In order to calculate 

the expected utility, given the  probability that both of 

these courses will run, i.e.,     (     ⃗⃗ )        (     ⃗⃗ ), 

where     (     ⃗⃗ )           (     ⃗⃗ ). Now, in the 

case of the OR relationship between    and   , we need 

to consider also the possibility that only one of them 

will run, and the other is canceled. This gives the 

following expected utility for individual or pairs of 

courses, depending on the rules between courses: 

 No rule:         (     ⃗⃗ )     

    AND   :            (     ⃗⃗ )       (     ⃗⃗ )          

    OR   :           (     ⃗⃗ )       (     ⃗⃗ )  

                  (     ⃗⃗ )          (     ⃗⃗ )      

         (     ⃗⃗ )       (     ⃗⃗  ⃗)     

The total expected utility is then the sum of the 

utilities for individual courses without rules, and 

course pairs with rules.  

The next step is then to find the allocation that 

maximises this expected utility. We used random 

sampling by randomly generating 1000 vectors  ⃗  
subject to the constraint that the total number of points 

is equal to the  number of points that we would like to 

spend in the current round. We then take the allocation 

with the highest expected satisfaction. 

3. Evaluation 

In this section, we evaluate the voting procedure 

and explore the impact of the three strategies described 

above on the overall student satisfaction. We consider 

3 different scenarios. Table 1 shows the settings for 

these cases of different scenarios (for more details 

see[4] ). We run each scenario 30 times with different 

randomly generated student preferences, to obtain 

statistically significant results.  
Table 1. Different setting to the scenarios 

Scenario #courses (m) #running courses (r) #students (n) 
1 51 40 100 

2 33 11 60 

3 18 9 20 

3.1 Student Agent Preferences 

For each simulation run, we generate the student 

preferences as follows. We first randomly generate 

preferences for individual courses from a uniform 

distribution between 0 and 10. Then, we generate the 

AND and OR relationships as follows. First, we 

generate all possible AND and OR relationships. Then, 

we select a subset of these rules from which the 

students can select. We do this to increase the 

likelihood that groups of students have similar 

relationships between courses. This is true in practice, 

since often students have the same relationships 

between courses, even if they value the individual 

courses differently. We can vary the degree of 

similarity by changing the size of the subset as a 

percentage of the total number of rules.  

3.2 Analysis 

We compare the case where a proportion of the 

students use one strategy, and the remainder of the 

students uses another strategy.  In the results that 

follow, the y-axis shows the student satisfaction for 

each group of agents using a particular strategy, as well 

as the overall average satisfaction. Furthermore, on the 

x-axis we vary the proportion of students using a 

particular strategy for different percentage of applied 

rules. For example, in figures 2 and 3, 10-90 means 

that 10 students use the proportional strategy, and 90 

students use the equal share strategy and this is 

repeated for three different settings: NO rules, 50% 

rules and 100% rules. The errorbars show the 95% 

confidence intervals.  

The results in figures 2 and 3 show that the 

intelligent and proportional strategies are both clearly 

better than the equal share. Moreover, as the number of 

rules increases, the better the intelligent and 

proportional strategies perform. On average, the 

improvement is around 4%, 6%, 9%, for NO rules, 

50% and 100% rules respectively. Furthermore, the 

average satisfaction of all students also increases, 

which means that the allocation is more efficient when 

students use a more intelligent voting approach. The 

results for other scenarios are very similar and not 

shown to avoid repetition.  

 
Figure2. Scenario 2: Proportional vs. Equal Share

 

Figure 3. Scenario 2: Intelligent vs. Equal Share 

 

100% rules 50% rules No rules 

100% rules 50% rules No rules 



Figures 4, 5 and 6 compare the results using the 

intelligent strategy and the proportional strategy for the 

3 different scenarios. Figure 4 shows that, at first 

glance, the performance of intelligent strategy 

increases, comparing to proportional strategy, as the 

students apply more rules. However, in most cases this 

result is not statistically significant. The reason is that, 

first, in scenario 1, the number of courses that the 

students vote over is large. This means that the range 

of student choice is wide, and students have a wide 

range of preferences. Second, the number of students 

voting is also large. This means that each individual 

student has very little voting power. To analyze this, 

we now consider a setting where the number of 

students and courses are small. 

Figures 5 and 6 show that, with relatively few 

courses and students, there are clear differences in the 

performance of the intelligent and proportional 

strategies. The intelligent strategy significantly 

outperforms proportional strategy when student apply 

rules and this superiority is increased as more rules are 

applied. This holds in almost all cases where rules 

were applied, according to a t-test with 95%. This 

suggests that, when students have fewer choices and 

therefore there is less differentiation between the 

students, and when the number of students is not too 

large, the intelligent strategy perform better than 

proportional. Note also that, as the proportion of 

students using the intelligent strategy increases, the 

student satisfaction of all students either stays the 

same, or increases. Therefore, using a more intelligent 

approach does not harm the system as a whole. 

 
Figure 4. Scenario 1: Proportional vs. Intelligent 

 

Figure 5. Scenario 2: Proportional vs. Intelligent 

 

Figure 6. Scenario 3: Proportional vs. Intelligent 

4. Conclusion 

We presented a multiagent system for course 

selection based on voting theory, where students have 

complementary and substitutable preferences between 

courses. We also developed a number of voting 

strategies that student agents could use to place votes 

on a student's behalf. We found that, when students 

have complex preferences and the number of students 

is not too large such that each individual student can 

affect the voting outcome, the intelligent strategy 

performs significantly better than proportional. 

Our future work consists of two parts. First of all, 

we intend to apply fairness principals to the voting 

outcome. Furthermore, we intend to consider other 

intelligent voting strategies and alternative voting 

procedures, and explore constraints such as limitations 

on the number of courses that a student can take, and 

having pre-requisite courses.  
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