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Abstract

This paper considers a class of linear discrete-time 2D systems in the form of repetitive
processes with uncertain parameters. Using LQR theory ideas a parametric description
of stabilizing controls using output feedback is developed, which leads to the development
of efficient LMI-based algorithms for computation of the gain matrix. The results are
extended to repetitive processes with Markovian jumps, and a numerical example is given
to demonstrate the application of the algorithm developed to the synthesis of stabilizing
control laws.
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1. Introduction

In the fields of electrical engineering, information transmission and processing, robotics
and others, dynamical processes arise that depend on two or more independent variables.
The first variable can represent time, and the others can be space coordinates, numbers
of iterations or trials, relating to directions of information propagation. Typical examples
are processes with iterative learning control applied where in this case the time at the
current learning step is the first independent variable, and the number of the learning
steps, or trials, is the second. Such systems are referred to as multi-dimensional (nD).

It is not possible to develop a comprehensive systems theory for nD systems as a
simple extension of known results for standard (1D) systems. Even in particular cases
when we are able to construct an equivalent 1D model, serious technical difficulties can
arise due, for example to a dramatically increasing dimension of the problem. Also there
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are systems theoretic questions of practical relevance for nD systems that have no 1D
counterparts.

An important class of two-dimensional systems are known as repetitive processes.
These processes make a series of sweeps, termed passes, through a set of dynamics defined
over a fixed finite duration known as the pass length [1, 2]. On each pass, an output, known
as the pass profile, is produced which acts as a forcing function on, and hence contributes
to, the dynamics of the next pass profile. This, in turn, leads to the unique control
problem where the output sequence of pass profiles generated can contain oscillations
that increase amplitude in the pass-to-pass direction.

Physical examples of these processes include long-wall coal cutting and metal rolling
operations [2] (this book gives references to the original work for these examples). In
addition, applications have arisen where adopting a repetitive process setting for analysis
has distinct advantages over alternatives, including classes of iterative learning control
schemes [3] and iterative algorithms for solving nonlinear dynamic optimal control prob-
lems based on the maximum principle [4]. In the latter case, involving the repetitive
process setting provides the basis for the development of highly reliable and efficient so-
lution algorithms; in the former, algorithms designed using the repetitive process setting
have been successfully tested experimentally on a gantry robot [3].

Other possibilities for the profitable application of repetitive process control theory
have recently appeared in the modeling and control of distributed parameter systems. In
particular, repetitive process state-space models arise in the modeling of spatio-temporal
dynamics in, e.g., mechanical, electrical, electro-mechanical and telecommunication sys-
tems [5], [6]. Recent work in this area can be found, for example, in [7].

Attempts to stabilize these processes using 1D systems theory/algorithms fail (with
the exception of a few very restrictive special cases) precisely because such an approach
ignores their inherent 2D systems structure; notably, information propagation occurs from
pass-to-pass and along a given pass and also the initial conditions are reset before the
start of each new pass. To remove these drawbacks, a rigorous stability theory has been
developed [2] based on an abstract model of the dynamics in a Banach space setting which
includes a very large number of processes with linear dynamics and a constant pass length
as special cases. In addition, the results of applying this theory to a range of subclasses,
including the discrete-time linear repetitive processes considered here, have been reported
[2]. This stability theory consists of the distinct concepts of asymptotic stability and
stability along the pass, respectively.

Recognizing the unique control problem, this stability theory is of the Bounded Input
Bounded Output (BIBO) form, i.e. bounded inputs are required to produce bounded
sequences of pass profiles (where boundedness is defined in terms of the norm on the
underlying Banach space). Asymptotic stability guarantees this property over the finite
and fixed pass length, whereas stability along the pass is stronger in that it requires this
property uniformly, i.e., for all possible values of the pass length (and hence it is not
surprising that asymptotic stability is a necessary condition for stability along the pass).

In most practical cases, the process state-space model is not known exactly. Instead,
we have (at best) nominal values for the entries in these models and to proceed we must
assume that the true entries lie in some uncertainty set around the nominal one. If this set
is convex, in the 1D case there exists a series of regular LMI-based methods to synthesize
stabilizing control [8, 9]. In this paper we extend these techniques to 2D systems using
an affine model [8] as the uncertainty description.
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The methods provided by Letov’s theory of analytical design of optimal controllers
[10] (LQR theory) are one of the main synthesis tools for linear systems. The main result
of this theory can be considered as a parametric description of the set of state feedback
stabilizing controllers, which minimize a quadratic function. The weighting matrices of
this functional play the role of parameter matrices. More recently, linear-quadratic-type
parametrization has been developed for description of the set of stabilizing output feedback
controllers [11]. It turns out that such LQR parametrization is suitable for application of
LMI techniques. This enables the development of efficient algorithms for computation of
the gain matrices. This approach has been developed in [12] for discrete-time 1D systems
and extended in [13] to discrete-time 2D systems with a polytopic model of uncertainty.

In (at least) some applications of repetitive processes, it is necessary to consider the
effects of failures, e.g., changes in the parameter values and/or structure of the process.
One way of describing failure-prone systems is by state-space models with jumps in the
parameter values and/or structure governed by a Markov chain with a finite set of states,
often termed Markovian jump systems or systems with random structure, see, for exam-
ple, [14, 15, 17, 16]. Relevant results regarding the development of control theory for such
systems, which address the issues of stability, optimal and robust control problems in the
1D case can be found in, for example, [18, 19, 20] and references therein. In [21, 22] the
results obtained for 1D Markovian jump systems are extended to investigate the prob-
lems of stabilization via state feedback H∞ control and H∞ filtering for discrete-time 2D
Markovian jump systems.

The objective of this paper is to develop LQR parametrization of stabilizing static
feedback control laws for linear discrete-time repetitive processes with uncertain param-
eters and possible failures modeled by a homogeneous Markov chain with a finite set
of states. Using this parametrization, LMI-based algorithms for the computation of the
stabilizing gains are derived, including robust stabilization. A numerical example is also
given. The development of these new results employs stochastic quadratic stability, which
includes stability along the pass as a special case.

Throughout this paper the notation M > 0 (respectively) M < 0 is used to denote a
symmetric positive-definite (respectively negative-definite) matrix. Also M ≥ 0 (respec-
tively M ≤ 0) is used to denote a symmetric positive (respectively negative) semi-definite
matrix. The notation ∣x∣ is used to denote Euclidean norm of a vector x, or modulus, if
x is real or complex number.

2. Two-dimensional (2D) models. Basic definitions

Two-dimensional models have been intensively studied starting from the early 1970s,
generally in the fields of circuit theory, image processing and signal processing, and control.
In the control area, the following models are extensively used.

∙ Roesser model

This model was introduced in [23] and is described by the following equations[
xℎ(i+ 1, j)
xv(i, j + 1)

]
=

[
A11 A12

A21 A22

] [
xℎ(i, j)
xv(i, j)

]
+

[
B1

B2

]
u(i, j),

y(i, j) =
[
C1 C2

] [ xℎ(i, j)
xv(i, j)

]
+Du(i, j),

3



where xℎ ∈ ℝnℎ
is the horizontal state sub-vector, xv ∈ ℝnv

is the vertical state
sub-vector, u ∈ ℝr is the input vector, y ∈ ℝm is the output vector, Aij (i, j =
1, 2), Bi, Ci (i = 1, 2), and D are matrices of appropriate dimensions; the full state
vector x = [xℎTxvT]T satisfies boundary conditions whose simplest form is

xℎ(0, j) = xℎ0j ∈ ℝnℎ

, xv(i, 0) = xvi0 ∈ ℝnv

, i, j ∈ Z+.

∙ Fornasini-Marchesini model

This model is defined as follows [24]

x(i+ 1, j + 1) = A1x(i+ 1, j) + A2x(i, j + 1) +B1u(i+ 1, j) +B2u(i, j + 1),

y(i, j) = Cx(i, j) +Du(i, j),

where x(i, j) ∈ ℝn is the state vector, u(i, j) ∈ ℝr is the input vector, y(i, j) ∈ ℝm is
the output vector, Ai (i = 1, 2), B, C, and D are matrices of compatible dimensions.
The simplest form of boundary conditions are

x(0, j) = x0j ∈ ℝn, x(i, 0) = xi0 ∈ ℝn i, j ∈ Z+.

∙ Linear repetitive processes

This model is formally similar to 2D Roesser model and is defined as follows [2].

xk+1(p+ 1) = Axk+1(p) +B0yk(p) +Buk+1(p), (1)

yk+1(p) = Cxk+1(p) +D0yk(p) +Duk+1(p), (2)

where xk(p) ∈ ℝn is the state vector, uk(p) ∈ ℝr is the input vector, yk(p) ∈ ℝm is
the output (pass profile) vector, k ∈ Z+ is the current pass number, 0 ≤ p ≤ �−1 ∈
Z+ is the discrete position on the current pass (� <∞), A,B,B0, C,D, and D0 are
matrices of compatible dimensions; the simplest form of the boundary conditions is

xk+1(0) = dk+1 ∈ ℝn, k ≥ 0, y0(p) = f(p) ∈ ℝm, (3)

where f(p) is known vector function of p.

Many difficulties appear arise in the systems related analysis for even the linear models
given above.the dynamics. In the case of repetitive processes the stability theory for linear
constant pass length examples is based on an abstract model in a Banach space setting
which includes many such spaces as special cases. Let E� be a Banach space and W� a
linear subspace of E�, also denote the norm on E� as ∣∣ ⋅ ∣∣. Then this model is given by

yk+1 = L�yk + bk+1, k ≥ 0, (4)

where yk ∈ E� is the pass profile on pass k, L� is a bounded linear operator mapping E�
into itself, and bk+1 ∈ W� represent terms that enter on pass k + 1. In the special case of
an example described by (1) and (2), take E� = lm2 of the m-dimensional vectors given
on the length [0 �]. Then

L�y(p) =

p−1∑
i=0

CAp−1−iB0y(i) +D0y(p),

bk+1 = CApdk+1 +

p−1∑
i=0

CAp−1−iBuk+1(i) +Duk+1(p), 1 ≤ p ≤ �, k ≥ 0.

4



Definition 1 ([2, p. 41]). A linear repetitive process described by (4) is said to be asymp-
totically stable if there exists a real scalar � > 0 such that, given any initial pass profile
y0 and any strongly convergent as k → ∞ disturbance sequence {bk}k≥1, the sequence
{yk}k≥1 generated by the perturbed process

yk+1 = (L� + 
)yk + bk+1, k ≥ 0

converges strongly to a limit profile y∞ as k →∞ whenever ∥ 
 ∥< �.

Asymptotically stable systems have the convergence property given by the following
lemma.

Lemma 1 ([2, p. 56]). Suppose that the linear repetitive process described by (4) is asymp-
totically stable and the constant disturbance sequence bk+1 = b∞, k ≥ 0 generates the limit
profile y∞. Then there exist real scalars M� and �� ∈ (0, 1) such that

∣∣yk − y∞∣∣ ≤M��
k
�

(
∣∣y0∣∣+

∣∣b∞∣∣
1− ��

)
, k ≥ 0.

Actually, the last result states that under asymptotic stability the output sequence
{yk}k≥1 approaches the resulting limit profile y∞ at a geometric rate governed by the
scalar ��. Given that the pass length is finite, it is possible that the limit profile of an
asymptotically stable process can have unacceptable along the pass dynamics. One way
of ensuring that this does not happen is to use stability along the pass expressed in terms
of finite bounds on the scalars M� and �� as � → ∞. This property requires that the
rate of approach of the output sequence to the limit profile has a guaranteed geometric
upper bound independent of the pass length.

Definition 2 ([2, p. 57]). A linear repetitive process described by (4) is said to be stable
along the pass if there exist finite real scalars M∞ and �∞ ∈ (0, 1) (independent of �) such
that for each constant disturbance sequence bk+1 = b∞, k ≥ 0 the corresponding output
sequence satisfies

∣∣yk − y∞∣∣ ≤M∞�
k
∞

(
∣∣y0∣∣+

∣∣b∞∣∣
1− �∞

)
, k ≥ 0.

Theorem 1 ([2, p. 64]). Suppose that the pair (A,B0) is controllable and the pair (C,A)
is observable. Then the linear repetitive process defined by (1), (2) is stable along the pass
if, and only if, its characteristic polynomial

C(z1, z2) = det

[
In − z1A −z1B0

−z2C Im − z2D0

]
(5)

satisfies
C(z1, z2) ∕= 0 ∀(z1, z2) : ∣z1∣ ≤ 1, ∣z2∣ ≤ 1. (6)

The checking of this last result for a given example can prove problematic and an
alternative is to use Lyapunov’s method and obtain the following results
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Theorem 2 ([2, p. 102]). A discrete linear repetitive process defined by (1), (2) is sta-
ble along the pass if there exists a symmetric positive definite matrix P = diag[P1 P2],
satisfying the Lyapunov inequality

ĀTPĀ− P < 0, (7)

where Ā =

[
A B0

C D0

]
.

In this result the solution of the Lyapunov inequality must have a special block-diagonal
form and this imposes additional constraints. The Lyapunov method leads directly to
control law design algorithms whereas this is more difficult starting from the condition of
Theorem 1.

3. Linear-quadratic parametrization of stabilizing controls of uncertain repet-
itive processes

3.1. Problem statement and preliminary results

Consider uncertain discrete linear repetitive processes described by the following state-
space model

xk+1(p+ 1) = A(
)xk+1(p) +B(
)uk+1(p) +B0(
)yk(p),

yk+1(p) = C(
)xk+1(p) +D(
)uk+1(p) +D0(
)yk(p), (8)

where xk(p) is the n×1 current pass state vector, yk(p) is them×1 pass profile vector, uk(p)
is the r × 1 is current pass input (control) vector, the boundary conditions are specified
in the form (3); the matrices A(
), B(
), B0(
), C(
), D(
), D0(
) are affine functions of
uncertain parameters vector 
 = [
1 . . . 
N ]T , i.e.,

A(
) = A0 +
N∑
i=1


iAi, B(
) = B0 +
N∑
i=1


iBi, B0(
) = B00 +
N∑
i=1


iB0i,

and so on. In addition, 
i, (i = 1, . . . , N) are assumed to be bounded in an interval
including zero



i
≤ 
i ≤ 
i : 


i
≤ 0, 
i ≥ 0, i = 1, . . . , N. (9)

The set of uncertainties vectors 
 = [
1 . . . 
N ]T satisfying inequalities (9) is denoted
by Γ. The finite set of extremal values or vertices is defined by

Γv = {
 = [
1 . . . 
N ]T : 
i ∈ {
i, 
i}, i = 1, . . . , N} (10)

Consider static output feedback control laws of the form

uk+1(p) = −F1�k+1(p)− F2�k(p), (11)

where �k+1(p) = Θ1xk+1(p) and �k(p) = Θ2yk(p) are measurable outputs, and Θ1 and Θ2

are rectangular full-row rank matrices of compatible dimensions. The form of this control
means we also address the practically relevant issue that all of the repetitive process
variables are not directly measured. The particular choice of Θ1 = I and Θ2 = I recovers
the ideal case of this control law considered in [2]. The problem addressed next in this
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paper is to find F1 and F2 such that the control law (11) stabilizes a process described
by (8)–(11) in the along the pass sense.

Consider the function

V (k, p) = xTk+1(p)W1xk+1(p) + yTk (p)W2yk(p), (12)

where W1 = W T
1 > 0 and W2 = W T

2 > 0, with associated increment along the trajectories
of (8)

ΔV (k, p) = xTk+1(p+ 1)W1xk+1(p+ 1)− xTk+1(p)W1xk+1(p)

+yTk+1(p)W2yk+1(p)− yTk (p)W2yk(p). (13)

Now we have the following result.

Lemma 2 ([2, 13]). A discrete linear repetitive process described by (8)–(10)is stable
along the pass if there exists a function (12) with associated increment along the trajecto-
ries of (8) satisfying

ΔV (k, p) < 0, (14)

for all k ≥ 0, 0 ≤ p ≤ �− 1.

Introduce the matrices

Ā(
) =

[
A(
) B0(
)
C(
) D0(
)

]
, B̄(
) =

[
B(
)
D(
)

]
, 
 ∈ Γv,

F = [F1, F2], Θ = diag[Θ1, Θ2]. (15)

Since the uncertainty has an affine model structure, the condition (14) is reduced to
checking 2N Lyapunov inequalities. The following result gives a sufficient condition for
stability along the pass.

Theorem 3 ([2, 13]). A discrete linear repetitive process described by (8)–(10) is stable
along the pass if there exist matrices W1 = W T

1 > 0 W2 = W T
2 > 0 such that the system

of Lyapunov inequalities

Ā(
)TWĀ(
)−W < 0, 
 ∈ Γv, (16)

has a positive definite solution W = diag[W1 W2].

3.2. LQR-type parametrization

Suppose that the control law (11) is applied to a process described by (8). Then
applying Theorem 3 to the resulting controlled process yields stability along the pass if
there exist a positive definite matrix W = diag[W1, W2] and a matrix F = [F1 F2] such
that

(Ā(
)− B̄(
)FΘ)TW (Ā(
)− B̄(
)FΘ)−W < 0, 
 ∈ Γv. (17)

The following theorem gives a parametric description of all matrices F satisfying (17)
and is an extension of the LQR-type parametrization idea [11, 12] to discrete linear
repetitive processes.
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Theorem 4. There exists a matrix F satisfying (17) if, and only if, there exist matrices
Q(
) = Q(
)T ≥ 0, R(
) = R(
)T > 0 and L(
) (
 ∈ Γv) such that

FΘ = [B̄(
)TWB̄(
) +R(
)]−1[B̄(
)TWĀ(
) + L(
)], 
 ∈ Γv, (18)

[B̄(�)TWB̄(�) +R(�)]
−1

[B̄(�)TWĀ(�) + L(�)] = (19)

= [B̄(
)TWB̄(
) +R(
)]−1[B̄(
)TWĀ(
)+L(
)], �, 
 ∈ Γv,

where W = diag[W1 W2] is a solution of

Ā(
)TWĀ(
)−W − Ā(
)TWB̄(
)[B̄(
)TWB̄(
) +R(
)]−1B̄(
)TWĀ(
) (20)

+L(
)T [B̄(
)TWB̄(
) +R(
)]−1L(
) +Q(
) < 0, 
 ∈ Γv.

The proof of this result is given in Appendix A.
In this result the parameter matrices Q(
) ≥ 0 and R(
) > 0, 
 ∈ Γv play the

same roles as the state and control weighting matrices in the 1D discrete-time linear
systems LQR problem. Theorem 4 gives no direct technique to calculate a stabilizing F.
However, in contrast to direct application of the system of inequalities (17), the parameter
matrices provide a certain degree of freedom, and this is exploited next to develop sufficient
conditions that lead to Linear Matrix Inequality (LMI)-based algorithms for this task.

To begin suppose that for some �(
) > 0[
�(
)Q(
) L(
)T

L(
) B̄(
)TWB̄(
) +R(
)

]
> 0, (21)

Ā(
)TWĀ(
)−W − Ā(
)TWB̄(
)[B̄(
)TWB̄(
)

+R(
)]−1B̄(
)TWĀ(
) +Q�(
) ≤ 0, 
 ∈ Γv, (22)

where Q�(
) = [1 + �(
)]Q(
) and it follows immediately that (20) holds. In addition,
(18) is solvable with respect to F , if and only if [25]

[B̄(
)TWĀ(
) + L(
)][I −Θ+Θ] = 0, 
 ∈ Γv, (23)

where the superscript + denotes the Moore-Penrose inverse. The relations (21), (22),
and (23) are convex, but cannot be directly solved since (22) is nonlinear with respect to
initial unknown variables. To find a stabilizing F , the fact used [26] is that the solution
of the LMI optimization problem

max tr W (
) (24)

under the constraints[
Ā(
)TW (
)Ā(
)−W (
) +Q�(
) Ā(
)TW (
)B̄(
)

(Ā(
)TW (
)B̄(
))T B̄(
)TW (
)B̄(
) +R(
)

]
≥ 0,

W (
) = W (
)T > 0, 
 ∈ Γv,

coincides with the positive definite solution W (
) = W (
)T of the Riccati equation

Ā(
)TW (
)Ā(
)−W (
)− Ā(
)TW (
)B̄(
)[B̄T
r W (
)B̄(
)

+R(
)]−1B̄(
)TW (
)Ā(
) +Q�(
) = 0, 
 ∈ Γv. (25)
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The problem considered here has the also has the constraints (21) and (23). Moreover,
the matrix W is diagonal and hence the algorithm below is based on finding a solution of
the LME/LMI problem (19), (21) and[

Ā(
)TWĀ(
)−W +Q�i Ā(
)TWB̄(
)
(Ā(
)TWB̄(
))T B̄(
)TWB̄(
) +R(
)

]
≥ 0, 
 ∈ Γv, (26)

i.e., as close as possible to the block diagonal positive definite solution W = diag [W1 W2]
of the system of Riccati equations

Ā(
)TWĀ(
)−W − Ā(
)TWB̄(
)[B̄(
)TWB̄(
)

+R(
)]−1B̄(
)TWĀ(
) +Q�i = 0, 
 ∈ Γv. (27)

This method will be fruitful if the matricesQ(
) and R(
) are chosen to provide a sufficient
stability margin for the closed-loop system. An LMI-based algorithm for computing the
stabilizing control law matrices includes the following steps.

Algorithm 1.
1. Select the matrices Q(
) and R(
) based on LQR reasoning.
2. Solve the LMI/LME optimization problem

trW → max

under the constraints (26).
3. If the problem of the previous step is feasible, compute the stabilizing control law

matrix F using

F = [B̄(
)TWB̄(
) +R(
)]−1[B̄(
)TWĀ(
) + L(
)]Θ+, (28)

where 
 is selected arbitrarily from the set Γv.
4. If the LMI

(Ā(
)− B̄(
)FΘ)TS(Ā(
)− B̄(
)FΘ)− S < 0, 
 ∈ Γv. (29)

is feasible with respect to S = diag[S1, S2] > 0, then F is stabilizing control law matrix.

This algorithm is the discrete linear repetitive process counterpart of that developed
in [12] for 1D discrete-time linear systems.

4. Linear-quadratic parametrization of stabilizing controls of repetitive pro-
cesses with Markovian jumps

In this section we consider the case when the structure of repetitive process is subject
to random failures. In this case the process is described by the following state-space model

xk+1,p+1 = A(�k,p)xk+1,p +B(�k,p)uk+1,p +B0(�k,p)yk,p,

yk+1,p = C(�k,p)xk+1,p +D(�k,p)uk+1,p +D0(�k,p)yk,p, (30)

where �k,p is homogeneous Markov process with finite set of states ℕ = {1, . . . , �} and
with transition probabilities

P[�k,p+1 = j∣�k,p = i] = �ij,

P[�k+1,p = j∣�k,p = i] = !ij. (31)
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Note that from this point onwards subscripts for independent variables to make notation
compact. The remainder of the notation is identical to that of (1), (2) or (8).

Consider an output feedback control law of the form

uk+1,p = �(�k,p)['(xk+1,p) +  (yk,p)], '(0) = 0,  (0) = 0 (32)

and introduce the following definition of asymptotic stability in the mean square for the
system considered in this section.

Definition 3. A 2D system of the form (30) with output feedback control law (32) applied
is said to be asymptotically stable in the mean square sense if for all boundary conditions
of the form (3) satisfying the inequality

E[
∞∑
i=0

∣di+1∣2 + ∣fi∣2] <∞, (33)

the following holds
E[∣xk+1,p∣2 + ∣yk,p∣2]→ 0

as i+ j →∞, where E denotes the expectation operator.

Consider the candidate stochastic Lyapunov function

V (x, y, r) = V1(x, r) + V2(y, r), V1(0, r) = 0, V2(0, r) = 0, x ∈ ℝn, y ∈ ℝm, r ∈ ℕ (34)

with associated increment along the trajectories of the system (30) with control law (32)
applied

ΔV (x, y, r) = E[V1(xk+1,p+1, �k,p+1) + V2(yk+1,p, �k+1,p)−
− V1(xk+1,p, �k,p)− V2(yk,p, �k,p)∣xk+1,p = x, yk,p = y, �k,p = r]. (35)

Theorem 5. Suppose there exist positive constants c1, c2, c3 such that the Lyapunov
function (34) and its associated increment (35) along the trajectories of the system (30)
with control law (32) applied satisfy

c1(∣xk+1,p∣2 + ∣yk,p∣2) ≤ V (xk,p, yk,p, �k,p) ≤ c2(∣xk+1,p∣2 + ∣yk,p∣2), (36)

ΔV (xk,p, yk,p, �k,p) ≤ −c3(∣xk+1,p∣2 + ∣yk,p∣2), (37)

Then this system is asymptotically stable in the mean square sense.

The proof of this result is given in Appendix B.
Consider the case when the control law has the form of linear feedback which is

switched synchronously with jumps of a Markov process:

uk+1,p = −F1(r)�k+1,p − F2(r)�k,p, �k,p = r, (38)

where �k+1,p = Θ1(rk,p)xk+1,p, �k,p = Θ2(rk,p)yk,p denote measurable outputs, and Θ1(r)
and Θ2(r) (r ∈ ℕ) are rectangular full-row rank matrices of compatible dimensions. Also
choose the function V (x, y, r) in the quadratic form

V (x, y, r) = xTW1(r)x+ yTW2(r)y, (39)

W1(r) = W T
1 (r) > 0, W2(r) = W T

2 (r) > 0, r ∈ ℕ.
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Introduce the notation

Ā(r) =

[
A(r) B0(r)
C(r) D0(r)

]
, B̄(r) =

[
B(r)
D(r)

]
,

F (r) = [F1(r), F2(r)], Θ(r) = diag[Θ1(r), Θ2(r)] r ∈ ℕ.

Then the conditions of Theorem 5 hold if the system of matrix inequalities

(Ā(r)− B̄rFrΘr)
T W̄ (r)Ā(r)− B̄rFrΘr)−W (r) < 0, r ∈ ℕ, (40)

where W̄ (r) = diag[
∑�

j=1 �rjW1(j)
∑�

j=1 !rjW2(j)], W (r) = diag[W1(r) W2(r)], is solv-

able with respect to matrices W1(r) = W T
1 (r) > 0, W2(r) = W T

2 (r) > 0, (r ∈ ℕ).
The following theorem gives a parametric description of all matrices F (r) satisfying

(40).

Theorem 6. There exists a matrix F (r) satisfying (40) if, and only if, there exist ma-
trices Q(r) = Q(r)T ≥ 0, R(r) = R(r)T > 0 and L(r) (r ∈ ℕ) such that

F (r)Θ(r) = [B̄(r)T W̄ (r)B̄(r) +R(r)]−1[B̄(r)T W̄rĀr + Lr], r ∈ ℕ,

where W = diag[W1 W2] is a solution of

Ā(r)T W̄ (r)Ā(r)−W (r)−
−Ā(
)T W̄ (r)B̄(r)[B̄(r)T W̄ (r)B̄(r) +R(r)]−1B̄(r)T W̄ (r)Ā(r) +

+L(r)T [B̄(r)T W̄ (r)B̄(r) +R(r)]−1L(r) +Q(r) < 0, r ∈ ℕ

and W̄ (r) = diag

[
�∑
j=1

W1(j)�rj
�∑
j=1

W2(j)!rj

]
, r ∈ ℕ.

The proof of this result is omitted as it follows by routine changes to that for Theorem 4.
To find the gain matrix F (r) we use an idea based on the general result in [26], which

states that the solution of the optimization problem

max tr
N∑
r=1

W (r), (41)

under the constraints[
Ā(r)T W̄ (r)Ā(r)−W (r) +Q(r) Ā(r)T W̄ (r)B̄(r)

(Ā(r)T W̄ (r)B̄(r))T B̄(r)T W̄ (r)B̄(r) +R(r)

]
≥ 0,

W (r) = W (r)Ti > 0, W̄ (r) =
�∑
j=1

Wj�rj, �rj ≥ 0,
�∑
j=1

�rj = 1, r ∈ ℕ,

coincides with the positive definite solution W (r) = W (r)T of the system of Riccati
equations

Ā(r)T W̄ (r)Ā(r)−W (r)− Ā(r)T W̄ (r)B̄(r)[B̄(r)T W̄ (r)B̄(r)

+R(r)]−1B̄(r)T W̄ (r)Ā(r) +Q(r) = 0, r ∈ ℕ. (42)

Proceeding with similar reasons to those in the previous section, the following is an
algorithm for computing the gain matrix.
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Algorithm 2.
1. Select the matrices Q(r) and R(r) (r ∈ ℕ) based on LQR reasoning.
2. Solve the LMI/LME optimization problem

max tr
�∑
r=1

W (r),

under the following constraints in the form of linear matrix equations and inequalities

[B̄(r)T W̄ (r)Ā(r) + L(r)][I −Θ(r)+Θ(r)] = 0,[
Ā(r)T W̄ (r)Ā(r)−W (r) + (1 + �(r))Q(r) Ā(r)T W̄ (r)B̄(r)

(Ā(r)T W̄ (r)B̄(r))T B̄(r)T W̄ (r)B̄(r) +R(r)

]
≥ 0,[

�(r)Q(r) L(r)T

L(r) B̄(r)T W̄ (r)B̄(r) +R(r)

]
> 0,

W̄ (r) = diag

[
�∑
j=1

W1(j)�rj

�∑
j=1

W2(j)!rj

]
, r ∈ ℕ.

3. If the problem of the previous step is feasible, compute the gain matrix as

F (r) = [B̄T W̄ (r)B̄(r) +R(r)]−1[B̄(r)T W̄ (r)Ā(r) + L(r)]Θ(r)+, r ∈ ℕ. (43)

4. If the system of linear matrix inequalities

(Ā(r)− B̄(r)F (r)Θ(r))T S̄(r)(Ā(r)− B̄(r)F (r)Θ(r))

−S(r) < 0, r ∈ ℕ,

where S(r) = diag[S1r, S2r], S̄(r) = diag

[
�∑
j=1

S1(j)�rj
�∑
j=1

S2(j)!rj

]
, is feasible with

respect to S(r) = S(r)T > 0, then F (r) is the gain matrix of the stabilizing control law.

5. Numerical example

Consider an unstable discrete repetitive process described by (30) for which a stabi-
lizing control in the form of (38) has been obtained. Suppose the Markov process does
not depend on the variable k, i.e., �k,p = �p and

P[�p+1 = j∣�p = i] = �ij, !ij = 0, i ∕= j, !ii = 1 i, j ∈ ℕ,

ℕ = {1, 2}, Π =

[
0.5 0.5
0.1 0.9

]
,

Then

A(1) =

[
−0.72 0.08

0.0 1.7

]
, A(2) =

[
−0.37 0.51
−0.13 −0.16

]
,

B0(1) =

[
0.0 −0.72
0.0 0.0

]
, B0(2) =

[
−0.49 −0.7

0.0 0.0

]
,

B(1) =

[
1.6 0.41 −0.27 1.42
0.54 −2.51 1.76 1.03

]
,
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B(2) =

[
−1.55 1.38 −0.11 1.98

0.8 0.66 2.29 0.38

]
,

C(1) =

[
0.32 0.0
0.29 0.0

]
, C(2) =

[
0.0 0.0
0.0 0.97

]
,

D0(1) =

[
0.1 0.6
0.18 −0.38

]
, D0(2) =

[
1.12 −0.05
0.78 −0.01

]
,

D(1) =

[
0.12 −0.48 0.29 0.56
2.67 −2.87 −1.49 −2.3

]
,

D(2) =

[
0.0 0.0 −2.89 −1.78
−2.96 −0.22 0.81 0.21

]
,

Θ(1) =

⎡⎣ 1 0 0 0
0 1 0 0
0 0 0 1

⎤⎦ ,Θ(2) =

[
1 0 0 0
0 0 1 0

]
.

In addition, set Q(r) = I R(r),= I and �(r) = 1, r = 1, 2. The eigenvalues of the matrix
Ā(r) in the first and second modes are Λ(1) = [0.1782 − 0.5891 + 0.3568i − 0.5891 −
0.3568i 1.7] and Λ(2) = [−0.3956+0.4239i −0.3956−0.4239i 0.2901 1.0811], respectively.
Applying Algorithm 1 gives

F (1) =

⎡⎢⎢⎣
−0.0872 0.0232 −0.1401
−0.1101 −0.1998 −0.0922
0.0013 0.2260 0.0624
−0.0313 0.0651 0.0698

⎤⎥⎥⎦ ,

F (2) =

⎡⎢⎢⎣
0.0204 −0.1834
0.4108 0.1671
−0.0018 −0.1035
−0.1475 −0.2631

⎤⎥⎥⎦ .
The computations required have been performed in MATLAB using the YALMIP parser
[27] and the SeDuMi solver [28]. The eigenvalues of Ā(r) − B̄(r)F (r)Θ(r) in the first
and second modes are equal to Λc(1) = {0.7701, 0.2075, −0.4208, −0.2431} and Λc(2) =
{−0.5325 ± 0.6198i, 0.5718, 0.0624}, respectively. It can be checked that in each fixed
mode the closed-loop system is stable along the pass.

6. Conclusions

The paper has developed a parametric description of the set of stabilizing controllers
for discrete repetitive processes with uncertain parameters and Markovian jumps. The
role of free parameters is played by the matrices resembling the weighting matrices in
Letov’s theory of analytic design of an optimal controller (LQR theory). This approach
allows the use of efficient techniques from convex analysis to obtain LMI-based algorithms
for computing the gain matrix. The feasibility of these LMIs does, however, depend on
the weighting matrices in the cost function. The constructive selection of these matrices
is not a simple task, and no comprehensive solution is known. The existing results are
either applicable to particular cases [29], or are very difficult to use [30]. An additional
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constraint for 2D systems arises from the special block diagonal structure of the matrix
in the quadratic Lyapunov function.

Further research should aim to extend all the results of this paper to other classes
of nD systems (n ≥ 2,). Potential application areas include iterative learning networked
control and networked control of repetitive processes.
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Appendix A. Proof of Theorem 4

Necessity. Let the pair W = diag[W1 W2], F = [F1 F2] be a solution of the system of
inequalities (17). Then there exist matrices Q(
) = Q(
)T ≥ 0 and R(
) = R(
)T > 0
such that

(Ā(
)− B̄(
)FΘ)TW (Ā(
)− B̄(
)FΘ)−W +Q(
)

+(FΘ)TR(
)FΘ < 0, 
 ∈ Γv. (A.1)

Rearranging (A.1) yields

Ā(
)TWĀ(
)−W + (FΘ)T (B̄(
)TWB̄(
) +R(
))FΘ

−(FΘ)T B̄(
)TWĀ(
)− Ā(
)TWB̄(
)FΘ +Q(
) < 0, 
 ∈ Γv. (A.2)

Setting
K(
) = FΘ− (B̄(
)TWB̄(
) +R(
))−1B̄(
)TWĀ(
), 
 ∈ Γv, (A.3)

(A.2) can be rewritten as

Ā(
)TWĀ(
)−W − Ā(
)TWB̄(
)(B̄(
)TWB̄(
) +R(
))−1B̄(
)TWĀ(
) +

+K(
)T (B̄(
)TWB̄(
) +R(
))K(
) +Q(
) < 0, 
 ∈ Γv. (A.4)

Now, introducing

L(
) = (B̄(
)TWB̄(
) +R(
))K(
), 
 ∈ Γv (A.5)

and substituting (A.5) into (A.4) gives (20); (18) and (19) follow from (A.3), (A.5) and
from the fact that FΘ is a constant matrix.

Sufficiency. Suppose there exist matrices W = W T and F satisfying (18) and (20).
Then the matrix L(
) is defined by (A.5), with K(
) given by (A.3). Hence,

0 > Ā(
)TWĀ(
)− Ā(
)TWB̄(
)(B̄(
)TWB̄(
) +R(
))−1B̄(
)TWĀ(
)

+L(
)T (B̄(
)TWB̄(
) +R(
))−1L(
) +Q(
)−W = (Ā(
)T

−B̄(
)FΘ)TW (Ā(
)T − B̄(
)FΘ)−W +Q(
) + (FΘ)TR(
)(FΘ)

≥ (Ā(
)T − B̄(
)FΘ)TW (Ā(
)T − B̄(
)FΘ)−W, 
 ∈ Γv. (A.6)

It now follows from (A.6) that (17) holds and the proof is complete.
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Appendix B. Proof of Theorem 5

It follows from taking the expectation of both sides in (36) and (37) that

E[V1(xk+1,p+1, rk,p+1) + V2(yk+1,p, rk+1,p)] ≤ �E[V1(xk+1,p, rk,p) + V2(yk,p, rk,p)],

where 0 < � = c2−c3
c2

< 1. We have for k from 0 to N and p from N to 0,

E[V1(x1,N+1, r0,N+1) + V2(y1,N , r1,N)] ≤ �E[V1(x1,N , r0,N) + V2(y0,N , r0,N)],

E[V1(x2,N , r1,N) + V2(y2,N−1, r2,N−1)] ≤ �E[V1(x2,N−1, r1,N−1) + V2(y1,N−1, r1,N−1)],

E[V1(x3,N−1, r2,N−1) + V2(y3,N−2, r3,N−2)] ≤ �E[V1(x3,N−2, r3,N−2) + V2(y2,N−2, r2,N−2)],
...

E[V1(xN+1,1, rN,1) + V2(yN+1,0, rN+1,0)] ≤ �E[V1(xN+1,0, rN,0) + V2(yN,0, rN,0)].

Adding both sides of these inequalities and using the trivial identity

E[V1(xN+2,0, rN+1,0) + V2(y0,N+1, r0,N+1)] = E[V1(xN+2,0, rN+1,0) + V2(y0,N+1, r0,N+1)]

results in

E

[
N+1∑
j=0

V1(xN+2−j,j, rN+1−j,j) + V2(yN+1−j,j, rN+1−j,j)

]
≤

≤ �E

[
N∑
j=0

V1(xN+1−j,j, rN−j,j) + V2(yN−j,j, rN−j,j)

]
+

+E[V1(xN+2,0, rN+1,0) + V2(y0,N+1, r0,N+1)].

Hence,

E

[
N+1∑
j=0

V1(xN+2−j,j, rN+1−j,j) + V2(yN+1−j,j, rN+1−j,j)

]
≤

≤ E

[
N+1∑
j=0

�j(V1(xN+2−j,0, rN+1−j,0) + V2(y0,N+1−j, r0,N+1−j))

]
,

and using (36),

E

[
N∑
j=0

(∣xN+1−j,j∣2 + ∣yN−j,j∣2)

]
≤ �E

[
N∑
j=0

�j(∣xN+1−j,0∣2 + ∣y0,N−j∣2)

]
,

where � = c2/c1. The last inequality implies that

M∑
N=0

E

[
N∑
j=0

(∣xN+1−j,j∣2 + ∣yN−j,j∣2)

]
≤

≤ �[(1 + �+ . . .+ �M)E(∣x1,0∣2 + ∣y0,0∣2) + (1 + �+ . . .+ �M−1)E(∣x2,0∣2 + ∣y0,1∣2) +

+(1 + �+ . . .+ �M−2)E(∣x3,0∣2 + ∣y0,2∣2) + . . .+ E(∣xM+1,0∣2 + ∣y0,M ∣2)] ≤

≤ �[(1 + �+ . . .+ �M)E
M∑
N=0

(∣xN+1,0∣2 + ∣y0,N ∣2)].
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Since (33) holds and 0 < � < 1, it follows that the right-hand side of this inequality
is bounded as M → ∞. Consequently, the series in the left-hand side of the considered
inequality is convergent and

E

[
N∑
j=0

(∣xN+1−j,j∣2 + ∣yN−j,j∣2)

]
→ 0

as N →∞, and the system (30), (32) is asymptotically stable in the mean square. This
concludes the proof.

16



References

[1] Rogers E., Owens D. H. Stability Analysis for Linear Repetitive Processes. Lecture
Notes in Control and Information Sciences, Vol. 175. Berlin: Springer-Verlag, 1992.

[2] Rogers, E., Gal̷kowski, K., Owens, D. H. Control Systems Theory and Applications
for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences,
Vol. 349. Berlin: Springer-Verlag, 2007.

[3] Hladowski L., Galkowski K., Cai Z., Rogers E., Freeman C. T., Lewin P. L. Experi-
mentally supported 2D systems based iterative learning control law design for error
convergence and performance // Control Engineering Practice. 2010. V. 18. P. 339–
348

[4] Roberts P. D. Numerical investigations of a stability theorem arising from 2-
dimensional analysis of an iterative optimal control algorithm // Multidimensional
Systems and Signal Processing. 2000. V. 11. P. 109–124.

[5] Dullerud G. E. and D’Andrea R. Distributed control of heterogeneous systems //
IEEE Transactions on Automatic Control. 2004. V. 49. P. 2113–2128.

[6] Rabenstein R., Trautmann L. Towards a framework for continuous and discrete multi-
dimensional systems // International Journal of Applied Mathematics and Computer
Science. 2003. V. 13. P. 73–86.

[7] Cichy B., Augusta P., Rogers E.,and Gal̷kowski K., Hurák Z. On the control of dis-
tributed parameter systems using a multidimensional systems setting // Mechanical
Systems and Signal Processing. 2008. V. 22. P. 1566–1581.

[8] Boyd S., El Ghaoui L., Feron E., Balakrishnan V., Linear Matrix Inequalities in
System and Control Theory. Philadelphia: SIAM, 1994.

[9] Balandin D. V., Kogan M. M. Synthesis of Control Laws Based on Linear Matrix
Inequalities. Moscow: Nauka, 2007.

[10] Letov A.M. Analytical design of controllers //I. Avtom.i Telemekh. 1960.No.4. P.436-
441; II. 1960. No.5. P.561-568; III.1960.No.6. P. 661-665; IV. 1961. No.4. P. 425-435;
V. 1962. No.11. P. 1405-1413.

[11] Gadewadikar J., Lewis F. L., Xie L.,Kucera V., Abu-Khalaf M. Parameterization of
all stabilizing H∞ static state-feedback gains: Application to output-feedback design
// Automatica. 2007. V. 43. P. 1597 – 1604.

[12] Pakshin P.V., Soloviev S.G., Peaucelle D. Parametrization of stabilizing controls in
stochastic systems // Automation and Remote Control. 2009. V. 70, No. 9. P. 1514-
1527.

[13] Pakshin P., Galkowski K., Sulikowski B., Rogers E. Parametrization Based Synthesis
of Static Feedback Stabilizing Controllers for Uncertain Discrete Linear Repetitive
Processes // Proceedings of the 3rd IEEE Multi-conference on Systems and Control.
Saint Petersburg, Russia. July 8-10, 2009. P. 962-967.

17



[14] Kazakov I.Ye., Artem’ev V.M. Optimization of Dynamical Systems with Random
Structure. Moscow: Nauka, 1980.

[15] Mariton M. Jump Linear Systems in Automatic Control. New York: Marcel Dekker,
1990.

[16] Kats, I. Ya. and Martynyuk, A. A. Stability and Stabilization of Nonlinear Systems
with Random Structure. London: Taylor & Francis, 2002.

[17] Pakshin, P.V. Disctrete Systems with Random Parameters and Structure. Moscow:
Fizmatlit, 1994.

[18] Costa O.L.V., Fragoso M.D., Marques R.P. Discrete-Time Markov Jump Linear Sys-
tems. New York: Springer, 2004.

[19] Costa O.L.V., Okimura R.T., Discrete-time mean variance optimal control of linear
systems with Markovian jumps and multiplicative noise // International Journal of
Control. 2009. V. 82. P. 256–267.

[20] Oliveira R.C.L.F., Vargas A.N., do Val J.B.R., Peres P.L.D. Robust stability, H2

analysis and stabilization of discrete-time Markov jump linear systems with uncertain
probability matrix // International Journal of Control. 2009. V. 82. P. 470–481.

[21] Gao H., Lam J., Xu S., Wang C. Stabilization and H∞ control of two-dimensional
Markovian jump systems // IMA Journal of Mathematical Control and Information.
2004. V. 21. P. 377–392.

[22] Wu L., Shi P., Gao H., Wang C. H∞ filtering for 2D Markovian jump systems //
Automatica. 2008. V. 44. P. 1849-1858.

[23] Roesser R.P. A discrete state-space model for linear image processing // IEEE Trans-
actions on Automatic Control. 1975. V. AC-20. P. 1- 10.

[24] Fornasini E., Marchesini G. Doubly indexed dynamical systems: state models and
structural properties // Mathematical Systems Theory, V. 12. 1978. P. 59-72.

[25] Skelton R.E.,Iwasaki T., Grigoriadis K.M. A Unified Algebraic Approach to Linear
Control Design. London: Taylor & Francis, 1997.

[26] Ait Rami M., El Ghaoui L. LMI optimization for nonstandard Riccati equation aris-
ing in stochastic control // IEEE Trans. Automat. Control. 1996. V. 41. P. 1666–1671.
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