
Getting Rid of Store-Buffers in TSO Analysis?

Mohamed Faouzi Atig1, Ahmed Bouajjani2, and Gennaro Parlato2

1 Uppsala University, Sweden, email: mohamed faouzi.atig@it.uu.se
2 LIAFA, CNRS and University Paris Diderot, France,

email: {abou+gennaro}@liafa.jussieu.fr

Abstract. We propose an approach for reducing the TSO reachability analysis
of concurrent programs to their SC reachability analysis, under some conditions
on the explored behaviors. First, we propose a linear code-to-code translation
that takes as input a concurrent program P and produces a concurrent program P′

such that, running P′ under SC yields the same set of reachable (shared) states
as running P under TSO with at most k context-switches for each thread, for a
fixed k. Basically, we show that it is possible to use only O(k) additional copies
of the shared variables of P as local variables to simulate the store buffers, even if
they are unbounded. Furthermore, we show that our translation can be extended
so that an unbounded number of context-switches is possible, under the condition
that each write operation sent to the store buffer stays there for at most k context-
switches of the thread. Experimental results show that bugs due to TSO can be
detected with small bounds, using off-the-shelf SC analysis tools.

1 Introduction

The classical memory model for concurrent programs with shared memory is the se-
quential consistency (SC) model, where the behaviors of the different threads are inter-
leaved while the order between actions of each single thread is maintained. For perfor-
mance reasons, modern multi-processors as well as compilers may reorder some mem-
ory access operations. This leads to the adoption of weak (or relaxed) memory models
such as TSO (Total Store Ordering). In this model, store operations are not immediately
visible to all threads (as in SC). Each thread is supposed to have a store buffer where
store operations are kept in order to be executed later. While the order of the store op-
erations issued by a same thread are executed (i.e., written in the main memory) in the
same order (i.e., the store buffers are FIFO), load operations by this thread can overtake
pending stores in the buffer if they concern different variables, and read values from the
main memory. Loads from a variable for which there is a store operation in the buffer
gets the value of the last of such operation. The TSO model is in some sense the kernel
of many common weak memory models [15, 19].

Verifying programs by taking into account the effect of the weak memory models
such as TSO is a nontrivial problem, both from the theoretical and the practical point of
views. Although store buffers are necessarily finite in actual machines and implemen-
tations, we should not assume any fixed bound on their size in order to reason about the
correctness of general algorithms. For safety properties, the general question to address

? Partially supported by the french ANR-09-SEGI-016 project VERIDYC.

is whether there is a size of the buffers for which the program can reach some bad con-
figuration, which is equivalent to check the reachability of bad configurations by con-
sidering unbounded buffers. This leads to the adoption of formal models (based on state
machines with queues) for which the decidability of problems such as checking state
reachability is not straightforward. It has been shown in [1] that the state reachability
problem for TSO is actually decidable (for finite-data programs), but highly complex
(nonprimitive recursive). This leaves open the problem of defining efficient verifica-
tion techniques for TSO. Necessarily, such verification techniques should be based on
upper/under-approximate analysis.

Roughly speaking, the source of complexity in TSO verification is that store buffers
can encode lossy channels, and vice-versa. Then, the issue we address in this paper is
how to define a verification approach for TSO that allows an efficient encoding of the
store buffers, i.e., in a way that does not depend on their size. More precisely, we in-
vestigate an approach for reducing, with a limited overhead (i.e., a polynomial increase
in the size of the program) the reachability problem under TSO (with unbounded store
buffers) to the same problem under SC.

Our first idea is to consider the concept of context-bounded analysis in the case
of TSO. Context-bounding has been shown (experimentally) to be a suitable notion of
behavior coverage for effective bug detection in concurrent programs running under the
SC model [14]. Moreover, this approach provides a decidable analysis (under SC) in
the case of programs with recursive procedure calls [17]. In this paper, we extend this
concept to TSO as follows. We consider that a context in this case is a computation
segment where only one thread is active, and where all updates of the main memory use
store operations taken from the store buffer of that thread. Then, we prove that for every
fixed bound k, and for every concurrent program P, it is possible to construct, using a
code-to-code translation, another concurrent program P′ such that running P′ under SC
yields the same set of reachable (shared) states as running P under TSO with at most
k context-switches for each thread. Our translation preserves the class of the original
program in the sense that P and P′ have the same features (e.g., recursive procedure
calls, dynamic creation of threads, data manipulation). Basically, we show that encoding
store buffers can be done using O(k) additional copies of the shared variables as local
variables. The obtained program has the same type of data structures and variables and
the same control features (recursion, dynamic thread creation) as the original one. As a
consequence, we obtain for instance that for finite-data programs, even when recursion
is allowed, the context-bounded analysis of TSO programs is decidable (whereas the
unrestricted reachability problem in this case is undecidable as in SC).

The translation we provide from TSO to SC, regardless of the decidability issue,
does not depend fundamentally from the fact that we have a finite number of context
switches for each thread. The key property we use is the fact that each store operation
produced by some thread cannot stay in its store buffer for more than a bounded number
of context switches of that thread. (This of course does not exclude that each thread
may have an unbounded number of context switches.) Therefore, we define a notion for
restricting the set of analyzed behaviors of TSO programs which consists in bounding
the age of each store operation in the buffers. The age of a store operation, produced
by a thread T , is the number of context switches made by T since its production. We

show that as before, for any bound on the age of all stores, it is possible to translate
the reachability problem from TSO to SC. For the case of programs with recursion this
translation does not provide a decision procedure. (The targeted class of programs is
concurrent programs with an unbounded number of context switches.) However, in the
case of finite-data programs without recursive procedures, this translation provides a
decision procedure for the TSO reachability problem under store-age bounding (since
obviously SC reachability for finite-state concurrent programs is decidable).

Our code-to-code translations allow to smoothly transfer present and future decid-
ability and complexity results from the SC to the TSO case for the same class of pro-
grams. More importantly, our translations allow to use existing analysis and verification
tools designed for SC in order to perform the same kind of analysis and verification for
TSO. To show its practicability, we have applied our approach in checking that standard
mutual exclusion protocols for SC are incorrect under TSO, using the tools POIROT [10]
and ESBMC [4]. In our experiments, bugs appear for small bounds (≤ 2).

Related work. Context-bounded analysis has been developed in a series of paper in
the recent year [17, 3, 14, 11, 8, 9]. So far, it has been considered only for the SC mem-
ory model. As far as we know, the only works addressing the verification problem for
TSO programs with unbounded store buffers are [1, 13]. In [1], the decidability and the
complexity of the state reachability problem under TSO (and other memory models) is
considered for a finite number of finite-state threads. The decision procedure for TSO
given in that paper is based on a reduction to the reachability problem in lossy chan-
nel systems, through a nontrivial and complex encoding. In [13], an approach based on
Regular Model Checking is adopted. The paper proposes techniques for computing the
set of reachable configurations in TSO programs. If the algorithm terminates, it provides
the precise set of reachable configurations, however termination is not guaranteed.

2 Concurrent Programs

We define in this section the class of programs we consider. Basically, we consider
concurrent programs with procedure calls and dynamic thread creation. We give the
syntax of these programs and describe their semantics according to both SC (Sequential
Consistency) and TSO (Total Store Order) memory models.

2.1 Syntax
The syntax of concurrent programs is given by the grammar in Fig. 1. A program has a
finite set of processes defining the code executed by parallel threads that can be created
dynamically by the spawn statement. The program has a distinguished process main
that is initially executed to start running the program. We assume that there is a finite
number of variables Svar that are shared by all the threads. They are used for the com-
munication between threads at context switch points. We also assume that there is a
finite number of variables Gvar that are global to all procedures. During its execution,
each thread has its own copy of these global variables (that are not shared with the other
threads) which can be used for value passing at procedure calls and returns. We consider
that variables range over some (potentially infinite) data domain D. We assume that we
dispose of a language of expressions 〈expr〉 interpreted over D, and of a language of

predicates 〈pred〉 on global variables ranging over D. The program has a finite num-
ber of control locations Loc. Its code is a nonempty sequence of labelled statements
loc : 〈stmt〉 where loc is a control location, and 〈stmt〉 belongs to a simple language
of C-like statements.

〈pgm〉 ::= Svar s̄ Gvar ḡ 〈main〉〈process〉∗〈procedure〉∗
〈main〉 ::= main p begin 〈lstmt〉+ end

〈process〉 ::= process p begin 〈lstmt〉+ end
〈procedure〉 ::= procedure f begin 〈lstmt〉+ end

〈lstmt〉 ::= loc : 〈stmt〉;
〈stmt〉 ::= 〈simp stmt〉 | 〈comp stmt〉 | 〈sync stmt〉

〈simp stmt〉 ::= skip | assume(〈pred〉) | assert(〈pred〉) | ḡ := 〈expr〉 | call f | return
〈comp stmt〉 ::= if(〈pred〉) then 〈lstmt〉+ else 〈lstmt〉+ fi | while (〈pred〉) do 〈lstmt〉+ od
〈sync stmt〉 ::= atomic begin | atomic end | spawn p | fence | g := s | s := g

Fig. 1. The grammar for concurrent programs

2.2 SC semantics

We describe the semantics informally and progressively. Let us first consider the case of
sequential programs where statements are restricted to simple statements 〈simp stmt〉
and composed statements 〈comp stmt〉. Then, the program has a single thread that can
make procedure calls and manipulate only global variables. In that case, shared vari-
ables are omitted, and a configuration can be represented by a triple 〈globals,loc,stack〉
where globals is a valuation of the global variables, loc is a control location, and stack
is a content of the call stack. The elements of this stack are the control locations of
the pending procedure calls. A transition relation between these configurations can be
defined as usual. At a procedure call, the current location of the caller is pushed in the
stack, and the control moves to the initial location of the callee. At a procedure return,
the first control location in the stack is popped, and the control moves to that location.

Now, for the general case, a concurrent program has several parallel threads
T1, . . . ,Tn that have been created using the spawn statement. As mentioned above, each
thread has its own copy of the global variables Gvar that is used throughout its pro-
cedure calls and returns, and all the threads share the variables in Svar. Then, a SC-
configuration is a tuple of the form 〈shared, thread1, . . . , threadn〉 for some n≥ 1, where
shared is a valuation of the shared variables, and for each i ∈ {1, . . . ,n}, threadi is the
local configuration of thread Ti. Such local configuration is defined as for a sequential
program by a triple 〈globalsi,loci,stacki〉, plus an additional flag criticali that indi-
cates if the current thread is executing a critical section of the code that has to be exe-
cuted atomically (without interference of other threads). When the thread executes an
atomic begin statement, this flag is set to 1, and it is set to 0 at the next atomic end.
The spawn statement creates a new thread, making the configuration of the program
grow by the addition of the local configuration of the new thread (i.e., the number n of
threads can get arbitrarily large, in general). Actions of different threads are interleaved
in a nondeterministic way, under the restriction that if a thread T has opened a criti-
cal section, no other thread can execute an action until T closes its section. In the SC
model, write operations to shared variables are immediately visible to all threads. Then,
a transition relation between global configurations is defined, where at each step one

single thread is active. We denote this relation i=⇒SC where i ∈ {1, . . . ,n} is the index
of the thread Ti that has performed the corresponding step.

2.3 TSO semantics
In the TSO memory model, the SC semantics is relaxed by allowing that read opera-
tions can overtake write operations by the same thread on different shared variables.
This corresponds to the use of FIFO buffers where write operations to shared vari-
ables can be stored and executed in a delayed way, allowing read operations from the
main memory (but on different variables) to overtake them. We define hereafter an op-
erational semantics corresponding to this memory model, in the spirit of the formal
model defined in [1]. A store buffer is associated with each thread. Then, a global TSO-
configuration of the program is defined as in the SC case, except that a local configura-
tion of a thread includes also the content of its store buffer, i.e., it is a tuple of the form
〈globalsi,loci,stacki,criticali,bufferi〉. Then, the semantics is defined as for SC, except
for assignment operations involving shared variables, and for the synchronization ac-
tions atomic begin and atomic end. Let us consider each of these cases, and assume
that the active thread is Ti: For an assignment of the form s := g that writes some value
d (the one stored in g) to the shared variable s, a pair (s,d) is sent to the store buffer,
that is, the buffer of Ti is updated to buffer′i = (s,d)bufferi. For an assignment of the
form g := s that loads a value from the shared variable s to the variable g, two cases
can occur. First, if a pair (s,d) is still pending in bufferi, then the load returns the value
d corresponding to the last of such pair in the buffer. Otherwise, the returned value is
the one stored for s in the main memory. As for atomic begin and atomic end, they
have the same semantics as in the SC cases, except that it is required that their execution
can only occur when bufferi is empty. Notice that these statements allow in particular
to encode fences, i.e., actions that cannot be reordered w.r.t. any other actions. Indeed,
a fence can be encoded as atomic begin;atomic end.

In addition to transitions due to the different threads, memory updates can occur at
any time. A memory update consists in getting some (s,d) from some store buffer (of
any thread) and updating the value of s in the main memory to d, i.e., if for some j ∈
{1, . . . ,n}, buffer j = buffer′j(s,d), then d is stored in the main memory as a new value
for s, and the buffer of Tj is updated to buffer′j. Then, we can define a transition relation

between global configurations α=⇒T SO, where α is equal to the index j ∈ {1, . . . ,n} if
the transition corresponds to a memory update using buffer j, or otherwise, to the index
j of the thread Tj that has performed the transition step.

2.4 Reachability problems

Let] ∈ {SC,T SO}. We define =⇒] to be the union of the relations i=⇒] for all i ∈
{1, . . . ,n}, and we denote by ∗=⇒] the reflexive-transitive closure of =⇒].

Then, the]-reachability problem is, given a]-configuration γ and a valuation of the
shared variables shared, to determine if there is a]-configuration γ′ such that: (1) the
valuation of the shared variables in γ′ is precisely shared, and (2) γ

∗=⇒] γ′. In such a
case, we say that γ′ and shared are]-reachable from γ.

Let us consider a computation ρ = γ0
α0=⇒] γ1

α1=⇒] γ2 · · ·
αm−1=⇒] γm. A context-switch

point in ρ is a configuration γ j, for some j ≥ 1, such that α j−1 6= α j. A computation

round of a thread Ti in ρ is a computation segment (1) occurring between two consec-
utive points in ρ that are either context-switch or extremal points, and (2) where all
transitions are labeled by the same index i, i.e., all transitions are either made by Ti,
or are memory updates using the store buffer of Ti (in the case of TSO). Clearly, every
computation can be seen as a sequence of computation rounds of different threads. In
general, the number of rounds that a thread can have along a computation is unbounded.

Given a bound k∈N, the k-round]-reachability problem is, given a]-configurations
γ and a valuation of the shared variables shared, to determine if there is a]-configuration
γ′ such that: (1) the valuation of the shared variables in γ′ is precisely shared, and (2) γ′

is reachable from γ by a computation where every thread Ti has at most k computation
rounds. In that case, we say that γ′ and shared are k-round]-reachable from γ.

3 Bounded-round reachability: From TSO to SC
In this section we provide a code-to-code translation that, given a concurrent program P
and a fixed bound k ∈ N, builds another concurrent program P′ which simulates P with
the property that for any shared state shared, shared is k-round TSO-reachable in P iff
shared is k-round SC-reachable in P′. The interesting feature of our translation is that
the size of the constructed program P′ is linear in the size of P. Furthermore, P′ is in the
same class of programs as P in the sense that it uses the same kind of control primitives
(procedure calls and thread creation) and the same kind of data-structures and variables;
the encoding of the unbounded store buffers requires only adding, as global variables,
(k +1) copies of the shared variables and k Boolean variables per process.

In the following, we assume that the number of rounds that a thread of P can have
along any computation is bounded by (k+1), and these rounds are indexed from 0 to k.

3.1 Simulating store buffers: Case k = 1

Before giving the details of the translation, let us present the main ideas behind it and
justify its correctness. Assume (for the moment) that k = 1. Then, let us focus on the
behavior of one particular thread, say T , and consider its computation rounds and its
interactions with its environment (i.e., the set of all the other threads) at context switch
points. For that, let us project computations on what is visible to T , i.e., the configura-
tions are projected on the shared variables and the local configuration of T , and we only
consider the two computation rounds of T which are of the form:

〈shared0,(globals0,loc0,stack0,critical0,buffer0)〉
∗=⇒T SO

〈shared′0,(globals1,loc1,stack1,critical1,buffer1)〉 (1)

〈shared1,(globals1,loc1,stack1,critical1,buffer1)〉
∗=⇒T SO

〈shared′1,(globals2,loc2,stack2,critical2,buffer2)〉 (2)

Notice that the local configurations of T at the end of round 0 and at the beginning of
the round 1 are the same.
Encoding the store buffers. In the following, we show that we can use a finite number
of global variables to encode the (unbounded) store buffers. This can be done based
on two main observations. First, in order to execute correctly a load operation of T on
some shared variable x, we need to know whether a store operation on x is still pending
in its store buffer, and in this case, we need the last value of such operation, or otherwise

we need the value of x in the main memory. Since in each round, only T is active and
only operations in its store buffer can be used to modify the main memory, the number
of information needed to execute correctly loads is finite and corresponds to the last
values written by T to each of the variables composed with the initial content of the
main memory (at the beginning of the round). For this purpose, we introduce a vector
of data named View which is indexed with the shared variables of P. More precisely,
View[x] contains the valuation for the load of the variable x.

On the other hand, the order in which store operations of T (sent to the store buffer)
on different variables have been consumed (written into the main memory) is not impor-
tant. In fact, only the last consumed store operation to each variable is relevant. Again,
this is true because only T is active during a round, and only its own store buffer can
be used to update the main memory. Therefore, given a round j we also define (1) a
Boolean vector Mask j such that Mask j[x] holds if there is a store operation on x in the
buffer of T that is used to update the main memory at round j, and (2) a vector of data
Queue j such that, if Mask j[x] holds then Queue j[x] contains the last value that will be
written in the shared memory corresponding to x at round j (otherwise it is undefined).

Let us consider the concurrent program P′ running under SC built from the con-
current program P by adding to each process of P the following global variables:
(1) a vector of data named View, (2) two Boolean vectors Mask0 and Mask1, and
(3) two vectors of data Queue0 and Queue1. Then, for any local TSO configuration
〈shared,(globals,loc,stack,critical,buffer)〉 of P, we can associate the following local SC
configuration 〈shared,((globals,View,Mask0,Mask1,Queue0,Queue1),loc,stack,critical)〉 of
P′ such that the following conditions are satisfied: (i) the value of View[x] corresponds
to the value of the last store operation to x still pending in the store buffer buffer if such
operation exists, otherwise the value View[x] is the value of the variable x in the main
memory, and (ii) for every j ∈ {0,1}, Mask j[x] holds true iff at least one store operation
on x pending in the store buffer buffer will update the shared memory in round j, and
Queue j[x] contains the last pending value written into x and consumed at round j.

Simulation of P by P′. In the following, we construct for any two computation rounds
of a thread of P, a two computation rounds of a thread of P′ such that the invariants
between the configurations of P and P′ are preserved along the simulation.

For the issue of updating the main memory and of passing the store buffer from a
round to the next one. We assume w.l.o.g. that the store buffer of any thread of P is
empty at the end of the considered computation.

Let us consider first the special case where all store operations produced (sent to the
store buffer) in round j are also consumed (written to the main memory) in the same
round. It is actually possible to consider that all stores are immediately written to the
main memory without store buffering, i.e., as in the SC model.

Consider now the case where not all stores produced in round 0 are consumed in
round 0. So for instance, at the end of the execution of round 0 given by (1), we must
ensure that the main memory contains shared′0, and we must pass buffer1 to the sec-
ond round. The computation in round 0 can be seen as the concatenation of two sub-
computations, ρ0

0 where all produced stores are consumed in round 0, followed by ρ0
1

where all stores are consumed in round 1. (Notice that, since the store buffer is a FIFO
queue, store operations that are consumed in round 0 are necessarily performed (i.e.,

sent to the buffer) by T before those that will remain for round 1.) Then, it is clear that
shared′0 is the result of executing ρ0

0, and buffer1 contains all stores produced in ρ0
1.

During the simulation of round 0 by P′, the point p separating ρ0
0 and ρ0

1 is nondeter-
ministically guessed. The stores produced along the segment ρ0

0 are written immediately
to the main memory as soon as they are produced. So, when the point p is reached, the
content of the main memory is precisely shared′0. During the simulation of ρ0

1, two
operations are performed by P′: (1) maintaining the view of T in round 0 by updating
View, and (2) keeping in Mask1 and Queue1 the information about the last values sent
to each variable in ρ0

1. So, at the end of round 0, the pair Mask1 and Queue1 represent
the summary of buffer1.

The simulation of round 1 by P′ starts from the new state of the shared memory
shared1 (which may be different from shared′0 as other threads could have changed it).
Then, the main memory is immediately updated by P′ using the content of Mask1 and
Queue1. Intuitively, since all stores in buffer1 are supposed to be consumed in round
1, and again since T is the only active thread, we execute all these store operations at
the beginning of round 1. The vector View is now updated as follows. Starting from
the view obtained at the end of the previous round, we only change the valuation of all
those variables x for which no store operations are pending in the store buffer for it. For
all such variables x we update its valuation with the one of x contained in the shared
memory (View[x] := x). Now, the simulation of round 1 can proceed. Since all stores
produced in this last round are supposed to be consumed by the end of this round, they
are immediately written into the shared memory.

3.2 Simulating store buffers: General case
The generalization to bounds k greater than 1 requires some care. The additional dif-
ficulty comes from the fact that stores produced at some round will not necessarily be
consumed in the next one (as in the previous case), but may stay in the buffer for several
rounds. We start by defining the set of shared and global variables of P′, denoted S′ and
G′ respectively, and describe the role they play in P′:
Shared variables: the set of shared variables of P and P′ are the same, that is, S′ = S,

with domP(x) = domP′(x) for every x ∈ S.
Global variables: The set of global variables P′ is defined as

G′ = G∪
(Sk

j=0(Queue j ∪Mask j)
)
∪View∪{r TSO,r SC,sim}, where

– for each j ∈ {0, . . . ,k}, Queue j = {queue j x | x ∈ S}, and
domP′(queue j x) = domP(x) for every x ∈ S;

– for each j ∈ {0, . . . ,k}, Mask j = {mask j x | x∈ S}, and domP′(queue j x) =
{true,false} for every x ∈ S;

– View = {view x | x ∈ S}, with domP′(view x) = domP(x) for every x ∈ S;
– r TSO and r SC are two fresh variables whose domain is the set of round in-

dices, that is, {0, . . . ,k};
– sim is a new variable whose domain is {true,false}.

For sake of simplicity, we denote a variable named queue j x also as Queue j[x], for
every j and x ∈ S. Similarly, for the set Mask j and View.

Next, we associate a “meaning” to each variable of P′ which represents also the
invariant we maintain during the simulation of P by P′.

Invariants for variables. The shared variables of S′ keep the same valuation of the
ones of P at context-switch points along the simulation. The variables in View is de-
fined as in Sec. 3.1. The variables Queue j and Mask j, with j ∈ {0, . . . ,k}, maintain the
invariant that at the beginning of the simulation of round j, Mask j[x] holds true iff at
least one write operation on x produced in the previous rounds will update the shared
memory in round j, and Queue j[x] contains the last value written into x. Variable r SC
keeps track of the round under simulation, and r TSO maintains the round number in
which next write operation will be applied to the shared-memory. The global variable
sim holds true iff the thread is simulating a round (which is mainly used to detect when
a new round starts), and the global variables in G are used in the same way they were
used in P. The program P′ we are going to define maintains the invariants defined above
along all its executions.

Simulation of P by P′. Here we first describe how P′ simulates P for k = 2, and then
generalize it for arbitrary values of k. For round 0, there is of course the case where
all stores are consumed in the same round, or in round 0 and in round 1. Those cases
are similar to what we have seen for k = 1. The interesting case is when there are
stores that are consumed in round 2. Let us consider that the computation in round 0 is
the concatenation of three sub-computations ρ0

0, ρ0
1, and ρ0

2 such that ρ0
i represent the

segment where all stores are consumed in round i.
The simulation of ρ0

0 and ρ0
1 is as before. (Stores produced in ρ0

0 are written imme-
diately to the main memory, and stores produced in ρ0

1 are summarized using Mask1
and Queue1.) Then, during the simulation of ρ0

2, the sequence of stores is summarized
using a new pair of vectors Mask2 and Queue2. (Notice that stores produced in ρ0

1 and
ρ0

2 are also used in updating View in order to maintain a consistent view of the store
buffer during round 0.)

Then, at the beginning of round 1 (i.e., after the modification of the main memory
due to the context switch), the needed information about the store buffer can be obtained
by composing the contents of Mask2 and Queue2 with Mask1 and Queue1 which allow
us to compute the new valuation of View. (Indeed, the store buffer at this point contains
all stores produced in round 0 that will be consumed in rounds 1 and 2.) Moreover,
for the same reason we have already explained before, it is actually possible at this
point to write immediately to the memory all stores that are supposed to be executed
in round 1. After this update of the main memory, the simulation of round 1 can start,
and since there are stores in the buffer that will be consumed in round 2, this means
that all forthcoming stores are also going to be consumed in round 2. Therefore, during
this simulation, the vectors Mask2 and Queue2 must be updated. At the end of round 1,
these vectors contain the summary of all the stores that have been produced in rounds 0
and 1 and that will consumed in round 2.

After the change of the main memory due to the context switch, the memory content
can be updated using Mask2 and Queue2 (all stores in the buffer can be flushed), and
the simulation of round 2 can be done (by writing immediately stores to the memory).

The extension to any k should now be clear. In general, we maintain the invariant
that at the beginning of every round j, for every ` ∈ { j, . . . ,k}, the vectors Mask` and
Queue` represent the summary of all stores produced in rounds i < j that will be con-
sumed at round `. Moreover, we also know what is the round r ≥ j in which the next

produced store will be consumed. The simulation starts of round j by updating the main
memory using the content of Mask j and Queue j, and then, when r = j, the simulation
is done by writing stores to the memory, and when r is incremented (nondeterministi-
cally), the stores are used to update Maskr and Queuer.

From what we have seen above, it is possible to simulate store buffers using addi-
tional copies of the shared variables, and therefore, it is possible to simulate the TSO
behaviors of a concurrent program P under a bounded number of rounds by SC behav-
iors of a concurrent program P′. Notice that the latter is supposed to be executed under
the SC semantics without any restriction on its behaviors. In order to capture the fact
that P′ will perform only execution corresponding to rounds in P, we must enforce in
the code of P′ that the simulation of each round of P must be done in an atomic way.

3.3 Code-to-code translation
In this section we provide our code-to-code translation from P to P′. The translation
from P to P′ that we provide is quite straightforward except for particular points in the
simulation: (1) at the beginning of the simulation of each thread, (2) at the beginning of
the simulation of each round j, with j > 0, (3) at the end of the simulation of each round,
(4) during the execution of a statement x := g, where x is a shared variables, and (5) the
execution of a fence statement. Let us assume that P has S = {x 1,x 2, . . . ,x n} as a set
of shared variables and G as a set of global variables. Next, we describe the procedures
for these cases, which are used as building blocks for the general translation.

procedure init_thread()
begin
atomic_begin; sim := true; r_TSO := r_SC := 0;

// set the view to the shared valuation
for(i=1,i<=n,i++) do view_x_i := x_i; od

// initialize the masks
for(j=0,j<=k,j++) do mask_j_x_1:=mask_j_x_2:=...:=mask_j_x_n:= false; od
end

Fig. 2. Procedure init thread().

Init of each thread. Before starting the simulation of a thread, we set both r TSO and
r SC to 0. Then, we initialize the view-variables to the evaluation of the shared vari-
ables, as the store-buffer is initially empty and the valuation of the view coincides with
that of the shared variables. Finally, we set to false the variables of all masks. Proce-
dure init thread() is shown in Fig. 2.

Starting a new round. When a new round is “detected” we accomplish the following
operations. If the last round has been simulated we close the atomic section and block
the execution of the thread. Otherwise, we increment r SC, as well as r TSO in case it
becomes smaller than r SC (next write operation can only modify the shared memory
starting from the current round). Then we dump the part of the store-buffer that was
supposed to change the shared memory during the execution of round r SC. Let r SC=
j. The way we simulate such an operation is by using Mask j and Queue j: for every
shared variable x, we assign to x the value Queue j[x] provided Mask j[x] holds true. The
last step is that of updating the view for the current round. A variable View[x] changes
its valuation if no write operation is pending for x in the store-buffer, and its new value

is that variable x in the shared memory (View[x] := x). Procedure init round of Fig. 3
encodes the phases described above.

Finally, procedure is init round() of Fig. 4 detects that a new round has started
checking that sim holds f alse. In such a case, we open an atomic section and set sim
to true, and then call procedure init round to initialize the round.

procedure init_round()
begin
[*] if(r_SC == k) then atomic_end; assume(false);//last round simulated
[*] else
[*] if(r_TSO == r_SC) then r_TSO:=r_TSO+1; fi //update r_TSO if needed
[*] r_SC := r_SC+1; // increment of the round number
[*] fi

for(j=0,j<=k,j++) do
if (r_SC == j) then
for(i=1,i<=n,i++) do

// updating the shared memory
if (mask_j_x_i) then x_i :=queue_j_x_i; mask_j_x_i:=false; fi
// rebuild the view

[+] if (!mask_j_x_i & ... & !mask_k_x_i) then view_x_i := x_i; fi
od fi od

end
Fig. 3. Procedure init round().

Terminating a round. We terminate non-deterministically a round by setting the vari-
able sim to false and then closing the atomic section. (Next time the current thread
will be scheduled it detects that a new round is started by checking the valuation of
sim.) Procedure is end round() of Fig. 4 encoperates such operations.

Write into a shared variable. Consider a statement x := g where x and g are a shared
and global variable of P, respectively. In the simulation of such assignment, we first
update the view for x to g. The next step consists in incrementing non-deterministically
the value of the auxiliary variable r TSO which represent the round where the current
write operation will occur in the memory. Now, let r TSO = i. In case r SC is equal to
i, we update x in the shared-memory. Instead, if r SC < r TSO, we update Maski[x] to
true and Queuei[x] to g which captures that the write operation x := g will modify
the shared memory exactly at round i and it is the last operation for x. Notice that if
another write operation will be performed for x, when r TSO contains the value i, then
the value of Queuei[x] will contain only the latest operation, and the previous value will
be overwritten thus reestablishing the invariant. The procedure memory update x(g)
in Fig. 5 subsumes the operations described in Sec. 3.2.

Fences. The statement fence is simply translated into a procedure, called fence(),
that checks whether r TSO is equal to r SC and in case they are different blocks the
execution. However, before blocking it, it first executes the statement atomic end so
that other threads can continue their evolution. Fig. 4 illustrates procedure fence().

General translation. We are now ready to give the general translation by defining a
map [[·]]tr in which P′ = [[P]]tr. The definition of the translation is given in Fig. 6. The
new program P′ first declares the variables as described in Sec. 3.2.

procedure is_init_round()
begin
if (!sim) then
atomic_begin;
sim := true;
init_round();

fi
end

procedure is_end_round()
begin
if (*) then

sim := false;
atomic_end;

fi
end

procedure fence()
begin
if(r_TSO!=r_SC)
then

atomic_end;
assume(F);

fi
end

Fig. 4. Procedures is init round(), is end round(), and fence().

– mask is the list of the variables mask i x, for all i ∈ {0, . . . ,k} and x ∈ S;
– queue is the list of the variables queue i x for all i ∈ {0, . . . ,k} and x ∈ S;
– view is the list of the variables view i x for all i ∈ {0, . . . ,k} and x ∈ S.

Each process procedure starts with a call to procedure init thread() that ini-
tializes the auxiliary variables used for the simulation. Then, the translation consists of
an in-place replacement of each statement. Each statement stmt of P is translated by
the sequence of statements is init round(); [[stmt;]]tr is end round();. The call to
is init round() checks whether a new round has just started and hence appropriately
initialize the variables for the simulation of the new round; the call is end round();
allows to non-deterministically terminate a round at any point in the simulation. The re-
maining part of the translation concerns the translation of each single statement stmt:

– g := x is translated into g := Viewx;
– x := g is replaced with the procedure call memory update s(g);
– fence is translated as the call to the procedure fence();
– atomic begin (resp. atomic end;) is translated into the sequence atomic begin;
fence() (resp. fence(); atomic end);

– All remaining kind of statements remain unchanged in the translation.

procedure memory_update_x(g)
begin

view_x:=g; // updating the view
// non-deterministically increase r_TSO

[*] while (*) do if (r_TSO < k) then r_TSO:=r_TSO + 1; fi od
if (r_SC==r_TSO) then x:=g; // shared memory update
else // updating the mask and the queue
for(i=0,i<=k,i++) do

if (r_TSO==i) then mask_i_x:=true; queue_i_x:=g; fi od
fi

end Fig. 5. Procedure memory update x, for each shared variable x.

From the construction given above, and the reasoning followed in Sec. 3.2 we can
prove the following theorem:

Theorem 1. Let k be a fixed positive integer. A shared state shared is k-round T SO-
reachable in P if and only if shared is SC-reachable in P′. Furthermore, if shared is SC-
reachable in P′ then shared is k′-round T SO-reachable in P for some k′ ≤ k. Moreover,
the size of P′ is linear in the size of P.

[[Svar s̄ Gvar ḡ 〈main〉〈process〉∗〈procedure〉∗]]tr
def= Svar s̄ Gvar ḡ,mask,queue,view,r TSO,r SC,sim

[[〈main〉]]tr [[〈process〉]]∗tr[[〈procedure〉]]∗tr

[[main p begin 〈lstmt〉+ end]]tr
def= main p begin init thread(); [[〈lstmt〉]]+tr end

[[process p begin 〈lstmt〉+ end]]tr
def= process p begin init thread(); [[〈lstmt〉]]+tr end

[[procedure p begin 〈lstmt〉+ end]]tr
def= procedure p begin [[〈lstmt〉]]+tr end

[[loc : 〈stmt〉;]]tr
def= is init round(); loc : [[〈stmt〉]]tr; is end round()

[[skip]]tr
def= skip

[[if (〈pred〉) then 〈lstmt〉+ else 〈lstmt〉+ fi]]tr
def= if (〈pred〉) then [[〈lstmt〉]]+tr else [[〈lstmt〉]]+tr fi

[[while (〈pred〉) do 〈lstmt〉+ od]]tr
def= while (〈pred〉) do [[〈lstmt〉]]+tr od

[[assume (〈pred〉)]]tr
def= assume (〈pred〉)

[[assert (〈pred〉)]]tr
def= assert (〈pred〉)

[[ḡ := 〈expr〉]]tr
def= ḡ := 〈expr〉

[[call f]]tr
def= call f

[[return]]tr
def= return

[[atomic begin]]tr
def= atomic begin; fence()

[[atomic end]]tr
def= fence(); atomic end

[[spawn p]]tr
def= spawn p

[[fence]]tr
def= fence()

[[g := s]]tr
def= g := view s

[[s := g]]tr
def= memory update s(g)

Fig. 6. Translation map [[·]]tr

4 Bounded store-age reachability

In this section, we introduce a new notion for restricting the set of behaviors of concur-
rent programs to be analyzed under TSO. We impose that each store operation produced
by a thread T can not stay in the store-buffer more than k consecutive rounds. (Notice
that this notion does not restrict the number of rounds that the thread T may have.) We
show that, under this restriction, it is still possible to define a code-to-code translation
(similar to that of Sec. 3) that associates with each concurrent program P another con-
current program P′ such that running P′ under SC captures precisely the set of behaviors
of P under TSO. More precisely, we associate to each store operation an age. The age is
initialized at 0 when this store operation is produced by T and sent in the store-buffer.
Now, this age is incremented at each context-switch of thread T .

Let k ∈ N be a fixed bound. The k-store-age TSO-reachability problem is, given a
TSO-configurations γ and a valuation of the shared variables shared, to determine if
there is a TSO-configuration γ′ such that: (1) the valuation of the shared variables in γ′

is precisely shared, and (2) γ′ is reachable from γ by a computation where at each step
all the pending store operations have an age equal or less than k.

Let us consider a concurrent program P defined as in Sec. 3. In the following, we
construct another concurrent program P′ such that the k-store-age TSO-reachability
problem for P can be reduced to the SC-reachability problem for P′. The provided
code-to-code translation is very similar to the one given in Sec. 3. In fact, if we use the
previous translation to simulate a thread T of P, we need to use an unbounded number

of vectors of type Mask and Queue. The key observations (to overcome this difficulty)
are that : (1) in order to simulate a round j of a thread T , we only use vectors Maski
and Queuei with i≥ j, and (2) at each moment of the simulation of a round j, we need
only the vectors Maskl and Queuel with l ≤ j + k (since the age of any store operation
is bounded by k). Therefore, we can define our translation using only k vectors of type
Mask and Queue in a circular manner (modulo k). For instance, if the current simulated
round of the thread T is 1, the variables Mask0 and Queue0 can be used in the simulation
of the round k + 1. Technically, we introduce only two modifications in the translation
given in Sec. 3:

In Fig. 3, the piece of code marked with [*] is replaced with the following one:

[*] // update r_TSO if needed
[*] if (r_TSO == r_SC) then r_TSO := (r_TSO+1 mod k+1); fi
[*] // resetting the boolean vector mask_i
[*] if (r_SC == i) then mask_i_x_1 :=...:= mask_i_x_n := false; fi
[*] r_SC := (r_SC+1 mod k+1); // increment of the round number

In Fig. 3 the line of code marked with [+] is replaced with the following one:

[+] if (!mask_1_x_i & ... & !mask_k_x_i) then view_x_i := x_i; fi

In Fig. 5 we replace the line of code marked with [*] with the following:

[*] if ((r_SC - r_TSO) mod k+1 != 1) then r_TSO:=(r_TSO+1 mod k+1); fi

Finally, the relation between the given concurrent program P and the constructed
program P′ = [[P]]tr is given by the following theorem:

Theorem 2. A shared state shared is k-store-age T SO-reachable in P if and only if
SC-reachable in P′. Moreover, the size of P′ is linear in the size of P.

5 Experiments
To show the practicability of our approach, we have experimented its application in
detecting bugs due to the TSO semantics. For that, we have considered four well-
known mutual exclusion protocols designed for the SC semantics: Dekker’s [5], Lam-
port’s [12], Peterson’s [16], and Szymanski’s [18]. All of these protocols are incorrect
under TSO. Through our translations, we have analyzed the behaviors of these pro-
tocols under TSO using two SMT-based bounded model-checkers for SC concurrent
programs. Our experimental results show that errors due to TSO appear within few
rounds, and that off-the-shelf analysis tools designed for the SC semantics can be used
for their detection.

In more details, we consider the four protocols mentioned above instantiated for two
threads. We consider for each protocol two versions, one without fences (the original
version of the protocol) that is buggy, and one with fences (neutralizing TSO) which is
known to be correct. We have encoded each of these protocols (with and without fences)
as C programs and manually translated by using the k-store-age translation with k = 2.
We have instrumented the obtained C programs for both POIROT [10] and ESBMC [4]
– two SMT-based bounded model-checkers for SC concurrent programs.

Table 1 illustrates the results of the analysis for the four mutual exclusion protocols
we carried with both POIROT and ESBMC. The parameters L in the table indicate the

Mutual exclusion Protocols Poirot ESBMC
(L = 2) Time (s) Time (s)

Version with no fences Version with fences Version with no fences Version with fences
(Buggy for TSO) (Correct for TSO) (Buggy for TSO) (Correct for TSO)

(D = 1) (D = 1) (D = 2) (L = 2,C = 3) (L = 3,C = 4)
DEKKER 7 6 72 - 6
LAMPORT 26 110 1608 1 7
PETERSON 5 6 47 1 1
SZYMANSKI 8 6 978 1 6

Table 1. Experimental results for 4 mutual exclusion protocols by using POIROT and ESBMC.

number of loop unrolling. POIROT considers all runs by bounding L and the number of
delays (we refer to [6] for the definition of delay). In our experiments with POIROT, we
consider L = 2, and a bound D = 1 or D = 2 (= to the number of delays + 1). Turning
to ESBMC, it analyzes all executions by bounding the number of loop unrolling and
the number of context-switches. In the experiments with ESBMC, we consider a bound
L = 2 or L = 3 on the number of loop unrolling, and a bound C = 3 or C = 4 on the
number of context-switches. Both of tools are able to answer correctly, i.e., by finding
the bugs for the buggy versions, except that ESBMC does not answer correctly for the
buggy version of Dekker.)

6 Conclusion
We have presented a code-to-code translation from concurrent to concurrent programs
such that the reachable shared states of the obtained program running under SC is ex-
actly the same set of reachable shared states of the original program running under the
TSO semantics. The main characteristic of our translations is that it does not introduce
any other auxiliary storage to model store buffers but only requires few copies of the
shared variables that are local to threads in the resulted translated program (this is im-
portant for compositional analyses which track at each moment only one copy of the
locals). Furthermore, our translations produce programs of linear size with respect the
original ones, provided a constant value of k. Such characteristics allows, and this is the
main interest of our approach, the use for relaxed memory models of mature tools de-
signed for the SC semantics (such as BDD-based model-checkers [7], SMT/SAT-based
model-checkers [10, 4]) as well as tools for sequential analysis based on compositional
sequentialization techniques for SC concurrent programs [11, 8, 6].

Moreover, our translations allow to transfer decidability and complexity results from
the SC to the TSO case. In the following we discuss on the decidability/undecidability
of the k bounded-round and k-store-age TSO-reachability for concurrent programs with
variables ranging over finite domains. We consider first the case in which all processes
are non-recursive. When a finite number of threads are involved in the computation,
the problem is decidable by using the classical reachability algorithm for finite state
concurrent programs. The same problem remains decidable if we add dynamic thread
creation, by a reduction to the coverability problem for Petri nets [2]. On the other hand,
if we have at least two recursive threads involved in the computation, the k-store-age
TSO-reachability becomes undecidable for any k: For every concurrent program P we
can construct a concurrent program P′ (obtained from P by inserting a fence statement
at each control location of P) such that the SC-reachability problem for P (which is
an undecidable problem in general) can be reduced to the k-store-age TSO-reachability

problem for P′. However, by retaining recursion and using context-bounded analysis
for concurrent programs and our translation we can claim the decidability of a variety
of restrictions of the k-store-age (and k bounded-round) TSO-reachability. For instance,
TSO bounded context-switch reachability is decidable for finite number of threads [17],
as well as for bounded round-robin reachability for the parametrized case [9]. Moreover,
decidability results concerning the analysis of programs with dynamic thread creation
for k context-switches per thread [2] can also be transferred to the TSO case.

Acknowledgments. We would like to thank Akash Lal and Lucas Cordeiro for their
help with POIROT and ESBMC.

References

1. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem for
weak memory models. In POPL, pages 7–18. ACM, 2010.

2. M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent programs
with dynamic creation of threads. In TACAS, LNCS 5505, pages 107–123. Springer, 2009.

3. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of multithreaded
software with asynchronous communication. In FSTTCS, LNCS 3821, pages 348–359.
Springer, 2005.

4. L. Cordeiro and B. Fischer. Verifying multi-threaded software using SMT-based context-
bounded model checking. In ICSE. ACM/IEEE, 2011.

5. E. W. Dijkstra. Cooperating sequential processes. Technical report, Technological Univer-
sity, 1965. TR EWD-123.

6. M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. In POPL, pages 411–
422. ACM, 2011.

7. S. La Torre, P. Madhusudan, and G. Parlato. Analyzing recursive programs using a fixed-
point calculus. In PLDI, pages 211–222. ACM, 2009.

8. S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent reacha-
bility to sequential reachability. In CAV, LNCS 5643, pages 477–492. Springer, 2009.

9. S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, LNCS 6174, pages 629–644. Springer, 2010.

10. S. Lahiri, A. Lal, and S. Qadeer. Poirot. Microsoft Research.
http://research.microsoft.com/en-us/projects/poirot.

11. A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In CAV, LNCS 5123, pages 37–51. Springer, 2008.

12. L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11, 1987.
13. A. Linden and P. Wolper. An automata-based symbolic approach for verifying programs on

relaxed memory models. In SPIN, volume 6349 of LNCS, pages 212–226. Springer, 2010.
14. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multi-

threaded programs. In PLDI, pages 446–455. ACM, 2007.
15. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO (extended ver-

sion). Technical Report UCAM-CL-TR-745, Univ. of Cambridge, 2009.
16. G. L. Peterson. Myths about the mutual exclusion problem. IPL, 12(3):115–116, 1981.
17. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS,

volume 3440 of LNCS, pages 93–107. Springer, 2005.
18. B. K. Szymanski. A simple solution to lamport’s concurrent programming problem with

linear wait. In ICS, pages 621–626, 1988.
19. D. Weaver and T. Germond, editors. The SPARC Architecture Manual Version 9. PTR

Prentice Hall, 1994.

