
The Tree Width of Auxiliary Storage

P. Madhusudan
University of Illinois at Urbana-Champaign, USA

madhu@illinois.edu

Gennaro Parlato
L IAFA , CNRS and University of Paris Diderot, France.

gennaro@liafa.jussieu.fr

Abstract
We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-stategraph automata(without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as wellas proving
new decidability results.

Categories and Subject DescriptorsF.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction
Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem.Clas-
sic models like pushdown automata utilizing astackhave a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated formodel-checkingsystems. Software models can be
captured using automata with auxiliary storage, as stacks can
model thecontrol recursionin programs while queues modelFIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models usingpredicate abstraction[7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

However, the various identified decidable restrictions on these
automata are, for the most part,awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restrictedto
the first non-empty stack is decidable! [8]. Yet, relaxing these
definitions to more natural ones seems to either destroy decidability
or their power. It is hence natural to ask: why do these automata
have decidable emptiness problems? Is there a common underlying
principle that explains their decidability?

We propose, in this paper, a general criterion that uniformly
explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated bygraph
automataworking on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability ofsatisfiabilityof monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graphau-
tomata onMSO-definablegraphs of bounded tree-width are decid-
able. Graph automata [24] are finite-state automata (without auxil-
iary storage) that accept or reject graphs usingtilings of the graph
using states, where the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptiness ofgraph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributed automata
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized asgraph automataworking on single
or multiple directed paths augmented with special edges to capture
the mechanism of the storage. Intuitively, a symbol that gets stored
in a stack/queue and later gets retrieved can be simulated bya
graph automaton working on a graph where there is a special edge
between the point where the symbol gets stored to the point where
it gets retrieved. A graph automaton can retrieve the symbolat the
retrieval point by using an appropriate tiling of this special edge.

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that itallows
us to examine thecomplexityof storage using thestructure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph automata
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-switching:
This is the class of multi-stack automata where each computation of
the automaton can be divided intok stages, where in each stage the
automaton touches only one stack (proved decidable first in [22]).
We show that they can be simulated by graph automata on graphs
of tree-widthO(k).

- Multi-stack pushdown automata with bounded phases:These
are automata that generalize the bounded-context-switching ones:
the computations must be dividable intok phases, for a fixedk,
where in each phase the automaton can push onto any stack, but
can pop only from one stack (proved decidable recently in [15]).
We show that graph automata on graphs of tree-widthO(2k) (not
O(k) as in the above case) can simulate them.

- Ordered multi-stack pushdown automata: The restriction here
is that there is a finite number of stacks that are ordered, andat any
time, the automaton can push onto any stack, but pop only fromthe
first non-empty stack. Note that the computation is not divided into
phases, as in the above two restrictions. We show that automata on
graphs of tree-widthO(n · 2n) (wheren is the number of stacks)
can simulate them.

- Distributed queue automata on polyforest architectures:Dis-
tributed queue automata is a model where finite-state processes at
n sites work by communicating to each other using FIFO channels,
modeled as queues. It was shown recently that when the architec-
ture is a polyforest (i.e. the underlyingundirectednetwork graph of
the architecture is a forest), the emptiness problem is decidable (and
for other architectures, it is undecidable) [17]. We prove that graph
automata working on graphs of tree-width (in fact, path-width) n,
wheren is the number of processes, can simulate distributed queue
automata on polyforest architectures.

- Distributed queue automata with stacks on forest architectures:
When we endow each process in a distributed queue automaton
with a local stack, it turns out that if the automaton iswell-queuing
and the architecture is a forest, the emptiness problem is decid-
able [17]. The well-queuing condition demands that a process may
dequeue from a queue only when its local stack is empty. Further-
more, it is known that simply dropping the well-queuing condition
or dropping the condition that the architecture be a forest,makes
emptiness undecidable [17]. We prove that graph automata that
work on graphs that simulate both the local stacks and the queues
can capture these automata, and for well-queuing automata over
forest architectures, the graphs are of tree-widthO(n), wheren is
the number of processes.

Thegraphson which the graph automata need to work to realize
the above automata are also, surprisingly, uniform. For thefirst
three classes of multi-stack automata, the graphs are simply a single
word endowed with a set ofnesting edges relations, one relation
for each stack. For distributed queue automata, the graphs are
composed ofn distinct linear structures, one for each process, with
queue edges connecting enqueing vertices to dequeuing vertices,
and, if the processes have stacks, have nesting edges at eachprocess
to capture the local stack.

The tree-decompositions for these graphs as well as the proofs
that the decompositions give bounded tree-width for the restrictions
are involved, and are tailored to exploit the restriction placed on the
automata.

The idea of interpreting stacks as nesting edges was motivated
by the work relatingvisibly pushdown automatawith nested word
automata[1–3], where nesting edges capture a visible stack. Our
work is also motivated by the work on bounded-phase multi-
stack automata [15], in which we were involved, where tree-
interpretations were used to show decidability of emptiness. Sur-
veying the other known decidable automata restrictions ledus to
this uniform framework for proving decidability. The automata
variants we study were often first proved to be decidable by dif-
ferent means— bounded context-switching multi-stack automata
were shown to be decidable using regularity oftuplesof reach-
able configurations [22], ordered multi-stack automata were shown
decidable using manipulations of associated grammars, followed

by a Parikh theorem [8], and distributed queue automata with
stacks were shown decidable by reductions to bounded-phaseau-
tomata [17].

Our theorems also lead to new consequences. First, automata
with multi-stacks are decidable when their graphs are restricted to
graphs of bounded tree-width, and in fact even boundedclique-
width graphs [10, 11]; this result generalizes all the above multi-
stack sequential automata. Second, several of our results extend to
automata over infinite behaviors— for example, it follows easily
that ordered multi-stackBüchior parity automata on infinite words
have a decidable emptiness problem. Third, several variants of the
restrictions can be proved immediately decidable— for example,
suppose we restrict multi-stack automata tok phases, where in
each phase, there is only one stack that ispushedinto (but arbitrary
pops of stacks are allowed), then it easily follows that emptiness
is decidable, as thegraphs corresponding to these automata are
precisely the same as those of bounded phase automata, save for
the orientation of the linear and nesting edges, and hence has the
same tree-width. Section 5 gives a summary of consequences of
our general result.

Due to the variety of automata models we consider we do not
give all definitions and proofs in the main text. The proofs for the
boundedness of tree-width for various restrictions of multi-stack
pushdown automata are given in the Appendix, while the proofs
regarding distributed queue automata can be found in the technical
report [20].

2. Logics, graphs, graph automata, tree-width,
and emptiness

We start by defining, in this section, graph automata that work on
edge-labeled finite directed graphs, and show that the emptiness
problem for these automata is decidable over any MSO-definable
class of graphs of bounded tree-width. This result is derived from
classical results on interpretations of graphs on trees, and we sketch
the derivations here.

Monadic second-order logic on graphs:Fix a finite alphabet
(set)Σ. A Σ-labeled graph is a structure(V, {Ea}a∈Σ), whereV
is a finite non-empty set of vertices, and eachEa ⊆ V × V is a set
of a-labeled directed edges. We will assume, throughout this paper,
that for any vertexv, there is at most one incominga-labeled edge
and at most one outgoinga-labeled edge.

We view graphs as logical structures, withV as the universe,
and each set of edgesEa as a binary relation on vertices. Monadic
second-order logic (MSO) is now the standard logic on these struc-
tures. We fix a countable set of first-order variables (we willdenote
these asx, y, etc.) and another countable set of set variables (de-
noted asX, Y, etc.). MSO is given by the following syntax:

ϕ ::= x=y | Ea(x, y) | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

wherea ∈ Σ. The semantics is the standard one, with first-order
and set variables interpreted as vertices and sets of vertices.1

We say a class ofΣ-labeled graphsC is MSO-definable, if there
is an MSO formulaϕ such thatC is the precise class ofΣ-labeled
graphs that satisfyϕ.

Graph automata: Fix a classof Σ-labeled graphsC. A graph
automaton (GA) onC is a tuple(Q, {Ta}a∈Σ, type), whereQ is
a finite set of states, eachTa ⊆ Q × Q is a tiling relation, and
type: Q → 2Σ × 2Σ is the type-relation.

1 Note: In the literature, a variant of MSO (called MSO2) has been con-
sidered where both vertices and edges are in a two-sorted universe and are
related by an incidence relation; that version is stronger than ours, but we
shall not need it for our exposition.

Intuitively, a graph automaton will accept a graph if there is a
way to tile (label) the vertices by states so that the tiling relation
is satisfied by vertices adjacent to each other, and further satisfies
the type-relation. The type-relation associates each state to a pair
(In,Out) of sets of labels, and in order for a state to decorate a
vertex, we require its type to match the edges incident on it –the
labels of incoming (and outgoing) edges must be preciselyIn (and
Out).

Formally, we say that a graph automaton(Q, {Ta}a∈Σ, type)
acceptsa graph(V, {Ea}a∈Σ) if there is a mapρ : V → Q that
satisfies the following conditions:

• For every(u, v) ∈ Ea, with a ∈ Σ, (ρ(u), ρ(v)) ∈ Ta.

• For everyu, type(ρ(u)) = (In,Out), where In = {a |
∃v, (v, u) ∈ Ea} andOut= {a | ∃v, (u, v) ∈ Ea}.

The language of a graph automatonGA over a class of graphs
C, denotedL(GA), is the set of graphs inC that it accepts.

Note that the notion of an automaton “running” over the graph
has been replaced by tiling constraints. Also, we have done away
with initial or final states; we will capture these when needed using
specially labeled edges in the sequel.

Our notion of graph automata is motivated by definitions of au-
tomata on graphs through tilings in the literature [24]. Graph au-
tomata can in fact be defined more powerfully (see [24]); however,
for our purposes, the above definition will suffice. Most of our re-
sults will carry over to generalizations of the above definition.

Tree-width: We recall the definition of tree-width for graphs
(see [12]). The tree-width of a graph intuitively captures how close
a graph is to a tree.

Formally, a tree-decompositionof a graph(V, E) is a pair
(T, bag), whereT = (N,→) is a tree, andbag : N → 2V is
a function that satisfies:

• For everyv ∈ V , there is a noden ∈ N such thatv ∈ bag(n),

• For every edge(u, v) ∈ E, there is a noden ∈ N such that
u, v ∈ bag(n), and

• If u ∈ bag(n) andu ∈ bag(n′), for nodesn, n′ ∈ N , then
for everyn′′ that lies on the unique path connectingn andn′,
u ∈ bag(n′′).

Thewidth of a tree decomposition is the size of the largest bag in
it, minus one; i.e.maxn∈N{|bag(n)|} − 1.

The tree-widthof a graph is thesmallestof the widths of all of
its tree decompositions.

It is easy to see that the tree-width of a tree is1 while the tree-
width of ak-clique isk − 1.

Emptiness of graph automata on graphs of bounded tree-width:
We now show that emptiness of graph automata is decidable, when
evaluated over graphs that are definable in MSO and are also of
bounded tree-width.

First, we recall a classical result that thesatisfiabilityproblem
for MSO is decidable on the class ofall graphs of tree-widthk (for
a fixedk) [23]. Courcelle’s classic theorem shows that checking
if a particular graphG of tree-widthk (for a fixedk) satisfies a
fixed MSO formula is decidable in linear time. This result works
by defining the graph in a labelled tree by MSO formulas, and by
translating the MSO formula about graphs into one about trees, and
using a tree-automaton for the MSO formula to check if the corre-
sponding tree is accepted. It turns out the same proof can be used
to prove thesatisfiability theorem that we refer to above as well.
Intuitively, we can interpretall graphs of tree-widthk by using a
uniform set of labeled binary trees whose labels only dependonk,
translate the MSO formula on graphs to these labeled trees, and use
the fact that satisfiability of MSO on trees is decidable.

THEOREM2.1 (Seese [23]).The problem of checking, givenk ∈
N and ϕ ∈ MSO over Σ-labeled graphs, whether there is a
Σ-labeled graphG of tree-width at mostk that satisfiesϕ, is
decidable.

Note that the above certainly does not imply that satisfiability
of MSO is decidable onanyclass of graphs of bounded tree-width
(take a non-recursive class of linear-orders/words for a counter-
example). However, an immediate corollary is that satisfiability of
MSO is also decidable on any MSO-definable class of graphsC of
bounded tree-width (ifϕC defines the class of graphs, andϕ is the
MSO formula, we can instantiate the above theorem forϕC ∧ ϕ).

COROLLARY 2.2. Let C be a class of MSO definableΣ-labeled
graphs. The problem of checking, givenk ∈ N and an MSO-
formulaϕ, whether there is a graphG ∈ C of tree-width at mostk
that satisfiesϕ, is decidable.

We can now prove that the emptiness problem for graph au-
tomata is decidable when restricted to bounded tree-width graphs
over an MSO-definable class of graphs. Intuitively, we can write
an MSO formulaϕ that checks whether there is a proper tiling of
a graph by the graph automaton that respects the tiling and typing
relations. This formula will essentially use an existential quantifi-
cation of a set of setsXa (for eacha ∈ Σ) to “guess” a tiling, and
check whether the tiling and typing is proper, using universal first-
order quantification on vertices. We can then instantiate the above
corollary with this formula to show decidability of graph automata
emptiness. In fact, using a direct automaton construction on trees,
we can show the complexity of graph-automata emptiness as well
(see [20] for a gist of proof): to obtain our result:

THEOREM2.3. Let C be a class of MSO definableΣ-labeled
graphs. The problem of checking, givenk ∈ N and a graph au-
tomatonGA, whether there is someG ∈ C of tree-width at most
k that is accepted byGA, is decidable, and decidable in time
|GA|O(k).

The above theorem will be the key result we will use to uni-
formly prove decidability results in this paper. For various restric-
tions of sequential and distributed automata with auxiliary stor-
age, we will translate them to graph automata over MSO-definable
graphs, show that the relevant graphs are of bounded tree-width,
and use the above theorem to prove decidability of emptiness.

3. Multi-stack Pushdown Automata
In this section, we will show the decidability of emptiness of var-
ious restricted multi-stack pushdown automata (bounded context-
switches, bounded phase, and ordered), by showing that theycan
be simulated by graph automata working overmultiply-nested word
graphsthat are of bounded tree-width.

For anyn ∈ N, let [n] denote the set{1, . . . n}.
A multi-stack pushdown automaton is an automaton with finite

control and equipped with a finite number of stacks. A transition
of this automaton consists in pushing or popping a symbol from a
specified stack and changing its control or simply an internal move
that affects only the control state without alteration of the stacks’
contents.

DEFINITION 3.1 (MULTI -STACK PUSHDOWN AUTOMATA). For
a fixedn ∈ N, ann-stackpushdown automaton(n-PDA) is a tuple
M = (Q, q0,Γ, δ,QF), whereQ is a finite set of states,q0 ∈ Q is
the initial state,Γ is a finite stack alphabet,QF ⊆ Q is the set of
final states, andδ = 〈δpush, δpop, δint〉 where

• δpush ⊆ (Q×Q× Γ× [n]) is the set of push moves,
• δpop ⊆ (Q× Γ×Q× [n]) is the set of pop moves, and

• δint ⊆ (Q×Q) is the set of internal moves.

A multi-stack pushdown automaton (mPDA) is ann-stack push-
down automaton, for somen ∈ N.

A configurationof ann-PDAM = (Q, q0,Γ, δ,QF) is a tuple
〈q, s1, . . . , sn〉 with q ∈ Q andsj ∈ Γ∗ is the content of stack
j, for everyj ∈ [n]. Let C = 〈q, s1, . . . , sn〉 be a configuration
of M . Then,C is the initial configuration ifq = q0 andsj = ǫ,
for everyj ∈ [n]. Moreover,C is afinal configuration ifq ∈ QF

and sj = ǫ, for every j ∈ [n]. Given two configurationsC =
〈q, s1, . . . , sn〉 and C′ = 〈q′, s′1, . . . , s

′

n〉, there is a transition
from C to C′ on the actionact from the behavior setBn =

{int, push1, . . . pushn, pop1, . . . , popn}, denotedC
act
−−→ C′, if

one of the following holds:

[Push γ onto stack j] act = pushj , and there existsγ such that
(q, q′, γ, j) ∈ δpush, s′j = γ.sj , and s′h = sh for every
h ∈ [n]− j.

[Pop γ from stack j] act = popj , and there existsγ such that
(q, γ, q′, j) ∈ δpop, sj = γ.s′j , and s′h = sh for every
h ∈ [n]− j.

[Internal] act = int, and(q, q′) ∈ δint, ands′h = sh for each
h ∈ [n].

A run of M is a sequence of transitions ofM , ρ = C1
act1−−→

C2 . . .
actm−1

−−−−−→ Cm, whereC1 is initial andCm is final.
For each such runρ of M , we associate the behavior word

beh(ρ) = act1.act2 . . . actm, and define the set of behaviors
of M as the languageBeh(M) = { beh(ρ) | ρ is a run ofM }.
Note that the behaviors capture the way the automaton handles the
stacks, noting the push and pop operations and the stack on which
they are performed.

The emptinessproblem for an mPDAM is the problem of
checking ifBeh(M) is empty (or equivalently, whether there is a
run of the mPDA).

Multiply-nested words: In the following we show that mPDAs
can be naturally encoded as graph automata on a class of (edge-
labelled) graphs that we callmultiply nested words, and the empti-
ness problem on the former reduces to the emptiness problem on
the latter. We start by defining multiply nested word graphs.

DEFINITION 3.2 (MULTIPLY NESTEDWORDS). For a given in-
tegern, ann-nested word(n-NW) is a tupleN = (V, Init, F inal,
L, {Ej}j∈[n]), where

• V is a finite set of vertices;
• L ⊆ V × V is a non-reflexive (successor) edge relation such

thatL∗ is a linear ordering<L on the vertices ofV ;
• If x is the minimum element w.r.t.L, then Init = {(x, x)}; if x

is the maximal element w.r.t.L, then Final = {(x, x)};
• Ej ⊆ V × V is a nesting relation, for everyj ∈ [n]. A nesting

relationEj is a relation that satisfies the following properties:
for all u, u′, v, v′ ∈ V andj, j′ ∈ [n],

if Ej(u, v) thenu <L v holds;
if Ej(u, v) andEj(u, v

′) thenv = v′; and if Ej(u, v) and
Ej(u

′, v) thenu = u′;
if Ej(u, v) andEj(u

′, v′) andu <L u′ then eitherv <L u′

or v′ <L v holds.
if j 6= j′, Ej(u, v), andEj′(u

′, v′), thenu, v, u′, v′ are all
different.

A multiply nested word (mNW) is an n-nested word, for some
n ∈ N.

1

Init

3 4 5

6

7 8 14

Final

9 11

E2

12 1310

E1

2

Figure 1. A 2 nested word graph.

Figure 1 illustrates a 2-nested word.
Intuitively, mNWs are meant to capture the behaviors of runsof

mPDAs, where the stacks are compiled down to edges in the graph:
the relationL relates consecutive actions in the run, while the
nesting edge relationEj captures the matching push-pop relation
of stackj, for every stack indexj ∈ [n]. The self-looping edges
Init andFinal capture the initial and final vertex with respect toL.

The properties of multiply nested words (Definition 3) can be
easily stated in MSO:

PROPOSITION3.3. For any integern, the class ofn-NWs is MSO
definable.

We can define a 1-to-1 functionnw from the set of behav-
iors of then-PDA M to the class ofn-NWs. Given anM run
ρ with beh(ρ) = a1a2 . . . am, the corresponding nested word
graphn-NW N is as follows. The set of vertices ofN is V =
{v1, v2, . . . , vm, vm+1}, the relationL is such thatL(vi, vj) holds
iff j = i + 1. The edge relationEj is defined as follows. On the
word beh(ρ) there are intrinsic relations that match corresponding
pushes and pops of the same stack, and since we assumed that all
the stacks at the end of a run are empty, we have that inbeh(ρ) ev-
ery symbolpushj is matched with a future symbolpopj and vice-
versa. Thus the edge relationEj is defined as:Ej(vi, vh) holds if
and only ifai = pushj , ah = popj and the pair(i, h) is a match-
ing pair of push and pop actions inbeh(ρ). It is easy to see that this
is a 1-to-1 correspondence.

Given anyn-PDA M , we can easily translate it to a graph
automaton that accepts the mNWs corresponding to the behaviors
of M . Intuitively, whenever then-PDA pushes onto thei’th stack,
the graph automaton decorates the corresponding node in thenested
word graph with the symbol pushed, and when this symbol gets
popped later, the graph automaton, using tiling conditionson the
nested edge, will recover the symbol. Hence, by using tilings on
the nested edges, the graph automaton can workwithout a stack,
and capture the semantics of then-PDA precisely. We hence have:

LEMMA 3.4. For everyn-PDAM , there is a (constructible) graph
automaton GA onn-nested words such thatnw(Beh(M)) =
L(GA). HenceBeh(M) 6= ∅ iff L(GA) 6= ∅.

Note that1-PDAs are basic pushdown automata, whose empti-
ness problem is decidable. The emptiness problem forn-PDA is
well-known to be undecidable whenn > 1 [14]. Thus, Lemma 3.4
can be used to show that the class ofn-NWs, with n > 1, have
unbounded tree-width.

LEMMA 3.5. The class of1-NWs has tree-width2.
For any integern > 1, the class ofn-NWs has unbounded tree-
width.

Tree-decompositions of multiply nested words.In order to show
restricted versions of mPDAs have a decidable emptiness problem,
we will first define canonical tree-decompositionsfor multiply
nested words, which we will use to prove bounds on tree-widthand

1{1}

2{1, 2, 13}

3{2, 3, 8, 11, 12, 13}

4{3, 4, 6, 7, 8, 11, 12}

5{4, 5, 6, 7, 8, 11, 12}

6{5, 6, 7, 8}

8{6, 7, 8}

7{4, 6, 7}

9 {3, 8, 9, 11, 12, 13}

10 {9, 10, 11, 12, 13}

11 {10, 11, 12, 13}

{5, 11, 12}

12

14 {2, 13, 14}

13 {11, 12, 13}

Figure 2. Tree decomposition of the graph illustrated in Figure 1.

hence prove emptiness for both bounded-phase automata as well
as ordered automata (it turns out that bounded context-switching
automata have a simpler tree decomposition).

DEFINITION 3.6 (CANONICAL TREE DECOMP. OFn-NWS).
For anyn-NWN = (V, Init,Final, L, {Ej}j∈[n]), the canonical
tree-decomposition ofN , can-td(N) = (T, bag) is decomposition
T = (V, bag) defined as:

• The set of nodes of the treeT are the verticesV of theN .
• If Ej(u, v) holds for anyj ∈ [n], thenv is the right-child ofu

in T .
• if L(u, v) holds and for allj ∈ [n] andz ∈ V , Ej(z, v) does

not hold, thenv is the left-child ofu.

The function bag associates the minimum set of vertices to each
node ofT that satisfies the following:

• v ∈ bag(v), for all v ∈ V .
• if u is the parent ofv in T , thenu ∈ bag(v), for everyu, v ∈ V .
• for u, v ∈ V , if L(u, v) holds thenu ∈ bag(z), for all vertices
z such thatz is on the unique path fromu to v in T .

Figure 2 illustrates a tree-decomposition for the 2-nestedgraph
in Figure 1.

In the above definition of the tree-decomposition of ann-NW
N , the vertices ofT are the same as the vertices ofN . The root
of T is the minimum vertex inN according to the linear ordering
induced byL. The nesting-edge-successor of any node, if any, is
always its right-child. Otherwise, a vertexv is the left-child of its
linear predecessor. Notice that, since for each nodev there exists
at most one pair(u, j) such thatEj(u, v) holds, and at most one
vertexu such thatL(u, v) holds, the treeT is uniquely determined
byN .

Note that the treeT captures all the nesting edges in: in fact
if Ej(u, v) holds thenv must be the right-child ofu, and hence
u, v ∈ bag(v). The successor relationL is not always local as the
nesting-edge relation is: for example, ifL(u, v) andEj(z, v) hold
for somej andz, thenv is the right-child ofz and not the left-child
of u. However, the third property in the definition guaranties that
all linear edges are captured by at least one bag, and also validates
the requirement that nodes whose bags contain the same vertex in a
tree decomposition be connected. Hence, it is clear thatcan-td(N)
defines a unique tree decomposition for everyn-NWs (though its
width may not be bounded).

LEMMA 3.7. For any multiply nested word graphN , can-td(N)
is a tree-decomposition ofN .

3.1 Bounded context-switch emptiness

We show now that the multiply-nested words that correspond to
bounded context-switching runs of a multi-stack automatonare
of bounded tree-width, and hence admit a decidable emptiness
problem.

For anyk ∈ N, we say that a behavior wordw ∈ B∗

n is a
k-context word, if it belongs to (

⋃
j∈[n]{int, pushj , popj}

∗)k.
In other words,w can be factorized as at mostk sub-words
w1w2 . . . wh (with h ≤ k) such that eachwi includes only actions
of a single stack and internal actions. Let us definek-CS-Beh(M)
to be the set of allk-context behavior words inBeh(M).

The emptiness problem for mPDAs restricted tok contextsis the
problem of checking, given an mPDAM , whether the languagek-
CS-Beh(M) is empty.

As in the general case, the emptiness problem for mPDSs
restricted tok contexts can be reduced to the emptiness prob-
lem for graph automata, where now the class of graphs to con-
sider is that of mNWs restricted tok-context behaviors. For
any k, n ∈ N, a k-context-switchn-nested wordis a tuple
N = (V, Init, Final, L, {Ej}j∈[n]) whereN is a n-NW and
nw−1(N) is ak-context behavior word.

The k-context restriction on multiply nested word graphs is
easily expressible as an MSO formulaφ; this formula will express
that the graph can be factored intok segments and only nesting
edges of one stack are incident on vertices of a single segment.
Along with the MSO formulaϕ defining the class of mNWs,
ϕ ∧ φ defines the class of allk-context mNWs. Moreover, a tree-
decomposition where each stack is encoded as a subtree underthe
root (in the usual way, as in the canonical tree decomposition of
1-nested words), has width at mostk + 1 (see Appendix A).

LEMMA 3.8. For any k, n ∈ N, the class ofk-contextn-NW
graphs is MSO definable. Furthermore, for anyk-contextn-NW,
there exists a tree-decomposition of width at mostk + 1.

From the fact that the emptiness problem for mPDAs restricted
to k-contexts is effectively reducible to the emptiness problem for
graph automata overk-context mNWs, and using Lemma 3.8, we
can instantiate Theorem 2.3 to show the following:

THEOREM3.9. For any k ∈ N, the emptiness problem for mP-
DAs restricted tok contexts is decidable, and decidable in time
O(|M |O(k)). For a fixedk, the emptiness problem is inPTIME.

The original proof of decidability of reachability of multi-stack
automata under a bounded number of context-switches was proved
using tuples of automata to store theconfigurations of stacks[22].
The above proof is very different— it shows that the graph that
captures the storage, i.e. multiple stacks with bounded context-
switches, has bounded tree-width, and hence admits a decidable
emptiness problem.

3.2 Bounded phase emptiness

Now we show that the multiply-nested words that correspond to
bounded phase runs of a multi-stack automaton are of bounded
tree-width (in fact, the canonical tree-decomposition gives bounded
tree-width), and hence entails decidable emptiness.

A word w ∈ B∗

n is a phaseif it belongs to one of the sets
phasej = ({int, popj} ∪

⋃
i∈[n]{pushi})

∗, for somej ∈ [n].
A phasej describes any sequence of actions in which only internal
actions, pushes to all stacks, and pops from stackj are permitted. A
wordw ∈ B∗

n is ak-phasebehavior word if it is the concatenation
of at mostk phases: that is,w ∈ (

⋃
j∈[n](phasej))

k. We define the

setk-Phase-Beh(M), for a mPDAM , as the set of all thek-phase
words inBeh(M).

The emptiness problem for mPDAs restricted tok phase be-
haviors asks whetherk-Phase-Beh(M) is an empty set. mPDAs
restricted to bounded phases can be simulated by graph automata
on a the class of bounded phase mNWs. For anyk, n ∈ N, a k-
phasen-nested wordN is ann-NW wherenw−1(N) is ak-phase
behavior word.

LEMMA 3.10. For any k, n ∈ N, the class ofk-phasen-NW
graphs is MSO definable. Moreover, the tree-decomposition nw-
td(N), whereN is any k-phasen-NW, has tree-width at most
2k + 2k−1 + 1.

From Lemma 3.10 and Theorem 2.3 to obtain the following
theorem, which also matches the 2ETIME lower bound for this
problem [16].

THEOREM 3.11. For any k ∈ N, the emptiness problem for mP-
DAs restricted tok phases is decidable, and decidable in time
|M |O(2k). When the number of phases is fixed, the emptiness prob-
lem is inPTIME.

Proofs can be found in Appendix B.

3.3 Emptiness of ordered multi-stack automata

Turning to the orderedness restriction on multi-stack automata,
we show that the multiply-nested words that correspond to or-
dered runs are of bounded tree-width (using the canonical tree-
decomposition), and hence admits a decidable emptiness problem.

A runρ of annPDA isorderedif whenever a pop action happens
on the stackj ∈ [n], then all stacks of index less thanj are empty:

if ρ = C1
act1−−→ C2 . . .

actm−1

−−−−−→ Cm, then for everyi ∈ [m − 1],
if acti = popj andCi = 〈q, s1, . . . , sn〉 thensh = ǫ, for each
h < j.

The setordered-Beh(M), for a mPDAM , is the set of all the
ordered words ofBeh(M).

The emptiness problem for mPDAs restricted to ordered behav-
iors is the problem of checking the emptiness ofordered-Beh(M).

For anyn ∈ N, an orderedn-nested wordN is ann-NW in
whichnw−1(N) is a ordered word.

LEMMA 3.12. Let n ∈ N. The class of orderedn-NW graphs is
MSO definable. Furthermore, the tree-decomposition nw-td(N),
whereN is any orderedn-NW, has width at most(n+1)·2n−1+1.

From Lemma 3.12 and Theorem 2.3 we obtain the following
theorem, which also matches the 2ETIME lower bound for this
problem [6].

THEOREM 3.13. The emptiness problem for mPDAs restricted to
ordered runs is decidable, and decidable in time|M |O(n.2n). When
the number of stacks is fixed, the problem is decidable inPTIME.

Proofs can be found in Appendix B.

4. Distributed Automata with Queues and Stacks
Distributed queue automata with stacks (DQSA) is an automaton
model composed of a finite number of processes and a finite num-
ber of first-in-first-out (FIFO) channels using which they communi-
cate, and where the local processes are endowed with a singlelocal
stack each. Each FIFO queue has a unique sender process that can
enqueue onto it, and a unique receiver process that dequeuesfrom
it.

DEFINITION 4.1 (DISTRIBUTED QUEUE AUT. WITH STACKS).
A distributed queue automaton with stacks(DQSA) is a tuple

M = (P,Q,Π,Γ,Sender,Receiver, {Ap}p∈P) whereP is a fi-
nite set of process names,Q is a finite set of queues,Π is a finite
message alphabet,Γ is a finite stack alphabet, and Sender:Q → P
and Receiver:Q → P are two maps that assign a uniquesender
process andreceiverprocess for each queue, respectively. For ev-
ery processp ∈ P , Ap = (Sp, s

p
0, Fp, δp) is the machine at sitep,

whereSp is a finite set of states,sp0 ∈ Sp is the initial state,Fp ⊆
Sp is the set of final states, andδp = 〈δpint, δ

p

send, δ
p
recv, δ

p

push, δ
p
pop〉

where

• δ
p

send ⊆ (Sp×Q
p

send×Π×Sp) is the set of send moves, where
Q

p

send = { q ∈ Q | Sender(q) = p };
• δprecv ⊆ (Sp × Qp

recv × Π × Sp) is the set of receive moves,
whereQp

recv = { q ∈ Q | Receiver(q) = p };
• δpush ⊆ (Sp × Sp × Γ) is the set of push moves;
• δpop ⊆ (Sp × Γ× Sp) is the set of pop moves;
• δ

p
int ⊆ (Sp × Sp) is the set of internal moves.

For the rest of the section we fixM = (P,Q,Π,Γ,Sender,
Receiver, {Ap}p∈P) to be a DQSA, whereAp = (Sp, s

p
0, Fp, δp)

for everyp ∈ P .
The semantics of DQSAs is as follows.
A configurationof a DQSAM is a tuple〈{sp}p∈P , {γp}p∈P ,

{µq}q∈Q〉 where for eachp ∈ P , sp ∈ Sp andγp ∈ Γ∗ are the
state and the stack content of processp respectively, and for each
queueq ∈ Q, µq ∈ Π∗ is the content ofq. The configurationC =
〈{sp}p∈P , {γp}p∈P , {µq}q∈Q〉 of M is the initial configuration if
sp = s

p
0 andγp = ǫ for eachp ∈ P , andµq = ǫ, for each queue

q ∈ Q. C is a final configuration ifsp ∈ Fp, for everyprocess
p ∈ P , and further all queues are empty, i.e.µq = ǫ, for each
q ∈ Q, and all stacks are also empty, i.e.γp = ǫ, for eachp ∈ P .

Let theactions of processp beBp = {intp, pushp, popp} ∪
(
⋃

q∈Q
{send(p,q)}) ∪ (

⋃
q∈Q

{recv(p,q)}), andB =
⋃

p∈P
Bp

be the alphabet of all actions. For any two configurationsC =
〈{sp}p∈P , {γp}p∈P , {µq}q∈Q〉 andC′ = 〈{s′p}p∈P , {γ

′

p}p∈P ,

{µ′

q}q∈Q〉, C
act
−−→ C′, if act ∈ B and one of the following holds:

[Send] act = send(p,q), and there is a move(sp, q,m, s′p) ∈ δ
p

send

such that

• for eachp̂ 6= p, s′p̂ = sp̂,

• µ′

q = m.µq, and for eacĥq 6= q, µ′

q̂ = µq̂ .

• for eachp̂, γ′

p̂ = γp̂.

[Receive] act = recv(p,q), and there is a move(sp, q,m, s′p) ∈
δprecv such that

• for eachp̂ 6= p, s′p̂ = sp̂,

• µq = µ′

q.m, and for eacĥq 6= q, µ′

q̂ = µq̂ .

• for eachp̂, γ′

p̂ = γp̂.

[Push] act = pushp, and there is a move(sp, s′p, a) ∈ δ
p

push such
that

• for eachp̂ 6= p, s′p̂ = sp̂,

• for eachq̂, µ′

q̂ = µq̂ .

• γ′

p = a.γp, and for eacĥp 6= p, γ′

p̂ = γp̂.

[Pop] act = popp, and there is a move(sp, a, s′p) ∈ δppop such that

• for eachp̂ 6= p, s′p̂ = sp̂,

• for eachq̂, µ′

q̂ = µq̂ .

• a.γ′

p = γp, and for eacĥp 6= p, γ′

p̂ = γp̂.

[Internal] act = intp, and there is a move(sp, s′p) ∈ δ
p
int such

that

a

InitP1

P1 :
c

d

e f g h n

FinalP1

i

k

l

mjb

1

InitP2

P2 :
3 4

5 6 7

8 14

FinalP2

9 11 12 13102

α

InitP3

P3 :
γ δ ǫ ε

ζ

η

µ

FinalP3

θ ι κ

λ

ϑβ

Figure 3. A stack-queue graph.

• for eachp̂ 6= p, s′p̂ = sp̂,

• for eachq̂, µ′

q̂ = µq̂.

• for eachp̂, γ′

p̂ = γp̂.

Let w = act1act2 . . . actm−1 ∈ B∗. A run of M on w is a

sequenceρ = C1
act1−−→ C2 . . .

actm−1

−−−−−→ Cm, whereC1 is initial
andCm is final.

The set of behaviors ofM , Beh(M) is the set of wordsw ∈ B∗

such that there is a run ofM onw.
A stack-queue graph(SQG) captures the behaviors of DQSA as

a graph. This graph captures the distributed behavior by modeling
local behaviors of the process asdisjoint linearly ordered sets of
vertices with two additional kinds of edges: edges that capture the
nesting relation matching pushes and pops of the local processes
(like in a nested word), and edges that match send-events of one
process with receive-events in others. Formally,

DEFINITION 4.2 (STACK-QUEUE GRAPHS). A stack-queue
graph (SQG) over(P,Q,Sender, Receiver) (where P , Q are
finite sets, Sender: Q → P and Receiver: Q → P) is a
tupleSQG = ({(Vp, Initp,F inalp, Lp, Ep)}p∈P , {Eq}q∈Q),
where

• (Vp, Initp,F inalp, Lp, Ep) is a 1-NW, for everyp ∈ P ;
• Vp ∩ Vp′ = ∅, for all p, p′ ∈ P with p 6= p′;
• Eq ⊆ Vp × Vp′ , for somep, p′ ∈ P with p 6= p′. Further, for

all u, x ∈ Vp andv, y ∈ Vp′ , if (u, v) ∈ Eq and (x, y) ∈ Eq

andu <Lp x holds, thenv <L
p′

y.
• Any vertexv ∈

⋃
p∈P

Vp has at most one edge of(
⋃

q∈Q
(Eq)∪⋃

p∈P
(Ep)) incident on it.

Figure 3 illustrates a stack-queue graph for three processes.
The properties defining stack-queue graphs (the definition

above) can be easily expressed in MSO:

LEMMA 4.3. For any tuple(P,Q,Sender,Receiver), the class of
stack-queue graphs over it is MSO definable.

The class of stack-queue graphs represent all potential behaviors
of any DQSA. The precise queue graphs corresponding to behav-
iors of a DQSA can be accepted by a graph automaton over queue
graphs that decorates each of these graphs with the DQSA states
and checks whether there is a run of the DQSA corresponding to
the graph. Let us associate a functionsqg that associates (as a1−1
correspondence), the stack-queue graph corresponding to any be-
haviorw. Then,

LEMMA 4.4. For any DQSAM over (P,Q,Sender,Receiver),
there is an effectively constructible graph automaton on stack-
queue graphs over(P,Q,Sender,Receiver) such that
sqg(Beh(M)) = L(GA).

Stack-queue graphs are complex graphs, and several restrictions
are required to make them tractable. In fact, they are of unbounded
tree width:

LEMMA 4.5. For any (P,Q,Sender,Receiver), where |P | > 2
andQ 6= ∅, the class of stack-queue graphs over(P,Q,Sender,
Receiver) has an unbounded tree-width.

The architecture of a DQSA M is the directed graph that
describes the way its processes communicate trough queues:
Arch(M) = (P, { (Sender(q),Receiver(q)) | q ∈ Q }).

In [17], it is proved that if the underlying architecture is a
directed tree (where each process hence has only one incoming
queue) and if the processes arewell-queuing, then the emptiness
problem is decidable for DQSAs. The well-queuing assumption
demands that each process may dequeue from an incoming queue
only when its local stack is empty. The stack-queue graph in Fig-
ure 3 corresponds to such a well-queuing behavior. These proper-
ties (well-queuing and tree architectures) can be expressed in MSO.

Furthermore, we can prove that these restrictions cause the
graphs to be of bounded tree-width. This proof is quite involved,
and is given in the technical report [20]. The idea is to first define
the notions ofgraph decompositions and their widthsthat extends
the notion of tree-decompositions. IfH is a class of graphs, then
a H-decomposition of a graphG is a graphH ∈ H where each
node inH has an associated bag of vertices, where every edge
in G is in the union of two adjacent bags inH , and where the
nodes that contain a vertex ofG are connected inH . We then show
that stack-queue graphs over an architecture that is a directed tree
can be decomposed with a small width onto anested word. This
process relies on the observation that the global run can be always
be executed in a particular order where messages in queues never
go beyond length 1. Then, by using the small tree-width of nested
words, we obtain the following result.

LEMMA 4.6. The set of all stack-queue graphs over a pair
(P,Q,Sender,Receiver) whose underlying architecture is a di-
rected tree and are well-queuing, is MSO-definable, and further-
more, have tree-width bounded by3n− 1 wheren is the number of
processes.

From Lemma 4.6, we have:

THEOREM4.7. The emptiness problem for a well-queuing DQSA
M with tree-architectures is decidable. The problem is decidable
in time|M |O(n), wheren is the number of processes ofM .

In fact, the precise analysis of the tree-width that leads tothe
above theoremimprovesthe complexity by one exponential over
the one proved in [17], which gives an algorithm doubly exponen-
tial in n.

4.1 Distributed Queue Automata without stacks

Distributed Queue Automata without stacks (DQAs) are the same
model as that of DQASs except that the local stacks at each process
are not present. Even in this restricted setting, the emptiness prob-
lem isundecidable. We can capture behaviors usingqueue graphs
that are composed ofn linear orders, one for each process, with
edges connecting matching sends and receives. Figure 4 illustrates
a queue graph. In general, queue graphs of distributed queueau-
tomata without stacks are also of unbounded tree width. Formally,
we define queue graph as a stack queue graph with an empty set of
stack edges:

DEFINITION 4.8 (QUEUE GRAPHS). A queue graph(QG) over
(P,Q,Sender,Receiver), is a tuple

QG = ({(Vp, Initp,Finalp, Lp)}p∈P , {Eq}q∈Q),

InitP1

P1 :

F inalP1

InitP2

P2 :

F inalP2

InitP3

P3 :

F inalP3

Figure 4. A queue graph.

where({(Vp, Initp, Finalp, Lp)}p∈P , {Ep}p∈P , {Eq}q∈Q) is a
stack queue graph, where everyEp = ∅, for eachp ∈ P .

The properties defining queue graphs can be easily expressedin
MSO:

LEMMA 4.9. For any(P,Q,Sender,Receiver), the class of queue
graphs over it is MSO definable.

Also, let qg be a function that associates to every behavior of a
distributed queue automaton the corresponding queue graph.

LEMMA 4.10. For every DQAM , there is a (constructible) graph
automatonGA on queue graphs such thatqg(Beh(M)) =
L(GA).

In [17], it was proved that when the architecture of a DGA is
a polyforestthe emptiness problem is decidable. An architecture
Arch(M) of a DQAM is apolyforestif the underlyingundirected
graph is acyclic.

To bound the tree-width of queue graphs ofpolyforestarchitec-
tures, we note that we can reverse any edge of the graph, without
changing its tree-width. Hence, we can direct queuing edgesin a
way to make the underlying architecture a directed forest (note that
since there are no stacks, the well-queuing assumption is satisfied
vacuously, see [20]). This resulting graph hence can be interpreted
on a linear word (using the same proof as for DQAS, except that
now the nesting relation is not needed). Hence we obtain the fol-
lowing:

LEMMA 4.11. Let (P,Q,Sender,Receiver) be a tuple whereP
andQ are finite sets and Sender: Q → P and Receiver: Q →
P . Then the class of polyforest queue graphs over(P,Q,Sender,
Receiver) has tree-width (even path-width) bounded by|P |.

Furthermore, from Lemma 4.10, Lemma 4.9 , and Theorem 2.3, we
can conclude:

THEOREM 4.12. The emptiness problem for polyforest DQAs is
decidable, and decidable in time|M |O(n), wheren is the number
of processes ofM .

5. Conclusions and further results
The main contribution of this paper is to provide a uniform frame-
work using which we can prove decidability of emptiness of a vari-
ety of automata with auxiliary storage. In this sense, our framework
is the “mother” of several automata decidability results proved re-
cently in the literature, where complex but awkward restrictions

have been imposed to obtain decidability of emptiness. We also
believe that our results can help in the search of new automaton
models that have a tractable emptiness problem using the princi-
ples outlined by our framework.

There are several other results that follow immediately from our
work, that we discuss below.

Under-approximation of abstracted programs using tree-width:
The analysis of abstracted concurrent programs communicating
through shared-variables is in general undecidable. Theseprograms
can be modeled as multi-stack pushdown automata. In the lastfew
years, syntactic restrictions on the behaviors of those automata
have been considered with the aim of making the analysis of such
programs decidable, e.g. bounded context-switches [22], bounded-
phases [15]), etc.

Since all the known syntactic restrictions correspond to graphs
of bounded tree-width, we can consider the tree-width as a natural
semantic restrictionto consider for under-approximations. Given a
multi-stack automaton andk ∈ N, the problem of deciding whether
there is a multiply nested word of tree-widthk that is accepted by
it is decidable, as shown in our framework, and hence can be used
as an under-approximation technique to explore the state-space
reached by a concurrent program. Note that this would cover all
behaviors that explorek context-switches, and more, and yet has
the same complexity.

Improvement in complexity for DQSAs: As mentioned earlier,
Theorem 4.7 improves the complexity of the emptiness problem for
a well-queuing DQSAM with tree-architectures to one exponential
in the number of processes; the algorithm given in [17] is doubly
exponential. This upper bound complexity matches the EXPTIME
lower-bound for the emptiness problem on DQSAs [13].

Decidable emptiness problem for multi-stack pushdown automata
with bounded reverse-phase: Our framework shows immedi-
ately the decidability of other restrictions placed on automata with
auxiliary storage. For example, fixk ∈ N and consider multi-
stack automata behaviors restricted tok reverse-phases, where in
each reverse-phase, there is only one stack that is pushed into (but
arbitrary pops of stacks are allowed). Then it easily follows that
emptiness is decidable for this class, since the graphs correspond-
ing to the runs of these automata are precisely the same as those of
bounded-phase automata, save for the orientation of the linear and
nesting edges, and hence has the same tree-width.

A general Parikh theorem: We can prove a generalParikh theo-
rem [21] for all classes of automata that can be compiled to graph
automata of bounded tree-width. The idea is to encode the graph
into a tree using the tree-decomposition, with a unique vertex of
the tree for every graph node. Since a depth-first traversal of the tree
can be captured by a pushdown automata, we can build a context-
free grammar that generates the graph nodes in some order. Using
the classic Parikh theorem for context-free grammars, we can show
that the labels of the graph nodes define a semi-linear set. This is
a generalization of the technique using in [15], where a similar ar-
gument was used for proving a Parikh theorem for bounded-phase
multi-stack automata.

Extension to infinite behaviors: Several of our results extend to
automata over infinite behaviors. For example, consider ordered
multi-stackBüchi or parity automata on infinite words. We can
show that there are graph automata on multiply-nested infinite
graphs (with appropriate Büchi and parity conditions) that can sim-
ulate these automata, and further that these graphs have bounded
tree-width. This proves that the emptiness problem for thisclass
of automata is decidable. (See [5] for recent results in thisdirec-
tion.) Similar results can be obtained by extending the tractable
distributed automata presented in this paper to infinite words.

There are interesting temporal logics suitable for expressing
properties of single-stack pushdown systems, like the logic CARET
[4]). Natural extensions of temporal logics like CARET that allow
to reason with multi-stack pushdown automata are also possible,
and can be proved decidable for all multi-stack automata whose
runs can be modeled by graphs of bounded tree-width.

Acknowledgments
This work was partially supported by the NSF CAREER grant
#0747041 and the French ANR-09-SEGI project Veridyc.

References
[1] R. Alur and P. Madhusudan. Visibly pushdown languages. In L. Babai,

editor,STOC, pages 202–211. ACM, 2004.

[2] R. Alur and P. Madhusudan. Adding nesting structure to words. In
O. H. Ibarra and Z. Dang, editors,Developments in Language Theory,
volume 4036 ofLecture Notes in Computer Science, pages 1–13.
Springer, 2006.

[3] R. Alur and P. Madhusudan. Adding nesting structure to words. J.
ACM, 56(3), 2009.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logicof nested
calls and returns. In K. Jensen and A. Podelski, editors,TACAS,
volume 2988 ofLecture Notes in Computer Science, pages 467–481.
Springer, 2004.

[5] M. F. Atig. Global model checking of ordered multi-pushdown sys-
tems. In K. Lodaya and M. Mahajan, editors,Proceedings of the 30th
Conference on FSTTCS, Leibniz International Proceedings in Infor-
matics, Chennai, India, Dec. 2010. To appear.

[6] M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown
automata is 2etime-complete. In M. Ito and M. Toyama, editors,
Developments in Language Theory, volume 5257 ofLecture Notes in
Computer Science, pages 121–133. Springer, 2008.

[7] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani.Automatic
predicate abstraction of C programs. InPLDI, pages 203–213, 2001.

[8] L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-
push-down languages and grammars.Int. J. Found. Comput. Sci., 7(3):
253–292, 1996.

[9] B. Courcelle. The expression of graph properties and graph trans-
formations in monadic second-order logic. In G. Rozenberg,edi-
tor, Handbook of Graph Grammars, pages 313–400. World Scientific,
1997.

[10] B. Courcelle and S. Olariu. Upper bounds to the clique width of
graphs.Discrete Applied Mathematics, 101(1-3):77–114, 2000.

[11] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear timesolvable
optimization problems on graphs of bounded clique-width.Theory
Comput. Syst., 33(2):125–150, 2000.

[12] J. Flum and M. Grohe.Parameterized Complexity Theory (Texts in
Theoretical Computer Science. An EATCS Series). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[13] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability
analysis of communicating pushdown systems. In C.-H. L. Ong,
editor,FOSSACS, volume 6014 ofLecture Notes in Computer Science,
pages 267–281. Springer, 2010.

[14] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[15] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-
sensitive languages. InLICS, pages 161–170. IEEE Computer Society,
2007.

[16] S. La Torre, P. Madhusudan, and G. Parlato. An infinite automaton
characterization of double exponential time. In M. Kaminski and
S. Martini, editors,CSL, volume 5213 ofLecture Notes in Computer
Science, pages 33–48. Springer, 2008.

[17] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis
of concurrent queue systems. In C. R. Ramakrishnan and J. Rehof,

editors,TACAS, volume 4963 ofLecture Notes in Computer Science,
pages 299–314. Springer, 2008.

[18] S. La Torre, P. Madhusudan, and G. Parlato. Analyzing recursive
programs using a fixed-point calculus. In M. Hind and A. Diwan,
editors,PLDI, pages 211–222. ACM, 2009.

[19] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking pa-
rameterized concurrent programs using linear interfaces.In T. Touili,
B. Cook, and P. Jackson, editors,CAV, volume 6174 ofLecture Notes
in Computer Science, pages 629–644. Springer, 2010.

[20] P. Madhusudan and G. Parlato. The tree width of au-
tomata with auxiliary storage. InIDEALS Technical Report
http://hdl.handle.net/2142/15433, April 2010.

[21] R. Parikh. On context-free languages.J. ACM, 13(4):570–581, 1966.

[22] S. Qadeer and J. Rehof. Context-bounded model checkingof con-
current software. In N. Halbwachs and L. D. Zuck, editors,TACAS,
volume 3440 ofLecture Notes in Computer Science, pages 93–107.
Springer, 2005.

[23] D. Seese. The structure of models of decidable monadic theories of
graphs.Ann. Pure Appl. Logic, 53(2):169–195, 1991.

[24] W. Thomas. On logics, tilings, and automata. In J. L. Albert,
B. Monien, and M. Rodrı́guez-Artalejo, editors,ICALP, volume 510
of Lecture Notes in Computer Science, pages 441–454. Springer, 1991.

Appendix

A. Tree-width of bounded-context multiply
nested words

In this section we show that anyk-context multiply nested word
graph has a tree-width upper-bounded byk + 1.

LEMMA A.1. For anyk ∈ N, the tree-width of anyk-context mNW
N is at mostk + 1.

The proof is simple, and we sketch the main idea. Let us createa
tree-decomposition by creating a tree where the root hask subtrees,
each subtree corresponding to a stack. For each stacks, we take the
contexts that involve the stacks, remove the rest of the events, and
build the tree (and the bags) as in the canonical tree-decomposition
of a singly nested word (of width at most2). These trees along
with the root, and the bags associated with the nodes, capture all
nesting edges and all linear edges,except the linear edges that cross
contexts(which are at mostk − 1 in number). Now, for every pair
of nodesu andv, wherev is the linear successor ofu, and whereu
andv are in different contexts, let us addu to all nodes in the path
from u to v. Clearly, the bag-sizes increase by at mostk − 1, and
the resulting tree-decomposition captures all edges and isof width
at mostk + 1.

B. On the tree-width of bounded-phase and
ordered multiply nested words

In this section we give an upper-bound of the tree-width of both
bounded-phase and ordered multiply nested word graphs. Fora
given k and n, the tree-width of anyk-phasen-NW is O(2k),
instead the tree-width of any orderedn-NW isO(n · 2n).

We show such bounds by giving a general technique to upper-
bound the width of the canonical tree decompositioncan-td(N),
for any n-NW which is k-phase (Section B.1) or ordered (Sec-
tion B.2).

Proof strategy: Our proof strategy is the following. First, notice
that in any multiply nested word, the canonical tree decomposition
we defined has all edges except thepop-edges, i.e. edges(u, v)

wherev is a pop-node for some stack (other linear edges as well
as all nesting edges are local in the tree decomposition). Wedefine,
first, a notion of anextensionof a multiply nested word, which
is the same as the multiply nested word except that every edge
(u, v) wherev is a pop-node is replaced by apathof nodes which,
intuitively, connectsu to v by taking abackwardpath along the
linear order, all the way up to the push-nodev′ corresponding tov
and then goes on tov. The crucial property of this expansion is that
all edges betweenu andv become local in the tree. This backward
path is constructed so that it utilizes nesting edges (of thesame kind
as the stackv is popping from) in order to reachv′.

This extension of a multiply nested word will be used in both
the proofs of bounded phase words as well as ordered multi-stack
words. We show that this extension preserves the bounded phase
property as well as the ordered-ness property.

The extension of a multiply nested wordN then helps us build
a new tree-decomposition over the same tree as we need in the the-
orems; i.e. using adifferent set of bags but over the same treeT
deriving from can-td(N). We show that this tree-decomposition
certainly has width at least as the width ofcan-td(N), and hence
establishing that the width of this tree decomposition is bounded by
the appropriate bounds for bounded-phase multiply nested words
and ordered multiply nested words is sufficient to prove our theo-
rems.

We then define a notion ofgenerator treescorresponding toev-
ery nodeof a multiply nested structureN . Intuitively, the generator
tree of a nodev consists of the copies of the nodev in the exten-
sion ofN , and a copy(v, h′) of v is the child of a copy(v, h′),
if (v, h′) was created as a relabeling of(v, h) in a backward path
that replaced a pop-edge. The generator tree is a technical structure
that has certain structural properties (Lemma B.5 and LemmaB.6)
that allows us to count the widths of the decompositions of both
bounded phase words and ordered multiply nested words.

Proof outline: Throughout the section, every time we refer toN
we mean then-NW N = (V, Init,Final, L, {Ej}j∈[n]). More-
over, whenever we refer to the ordering amongN nodes, we always
intend the linear ordering<L. We also consider an ordering onL
edges: ife1 = (a, b) ande2 = (c, d) with e1, e2 ∈ L, thene1 < e2
if b <L c. Furthermore,T is the tree obtained as(T, bag) = can-
td(N). If (u, v) ∈ Ej with j ∈ [n], we say thatu is apush-j node,
v is apop-j node, and thatu andv arematched. Moreover, anL
edge(u, v) is called apop-j edge, ifv is a pop-j node.

For anyN , we define ann-NW N ′ = (V ′, Init′, F inal′, L′,
{E′

j}j∈[n]), called theextensionof N , as follows. Intuitively,N ′

is obtained fromN by replacing all the pop edges with a sequence
of nodes. More precisely, consider a pop-j edge(u, v) and suppose
that all the pop edges before(u, v) have already been replaced with
paths to create a nested wordN ′. Then, the pop edge(u, v) is
replaced with the “back-path” ofN ′ starting fromu and ending
with the push nodeu′ that matchesv. The back-path is built in the
following manner. Suppose we have reached a nodeb. Now, if b
is a pop-j node — notice thatv is also a pop-j node — then the
next node in the back-path isa wherea is the push-j node matched
to b ((a, b) ∈ E′

j). (In this way we get closer tou′, which must
occur beforea, and hence skipping all nodes betweenb anda.)
Otherwise, the next node in the path will be theL′ predecessor of
b. In other words, the back-path fromu to u′ is formed by taking
linear predecessors at each state, except taking nesting edges for
the stackj. Obviously all the nodes in back-paths will be renamed
so that they will be unique inN ′.

Now we formally define the extension of a multiply nested word
N , Ext(N). We do this by defining a functionexpand that takes
thefirst pop-edge in a nested word, and replaces it by a back-path.
We will first start with the nested wordN , with renamed vertices.

Then, we will applyexpand to it repeatedly till all pop-edges are
replaced (and we reach a fixed-point). This fixed-point will be the
extension ofN . First, let us define back-paths formally.

Back-paths and extensions:
Let N̂ = (V̂ , Înit, F̂inal, L̂, {Êj}j∈[n]) be an-NW and let(u, v)
be a pop-edge (i.e.v is a pop-node andu is the linear predecessor of
v). Let (v′, v) ∈ Êj (j ∈ [n]). ThenBackPath

N̂
(v) is the unique

node sequencev1 . . . vt such that

• v1 = u andvt = v′, and

• For everyi ∈ [t − 1], if vi is a pop-j node, thenvi+1 is the
corresponding push-node, i.e. the node such that(vi+1, vi) ∈

Êj .
Otherwisevi+1 is the linear predecessor ofv (i.e. the node such
that(vi+1, vi) ∈ L̂).

We now define the extension of a multiple nested word, using
a systematic replacement of every pop-edge(u, v) by a linearly
ordered sequence of nodes formed by a back-path fromu to the
push-nodev′ corresponding tov. Moreover, in the linearly ordered
sequence that replaces the pop-edge, no node will have nesting
edges incident on it. We will perform this surgery on all pop-edges,
going from the left-most one to the right-most; this is important as
back-paths for a pop-edge may utilize the extensions of pop-edges
that occur to the left of it.

Let us fix an-NW N = (V, Init,Final, L, {Ej}j∈[n]). The
extension ofN will have vertices of the form(v, i) wherev ∈ V
andi ∈ N.

Let N0 be the same as nested wordN , except that each vertex
v ∈ V gets renamed to(v, 1). In other words,N0 = (V ×
{1}, Init0,Final0, L0, {E

0
j }j∈[n]), where the various edges inN0

are appropriately defined.
We now constructNi+1 fromNi using the following algorithm.

Let Ni = (Vi, Initi,Finali, Li, {E
i
j}j∈[n]), whereVi ⊆ V × N.

Let ((u, 1), (v, 1)) be the first pop-edge of its kind (i.e. with indices
1) in Ni according to the linear orderingLi (if no such pop-
edge exists, then we setNi+1 = Ni, and reach a fixed-point).
ThenNi+1 = (Vi+1, Initi, Finali, Li+1, {E

i
j}j∈[n]) is defined

as follows (note that the initial, final, and nesting edges donot
change).

Let the back-path from〈u, 1〉 be BackPathNi
(〈u, 1〉) =

〈z1, h1〉 . . . 〈zt, ht〉. Note that any node occurs at most once in the
back-path. Let us now relabel this path so that the nodes〈zj , hj〉
get renamed to some〈zj , h′

j〉 so that they are not inVi and do not
get repeated in the back-path:

• relabelVi
(ǫ) = ǫ

• relabelVi
(w, 〈x,m〉) = relabelVi

(w), 〈x,m′〉 wherem′ is the
least positive integer such that〈x,m′〉 6∈ Vi and does not occur
in relabelVi

(w).

Let relabelX(BackPathN′(〈u, 1〉)) = 〈z1, h
′

1〉 . . . 〈zt, h
′

t〉.
Then,Vi+1 = (Vi ∪ {〈zi, h

′

i〉 | i ∈ [t]}) and the setLi+1 is:

Li+1 = (Li\{(〈u, 1〉, 〈v, 1〉)})∪{(〈zi, h
′

i〉, 〈zi+1, h
′

i+1〉) | i ∈ [t]}

∪{(〈u, 1〉, 〈z1, h
′

1〉), (〈zt, h
′

t〉, 〈v, 1〉)}

Intuitively, we remove the linear edge from〈u, 1〉 to 〈v, 1〉)
and replace it with the backward path from〈u, 1〉, appropriately
renamed.

We apply the above algorithm to systematically replace pop-
edges by a linearly ordered set of nodes, left to right, till we
reach a fixed-point, where there are no pop-edges of the form
(〈u, 1〉, 〈v, 1〉). The final multiply nested word will be theexten-
sionof N .

Notice that,N ′ is the same asN except that pop edges ofN are
replaced by nodes that are neither the target nor the source of any
nesting edges. Therefore, ifN is ak-phase MNW then alsoN ′ is,
and ifN is an orderedn-NW then so isN ′:

LEMMA B.1. LetN ′ be the extension of ann-NWN . Then, (1)N ′

is k-phase iffN is k-phase, (2)N ′ is ordered iffN is ordered.

It is easy to prove that if(〈a, i〉, 〈b, j〉) is an edge inN ′, that is
(〈a, i〉, 〈b, j〉) ∈ (L′ ∪

⋃
h∈[n] E

′

h)), thena andb are connected
by an edge inT , which means that eithera is the parent ofb or
vice-versa. By usingN ′ we define a new tree decomposition ofN
whose underlying tree isT .

We define a mapbag′ : V → 2V as follows. Mapbag′

associates the minimum set of vertices to each node ofT according
to the following rules:

1. v ∈ bag′(v), for all v ∈ V .

2. if u is the parent ofv in T , thenu ∈ bag′(v), for everyv ∈ V .

3. if (u, v) is a pop edge ofN , and BackPathN′(〈u, 1〉) =
〈u1, h1〉 . . . 〈ut, ht〉, thenu ∈ bag′(ui), for everyi ∈ [t].

Notice that the first and second condition defining the map
bag (see Definition 3.6) and the first and second condition in the
definition of bag′ are the same. They only differ in the third one:
if u′ is such that(u′, v) ∈ Ej , then condition three of Definition
3.6 says thatu is added tobag(z) for all nodesz lying along the
unique shortest path inT betweenu andu′. Similarly the third
condition of the definition above addsu to thebag′ of all theT
nodes along a path inT fromu tou′ which may not be the shortest.
However, that path has to pass trough all the nodes of the shortest
path betweenu′ andu. Thus,(T, bag′) is a tree decomposition
of N , and more importantly for usbag(z) ⊆ bag′(z), for every
nodez of T . Therefore, we can upper-bound the size ofbag(u) by
considering the size ofbag′(u) for everyu ∈ V , as stated in the
next lemma.

LEMMA B.2. Let N be ann-nested word, andT = (T, bag) =
can-td(N). Then,T ′ = (T, bag′) is a tree decompositions ofN
where width(T) ≤ width(T ′). Furthermore, for everyv ∈ V ,
|bag′(v)| ≤ dv + 1, wheredv = |{ 〈v, h〉 ∈ V ′ |h ∈ N }|.

Generator Trees: A convenient way to calculatedv (in the above
lemma) is to represent the set ofN ′ nodes{〈v, h〉 ∈ V ′ |h ∈ N }
as a tree, for eachv ∈ V . Let 〈v, h〉, with h > 1, be a node ofN ′,
and let〈u, 1〉 be the greatest push node ofN ′ that occurs before
〈v, h〉. Intuitively, 〈v, h〉 is one of the node of the path between that
have replaced the pop edge(u, v) of N . By definition ofN ′, 〈v, h〉
is generated because there is another node〈v, h′〉 with h′ < h in
BackPath(〈u, 1〉). We call 〈v, h′〉 the generatorof 〈v, h〉. Note
that for every node〈v, h〉 with h > 1 there is a unique generator of
it (though the vice-versa does not hold).

DEFINITION B.3 (GENERATORTREES). LetN ′ be the extension
of ann-nested wordN , and letV be the set of nodes ofN . For
everyv ∈ V , we define a treeTv as follows:

• 〈v, 1〉 is the root ofTv.
• if 〈v, h′〉 is the generator of〈v, h〉 then 〈v, h〉 is a child of
〈v, h′〉.

For everyv ∈ V , the treeTv is called thegenerator treeof v.

Observe that, for a givenN nodev, all the nodes(v, h) in N ′

are also nodes ofTv, thus the valuedv corresponds to the number
of nodes ofTv,

We can also associate astackto every node of generator tree,
except the root. If a node〈v, 1〉 is the first pop node after〈v, h〉

(whereh > 1), and ifv is a pop node of stackj, then we say thatj
is thestackof 〈v, h〉. Intuitively, the stack associated with〈v, h〉 is
the stack whose popping led to a back-path that created〈v, h〉.

In the following we give some properties of generator trees that
will be instantiate later for the case in whichN is bounded-phase
and ordered. Intuitively, fix a stackj; then, any node in a multiply
nested word can be touched only once on a backward path that is
caused by a pop of stackj, except that when the node is a push onto
stackj, in which case it may be touched twice. This is true because
the backward path caused by a pop to stackj takes nesting edges
of stackj as much as possible, hence skipping the nodes between
the nesting edges it takes.

The first lemma states that ifv is a push onto stackj, the root of
the generator tree ofv, namely〈v, 1〉, has at mostn+1 children—
at most two of these children may be of stackj, and all the other
children must be of distinct stacks.

LEMMA B.4. If v ∈ V is a push-j node then the root〈v, 1〉 of Tv

has at most two children of stackj. Moreover, for everyj′ 6= j,
〈v, 1〉 has at most one child of stackj′.

Proof By contradiction suppose that(v, 1) has at least three chil-
dren of stackj. Since a back-path goes always backward it contains
distinct nodes. Therefore there must exist three pop-j edges inN ,
saye1 = (u1, v1), e2 = (u2, v2), e3 = (u3, v3), such that〈v, 1〉
is contained inBackPathN′(〈ui, 1〉) for all i ∈ [3]. Suppose that
e1, e2 ande3, in the order, are the first three pop edges ofN having
the above property. It is easy to see that〈v1, 1〉 is the matching
pop of 〈v, 1〉. Now, BackPathN′(〈u2, 1〉) to reaches〈v, 1〉 must
pass through〈v1, 1〉 (a back-path always goes backward and since
theE′

j relation is nested a back-path can never jump in between
〈v, 1〉 and 〈v1, 1〉). Thus, whenBackPathN′(〈u2, 1〉) reaches
〈v1, 1〉, it goes directly to〈v, 1〉. This entails that the matching
push of〈v2, 1〉 occurs before〈v, 1〉. Now, BackPathN′ (〈u3, 1〉)
must pass through〈v2, 1〉 to reach〈v, 1〉. But, 〈v2, 1〉 is a pop-j
node and thus the back-path jumps directly to the matching push of
〈v2, 1〉, which comes before〈v, 1〉. Since a back-path goes always
backward,〈v, 1〉 can never be reached byBackPathN′(〈u3, 1〉).
This is a contradiction.

In similar way we prove that, ifj′ 6= j then 〈v, 1〉 has at
most one child of stackj′. By contradiction, lete1 = (u1, v1)
and e2 = (u2, v2) be the first two pop-j′ edges ofN such that
BackPathN′(〈u1, 1〉) andBackPathN′(〈u2, 1〉) contain〈v, 1〉.
If BackPathN′(〈u1, 1〉) passes through〈v, 1〉 means that the
push-j node matched by the〈v1, 1〉 must occur before〈v, 1〉. Now
BackPathN′(〈u2, 1〉) must pass through〈v1, 1〉 and hence jumps
directly to the matched push-j node matched with〈v1, 1〉. Since
such a node comes before〈v, 1〉 and back-paths never go forward
we have that〈v, 1〉 cannot be reached byBackPathN′(〈u2, 1〉).

2

The second property we need is that for any nodev, any non-
root node in the generator tree ofv has children whose stacks are
distinct from each other. Moreover, ifv is not a push, then the root
also has children whose stacks are all distinct from each other.

LEMMA B.5. Let 〈z, h〉 ∈ N ′. Then, ifh > 1 or z is not a push
node ofN , then for everyj ∈ [n], the node〈z, h〉 has at most one
child of stackj in Tz .

Proof If h > 1 then 〈z, h〉 must be a node of a path that has
replaced a pop edge, say(u, v) of N . Suppose thate1 = (u1, v1)
and e2 = (u2, v2) are the first two pop-j edges (in the order)
of N such thatBackPathN′(〈u1, 1〉) andBackPathN′ (〈u2, 1〉)
contain〈z, h〉. Thus,〈z, h〉 <L′ 〈u1, 1〉 <L′ 〈v1, 1〉 <L′ 〈u2, 1〉.
SinceBackPathN′(〈u1, 1〉) passes through〈z, h〉 implies that the
push-j node matched by the〈v1, 1〉 occurs before〈z, h〉. Now

BackPathN′(〈u2, 1〉) has to pass through〈v1, 1〉, which is a pop-
j node, and hence jumps directly to the push-j node matched
to 〈v1, 1〉. Such a node appears before〈z, h〉 and since back-
paths only go backward we have that〈v, 1〉 is never reached by
BackPathN′(〈u2, 1〉) which contradicts the hypotheses.

The other case in which〈z, 1〉 is not a push node is similar to
the case above and we do not give it here.

2

B.1 Tree-width of bounded-phase multiply nested word
graphs

In this section we show that the tree-width of anyk-phase mNWN
is O(2k).

From Lemma B.1, the extensionN ′ of N is also ak-phasen-
NW. Thus, we definephaseN′ to be the map that associates to every
node〈v, h〉 of N ′ its phase number.

The next lemma, which is a refinement of Lemma B.4, says that
for any push-nodev, the phase numbers of the children of the root
of the generator tree ofv are not less than that of the root, and
further, all phase numbers of the children of the root are distinct
from each other, save for one child. This bounds the number of
children of the root tok − j + 2, if the root has phasej.

LEMMA B.6. For every push nodev ∈ V , the phase of the children
of the root〈v, 1〉 of Tv is greater or equal to the phase of〈v, 1〉.
Moreover, except for one child of〈v, 1〉, all the other children have
different phase number.

Proof If 〈v, h〉 is a child of 〈v, 1〉, then 〈v, 1〉 <L′ 〈v, h〉, and
hence phaseN′ (〈v, 1〉) ≤ phaseN′(〈v, h〉). Now, if the stack
number of 〈v, h〉 is different from the stack number of〈v, 1〉
thenphaseN′(〈v, 1〉) < phaseN′ (〈v, h〉). Moreover, if〈v, h〉 and
〈v, h′〉 are two children of〈v, 1〉 with different stack number then
phaseN′(〈v, h〉) 6= phaseN′(〈v, h′〉). Thus, from Lemma B.4 we
can conclude the proof. 2

By using a similar argument of the previous proof, and Lemma B.5,
we can show the following lemma, which says that for anyv, the
children of a non-root node(v, h) in the generator tree forv have
distinct phases and have phases greater than the phase of(v, h).
Moreover, this is also true for the root(v, 1) providedv is not a
push-node.

LEMMA B.7. Let 〈v, h〉 ∈ N ′. Then, ifh > 1 or v is not a
push node ofN , then for every child〈v, h′〉 of 〈v, h〉 in Tv,
phaseN′(〈v, h〉) < phaseN′(〈v, h′〉). Moreover, for every phase
numberp > phaseN′(〈v, h〉), there is at most one child〈v, h′〉 of
〈v, h〉 such that phaseN′(〈v, h′〉) = p.

By using the previous lemma we can upper-bound the number
of nodes of the sub-tree ofTv rooted in any internal node ofTv,
for every nodev of N . Let f : [k] → N defined as:f(i) =
1 +

∑k

j=i+1 f(j) for every i ∈ [k − 1], andf(k) = 1. By a
simple calculation it is easy to prove thatf(i) = 2k−i. Thus, we
can upper-bound the number of nodes of any subtree ofTv rooted
in an internal node〈v, h〉 with f(phaseN′(〈v, h〉)).

Now by instantiating Lemma B.6, we have that

dv ≤ 1 + f(1) +
k∑

i=1

f(i) = 2k + 2k−1
,

and by Lemma B.2 follows that the width of the tree decomposition
can-td(N) of N is at most2k + 2k−1 + 1.

THEOREM B.8. The tree-width of anyk-phase mNW is at most
2k + 2k−1 + 1.

B.2 Tree-width of ordered multiply nested word graph

In this section we show that the tree-width of any orderedn-nested
wordsN isO(n · 2n−1). As in the previous section, we prove such
a result by upper-bounding the number of nodes of each treeTv,
for every nodev of N .

In the following we instantiate Lemma B.5 for ordered multiply
nested words. We show that for any internal node(v, h) of the
generator tree of a nodev, the stacks of the children ofv are strictly
greater than that ofv. The reason why the stack of a child of(v, h)
cannot be lower than that ofv is because of the ordered-ness of the
stack accesses— if the back-path of a pop of stackj′ leads through
a pop of stackj, then we must have thatj ≤ j′ (the reason why it
cannotj 6= j′ is also argued below). Hence, the depth of the tree
gets bounded by the number of stacks,n, and each non-root node
has at mostn− 1 children.

LEMMA B.9. If 〈v, h〉 ∈ N ′ is a stackj node withh > 0, then (1)
the stackj′ for any child of the node〈v, h〉 is such thatj′ > j, and
(2) the stacks for the children of the node〈v, h〉 are all distinct.

Proof Case (2) follows from Lemma B.4. Case (1) is proved by
contradiction and we distinguish two cases, one whenj′ < j and
the other one forj′ = j. Let 〈v, h′〉 be a child of〈v, h〉, and
suppose that〈v, h′〉 is a stackj′ node. Sinceh, h′ > 1, 〈v, h〉
and〈v, h′〉 are both lying on a two different paths that replace two
different pop edges ofN , saye1 = (u1, v1) ande2 = (u2, v2).
Thus, we have that〈v, h〉 <L′ 〈v1, 1〉 <L′ 〈u2, 1〉 <L′ 〈v, h′〉.
The fact thatBackPathN′(〈u2, 1〉) has to visit〈v, h〉 to reach the
matching push-j′ node of〈v2, 1〉 means that it occurs before the
pop-j 〈v1, 1〉.

Now if j′ < j, it means that there is pop-j node that comes
after a push-j′ node that has not matched yet. Sincej′ < j, this
contradicts the ordered-ness property ofN ′ and henceN . Instead,
if j′ = j thenBackPathN′(〈u2, 1〉) will never visit〈v, h〉 because
between〈v, h〉 and〈u2, 1〉 there is a pop-j node whose matching
pop occurs before〈v, h〉. 2

For everyi ∈ [n], let us define the mapf : [n] → N as
f(i) = 1 +

∑k

j=i+1 f(j) if i ∈ [n − 1] andf(n) = 1. Notice
thatf(i) = 2n−i. From Lemma B.9, It is easy see thatf(i) upper-
bounds the number of nodes of anyTv subtree rooted in one of its
internal node which is a stacki node.

Thus, from Lemma B.4 we can conclude that the following
upper-bounds the number of nodes of any treeTv.

1 + (n+ 1)f(1) = 1 + (n+ 1) · 2n−1
.

Now from Lemma B.2 we can conclude with the main theorem
of the section.

THEOREMB.10. The tree-width of any orderedn-NW is at most
n · 2n−1.

