The Tree Width of Auxiliary Storage

P. Madhusudan

University of lllinois at Urbana-Champaign, USA
madhu@illinois.edu

Abstract

We propose a generalization of results on the decidabifignpti-
ness for several restricted classes of sequential andbdistd au-
tomata with auxiliary storage (stacks, queues) that haventéy
been proved. Our generalization relies on reducing enmgxsimnd
these automata to finite-staggaph automata(without storage)
restricted to monadic second-order (MSO) definable graghs o
bounded tree-width, where the graph structure encodes éod-m
anism provided by the auxiliary storage. Our results oathruni-
form mechanism to derive emptiness algorithms for autoneta
plaining and simplifying several existing results, as vaslproving
new decidability results.

Categories and Subject Descriptorg=.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.&dftware Engi-
neering: Software/Program Verification: Model checking; F.4.3
[Theory of ComputatignFormal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification
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However, the various identified decidable restrictions loesé
automata are, for the most paawkward in their definitions—
e.g. emptiness of multi-stack pushdown automata whereegsush
to any stack is allowed at any time, but popping is restri¢ted
the first non-empty stack is decidable! [8]. Yet, relaxinggh
definitions to more natural ones seems to either destrogdkitity
or their power. It is hence natural to ask: why do these autama
have decidable emptiness problems? Is there a common vinderl
principle that explains their decidability?

We propose, in this paper, a general criterion that unifgrml
explains many such results— several restricted uses ofiayxi
storage are decidable because they can be simulategraph
automataworking on graphs that capture the storage as well as
their sequential or distributed nature, and are also of Bedrree-
width.

More precisely, we can show, using generalizations of known
results on the decidability cfatisfiabilityof monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph
tomata orMSO-definableggraphs of bounded tree-width are decid-
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tree-width

1. Introduction

Several classes of automata with auxiliary storage hava tee
fined over the years that have a decidable emptiness proBlies:.
sic models like pushdown automata utilizingtackhave a decid-
able emptiness problem [14], and several new models likects]
classes of multi-stack pushdown automata, automata witieg)

lary storage) that accept or reject graphs usiliggs of the graph
using stateswhere the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptineggagih
automata on MSO-definable graphs follows since the existefic
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributezhzata
with an auxiliary storage (we consider stacks and queuesionl
this paper), can be realized geaph automatavorking on single
or multiple directed paths augmented with special edgeafituce

and automata with both stacks and queues, have been proved dethe mechanism of the storage. Intuitively, a symbol that gedred

cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often be
motivated formodel-checkingsystems. Software models can be
captured using automata with auxiliary storage, as staeks c
model thecontrol recursionin programs while queues modelFO
communication between processés abstraction-based model-
checking, data domains get abstracted from programs tiresir
automata models (e.g., the.8v tool builds pushdown automata
models usingpredicate abstractio7], and the GTAFIX tool
model-checks both single-stack and multi-stack automatd-m
els [18, 19]). The emptiness problem for these automataisbst
relevant problem as it directly corresponds to checkinghahility
of an error state.
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in a stack/queue and later gets retrieved can be simulatea by
graph automaton working on a graph where there is a spedel ed
between the point where the symbol gets stored to the poiatevh
it gets retrieved. A graph automaton can retrieve the syrabtiie
retrieval point by using an appropriate tiling of this sp¢@dge.

The idea of converting automata with storage to graph auma
without storage but working on specialized graphs is thalidtvs
us to examine theomplexityof storage using thetructure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph atdom
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-sgtiing:

This is the class of multi-stack automata where each cortipotaf

the automaton can be divided intestages, where in each stage the
automaton touches only one stack (proved decidable fir&ap).[

We show that they can be simulated by graph automata on graphs
of tree-widthO (k).



- Multi-stack pushdown automata with bounded phases: These
are automata that generalize the bounded-context-swgobmes:
the computations must be dividable intophases, for a fixed,

by a Parikh theorem [8], and distributed queue automata with
stacks were shown decidable by reductions to bounded-phase
tomata [17].

where in each phase the automaton can push onto any stack, but Our theorems also lead to new consequences. First, automata

can pop only from one stack (proved decidable recently if)[15
We show that graph automata on graphs of tree-wd@ith*) (not
O(k) as in the above case) can simulate them.

- Ordered multi-stack pushdown automata: The restriction here
is that there is a finite number of stacks that are orderedatady
time, the automaton can push onto any stack, but pop only them
first non-empty stack. Note that the computation is not diglidhto
phases, as in the above two restrictions. We show that atecomna
graphs of tree-widtlD(n - 2™) (wheren is the number of stacks)
can simulate them.

- Distributed queue automata on polyforest architectures: Dis-
tributed queue automata is a model where finite-state psesest

n sites work by communicating to each other using FIFO channel
modeled as queues. It was shown recently that when the ezehit
ture is a polyforest (i.e. the underlyingdirectednetwork graph of
the architecture is a forest), the emptiness problem isldbg (and
for other architectures, it is undecidable) [17]. We prdwat graph
automata working on graphs of tree-width (in fact, paththjid,

with multi-stacks are decidable when their graphs areiotstt to
graphs of bounded tree-width, and in fact even bounclepie-
width graphs [10, 11]; this result generalizes all the above multi
stack sequential automata. Second, several of our restitsceto
automata over infinite behaviors— for example, it followsiga
that ordered multi-stacBuchior parity automata on infinite words
have a decidable emptiness problem. Third, several varafrthe
restrictions can be proved immediately decidable— for edam
suppose we restrict multi-stack automataktg@hases, where in
each phase, there is only one stack thatishednto (but arbitrary
pops of stacks are allowed), then it easily follows that engss
is decidable, as thgraphs corresponding to these automata are
precisely the same as those of bounded phase automata,osave f
the orientation of the linear and nesting edges, and hens¢hlea
same tree-width. Section 5 gives a summary of consequerices o
our general result.

Due to the variety of automata models we consider we do not
give all definitions and proofs in the main text. The proofstfee
boundedness of tree-width for various restrictions of irailick

wheren is the number of processes, can simulate distributed queue PUShdown automata are given in the Appendix, while the sroof

automata on polyforest architectures.

- Distributed queue automata with stacks on forest archite@s:

When we endow each process in a distributed queue automaton2

with a local stack, it turns out that if the automatomvsll-queuing
and the architecture is a forest, the emptiness problemadil-de
able [17]. The well-queuing condition demands that a procesay
dequeue from a queue only when its local stack is empty. Eurth
more, it is known that simply dropping the well-queuing cibioch

or dropping the condition that the architecture be a fonastkes
emptiness undecidable [17]. We prove that graph automatia th
work on graphs that simulate both the local stacks and thaegue
can capture these automata, and for well-queuing automata o
forest architectures, the graphs are of tree-width), wheren is
the number of processes.

Thegraphson which the graph automata need to work to realize
the above automata are also, surprisingly, uniform. Forfitis¢
three classes of multi-stack automata, the graphs are\sargihgle
word endowed with a set afesting edges relation®ne relation
for each stack. For distributed queue automata, the graphs a
composed of: distinct linear structures, one for each process, with
queue edges connecting enqueing vertices to dequeuinigegert
and, if the processes have stacks, have nesting edges @reaehs
to capture the local stack.

The tree-decompositions for these graphs as well as thésproo
that the decompositions give bounded tree-width for thigicgi®ns
are involved, and are tailored to exploit the restricticageld on the
automata.

The idea of interpreting stacks as nesting edges was medivat
by the work relatingvisibly pushdown automataith nested word
automata[1-3], where nesting edges capture a visible stack. Our
work is also motivated by the work on bounded-phase multi-
stack automata [15], in which we were involved, where tree-
interpretations were used to show decidability of emp8n&sur-
veying the other known decidable automata restrictionsuedo
this uniform framework for proving decidability. The autata
variants we study were often first proved to be decidable by di
ferent means— bounded context-switching multi-stack rmata
were shown to be decidable using regularitytagples of reach-
able configurations [22], ordered multi-stack automataevetiown
decidable using manipulations of associated grammarawiet

regarding distributed queue automata can be found in thaiea
report [20].

. Logics, graphs, graph automata, tree-width,
and emptiness

We start by defining, in this section, graph automata thakveor
edge-labeled finite directed graphs, and show that the apgsi
problem for these automata is decidable over any MSO-ddénab
class of graphs of bounded tree-width. This result is ddrivem
classical results on interpretations of graphs on treebyarsketch
the derivations here.

Monadic second-order logic on graphs:Fix a finite alphabet
(set)X. A X-labeled graph is a structuf®, { Eq }acs), whereV/
is a finite non-empty set of vertices, and ed¢hC V' x V' is a set
of a-labeled directed edges. We will assume, throughout thpepa
that for any vertex, there is at most one incominglabeled edge
and at most one outgoinglabeled edge.

We view graphs as logical structures, withas the universe,
and each set of edgés, as a binary relation on vertices. Monadic
second-order logic (MSO) is now the standard logic on these-s
tures. We fix a countable set of first-order variables (we délhote
these as, y, etc.) and another countable set of set variables (de-
noted asX, Y, etc.). MSO is given by the following syntax:

pu=z=y|Eu(z,y) |z €X |oVo|-p|Ire|IXp

wherea € X. The semantics is the standard one, with first-order
and set variables interpreted as vertices and sets of egttic

We say a class df-labeled graph€ is MSO-definable, if there
is an MSO formulap such that is the precise class ai-labeled
graphs that satisfy.

Graph automata: Fix a classof X-labeled graph€. A graph
automaton (GA) orC is a tuple(Q, {Ta }acs, type), whereq@ is
a finite set of states, each, C @ x @ is atiling relation, and
type: Q — 2% x 2% is the type-relation.

INote: In the literature, a variant of MSO (called M§Chas been con-
sidered where both vertices and edges are in a two-sortedragiand are
related by an incidence relation; that version is strongan tours, but we
shall not need it for our exposition.



Intuitively, a graph automaton will accept a graph if thesai
way to tile (label) the vertices by states so that the tiliation
is satisfied by vertices adjacent to each other, and furttesfies
the type-relation. The type-relation associates eacle stad pair
(In,Out) of sets of labels, and in order for a state to decorate a
vertex, we require its type to match the edges incident ortlie—
labels of incoming (and outgoing) edges must be precise{mnd
Out).

Formally, we say that a graph automat@®, {7% }acs, type
acceptsa graph(V, {Eq }aex) if thereisamapp : V — Q that
satisfies the following conditions:

e Forevery(u,v) € Eq, Witha € X, (p(u), p(v)) € Tq.

e For everyu, typep(u)) = (In,Out), whereln
Fv, (v,u) € E.} andOut= {a | v, (u,v) € Eq}.

The language of a graph automat@nl over a class of graphs
C, denotedL(G A), is the set of graphs ifi that it accepts.

Note that the notion of an automaton “running” over the graph
has been replaced by tiling constraints. Also, we have deoray a
with initial or final states; we will capture these when negdsing
specially labeled edges in the sequel.

Our notion of graph automata is motivated by definitions of au
tomata on graphs through tilings in the literature [24]. @rau-
tomata can in fact be defined more powerfully (see [24]); haxe
for our purposes, the above definition will suffice. Most of og+
sults will carry over to generalizations of the above deifonit

{a |

Tree-width: We recall the definition of tree-width for graphs
(see [12]). The tree-width of a graph intuitively capturesvitiose
agraphisto atree.

Formally, atree-decompositiorof a graph(V, E) is a pair
(T,bag), whereT = (N,—) is a tree, andag : N — 2V is
a function that satisfies:

e Foreveryv € V, thereis anode € N such that € bag(n),

e For every edgdu,v) € E, there is a node € N such that
u,v € bag(n), and

o If u € bag(n) andu € bag(n'), for nodesn,n’ € N, then
for everyn” that lies on the unique path connectingandn’,
u € bag(n”).

Thewidth of a tree decomposition is the size of the largest bag in
it, minus one; i.emaznen{|bag(n)|} — 1.

Thetree-widthof a graph is thesmallestof the widths of all of
its tree decompositions.

It is easy to see that the tree-width of a tree ishile the tree-
width of ak-clique isk — 1.

Emptiness of graph automata on graphs of bounded tree-width
We now show that emptiness of graph automata is decidabkn wh

THEOREM2.1 (Seese [23])The problem of checking, givéne

N and ¢ € MSO over X-labeled graphs, whether there is a
>-labeled graphG of tree-width at most that satisfiesy, is
decidable.

Note that the above certainly does not imply that satisfighbil
of MSO is decidable oany class of graphs of bounded tree-width
(take a non-recursive class of linear-orders/words for @ntar-
example). However, an immediate corollary is that satigfigtof
MSO is also decidable on any MSO-definable class of grapbis
bounded tree-width (i defines the class of graphs, apds the
MSO formula, we can instantiate the above theorenmyferA ).

COROLLARY 2.2. Let C be a class of MSO definablB-labeled
graphs. The problem of checking, givénc N and an MSO-
formulap, whether there is a grapts € C of tree-width at mosk

that satisfiesp, is decidable.

We can now prove that the emptiness problem for graph au-
tomata is decidable when restricted to bounded tree-widihhs
over an MSO-definable class of graphs. Intuitively, we caitewr
an MSO formulap that checks whether there is a proper tiling of
a graph by the graph automaton that respects the tiling guidgy
relations. This formula will essentially use an existdmjaantifi-
cation of a set of set¥,, (for eacha € X) to “guess” a tiling, and
check whether the tiling and typing is proper, using uniakfisst-
order quantification on vertices. We can then instantiadeatiove
corollary with this formula to show decidability of graphtamata
emptiness. In fact, using a direct automaton constructiotrees,
we can show the complexity of graph-automata emptiness s we
(see [20] for a gist of proof): to obtain our result:

THEOREM2.3. Let C be a class of MSO definablE-labeled
graphs. The problem of checking, givene N and a graph au-
tomatonG A, whether there is som@& € C of tree-width at most
k that is accepted by7A, is decidable, and decidable in time
|GAJC®),

The above theorem will be the key result we will use to uni-
formly prove decidability results in this paper. For vasaestric-
tions of sequential and distributed automata with auxilistor-
age, we will translate them to graph automata over MSO-deléina
graphs, show that the relevant graphs are of bounded tret,wi
and use the above theorem to prove decidability of emptiness

3. Multi-stack Pushdown Automata

In this section, we will show the decidability of emptinegsvar-
ious restricted multi-stack pushdown automata (boundedest
switches, bounded phase, and ordered), by showing thatctirey
be simulated by graph automata working ovetiply-nested word

evaluated over graphs that are definable in MSO and are also ofdraphsthat are of bounded tree-width.

bounded tree-width.

First, we recall a classical result that thatisfiability problem
for MSO is decidable on the classaif graphs of tree-widtt (for
a fixed k) [23]. Courcelle’s classic theorem shows that checking
if a particular graph G of tree-widthk (for a fixed k) satisfies a
fixed MSO formula is decidable in linear time. This result wsor
by defining the graph in a labelled tree by MSO formulas, and by
translating the MSO formula about graphs into one abous|reed
using a tree-automaton for the MSO formula to check if theesor
sponding tree is accepted. It turns out the same proof casdx u
to prove thesatisfiabilitytheorem that we refer to above as well.
Intuitively, we can interpreall graphs of tree-widtlk by using a
uniform set of labeled binary trees whose labels only deerid
translate the MSO formula on graphs to these labeled trads)se
the fact that satisfiability of MSO on trees is decidable.

For anyn € N, let[n] denote the sefl, ... n}.

A multi-stack pushdown automaton is an automaton with finite
control and equipped with a finite number of stacks. A tramsit
of this automaton consists in pushing or popping a symbaohfeo
specified stack and changing its control or simply an intemave
that affects only the control state without alteration af gtacks’
contents.

DEFINITION 3.1 (MULTI-STACK PUSHDOWN AUTOMATA). For
afixedn € N, ann-stackpushdown automatofn-PDA) is a tuple
M = (Q,q,T,d,Qr), whereQ is a finite set of stategp € Q is
the initial state,I" is a finite stack alphabet)» C Q is the set of
final states, an@ = (Spush, Opop, dint) Where

® dpush C (Q x Q x I' x [n]) is the set of push moves,
® dpop C (Q X T x @ x [n]) is the set of pop moves, and



® dint C (Q x Q) is the set of internal moves.

A multi-stack pushdown automaton (mPDA) isastack push-
down automaton, for some& N.

A configurationof ann-PDA M = (Q, qo0, T, §, Qr) is a tuple
(¢,s1,...,sn) With g € Q ands; € I'" is the content of stack
j, foreveryj € [n]. LetC = (g, s1,...,sn) be a configuration
of M. Then,C is theinitial configuration ifg = go ands; = e,
for every;j € [n]. Moreover,C is afinal configuration ifg € Qr
ands; = ¢, for everyj € [n]. Given two configurationg® =

Figurel. A 2 nested word graph.

(q,81,---,8,y @and C" = (q’,s},...,s), there is a transition

from C to C’ on the actionact from the behavior seB3, =

{int, push,...push,, pop,,...,pop,} denotedC ot o if Figure 1 illustrates a 2-nested word.

one of the following holds: Intuitively, mNWs are meant to capture the behaviors of fns

) . mPDAs, where the stacks are compiled down to edges in thégrap
[Push ~ onto stack j] act = push;, and there existy such that  the relationZ relates consecutive actions in the run, while the

(¢:4',7,4) € Opusn, 85 = 7-s5, andsj, = sy for every nesting edge relatiof; captures the matching push-pop relation
h€[n]—j. of stacky, for every stack indey € [n]. The self-looping edges
[Pop ~ from stack j] act = pop,, and there exists such that Init andFinal capture the initial and final vertex with respectlio
)is

The properties of multiply nested words (Definition 3) can be

! . ’ !
G, € Opop, S; = .55, ands;, = s, for ever . A
(g,7,4',7) pop» 23 155 h ! y easily stated in MSO:

h € [n] —j.
[Internal] act = int, and(q, q") € dint, andsj, = sy for each PrRoPOSITION3.3. For any integern, the class ofi-NWs is MSO
h € [n]. definable.

We can define a 1-to-1 functiomw from the set of behav-

. - o acty
A run of M is a sequence of transitions 8, p = Cy iors of then-PDA M to the class ofn-NWs. Given anM run

act,, 1

Ca... Cm, whereC is initial andC'p, is final. p with beh(p) = aiaz...am, the corresponding nested word
For each such rup of M, we associate the behavior word  graphn-NW N is as follows. The set of vertices df is V =

beh(p) = acti.acty...actn, and define the set of behaviors  {v;, v, ..., v, vm+1}, the relationZ is such that.(v;, v;) holds

of M as the languag®ch(M) = { beh(p) | pisarunofM }. iff = i+ 1. The edge relatiork; is defined as follows. On the

Note that the behaviors capture the way the automaton hatftde  word beh(p) there are intrinsic relations that match corresponding
stacks, noting the push and pop operations and the stackich wh pushes and pops of the same stack, and since we assumed that al
they are performed. the stacks at the end of a run are empty, we have tHatfiyp) ev-

The emptinessproblem for an mPDAM is the problem of  ery symbolpush,; is matched with a future symbpbp, and vice-
checking ifBeh (M) is empty (or equivalently, whether there is @  versa. Thus the edge relatidfy is defined as#; (v;, vs) holds if
run of the mPDA). and only ifa; = push;, an = pop, and the paili, h) is a match-
ing pair of push and pop actionslah(p). It is easy to see that this
is a 1-to-1 correspondence.

Given anyn-PDA M, we can easily translate it to a graph
automaton that accepts the mNWs corresponding to the hmkavi
of M. Intuitively, whenever the.-PDA pushes onto théth stack,
the graph automaton decorates the corresponding noderie$ted

Multiply-nested words: In the following we show that mPDAs
can be naturally encoded as graph automata on a class of (edge
labelled) graphs that we cattultiply nested wordsand the empti-
ness problem on the former reduces to the emptiness prolbidem o
the latter. We start by defining multiply nested word graphs.

DEFINITION 3.2 (MuLTIPLY NESTEDWORDS). For a given in- word graph with the symbol pushed, and when this symbol gets
tegern, ann-nested wordn-NW) is a tupleN = (V, Init, Final, popped later, the graph automaton, using tiling conditionghe
L,{E;};e[n)), Where nested edge, will recover the symbol. Hence, by using sliog

the nested edges, the graph automaton can wathiout a stack

* Vis afinite set of vertices; and capture the semantics of the?DA precisely. We hence have:

e [, C V x V is a non-reflexive (successor) edge relation such

that L™ is a linear ordering<, on the vertices oV; LemmA 3.4. For everyn-PDA M, there is a (constructible) graph
e If z is the minimum element w.rk, then kit = {(x, z)}; if = automaton GA om-nested words such thatw(Beh(M)) =
is the maximal element w.rk, then Bnal = {(z,z)}; L(GA). HenceBeh(M) # 0 iff L(GA) # 0.

e J; CV x Vis anesting relation, for every € [n]. A nesting
relation F; is a relation that satisfies the following properties:
for all u,u’,v,v" € V andj, j’ € [n],

Note that1-PDAs are basic pushdown automata, whose empti-
ness problem is decidable. The emptiness problem{BDA is
well-known to be undecidable when> 1 [14]. Thus, Lemma 3.4

. ?f Ej(u,v) thenu <z v holds; _ can be used to show that the classneNWs, withn > 1, have
v if Ej(u,v) and £ (u, v') thenv = v'; and if £ (u, v) and unbounded tree-width.
E;(u',v) thenu = u/; .
v if Ej(u,v)andE;(u',v') andu <, u’ then eithew < u’ LEMMA 3.5. The class of-NWs has tree-width.
or v’ < v holds. For any integern > 1, the class of-NWs has unbounded tree-
vif j # 5§, Bj(u,v), and E; (v, v'), thenu, v, «’, v are all width.
different. Tree-decompositions of multiply nested wordsin order to show
A multiply nested wordrgNW) is an n-nested word, for some  restricted versions of mPDAs have a decidable emptinessepm
n e N. we will first define canonical tree-decompositionf®r multiply

nested words, which we will use to prove bounds on tree-wadth



{1,2,13} (2)

{2,3,8,11,12,13} (3) {2,13,14}

{3,4,6,7,8,11,12} (4) {3,8,9,11,12,13}
{4,5,6,7,8,11,12} (5)  {4,6,7}(7) (1) {9,10,11,12,13}

{5,6,7,8}(6) () {10,11,12,13}

{5,11,12}

{6,7,8} (8) {11,12,13}

Figure2. Tree decomposition of the graph illustrated in Figure 1.

LEmMMA 3.7. For any multiply nested word graplV, can-td(N)
is a tree-decomposition dY.

3.1 Bounded context-switch emptiness

We show now that the multiply-nested words that correspand t
bounded context-switching runs of a multi-stack automados

of bounded tree-width, and hence admit a decidable empgtines
problem.

For anyk € N, we say that a behavior word € B;, is a
k-context word if it belongs to(Ujelnl{int,pushj,popj}*)k.

In other words,w can be factorized as at most sub-words
wiws . .. wp (With h < k) such that eachy; includes only actions
of a single stack and internal actions. Let us defif@SBeh (M)
to be the set of alk-context behavior words iBeh(M).

The emptiness problem for mPDAs restricted tmntextds the
problem of checking, given an mPD}, whether the language
CSBeh(M) is empty.

As in the general case, the emptiness problem for mPDSs
restricted tok contexts can be reduced to the emptiness prob-
lem for graph automata, where now the class of graphs to con-
sider is that of mNWs restricted té-context behaviors. For

hence prove emptiness for both bounded-phase automatallas weany k,n € N, a k-context-switchn-nested wordis a tuple

as ordered automata (it turns out that bounded contextising
automata have a simpler tree decomposition).

DEFINITION 3.6 (CANONICAL TREEDECOMP OF n-NWSs).
Foranyn-NWN = (V,nit, Final, L, {E;} jc[n), the canonical
tree-decomposition a¥, can-td(N) = (7', bag) is decomposition
T = (V, bag) defined as:

e The set of nodes of the tr&eare the verticed” of the V.

e If E;(u,v) holds for anyj € [n], thenv is the right-child ofu
inT.

e if L(u,v) holds and for allj € [n] andz € V, E;(z,v) does
not hold, therwv is the left-child ofuw.

The function bg associates the minimum set of vertices to each
node ofT" that satisfies the following:

® v € bag(v), forallv e V.

o if wisthe parentob in T, thenu € bag(v), for everyu,v € V.

e foru,v € V, if L(u,v) holds theru € bag(z), for all vertices
z such thatz is on the unique path fromto v in T'.

Figure 2 illustrates a tree-decomposition for the 2-negtagh
in Figure 1.

In the above definition of the tree-decomposition ofrabllW
N, the vertices ofl" are the same as the vertices/8f The root
of T" is the minimum vertex iNV according to the linear ordering
induced byL. The nesting-edge-successor of any node, if any, is
always its right-child. Otherwise, a vertexis the left-child of its
linear predecessor. Notice that, since for each notleere exists
at most one paifu, j) such thatF;(u, v) holds, and at most one
vertexu such thatZ (u, v) holds, the tre€" is uniquely determined
by N.

Note that the tred” captures all the nesting edges in: in fact
if F;(u,v) holds thenv must be the right-child of:, and hence
u,v € bag(v). The successor relatiah is not always local as the
nesting-edge relation is: for example [ifu, v) and E;(z, v) hold
for somej andz, thenv is the right-child ofz and not the left-child
of u. However, the third property in the definition guarantiestth
all linear edges are captured by at least one bag, and alsiates
the requirement that nodes whose bags contain the same veate
tree decomposition be connected. Hence, it is clearcthatd(N)
defines a unique tree decomposition for everldWs (though its
width may not be bounded).

N (V. Init,Final, L, {E;} ) Where N is a n-NW and
nw~*(N) is ak-context behavior word.

The k-context restriction on multiply nested word graphs is
easily expressible as an MSO formulathis formula will express
that the graph can be factored intosegments and only nesting
edges of one stack are incident on vertices of a single segmen
Along with the MSO formulay defining the class of mNWs,
» A ¢ defines the class of all-context MNWs. Moreover, a tree-
decomposition where each stack is encoded as a subtreethrder
root (in the usual way, as in the canonical tree decompasitio
1-nested words), has width at mdst- 1 (see Appendix A).

LEmMMA 3.8. For any k,n € N, the class ofk-contextn-NW
graphs is MSO definable. Furthermore, for akycontextn-NW,
there exists a tree-decomposition of width at niost 1.

From the fact that the emptiness problem for mPDAS restticte
to k-contexts is effectively reducible to the emptiness probfer
graph automata ovet-context mNWSs, and using Lemma 3.8, we
can instantiate Theorem 2.3 to show the following:

THEOREM3.9. For any k& € N, the emptiness problem for mP-
DAs restricted tok contexts is decidable, and decidable in time
O(|M|°™). For a fixedk, the emptiness problem is RTIME.

The original proof of decidability of reachability of mukitack
automata under a bounded number of context-switches wasgro
using tuples of automata to store ttenfigurations of stacki@2].
The above proof is very different— it shows that the graph tha
captures the storage, i.e. multiple stacks with boundedegtn
switches, has bounded tree-width, and hence admits a déeida
emptiness problem.

3.2 Bounded phase emptiness

Now we show that the multiply-nested words that correspand t
bounded phase runs of a multi-stack automaton are of bounded
tree-width (in fact, the canonical tree-decompositioregiounded
tree-width), and hence entails decidable emptiness.

A word w € B, is aphaseif it belongs to one of the sets
phase = ({int,pop;} U U,c(,, {Push,})", for some; € [n].
A phasej describes any sequence of actions in which only internal
actions, pushes to all stacks, and pops from sjale permitted. A
wordw € B, is ak-phasebehavior word if it is the concatenation
of at mostk phases: thatisp € (Uje[n](phasg))k. We define the



setk-Phase-Befi/), for a mPDAM, as the set of all the-phase
words inBeh ().

The emptiness problem for mPDAs restrictedktphase be-
haviors asks whethek-Phase-BefW/) is an empty set. mPDAs
restricted to bounded phases can be simulated by graph atztom
on a the class of bounded phase mNWs. Foriany € N, a k-
phasen-nested wordV is ann-NW wherenw—*(N) is ak-phase
behavior word.

LEmMMA 3.10.For any k,n € N, the class ofk-phasen-NW
graphs is MSO definable. Moreover, the tree-decomposition n
td(N), where N is any k-phasen-NW, has tree-width at most
2k 42k 41,

From Lemma 3.10 and Theorem 2.3 to obtain the following
theorem, which also matches the 2E lower bound for this
problem [16].

THEOREM3.11.For any k € N, the emptiness problem for mP-
DAs restricted tok phases is decidable, and decidable in time

|M|O<2k). When the number of phases is fixed, the emptiness prob-
lemis inPTIME.

Proofs can be found in Appendix B.

3.3 Emptinessof ordered multi-stack automata

Turning to the orderedness restriction on multi-stack iaata,
we show that the multiply-nested words that correspond to or
dered runs are of bounded tree-width (using the canonieat tr
decomposition), and hence admits a decidable emptinebfepto

Arun p of annPDA isorderedif whenever a pop action happens
on the staclj € [n], then all stacks of index less tharare empty:

if p=0Ci aia N Co... actm 1 Cwm, then for everyi € [m — 1],
if act; = pop; andC; = (g,s1,...,sn) thens, = ¢, for each
h < j.

The setordered-Beh (M), for a mPDAM, is the set of all the
ordered words oBeh(M).

The emptiness problem for mMPDAs restricted to ordered behav
iorsis the problem of checking the emptines®poflered-Beh(M).

For anyn € N, anorderedn-nested wordN is ann-NW in
whichnw ™! (V) is a ordered word.

LEMMA 3.12.Letn € N. The class of ordered-NW graphs is
MSO definable. Furthermore, the tree-decompositiarntd( V),
whereN is any orderech-NW, has width at mogt +1)-2" ' 4-1.

From Lemma 3.12 and Theorem 2.3 we obtain the following
theorem, which also matches the 2BE lower bound for this
problem [6].

THEOREM3.13. The emptiness problem for mPDAs restricted to
ordered runs is decidable, and decidable in tifh|“ 2", When
the number of stacks is fixed, the problem is decidabRTivE.

Proofs can be found in Appendix B.

4. Distributed Automata with Queues and Stacks

Distributed queue automata with stacks (DQSA) is an automat
model composed of a finite number of processes and a finite num-
ber of first-in-first-out (FIFO) channels using which theyraauni-

cate, and where the local processes are endowed with a &ngle
stack each. Each FIFO queue has a unique sender procesarthat ¢
engueue onto it, and a unique receiver process that deqgirenes

it.

DEFINITION 4.1 (DISTRIBUTED QUEUE AUT. WITH STACKS).

A distributed queue automaton with stac{3QSA) is a tuple

M = (P,Q,II,T, SenderReceiver{A,},c ) where P is a fi-

nite set of process nameg, is a finite set of queued] is a finite
message alphabdi, is a finite stack alphabet, and Send€r— P

and Receiver) — P are two maps that assign a unigsender
process andeceiverprocess for each queue, respectively. For ev-
ery proces® € P, A, = (Sp, 5, Fp, 6,) is the machine at sitg,
wheresS, is a finite set of states, € S, is the initial state,F,, C

Sy is the set of final states, ang = (37, 6%.,,4: Oecvs Opysh s Obop)
where
o 0F L C(SpxQF, ,xIIx.S,)isthe set of send moves, where

P

>ena = { 4 € Q | Sendefq) = p };
® 6o C (Sp x QF.., x II x Sp) is the set of receive moves,
whereQ¥.., = { ¢ € Q | Receivetq) = p };
® dpush C (Sp X Sp x I') is the set of push moves;
® dpop C (Sp X I' x Sp) is the set of pop moves;
e 5P, C (Sp x Sp) is the set of internal moves.

For the rest of the section we fix/ = (P,Q,II, T, Sender
Receiver{A,},cpr) to be a DQSA, wherel, = (S,, s, Fp, dp)
for everyp € P.

The semantics of DQSAs is as follows.

A configurationof a DQSAM is a tuple({sy tpcr, {Vp }pecpr,
{1tq}qeq) Where for eactp € P, s, € S, and~, € I'" are the
state and the stack content of proces®spectively, and for each
queueg € Q, uq € 117 is the content of. The configuratiorC' =
{sptper, {Vp}pepr, {1q tacq) Of M is the initial configuration if
sp = sp andy, = e for eachp € P, andu, = ¢, for each queue
g € Q. C is afinal configuration ifs, € Fj, for everyprocess
p € P, and further all queues are empty, iie, = ¢, for each
q € @, and all stacks are also empty, he.= ¢, for eachp € P.

Let theactions of procesp be B, = {int,, pushy, popp} U
(Ugeqfsendpg}) U (U eqlrecvpg}), and B = U,cp By
be the alphabet of all actions. For any two configuratiGhs=

({sp}per, {}per, {1ta}qeq) and C" = <{5;}p€Pv {VL}pEP:

act

{1s}qeq), C = C',if act € B and one of the following holds:
[Send] act = send, ), and there is a moves,, ¢, m, s;,) € 6%,

such that
o for eachp # p, s; = sp,
® [iqg = m.jiq, and for eachy # q, pu; = pg.
o for eachp, 75 = 5.

[Receive] act = recy, ), and there is a movés,, g, m, s;,) €
oF.., such that

o for eachp # p, s = s5,
® [iqg = pig.m, and for eacly # q, piz = pig.
o for eachp, 75 = 5.

P

bush such

[Push] act = push,, and there is a moves,, s),,a) € §
that

o for eachp # p, s5 = sp,
e for eachq, pi = g
® v, = a.yp, and for eactp # p, 75 = 5.
[Pop] act = pop,, and there is a moves,, a, sp) € 6%,y such that
o for eachp # p, s5 = sp,
e for eachq, pi; = g
® a.y, = vp, and for eactp # p, 75 = 5.

[Internal] act = int,, and there is a movés,, s;,)
that

€ §* . such

int
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Figure 3. A stack-queue graph.

o for eachp # p, s5 = s5,
o for eachy, pi; = pig-
e for eachp, 75 = 5.
Letw = actiacts...actm—1 € B*. Arunof M onw is a

sequence = Ci Oy 2ot Ch,, WhereC is initial
andC,, is final.

The set of behaviors aff, Beh(M) is the set of wordsw € B*
such that there is a run éff onw.

A stack-queue grap{SQG) captures the behaviors of DQSA as
a graph. This graph captures the distributed behavior byefivag
local behaviors of the process disjoint linearly ordered sets of
vertices with two additional kinds of edges: edges thatwapthe
nesting relation matching pushes and pops of the local psese
(like in a nested word), and edges that match send-eventaeof o
process with receive-events in others. Formally,

DEFINITION 4.2 (STACK-QUEUE GRAPHS. A stack-queue
graph (SQG) over (P, Q, SenderReceiver) (where P, @) are
finite sets, Sender @ — P and Receiver: Q — P) is a
tuple SQG = ({(Vj, Inity, Finalp, Lp, Ep ) }pep, {Eq}qeq ),
where

o (Vp, Inity,, Finaly, Ly, E, ) is a 1-NW, for every € P;

e V,NV, =0,forall p,p’ € Pwithp  p’;

e E, CV, xV,, for somep,p’ € P withp # p'. Further, for
all u,z € V, andv,y € V,, if (u,v) € Egand(z,y) € E,
andu <r,, « holds, therv <z, Y-

* Any vertexs € |J,cp V» has at mostone edge @f), ., (E4)U
U,cp(Ep)) incident on it.

Figure 3 illustrates a stack-queue graph for three prosesse
The properties defining stack-queue graphs (the definition
above) can be easily expressed in MSO:

LEMMA 4.3. For any tuple(P, @, SenderReceivey, the class of
stack-queue graphs over it is MSO definable.

The class of stack-queue graphs represent all potentialimals

Stack-queue graphs are complex graphs, and several tiesisic
are required to make them tractable. In fact, they are of unéhed
tree width:

LEMMA 4.5. For any (P, Q, SenderReceive), where |P| > 2
and @ # 0, the class of stack-queue graphs ovét Q, Sender
Receive) has an unbounded tree-width.

The architecture of a DQSA M is the directed graph that
describes the way its processes communicate trough queues:
Arch(M) = ( P, { (Sendefq), Receivefq)) | g€ Q } ).

In [17], it is proved that if the underlying architecture is a
directed tree (where each process hence has only one ingomin
queue) and if the processes avell-queuing then the emptiness
problem is decidable for DQSAs. The well-queuing assunptio
demands that each process may dequeue from an incoming queue
only when its local stack is empty. The stack-queue graphdn F
ure 3 corresponds to such a well-queuing behavior. Thegeepro
ties (well-queuing and tree architectures) can be expeaddSO.

Furthermore, we can prove that these restrictions cause the
graphs to be of bounded tree-width. This proof is quite ined|
and is given in the technical report [20]. The idea is to fiesfirte
the notions ofgraph decompositions and their widttigat extends
the notion of tree-decompositions. M is a class of graphs, then
a H-decomposition of a grapti’ is a graphH € H where each
node in H has an associated bag of vertices, where every edge
in G is in the union of two adjacent bags i, and where the
nodes that contain a vertex 6fare connected ifi/. We then show
that stack-queue graphs over an architecture that is atelitéee
can be decomposed with a small width ontaested word This
process relies on the observation that the global run camay s
be executed in a particular order where messages in queues ne
go beyond length 1. Then, by using the small tree-width ofates
words, we obtain the following result.

LEMMA 4.6. The set of all stack-queue graphs over a pair
(P, @, SenderReceivefy whose underlying architecture is a di-
rected tree and are well-queuing, is MSO-definable, anchéurt
more, have tree-width bounded By — 1 wheren is the number of
processes.

From Lemma 4.6, we have:

THEOREM4.7. The emptiness problem for a well-queuing DQSA
M with tree-architectures is decidable. The problem is debie
in time |M|°™, wheren is the number of processes if.

In fact, the precise analysis of the tree-width that leadthéo
above theorenimprovesthe complexity by one exponential over
the one proved in [17], which gives an algorithm doubly exqron
tial in n.

4.1 Distributed Queue Automata without stacks

Distributed Queue Automata without stacks (DQAS) are thmesa
model as that of DQASSs except that the local stacks at eadepso

of any DQSA. The precise queue graphs corresponding to behay are not present. Even in this restricted setting, the eregsiprob-
iors of a DQSA can be accepted by a graph automaton over queuelem isundecidableWe can capture behaviors usiqgeue graphs

graphs that decorates each of these graphs with the DQS&s stat

that are composed of linear orders, one for each process, with

and checks whether there is a run of the DQSA corresponding to €dges connecting matching sends and receives. Figuresttdlles

the graph. Let us associate a functigyg that associates (asla- 1
correspondence), the stack-queue graph correspondinmytbea
haviorw. Then,

LEMMA 4.4. For any DQSAM over (P, Q, SenderReceivey,
there is an effectively constructible graph automaton aaclst
queue graphs oveP, @, SenderReceivef such that
sqg(Beh(M)) = L(GA).

a queue graph. In general, queue graphs of distributed cueue
tomata without stacks are also of unbounded tree width. &lbym

we define queue graph as a stack queue graph with an empty set of
stack edges:

DEFINITION 4.8 (QUEUE GRAPHY. A queue graph(QG) over
(P, @, SenderReceivey, is a tuple
QG = ({(Vp, Inity, Finalp, Ly) }per, {Eq}qeq ),
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where( {(V;, Init,, Finaly, Ly) }per, {Eptper, {Eq}qcq)isa
stack queue graph, where evdty = 0, for eachp € P.

The properties defining queue graphs can be easily exprassed
MSO:

LEMMA 4.9. For any (P, Q, SenderReceivey, the class of queue
graphs over it is MSO definable.

Also, let qg be a function that associates to every behavior of a
distributed queue automaton the corresponding queue graph

LEMMA 4.10. For every DQAM, there is a (constructible) graph
automaton GA on queue graphs such thatg(Beh(M))
L(GA).

In [17], it was proved that when the architecture of a DGA is
a polyforestthe emptiness problem is decidable. An architecture
Arch(M) of a DQA M is apolyforestif the underlyingundirected
graphis acyclic.

To bound the tree-width of queue graphgpofyforestarchitec-
tures, we note that we can reverse any edge of the graph,uvitho
changing its tree-width. Hence, we can direct queuing edges
way to make the underlying architecture a directed foreste(that
since there are no stacks, the well-queuing assumptionisfisd
vacuously, see [20]). This resulting graph hence can bepiratd
on a linear word (using the same proof as for DQAS, except that
now the nesting relation is not needed). Hence we obtaindhe f
lowing:

LEMMA 4.11. Let (P, Q, SenderReceive) be a tuple whereP
and @ are finite sets and Sender() — P and Receiver Q —
P. Then the class of polyforest queue graphs d\&rQ, Sendey
Receive) has tree-width (even path-width) bounded|By.

have been imposed to obtain decidability of emptiness. We al
believe that our results can help in the search of new autnmat
models that have a tractable emptiness problem using theipri
ples outlined by our framework.

There are several other results that follow immediatelynfour
work, that we discuss below.

Under-approximation of abstracted programs using treeelth:
The analysis of abstracted concurrent programs commumgcat
through shared-variables is in general undecidable. Treggams
can be modeled as multi-stack pushdown automata. In théelast
years, syntactic restrictions on the behaviors of thoseraata
have been considered with the aim of making the analysisaf su
programs decidable, e.g. bounded context-switches [22jded-
phases [15]), etc.

Since all the known syntactic restrictions correspond &phs
of bounded tree-width, we can consider the tree-width asw@ala
semantic restrictiotto consider for under-approximations. Given a
multi-stack automaton arid € N, the problem of deciding whether
there is a multiply nested word of tree-widkithat is accepted by
it is decidable, as shown in our framework, and hence can & us
as an under-approximation technique to explore the spaees
reached by a concurrent program. Note that this would coler a
behaviors that exploré context-switches, and more, and yet has
the same complexity.

Improvement in complexity for DQSAs: As mentioned earlier,
Theorem 4.7 improves the complexity of the emptiness prolite
awell-queuing DQSAVI with tree-architectures to one exponential
in the number of processes; the algorithm given in [17] ishipu
exponential. This upper bound complexity matches the EXFET|
lower-bound for the emptiness problem on DQSASs [13].

Decidable emptiness problem for multi-stack pushdown auntia
with boundedreverse-phase:  Our framework shows immedi-
ately the decidability of other restrictions placed on audta with
auxiliary storage. For example, fik € N and consider multi-
stack automata behaviors restrictedktoeverse-phasesvhere in
each reverse-phase, there is only one stack that is pustoetbiri
arbitrary pops of stacks are allowed). Then it easily folatvat
emptiness is decidable for this class, since the graphssjond-
ing to the runs of these automata are precisely the same s dfio
bounded-phase automata, save for the orientation of tharliand
nesting edges, and hence has the same tree-width.

A general Parikh theorem: We can prove a generRharikh theo-
rem[21] for all classes of automata that can be compiled to graph
automata of bounded tree-width. The idea is to encode thghgra
into a tree using the tree-decomposition, with a uniqueexeof

the tree for every graph node. Since a depth-first travef$aédree

can be captured by a pushdown automata, we can build a context
free grammar that generates the graph nodes in some ordeg Us
the classic Parikh theorem for context-free grammars, weshaw

that the labels of the graph nodes define a semi-linear s&t.igh

Furthermore, from Lemma 4.10, Lemma 4.9, and Theorem 2.3, we a generalization of the technique using in [15], where alsinair-

can conclude:

THEOREM4.12. The emptiness problem for polyforest DQASs is
decidable, and decidable in tim@7|°™, wheren is the number
of processes ai/.

5. Conclusionsand further results

The main contribution of this paper is to provide a uniforanfie-
work using which we can prove decidability of emptiness ofga-v
ety of automata with auxiliary storage. In this sense, camfework
is the “mother” of several automata decidability resultsved re-
cently in the literature, where complex but awkward resitits

gument was used for proving a Parikh theorem for boundedgha
multi-stack automata.

Extension to infinite behaviors: Several of our results extend to
automata over infinite behaviors. For example, consideerent
multi-stack Blichi or parity automata on infinite words. We can
show that there are graph automata on multiply-nested tefini
graphs (with appropriate Biichi and parity conditions} tten sim-
ulate these automata, and further that these graphs hawveldxabu
tree-width. This proves that the emptiness problem for thass
of automata is decidable. (See [5] for recent results in divisc-
tion.) Similar results can be obtained by extending thetafzle
distributed automata presented in this paper to infiniteda/or



There are interesting temporal logics suitable for exjpngss
properties of single-stack pushdown systems, like thelGgiRET
[4]). Natural extensions of temporal logics likeARET that allow
to reason with multi-stack pushdown automata are also Iplessi
and can be proved decidable for all multi-stack automataseho
runs can be modeled by graphs of bounded tree-width.
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Appendix

A. Tree-width of bounded-context multiply
nested words

In this section we show that anfy-context multiply nested word
graph has a tree-width upper-boundediby 1.

LEMMA A.1. Foranyk € N, the tree-width of anj-context mMNW
N is at mostk + 1.

The proof is simple, and we sketch the main idea. Let us ceeate
tree-decomposition by creating a tree where the rooklsagbtrees,
each subtree corresponding to a stack. For each stasktake the
contexts that involve the stagkremove the rest of the events, and
build the tree (and the bags) as in the canonical tree-deasitign
of a singly nested word (of width at mo8). These trees along
with the root, and the bags associated with the nodes, @ptur
nesting edges and all linear edgescept the linear edges that cross
contextgwhich are at mosk — 1 in number). Now, for every pair
of nodesu andv, wherew is the linear successor of and where.
andv are in different contexts, let us addto all nodes in the path
from u to v. Clearly, the bag-sizes increase by at most 1, and
the resulting tree-decomposition captures all edges aofivigdth
at mostk + 1.

B. On thetree-width of bounded-phase and
ordered multiply nested words

In this section we give an upper-bound of the tree-width dhbo
bounded-phase and ordered multiply nested word graphsa For
given k and n, the tree-width of anyk-phasen-NW is O(2%),
instead the tree-width of any ordereeNW is O(n - 2™).

We show such bounds by giving a general technique to upper-
bound the width of the canonical tree decomposition-td(N),
for any n-NW which is k-phase (Section B.1) or ordered (Sec-
tion B.2).

Proof strategy: Our proof strategy is the following. First, notice
that in any multiply nested word, the canonical tree decasitipm
we defined has all edges except thep-edgesi.e. edgequ, v)



wherewv is a pop-node for some stack (other linear edges as well
as all nesting edges are local in the tree decompositionfafiee,
first, a notion of arextensionof a multiply nested word, which

is the same as the multiply nested word except that every edge
(u,v) wherev is a pop-node is replaced bypathof nodes which,
intuitively, connectsu to v by taking abackwardpath along the
linear order, all the way up to the push-nadecorresponding te

and then goes on ta The crucial property of this expansion is that
all edges between andv become local in the tree. This backward
path is constructed so that it utilizes nesting edges (c&inee kind

as the stack is popping from) in order to reaci.

This extension of a multiply nested word will be used in both
the proofs of bounded phase words as well as ordered mattist
words. We show that this extension preserves the boundegskpha
property as well as the ordered-ness property.

The extension of a multiply nested wond then helps us build
a new tree-decomposition over the same tree as we need imethe t
orems; i.e. using differentset of bags but over the same trEe
deriving fromcan-td(N). We show that this tree-decomposition
certainly has width at least as the widthain-td(N), and hence
establishing that the width of this tree decomposition isriated by
the appropriate bounds for bounded-phase multiply nestadsv
and ordered multiply nested words is sufficient to prove beot
rems.

We then define a notion gfenerator treegorresponding tev-
ery nodeof a multiply nested structurd'. Intuitively, the generator
tree of a nodey consists of the copies of the noden the exten-
sion of N, and a copy(v, k') of v is the child of a copy(v, '),
if (v,h’) was created as a relabeling @f, h) in a backward path
that replaced a pop-edge. The generator tree is a techtriceflse
that has certain structural properties (Lemma B.5 and Le®Brép
that allows us to count the widths of the decompositions @hbo
bounded phase words and ordered multiply nested words.

Proof outline: Throughout the section, every time we refeNo
we mean thex-NW N = (V, Init, Final, L, {E;} c(n)). More-
over, whenever we refer to the ordering amavigiodes, we always
intend the linear ordering: .. We also consider an ordering dn
edges: ife; = (a,b) andes = (¢, d) withey, ex € L, thene; < ez
if b <z c. Furthermore?’ is the tree obtained 49", bag) = can-
td(N). If (u,v) € E; with j € [n], we say that is apush4 node,
v is apop+ node, and that: andv arematched Moreover, anL
edge(u, v) is called apop-j edge, ifv is a pops node.

For anyN, we define am-NW N’ = (V' Init’, Final', L',
{E’}jcm), called theextensiorof IV, as follows. Intuitively, N’
is obtained fromV by replacing all the pop edges with a sequence
of nodes. More precisely, consider a pppege(u, v) and suppose
that all the pop edges befofe, v) have already been replaced with
paths to create a nested wold. Then, the pop edgéu,v) is
replaced with the “back-path” oV’ starting fromw and ending
with the push node’ that matches. The back-path is built in the
following manner. Suppose we have reached a riod¢ow, if b
is a pops node — notice that is also a popr node — then the
next node in the back-pathdswherea is the pushi node matched
to b ((a,b) € E}). (In this way we get closer ta’, which must
occur beforea, and hence skipping all nodes betwdeand a.)
Otherwise, the next node in the path will be thepredecessor of
b. In other words, the back-path fromto v’ is formed by taking
linear predecessors at each state, except taking nestges dor
the stackj. Obviously all the nodes in back-paths will be renamed
so that they will be unique itV’.

Now we formally define the extension of a multiply nested word
N, Exzt(N). We do this by defining a functioazpand that takes
thefirst pop-edge in a nested word, and replaces it by a back-path.
We will first start with the nested word/, with renamed vertices.

Then, we will applyexpand to it repeatedly till all pop-edges are
replaced (and we reach a fixed-point). This fixed-point wélltbe
extension ofN. First, let us define back-paths formally.

Back-paths and e&e@ions:

Let N = (V,Init, Final, L, {E;}c[n)) be an-NW and let(u, v)
be a pop-edge (i.e.is a pop-node and is the linear predecessor of
v). Let(v',v) € E; (j € [n]). ThenBack Path g (v) is the unique
node sequence . .. v such that

e v; = u andv; = o', and

e For everyi € [t — 1], if v; is a pop4 node, therw; 1 is the
corresponding push-node, i.e. the node such thati, v;) €
E;.

Otherwisev; 11 is the linear predecessor ofi.e. the node such

that(l)i+1, 'Ui) S L)

We now define the extension of a multiple nested word, using
a systematic replacement of every pop-edgev) by a linearly
ordered sequence of nodes formed by a back-path fram the
push-node’ corresponding t@. Moreover, in the linearly ordered
sequence that replaces the pop-edge, no node will havengesti
edges incident on it. We will perform this surgery on all pegiges,
going from the left-most one to the right-most; this is impot as
back-paths for a pop-edge may utilize the extensions ofquiges
that occur to the left of it.

Let us fix an-NW N = (V,Init,Final, L, {E;};c[n)). The
extension ofV will have vertices of the fornfv, i) wherev € V
andi € N,

Let Np be the same as nested wakd except that each vertex
v € V gets renamed tduv, 1). In other words,Ng (V x
{1}, Inito, Finalo, Lo, { E } je[n)), Where the various edges My
are appropriately defined.

We now constructV; 1 from N; using the following algorithm.
Let N; = (Vi, Init;, Finali, Li, {E} }je[n)), WhereV; €V x N.
Let((u,1), (v, 1)) be the first pop-edge of its kind (i.e. with indices
1) in N; according to the linear ordering; (if no such pop-
edge exists, then we séf; 1 = N;, and reach a fixed-point).
Then NZ‘+1 = (Vi+1, |m'ti, Finali, Li+1, {EJZ }je[n]) is defined
as follows (note that the initial, final, and nesting edgesndb
change).

Let the back-path from{u,1) be BackPathy,({u,1)) =
(z1,h1) ... (z¢, he). Note that any node occurs at most once in the
back-path. Let us now relabel this path so that the nddgsi;)
get renamed to somg;, ;) so that they are not if; and do not
get repeated in the back-path:

o relabely, (¢) = ¢

e relabely; (w, (x,m)) = relabely, (w), (x,m’) wherem' is the
least positive integer such that, m) ¢ V; and does not occur
in relabely, (w).

Let relabelx (BackPathy: ({u,1))) = (z1,h1)...{(ze, h
Then,Vig1 = (Vi U {{2:, h}) | i € [t]}) and the seL; is:

Liyr = (Li\{({u, 1), (0, 1)) HU{((zi, hi), (ziga, hisa)) |0 € [E]}

U{(<u7 1>7 <Zlv hll>)7 (<Zt7 h2>7 <'U, 1>)}

Intuitively, we remove the linear edge frofu, 1) to (v, 1))
and replace it with the backward path frofa, 1), appropriately
renamed.

We apply the above algorithm to systematically replace pop-
edges by a linearly ordered set of nodes, left to right, tid w
reach a fixed-point, where there are no pop-edges of the form
((u, 1), (v, 1)). The final multiply nested word will be thexten-
sionof N.

!
t
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Notice that,N’ is the same a8/ except that pop edges 6f are
replaced by nodes that are neither the target nor the sofia®yo
nesting edges. Therefore,if is ak-phase MNW then alsdV’ is,
and if N is an orderech-NW then so isN":

LEMMA B.1. Let N’ be the extension of anNW N. Then, (1)N’
is k-phase iffN is k-phase, (2)V' is ordered iff NV is ordered.

It is easy to prove that if(a, ), (b, 7)) is an edge inV’, that is
((a, ), (b,4)) € (L' UUpepn) Er)), thena andb are connected
by an edge irl", which means that either is the parent ob or
vice-versa. By usingV’ we define a new tree decomposition/éf
whose underlying tree i5.

We define a mappag’ : V. — 2" as follows. Mapbag’
associates the minimum set of vertices to each nodéasfcording
to the following rules:

1. v € bag'(v), forallv e V.
2. if uis the parent ob in T', thenu € bag’(v), for everyv € V.

3. if (u,v) is a pop edge ofVN, and BackPathy:({u,1))
(ut, hi) ... (us, he), thenu € bag’(u,), for everyi € [t].

Notice that the first and second condition defining the map
bag (see Definition 3.6) and the first and second condition in the
definition of bag’ are the same. They only differ in the third one:
if u" is such thatw',v) € E;, then condition three of Definition
3.6 says that. is added tdbag(z) for all nodesz lying along the
unigue shortest path ifi' betweenu and«’. Similarly the third
condition of the definition above addsto thebag’ of all the T’
nodes along a path ifi from v to u” which may not be the shortest.
However, that path has to pass trough all the nodes of theéestior
path between) andu. Thus, (T, bag’) is a tree decomposition
of N, and more importantly for ubag(z) C bag’(z), for every
nodez of T'. Therefore, we can upper-bound the sizéaf(u) by
considering the size dfag’(u) for everyu € V, as stated in the
next lemma.

LEMMA B.2. Let N be ann-nested word, and” = (7, bag) =
can-td(N). Then, 7' = (T,bag’) is a tree decompositions @
where Wdth(T) < width(T"). Furthermore, for every € V,
|bag’ (v)| < dy + 1, whered,, = |{ (v,h) € V'|h € N}|.

Generator Trees: A convenient way to calculat, (in the above
lemma) is to represent the set&f nodes{(v,h) € V'|h € N}

as atree, for each € V. Let (v, h), with h > 1, be a node ofV’,
and let(u, 1) be the greatest push node &f that occurs before
(v, h). Intuitively, (v, k) is one of the node of the path between that
have replaced the pop edfe v) of N. By definition of N’, (v, h)

is generated because there is another fodg’) with A’ < hin
BackPath({u,1)). We call (v, h’) the generatorof (v, h). Note
that for every nodev, h) with h > 1 there is a unique generator of
it (though the vice-versa does not hold).

DEFINITION B.3 (GENERATORTREES). Let N’ be the extension
of ann-nested wordV, and letV be the set of nodes df. For
everyv € V, we define a tre&, as follows:

e (v,1) is the root of7,.
e if (v,h) is the generator ofv, k) then (v, h) is a child of
(v, h').

For everyv € V, the tre€T,, is called thegenerator treef v.

Observe that, for a givelV nodew, all the nodegv, h) in N’
are also nodes df},, thus the valuel,, corresponds to the number
of nodes off’,,

We can also associatestackto every node of generator tree,
except the root. If a nodév, 1) is the first pop node aftefu, h)

(whereh > 1), and ifv is a pop node of stack then we say that
is thestackof (v, h). Intuitively, the stack associated with, h) is
the stack whose popping led to a back-path that cre@ateld).

In the following we give some properties of generator trées t
will be instantiate later for the case in whicti is bounded-phase
and ordered. Intuitively, fix a stack then, any node in a multiply
nested word can be touched only once on a backward path that is
caused by a pop of stagkexcept that when the node is a push onto
stacky, in which case it may be touched twice. This is true because
the backward path caused by a pop to statlikes nesting edges
of stackj as much as possible, hence skipping the nodes between
the nesting edges it takes.

The first lemma states thatifis a push onto stack the root of
the generator tree af, namely(v, 1), has at most + 1 children—
at most two of these children may be of stgglkand all the other
children must be of distinct stacks.

LEMMA B.4. If v € V is a pushj node then the rootv, 1) of T,
has at most two children of stagk Moreover, for everyj’ # 7,
(v, 1) has at most one child of stagk

Proof By contradiction suppose théb, 1) has at least three chil-
dren of stackj. Since a back-path goes always backward it contains
distinct nodes. Therefore there must exist three pepliges inV,
sayer = (u1,v1),e2 = (u2,v2),es = (us,vs), such thatv, 1)

is contained irBack Pathx ({us, 1)) for all ¢ € [3]. Suppose that
e1, ez andes, in the order, are the first three pop edgedvofiaving

the above property. It is easy to see tlfat, 1) is the matching
pop of (v, 1). Now, BackPathy({u2,1)) to reachegv, 1) must
pass throughv, 1) (a back-path always goes backward and since
the E; relation is nested a back-path can never jump in between
(v,1) and (v1,1)). Thus, whenBackPathy ({uz,1)) reaches
(v1, 1), it goes directly to(v, 1). This entails that the matching
push of(v2, 1) occurs beforgwv, 1). Now, Back Pathy: ({us, 1))
must pass througkwz, 1) to reach(v, 1). But, (v2, 1) is a pop;
node and thus the back-path jumps directly to the matchis pti

(v2, 1), which comes beforév, 1). Since a back-path goes always
backward,(v, 1) can never be reached Buck Pathy ({us, 1)).
This is a contradiction.

In similar way we prove that, ifi’ # j then (v, 1) has at
most one child of stacl’. By contradiction, letey = (u1,v1)
andes = (u2,v2) be the first two pop¥ edges ofN such that
BackPathy ((u1,1)) and BackPathy ({u2, 1)) contain(v, 1).

If BackPathy:({ui,1)) passes througHv,1) means that the
pushs node matched by th@:, 1) must occur beforév, 1). Now
BackPathy ({u2, 1)) must pass througtv:, 1) and hence jumps
directly to the matched pushnode matched wituv, 1). Since
such a node comes befofe, 1) and back-paths never go forward
we have thatv, 1) cannot be reached Back Pathy: ((uz2, 1)).

|

The second property we need is that for any nodany non-
root node in the generator tree @has children whose stacks are
distinct from each other. Moreover,ifis not a push, then the root
also has children whose stacks are all distinct from eacéroth

LEMMA B.5. Let(z,h) € N'. Then, ifh > 1 or z is not a push
node ofN, then for everyj € [n], the node(z, h) has at most one
child of stackj in T',.

Proof If h > 1 then (z, h) must be a node of a path that has
replaced a pop edge, séy, v) of N. Suppose that; = (u1,v1)
andex = (u2,v2) are the first two pop- edges (in the order)
of N such thaBackPathx ({u1,1)) andBackPathy: ({uz2, 1))
contain(z, h). Thus,(z, h) <p/ (u1,1) <pr (v1,1) <p/ {u2,1).
SinceBack Pathy ((u1, 1)) passes througfe, h) implies that the
pushs node matched by thév:, 1) occurs before(z, h). Now



BackPathy ((uz2, 1)) has to pass througfv:, 1), which is a pop-
j node, and hence jumps directly to the pyshede matched
to (vi,1). Such a node appears befofe h) and since back-
paths only go backward we have that, 1) is never reached by
BackPathx ({uz2, 1)) which contradicts the hypotheses.

The other case in whiclk, 1) is not a push node is similar to
the case above and we do not give it here.

m]

B.1 Tree-width of bounded-phase multiply nested word
graphs

In this section we show that the tree-width of drphase mNWV

is O(2%).

From Lemma B.1, the extensioN’ of N is also ak-phasen-

NW. Thus, we definphase,, to be the map that associates to every
node(v, h) of N’ its phase number.

The next lemma, which is a refinement of Lemma B.4, says that
for any push-node, the phase numbers of the children of the root
of the generator tree af are not less than that of the root, and
further, all phase numbers of the children of the root arérdis
from each other, save for one child. This bounds the number of
children of the root td: — j + 2, if the root has phasg

LEmMMA B.6. For every push node € V, the phase of the children
of the root(v, 1) of T}, is greater or equal to the phase 6#, 1).
Moreover, except for one child ¢, 1), all the other children have
different phase number.

Proof If (v,h) is a child of (v, 1), then (v, 1) <z, (v,h), and
hencephase, ((v,1)) < phase, ({(v,h)). Now, if the stack
number of (v, h) is different from the stack number dfv, 1)
thenphase, ((v,1)) < phase, ((v, h)). Moreover, if(v, h) and
(v, h") are two children ofv, 1) with different stack number then
phase, ({(v, h)) # phasey, ({v, h')). Thus, from Lemma B.4 we
can conclude the proof. O

By using a similar argument of the previous proof, and Lemnta B
we can show the following lemma, which says that for anyhe
children of a non-root nodév, h) in the generator tree far have
distinct phases and have phases greater than the phdsehgf
Moreover, this is also true for the ro¢t, 1) providedwv is not a
push-node.

LEMMA B.7. Let {(v,h) € N'. Then, ifh > 1 or v is not a
push node ofN, then for every child(v, ') of (v,h) in T,,
phase, ((v, h)) < phasey, ({v,h')). Moreover, for every phase
numberp > phase,, ({v, 1)), there is at most one chiltb, 1"} of
(v, h) such that phasg, ((v, h')) = p.

By using the previous lemma we can upper-bound the number
of nodes of the sub-tree @f, rooted in any internal node af,,
for every nodev of N. Let f : [k] — N defined as:f(i) =
14+ Zf:iﬂ f(y) for everyi € [k — 1], and f(k) = 1. By a
simple calculation it is easy to prove thati) = 2. Thus, we
can upper-bound the number of nodes of any subtrég, aboted
in an internal nodév, h) with f(phasey, ({v, h))).

Now by instantiating Lemma B.6, we have that

k
do <1+ f(1)+ > f@i) =25 4257,
i=1

and by Lemma B.2 follows that the width of the tree decompmsit
can-td(N) of N is at mos® + 281 4 1.

THEOREMB.8. The tree-width of anyk-phase mMNW is at most
ok p okt 4,

B.2 Tree-width of ordered multiply nested word graph

In this section we show that the tree-width of any ordetatkested
words N isO(n-2"~1). As in the previous section, we prove such
a result by upper-bounding the number of nodes of eachTisee
for every nodev of N.

In the following we instantiate Lemma B.5 for ordered mduitip
nested words. We show that for any internal nddeh) of the
generator tree of a node the stacks of the children ofare strictly
greater than that af. The reason why the stack of a child(ef, )
cannot be lower than that ofis because of the ordered-ness of the
stack accesses— if the back-path of a pop of sjadéads through
a pop of stackj, then we must have thgt< j’ (the reason why it
cannotj # ;' is also argued below). Hence, the depth of the tree
gets bounded by the number of stacksand each non-root node
has at most, — 1 children.

LEMMA B.9. If (v, h) € N’ is a stackj node withk > 0, then (1)
the stackj’ for any child of the nodév, h) is such tha’ > j, and
(2) the stacks for the children of the no@e h) are all distinct.

Proof Case (2) follows from Lemma B.4. Case (1) is proved by
contradiction and we distinguish two cases, one wffert j and
the other one for;’ = j. Let (v, h’) be a child of(v, h), and
suppose thatv, k') is a stackj’ node. Sinceh, k' > 1, (v, h)
and (v, k') are both lying on a two different paths that replace two
different pop edges alV, saye: = (ui,v1) andez = (u2,v2).
Thus, we have thatv, h) <p/ (v1,1) <p: {us2,1) <p (v, h’).
The fact thaBack Pathy ({u2, 1)) has to visit(v, h) to reach the
matching push® node of (v2, 1) means that it occurs before the
popy (v, 1).

Now if j* < 7, it means that there is pgpnode that comes
after a pushf’ node that has not matched yet. Since< j, this
contradicts the ordered-ness property\dfand henceV. Instead,
if j/ = jthenBackPathy: ({uz2,1)) will never visit (v, h) because
between(v, h) and(u2, 1) there is a pog node whose matching
pop occurs beforév, h). |

For everyi € [n], let us define the mag : [n] — N as
fG) =14+, f(G)ifi € [n—1]andf(n) = 1. Notice
that f(i) = 2"~". From Lemma B.9, It is easy see thii) upper-
bounds the number of nodes of afly subtree rooted in one of its
internal node which is a stacgknode.

Thus, from Lemma B.4 we can conclude that the following
upper-bounds the number of nodes of any ffee

T+n+)f1)=1+@n+1)-2"""

Now from Lemma B.2 we can conclude with the main theorem
of the section.

THEOREMB.10. The tree-width of any ordered-NW is at most
n-2" L



