Context-Bounded Analysis of Concurrent
Queue Systems*

Salvatore La Torre!, P. Madhusudan?, and Gennaro Parlato!:?

! Universita degli Studi di Salerno, Italy
2 University of Illinois at Urbana-Champaign, USA

Abstract. We show that the bounded context-switching reachability
problem for concurrent finite systems communicating using unbounded
FIFO queues is decidable, where in each context a process reads from
only one queue (but is allowed to write onto all other queues). Our result
also holds when individual processes are finite-state recursive programs
provided a process dequeues messages only when its local stack is empty.
We then proceed to classify architectures that admit a decidable (un-
bounded context switching) reachability problem, using the decidability
of bounded context switching. We show that the precise class of decid-
able architectures for recursive programs are the forest architectures,
while the decidable architectures for non-recursive programs are those
that do not have an undirected cycle.

1 Introduction

Networks of concurrent processes communicating via message queues form a
very natural and useful model for several classes of systems with inherent paral-
lelism. Two natural classes of systems can be modeled using such a framework:
asynchronous programs on a multi-core computer and distributed programs com-
municating on a network.

In parallel programming languages for multi-core or even single-processor sys-
tems (e.g., Java, web service design), asynchronous programming or event-driven
programmang is a common idiom that programming languages provide [T97IT3].
In order to obtain higher performance and low latency, programs are equipped
with the ability to issue tasks using asynchronous calls that immediately return,
but are processed later, either in parallel with the calling module or perhaps
much later, depending on when processors and other resources such as I/O be-
come free. Asynchronous calls are also found in event-driven programs where a
program can register callback functions that are associated to particular events
(such as a new connection arriving on a socket), and are called when the event
occurs. Programs typically call several other functions asynchronously so that
they do not get blocked waiting for them to return. The tasks issued by a system
are typically handled using queues, and we can build faithful models of these
systems as networks of processes communicating via queues.

* The first and third authors were partially supported by the MIUR grants ex-60%
2006 and 2007 Universita degli Studi di Salerno.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 299 2008.
© Springer-Verlag Berlin Heidelberg 2008

300 S. La Torre, P. Madhusudan, and G. Parlato

Distributed systems communicating via FIFO message channels also form a
natural example of networks of processes communicating via queues. Motivated
by the verification problem of distributed communication protocols, the model-
checking problem for these systems has been studied extensively, where each
process in the system is modeled using a finite-state transition system [TUT5T0].

In this paper, we study the reachability problem for finite-state processes
(and finite-state recursive processes) communicating via FIFO queues. We fol-
low the paradigm of abstraction, where we assume that each program has been
abstracted (using, for example, predicates) or modeled as a finite-state process,
and algorithmically subject to model-checking.

The main barrier to model-check queue systems is that the FIFO message
queues give an infinite state-space that is intractable: even reachability of two
processes communicating via queues with each other is undecidable. There have
been several ways to tackle the undecidability in this framework. One line of
attack has been to weaken the power of queues by assuming that messages can
get arbitrarily lost in queues; this leads to a decidable reachability problem [I]
that is appealing in the distributed protocol domain as messages indeed can
get lost, but is less natural in the event-driven programming domain as enlisted
tasks seldom get lost.

Another technique is to ignore the FIFO order of messages and model the
queue as a bag of messages, where any element of the bag can be delivered
at any time [I8[TT]. When the number of kinds of messages is bounded, this
amounts to keeping track of how many messages of each kind are present in the
bag, which can be tracked using counters. Using the fact that counter systems
without a zero-check admit a decidable reachability problem, model-checking of
these systems can be proved decidable. In the realm of event-driven programming
the assumption of modeling pending tasks as a bag is appealing because of the
nondeterministic nature of scheduling.

In this paper, we do not destroy the contents of queues nor destroy the FIFO
order, but model queues accurately. To curb undecidability, we show that the
bounded context-switching reachability problem is decidable. More precisely, a
contezt of a queueing network is defined as an (arbitrarily long) evolution of one
process that is allowed to dequeue messages from (only) one queue and enqueue
messages on all its outgoing message queues. The bounded context-switching
reachability problem asks whether a global control state is reachable through a
run that switches contexts at most k times, for a fixed value k.

Bounded context switching for recursive concurrent (non-queueing) programs
was introduced in [I6] in order to find a meaningful way to explore initial parts
of executions using algorithmic techniques. The intuition is that many errors
manifest themselves even with a short number of context-switches, and hence a
model-checker that explores thoroughly the states reached within a few context-
switches can prove effective in finding bugs. Bounded context-switching for non-
queueing programs have exhibited good coverage of state-spaces [14] and are an
appealing restriction for otherwise intractable verification problems of concurrent
programs.

Context-Bounded Analysis of Concurrent Queue Systems 301

We show the decidability of bounded context switching reachability for queue-
ing finite-state programs, which in addition can have a finite shared memory. We
show that the problem is also decidable for recursive programs, wherein each pro-
cess has a local call-stack that it can manipulate on its moves, provided each
process is well-queueing. A set of programs is well-queueing if each process de-
queues messages only when its local stack is empty. This model allows us to
capture general event-driven programs that have recursive synchronous calls,
and the well-queueing assumption is natural as the most prevalent programs
dequeue a task and execute it to completion before dequeuing the next task
(see [IRI5] for similar restrictions). We show both the above decidability results
by a reduction to the bounded phase reachability of multistack machines, which
was recently proven by us to be decidable [12].

We also study the unbounded context-switching reachability problem for queue
systems by classifying the architectures that admit decidable reachability prob-
lems. An architecture is a set of process sites and queues connecting certain
pairs of process sites. For the class of recursive programs, we show that the only
architectures with a decidable reachability problem are the directed forest archi-
tectures. This decidability result is shown using the bounded context switching
decidability result. We find this surprising: the decidability of bounded context
switching (including the notion of a context) stems from a technical result on
bounded phase multistack automata, which were defined with no queues in mind,
and yet proves to be sufficient to capture all decidable queueing architectures.

Turning to non-recursive architectures, we again provide an exact character-
ization: the precise class of decidable architectures are those whose underlying
undirected graph is a forest. The decidability for this result uses a simple idea
that queues in architectures can be reversed, and the proof of decidability of
tree architectures is considerably simpler as we can build a global finite-state
machine simulating the network with bounded-length message queues.

The paper is organized as follows. The next section defines networks of pro-
cesses communicating via queues, and the reachability and bounded context
switching reachability problems. Section 3 establishes our results on bounded
context switching reachability of queue systems using multi-stack pushdown au-
tomata. Section 4 encompasses our results on the exact class of decidable archi-
tectures for recursive and non-recursive programs, and Section 5 ends with some
conclusions.

Related Work. The idea of context-bounded analysis for concurrent systems
was introduced in [I6] where it was shown that it yields a decidable reachability
problem for shared memory recursive Boolean programs, and is a generalization
of the KISS framework proposed by Shaz Qadeer [I7]. The last two years has
seen an increasing interest in context-bounded analysis for otherwise intractable
systems, including context-bounded analysis for asynchronous dynamic push-
down networks [2], for systems with bounded visible heaps [3], and for a more
general notion of context-switching for recursive Boolean programs [12]. A recent
paper [14] shows experimentally that a few number of context-switches achieves
large coverage of state-space in multithreaded programs.

302 S. La Torre, P. Madhusudan, and G. Parlato

Message-passing queue systems has been a well-studied problem over the last
two decades, and several restrictions based on automata-theoretic analysis have
been proposed to verify such systems. These include systems with lossy chan-
nels [I], and several restricted models of queue systems, such as systems with a
single queue [I0], systems where message queues contain only one kind of mes-
sage [I5], half-duplex (and quasi-duplex) systems where only one queue can be
active and contain messages at any point [4], and reversal bounded multicounter
machines connected via a single queue [9].

Finally, asynchronous programs have been shown to have a decidable reacha-
bility problem when at any point only a single recursive process runs, enqueuing
tasks onto a bag of tasks, where enqueuing of tasks can only be performed when
the local stack is empty [18]. In a recent paper, an under and over approximation
scheme based on bounding the counters representing messages has been pro-
posed, and implemented, to solve dataflow analysis problems for asynchronous

programs [I1].

2 Queue Systems

In this section, we define networks of shared-memory processes communicating
via unbounded FIFO queues. The number of processes will be bounded, and
the state of each process will be modeled using a global finite-state control that
models the control locations of the processes, the local variables, and the global
shared memory they access. The global finite-state control can be either a non-
recursive program, or a recursive program modeled by each process having its
own call-stack that it can push and pop from.

We model any number of queues using which the processes can communicate;
each queue has a unique sending process and a unique receiving process. There
will be a finite message alphabet, but each queue has an unbounded capacity to
store messages. Processes hence communicate either using the shared-memory
(which carries only a bounded amount of information) or through queues (which
carry unbounded information).

An architecture is a structure (P, Q, Sender, Receiver) where P is a finite set
of processes, @ is a finite set of queues, and Sender: Q — P and Receiver: () — P
are two functions that assign a unique sender process and receiver process for
each queue in @, respectively. We assume that the sender of a queue cannot be
its receiver as well: i.e. for every ¢ € Q, Sender(q) # Receiver(q).

We refer to processes in P using notations such as p, p’, p;, D, etc., and queues
using q, ¢, ete.

Recursive Programs Communicating Via Queues

Let II be a finite message alphabet. Consider an architecture
A=(P, Q, Sender, Receiver). An action of a process p € P (over IT) is of
one of the following forms:

— p:send(q,m) where m € II, q € Q, and Sender(q) = p.

Context-Bounded Analysis of Concurrent Queue Systems 303

— p:recv(q,m) where m € II, g € Q, and Receiver(q) = p.
— p:int or p: call or p: ret.

Intuitively, a “p:int” action is an internal action of process p that does not
manipulate queues, “p: send(q, m)” is an action where process p enqueues the
message m on queue ¢ (the receiver is predetermined as the receiver process for
the queue), and “p: recv(q, m)” corresponds to the action where p receives and
dequeues the message m from queue q.

The stack actions are those of the form p: call or p:ret. The stack action
p: call corresponds to a local call of a procedure in process p, where the process
pushes onto its local stack some data (the valuation of its local variables) and
moves to a new state. The stack action p: ret corresponds to a return from a
procedure where the local stack is popped and the process moves to a new state
that depends on the current state and the data popped from the stack.

Let Act, denote the set of actions of p, and let Act = |, p Act), denote the
set of all actions. Let Calls denote the set of call actions {p: call | p € P} and
Rets denote the set of return actions {p:ret | p € P}.

Definition 1. A recursive queueing concurrent program (RQCP) over an ar-
chitecture (P, Q, Sender, Receiver) is a structure (S, so, I, I, {Tp}pep), where S
is a finite set of states, so € S is an initial state, Il is a finite message alphabet,
and I" is a finite stack alphabet. If Act, is the set of actions of process p on the
message alphabet II, then T, is a set of transitions:
T, C (S x (Acty \ {p: call, p: ret}) x S)U (S x {p: call} x S x I)
U (S x {p:ret} x I' x S).

The size of an RQCP as above is the size of the tuple representation.

A configuration of an RQCP R = (S,s0,1,I,{Tp}pecp) is a tuple

(s, {op}tpepr, {lq}qcq) where s € S, for each p € P, 0, € I'* is the content

of the local stack of p, and for each queue ¢ € Q, iy € IT* is the content of q
Transitions between configurations are defined as follows:

(5. {op}per: {a}aeq) “ (5" oy bper {1 }oeq) it

[Internal | act = p: int and there is a transition (s, p:int,s’) € Ty such that
— for every q € Q, p;, = j1q, and
!
— for every p € P, 0, = 0p.
[Send | act = p: send(q, m) and there is a transition
(s,p: send(q,m), s") € T such that
— Hg = m.fig, and fo/r every q # q, Hy = fiq
— for every p € P, 0}, = 0p.
[Receive | act = p: recv(g, m) and there is a transition
(s,p:recv(q,m), s’) € Tj such that
— Mg = pg-m and for every q # q, pg = pq
— for every p € P, 0, = 0.

! The top of the stack of p is at the beginning of op, and the last message enqueued
onto ¢ is at the beginning of 4, by convention.

304 S. La Torre, P. Madhusudan, and G. Parlato

[Call | act = p: call and there is a transition (s,prcall,s’,7) € T; such that
— O'A = 05, and for every p # D, O’ = 0p,
— for every ¢ € Q, py = g

[Return | act = p: ret and there is a transition (s, p: ret,, s’) € T such that
— o5 = ’}/0'1% and for every p # p, 0, = 0p,
— for every q € Q, i, = juq-

act act act
A run of an RQCP is a sequence of transitions cg Lo 2 e9.. " Cp

with ¢o = (s, {op}per, {ltq}qeq), Where s = s¢ is the initial state, o, = € for
each p € P (initial stacks are empty), and p, = € for each ¢ € Q (1n1t1a1 queues

are empty). A state 5 is said to be reachable if there is a run ¢ ach, c1 actz

acty

€2 ... — ¢, such that ¢, = (5, {op}per, {lq}qc)-

The reachability problem for recursive programs communicating via queues is
to determine, given an RQCP (S, so, I1, I, {T},} pep) and a set of target states
T C S, whether any s € T is reachable.

Non-recursive programs communicating via queues

A non-recursive queueing concurrent program (QCP) over the processes P, mes-
sage alphabet II, and queues @ is an RQCP (S, so,II, I',{T,}pep) in which
there are no transitions on calls and returns (i.e. there is no transition on an
action of the form p: call or p:ret in T,). Consequently, we remove the stack
alphabet I' from its description, and its configurations do not involve the local
stacks of each process. A QCP hence is of the form (S, sg, II, {T,}pcp) where
T, C (S x (Acty \ {p: call, p: ret}) x S), a configuration of a QCP is of the form
(s,{iq}qeq), and the semantics of transitions on configurations are the appro-
priately simplified versions of the rules for internal, send, and receive actions
described above. The reachability problem is analogously defined.

Bounded context switching

It is well-known that the reachability problem for even non-recursive queueing
concurrent programs is undecidable (see Lemma [§ later). The undecidability
result holds even for a very simple architecture with only two processes p and
p’, and two queues, one from p to p’ and the other from p’ to p.

Since reachability is undecidable for queue systems, we study bounded context-
switching of queue systems. Intuitively, a context of a queueing system is a
sequence of moves where only one process evolves, dequeuing at most one queue
q (but possibly enqueuing messages on any number of queues that it can write
to). The bounded-context switching reachability problem for an RQCP (or QCP)
is the problem of finding whether a target set of states is reachable by some run
that switches contexts at most k times, for an a priori fixed bound k.

Formally, for any p € P, ¢ € @ such that Receiver(q) = p, let
Acty, o ={p:int, p: call, p: ret} U {p: send(q’,m) | ¢’ € Q, Sender(q')=p, m € IT}
U {p: recv(q,m) | m € IT}

denote the set of actions of p with dequeue actions acting only on queue ¢. A run

Co ach c1 actz, , 4ctn ¢p has at most k context switches if the cardinality

of the set {i | act € Actyg,activn & Actyq,p € Pog € Q} is bounded by k.

Context-Bounded Analysis of Concurrent Queue Systems 305

The bounded context-switching reachability problem is to determine, given an
RQCP (or QCP), a target set of states T', and a bound k € N, whether any state
in T is reachable on a run that has at most k£ context switches.

Well-queueing processes
An RQCP is said to be well-queueing if every process p dequeues a message

from a queue only when its local stack is empty. Formally, an RQCP is well-

. . . act act acty
queueing if there is no run of the form ¢y —= ¢ — ...¢p—1 — ¢, where

cn—1 = (8, {op}per, {lq}qecq), actn_1 = p:recv(q,m) and o, # €.

3 The Bounded Context-Switching Reachability Problem

In this section, we recall multi-stack pushdown systems and show that bounded
context-switching reachability for both non-recursive and well-queueing recursive
concurrent programs can be decided via a reduction to bounded phase reacha-
bility for multi-stack pushdown systems [12].

Multi-stack Pushdown Systems

A multi-stack pushdown system is the natural extension of standard pushdown
system with multiple stacks. Formally, a multi-stack pushdown system (MSPS)
is M = (S5, s0, St, I, A) where S is a finite set of states, sg € S is the initial state,
St is a finite set of stacks, I" is the stack alphabet and A = Ay U Apysn U Apop
is the transition relation with Ay € S % 5, Apyer, € 5 x St x I' x S, and
Apop €S xSt x I'x S.

A configuration ¢ of an MSPS M is a tuple (s, {0t }stest), where s € S is the
current control state of M, and for every st € St, o5 € I'* denotes the content
of stack st (we assume that the leftmost symbol of st is the top of the stack).
The initial configuration of M is (so, {0st }stest), where for every st € St, o5 = €
denoting that each stack is empty. The semantics of M is given by defining the
transition relation induced by A on the set of configurations of M. We write
(s, {ost}stest) 2 (s, {oh; }stest) iff one of the following cases holds: (unless it is
differently specified, we assume that og = o, for every st € St)

[Internal move] ¢ is (s,s") € Ay

ush onto stack st] 6 is (s, st,a,s’) € Apysn and o, = a.0z.
Push onto stack si] 6 is (s, sl a,8') € Ay and 0%, = a.0,
[Pop from stack st] 6 is (s,st,a,8') € Apop and o5, = a.o’,.

. . s s bn
A run of an MSPS M is a sequence of transitions cg — ¢; — ¢o... == Cp. A

state 5 € S is reachable if there exists a run cg LN c1 b2, Co... LN ¢, such that
¢p is the initial configuration, and ¢,, is a configuration of the form (8, {os: }stest)-

A phase of a run is a portion of the run in which the pop moves are all from
the same stack. For a positive integer k, a k-phase run is a run that is composed
of at most k phases. Formally, an M run ¢ b, c1 fa, Co... LN ¢ is k-phase if
we can split the sequence 67 ...9d, into a; ...ay such that: for each i =1,... k,

306 S. La Torre, P. Madhusudan, and G. Parlato

there is a stack st € St such that each rule 6 € A,,, within o; is of the form
(s, st,a,s’). Therefore, in a k-phase run the stack from which we pop symbols is
changed at most k — 1 times (phase-switches). A state § is k-phase reachable if
it is reachable on a k-phase run. The bounded phase reachability problem is the
problem of determining whether, given an MSPS M, a set of states T, and a
positive integer k, there is a state of T' that is reachable on a k-phase run.

Theorem 1. [7Z] The bounded phase reachability problem for MSPSs is decid-
able. Moreover, the problem can be solved in time exponential in the number of
states and double exponential in the number of phases.

Decidability of Bounded Context-Switching Reachability
We start showing that context-switching reachability for QCPs is decidable.

Theorem 2. The bounded context-switching reachability problem for non-
recursive queuing concurrent programs is decidable. Moreover, the problem can
be solved in time double exponential in the number of context-switches, and ex-
ponential in the size of the program.

Proof. We reduce the reachability problem up to k context switches for QCPs
to the reachability problem up to 2k + 1 phases for MSPSs. Fix a QCP A over
an architecture (P, @, Sender, Receiver) and let S be the set of states of A. We
construct an MSPS M which simulates A by keeping track of the state of A in
its control state, and stores the contents of each queue ¢ in a stack st;, and has
an additional work stack st.

Let us denote a context with (p, q), where p is the active process dequeuing
from ¢ in the context. Fix a run of A and let (p, ¢) be the context at a particular
point in the run. M is defined such that the following invariant is preserved: the
content of any queue g # ¢ is stored in st, with the rear at the top, stack stz is
empty and the content of queue ¢ is stored in st with the front at the top.

An internal move of A is simulated by an internal move of M; sending a
message m to a queue ¢ # ¢ corresponds to push m onto stack sty; receiving a
message m from ¢ corresponds to pop m from the work stack st. Consequently,
in one context, there are no phase switches in the simulating machine M. On
switching context from (p,q) to (p’,q’), M moves the content of st onto stack
stz and then the content of stack sty onto st. Observe that the first of these
two tasks does not cause a change of phase in the run on M since st is the stack
which is popped while simulating the context (p,q). The second task requires
popping from a new stack and thus causes a change of phase.

We can design the described MSPS M such that it has states polynomial in
|S]. Therefore, reachability in A within &k context-switches reduces to reachability
within 2k 4 1 phases in M (k + 1 phases are required for the k + 1 contexts and
k additional phases for context switching). The stated complexity bound thus
follows form Theorem [I1 O

Context-Bounded Analysis of Concurrent Queue Systems 307

The construction sketched in the above proof can be adapted to show the decid-
ability of bounded context-switching reachability for well-queueing RQCPs:

Theorem 3. The bounded context-switching reachability problem for well-
queueing recursive concurrent programs is decidable. Moreover, the problem can
be solved in time double exponential in the number of context-switches, and ex-
ponential in the size of the program.

Proof. Let R be a well-queueing RQCP. We will simulate R using an MSPS as
in the proof of Theorem[2 The MSPS will have one stack st for every queue ¢,
and an extra work stack st, as before, but in addition it will have one stack st,,
for every process p.

When the current context is (p,q), we will maintain the invariant that the
local stack of all processes p (p # p) in the RQCP is stored in the reverse order
in stack stp, and the queue contents of each queue ¢ (¢ # q) are stored in the
stack st, as before; the stacks stz and stz will be empty and the stack st will
have the content of queue ¢ and on top of it the content of the local stack of p.
Internal moves and enqueuing operations are performed as before, and calls and
returns are performed by pushing and popping the work-stack. When process
p dequeues from queue ¢, its local stack must be empty (by the well-queueing
assumption), and hence the next message to be dequeued from ¢ will be at the
top of the stack st, and can hence be popped. When the context switches from
(p,q) to (P',q’), we transfer the top portion of stack st onto stack stz and the
bottom portion onto the stack stz, and then transfer the contents of stack stz
to st followed by the contents of stack st5 to st. This requires two extra phases
and maintains the invariant. The complexity follows from Theorem [l a

The Well-Queueing Assumption and the Notion of Context

Reachability for recursive queueing concurrent programs that are not well-
queueing is complex and even the simplest of architectures has an undecidable
bounded context-switching reachability problem:

Theorem 4. The bounded context-switching reachability prob-

lem for RQCPs (which need not be well-queueing) is undecid-
able for the architecture containing two processes p and p’

with a single queue connecting p to p’. The undecidability Te-

sult holds even if we restrict to runs with at most a single context switch.

Also relaxing the requirement that in each context a process can dequeue at
most from one queue immediately leads to undecidability.

Theorem 5. The bounded context-switching reachability problem for QCPs
(hence for well-queueing RQCPs) where a process can dequeue from more than
one queue in each context is undecidable. The undecidability result holds even if
we restrict to runs with just one context switch and allow processes to dequeue
from at most two queues in each context.

308 S. La Torre, P. Madhusudan, and G. Parlato

4 TUnbounded Context-Switching: Decidable
Architectures

In this section, we study the class of architectures for which unbounded context-
switching reachability (or simply reachability) is decidable. Our goal is to give
exact characterizations of decidable architectures for the framework where in-
dividual processes are non-recursive, as well as the framework where individual
processes are recursive. We restrict ourselves to studying the reachability prob-
lem for programs that have no shared memory and are well-queueing. As we show
later in this section (Section [L3]), programs with shared memory and recursive
programs that are not well-queueing are undecidable even for the simplest of
architectures. We prove that for recursive well-queueing concurrent programs
with no shared memory, the class of decidable architectures is precisely the class
of directed forest architectures.For the non-recursive queueing concurrent pro-
grams with no shared memory, we show that the class of decidable architectures
is precisely the polyforest architectures (a polyforest is a set of disjoint polytrees;
a polytree is an architecture whose underlying undirected graph is a tree).

Processes with no shared memory: A recursive queueing concurrent pro-
gram (S, so, II, I, {T}, } pep) is said to have no shared memory if its state space
is the product of local state-spaces and each move of a process depends only on
its local state, and updates only its local state. In other words, S = Il,cpSp,
where S, is a finite set of local states of process p, and there is a local transition
relation LT), (for each p € P) where

LT, C (S, x (Acty \ {p: call,p:ret}) x Sp) U (Sp x {p: call} x Sp x I)
U (Sp x {p:ret} x I' x Sp)

such that for all p € P and s,s’ € S:

— for every a € (Act, \ {p: call, p: ret}),

(5,0,5') € Ty iff ((slpl.a,5'p]) € LT, and /] = s[p/] for every p # p');
— for every vy € I, (s,p: call, s',7v) € T iff

((s[p], p: call, s'[p],v) € LT, and s'[p'] = s[p/] for every p # p');
— for every v € I, (s, p: ret,v,s’) € T, iff

((s[p], p: call,~,s'[p]) € LT, and s'[p'] = s[p/] for every p # p').

In fact, for RQCPs with no shared memory, we can assume that the RQCP
is presented in terms of its local transition relations, and model it as a tuple
({Sp}pep,so, II, I',{LT,}pcp) where sg € IIpcpS,. The size of an RQCP with
no shared memory will be in terms of this representation: i.e. the size of this
tuple. Note that this size is possibly exponentially smaller than the size of the
RQCP with the global transition relations. The complexity results in this section
will refer to the size of RQCPs with no shared memory measured with the local
transition relations.

Context-Bounded Analysis of Concurrent Queue Systems 309

The graph of an architecture: We will characterize decidable architectures
based on properties of the underlying graphs. The graph of an architecture
A=(P, Q, Sender, Receiver) is G=(V, E) where V=P and F is the set of labeled
edges E={(p, q,p') | Sender(q) = p, Receiver(q) = p',q € Q, p,p’ € P}.

4.1 Decidable Architectures for Recursive Programs

We now show that the only architectures that admit a decidable reachability
problem for well-queueing recursive concurrent programs (with no shared mem-
ory) are the class of directed forest architectures.

An architecture is said to be a directed tree architecture if its graph is a
rooted tree, i.e. there is a root process pg, every other process p is reachable
from pg using directed edges, and there is no undirected cycle in the graph. An
architecture is said to be a directed forest architecture if its graph is the disjoint
union of rooted trees. The main theorem of this section is:

Theorem 6. An architecture admits a decidable reachability problem for well-
queueing RQCPs with no shared memory iff it is a directed forest architecture.
Moreover, the reachability problem is decidable in time doubly exponential in the
number of processes and singly exponential in the size of the RQCP.

The above theorem is proved using Lemma [I] and Lemma [3] below.

The decidability result is obtained using the decidabil-
ity of bounded context-switching reachability established
in the previous section. Intuitively, given a directed tree
architecture, any execution of the processes is equivalent
to a run where the root process first runs, enqueuing mes-
sages to its children, and then its children run (one after
another) dequeuing messages from the incoming queue
and writing to their children, and so on. For example, for the directed tree ar-
chitecture shown on the right, any reachable state of the system can be reached
by a run that has 4 context switches: in the first context p; runs enqueuing
messages on ¢; and g2, then ps runs dequeuing messages from ¢; and enqueuing
messages in g3 and g4, and then in three contexts, ps, p4 and ps run, one after
the other, dequeuing messages from their incoming queues.

Lemma 1. The reachability problem for well-queueing RQCPs with no shared
memory is decidable for all directed forest architectures, and is decidable in time
doubly exponential in the number of processes, and singly exponential in the size

of the RQCP.

Proof. Ondirected tree architectures, unbounded reachability reduces to bounded
context-switching reachability, where each process in the tree runs at most once,
processing messages from its only incoming queue and writing to its outgoing
queues. Directed forest architectures can be analyzed by executing its compo-
nent directed trees one after another. Note that the fact that in a tree there is
at most one incoming edge to a node is crucial; and so is the assumption that

310 S. La Torre, P. Madhusudan, and G. Parlato

there is no shared memory. Hence, given an RQCP M with no shared memory
over a directed forest architecture, we can reduce it to the problem of reachabil-
ity within n contexts (where n is the number of processes) of a new RQCP M’
(with shared memory); furthermore, the number of states of M’ is linearly pro-
portional to the local states of M. The lemma now follows from Theorem[3 O

Let us now show that all other architectures are undecidable for well-queueing
RQCPs with no shared memory. First, we establish that three architectures are
undecidable:

Lemma 2. The following architectures are undecidable for all well-queueing re-
cursive concurrent programs with no shared memory:

— the architecture consisting of three processes py, pa and z

p3, with a queue from py to ps, and another from py to

P35
— the two-process cyclic architecture consisting two processes

p1 and p2, with two queues, one from py to ps, and the
other from ps to pi;

® G
®

q2

— the architecture with processes p1 and po, with two queues
from p1 to ps.

OO
W &

The above lemma can be extended to show that any architecture embedding any
of the above architectures is undecidable:

Lemma 3. Any architecture that has (a) a process with two incoming queues,
or (b) a set of processes forming a cycle, or (c) has two distinct paths from one
process to another, is undecidable for well-queueing RQCPs with no shared mem-
ory. Consequently, any architecture that is not a directed forest is undecidable
for recursive well-queueing concurrent programs with no shared memory.

Lemma [l and Lemma [3] establish Theorem

4.2 Decidable Architectures for Non-recursive programs

We now turn to the classification of architectures that
admit a decidable reachability problem for non-recursive
queueing programs with no shared memory. A directed
graph is a polytree if it does not have any undirected
cycles, i.e. the undirected graph corresponding to it is a
tree. A polyforest is a disjoint union of polytrees. An ar-
chitecture is a polytree (or a polyforest) if its graph is a
polytree (or polyforest). We show that the class of decidable architectures for
non-recursive programs is precisely the polyforest architectures. For example,
the architecture depicted on the right is a polytree architecture, but not a di-
rected tree architecture; hence it admits decidable reachability for non-recursive
programs but not for well-queueing recursive programs.

Context-Bounded Analysis of Concurrent Queue Systems 311

Theorem 7. The class of architectures that admit a decidable reachability prob-
lem for QCPs with no shared memory are precisely the polyforest architectures.

We prove the above theorem using Lemma [1 and Lemma [0 below.

First, we can reduce the reachability problem to the reachability problem on
empty queues (where a state is deemed reachable only if it is reachable with all
queues emptied). Any QCP can be transformed so that any individual process,
for any of its outgoing queues, stops sending messages (throwing away future
messages sent on this queue) and instead sends a special symbol on the queues
signaling that this is the last message that will be received by the recipient. All
processes must receive these last messages before they reach the target states.

Lemma 4. The reachability problem for QCPs (or even RQCPs) on any archi-
tecture is polynomial time reducible to the reachability problem on empty queues
for QCPs (or RQCPs, respectively) on the same architecture.

Now, we show a crucial lemma: for non-recursive programs the direction of a
queue in an architecture does not matter for decidability. Intuitively, consider
two architectures that are exactly the same except for a queue ¢ which connects
p1 to p2 in Ay, and connects ps to p; in As instead. Then, reachability on empty
queues for a QCP on A; can be transformed to reachability on empty queues
for a corresponding program over A, by letting p; receive in A, the messages
from po which it would have instead sent to ps in A;: the program at p; simply
dequeues from ¢ whenever the original program at p; enqueued onto g; similarly
process ps enqueues onto ¢ whenever the original program at ps dequeued ¢

Lemma 5. Let A1 and As be two architectures whose underlying undirected
graphs are isomorphic. Then, reachability on empty queues for QCPs with no
shared memory on Ay can be effectively (and in polynomial time) reduced to
reachability on empty queues for QCPs with no shared memory on As.

We now show that reachability on all directed-forest architectures is decidable,
which, combined with the above lemmas will show that all polyforest archi-
tectures are decidable. While this already follows from our result for recursive
programs on directed forest architectures, we can give a much simpler proof for
non-recursive architectures. Essentially, a QCP with no shared memory on a
directed tree architecture can be simulated by a finite-state process that keeps
track of the global state of each process and synchronizes processes on send-
ing/receiving messages. Since a process lower in a tree can never enable or disable
a transition in a process higher in the tree, and since there is no shared memory,
we can argue that this finite-state process will discover all reachable states. The
argument easily extends to directed forest architectures, and it easy to see that
it results in a PSPACE decision procedure. The problem is PSPACE-hard as
even reachability of synchronizing finite-state machines is PSPACE-hard [6].

2 The reader may wonder why this transformation cannot work recursive programs; it
does indeed work. However, it may make a well-queueing program non well-queueing!

312 S. La Torre, P. Madhusudan, and G. Parlato

Lemma 6. The reachability problem for QCPs with no shared memory over
directed forest architectures is PSPACE-complete.

Combining the above with Lemmas [l and B, we establish the upper bounds:

Lemma 7. The reachability problem for QCPs with no shared memory over
polyforest architectures is decidable and is PSPACE-complete.

Let us now show that all but the polyforest architectures are undecidable.

Lemma 8. The reachability problem for QCPs with no shared

memory over the architecture consisting of two processes, p1 @ﬁ@
and pa, with one queue from py to p2, and the other from ps

to p1, is undecidable.

The above proof can be extended to show that any architecture with a directed
cycle is undecidable. Combining this with Lemmas [] and [l we get that all ar-
chitectures whose graphs have an undirected cycle are undecidable.

Lemma 9. The reachability problem for QCPs with no shared memory over any
architecture that is not a polyforest architecture is undecidable.

4.3 The Well-Queueing Assumption and Absence of Shared
Memory

This section has dealt with well-queueing processes communicating with each
other through unbounded queues and without any shared memory. Reachabil-
ity in shared-memory concurrent queue systems is more complex and even the
simplest of architectures is undecidable:

Theorem 8. The reachability problem for QCPs (and hence

well-queueing RQCPs) is undecidable for the architecture con- 0 q @
taining two processes p and p' with a single queue connecting @ @
p top’ (depicted on the right). For well-queueing RQCPs, the

undecidability result holds even if there are two processes and no queues.

Similarly, recursive queueing concurrent programs that are not well-queueing are
complex too and even the simplest of architectures is undecidable:

Theorem 9. The reachability problem for RQCPs with no shared memory
(which need not be well-queueing) is undecidable for the architecture contain-
ing two processes p and p' with a single queue connecting p to p'.

Consequently, the classification of decidable architectures is interesting only un-
der the assumptions of no shared memory and well-queueing.

Context-Bounded Analysis of Concurrent Queue Systems 313
5 Conclusions

We have shown that bounded context-switching reachability is decidable for
queueing non-recursive programs and well-queueing recursive programs. Using
this result, we have precisely characterized the architectures that admit a de-
cidable reachability problem for both recursive and non-recursive programs.
Our contribution is theoretical, but addresses an important problem involving
a model that can capture both asynchronous programs as well as distributed
communicating processes.

The most important future direction we see is in designing approximate anal-
ysis for queue systems based on the theory we have presented that will work
well on domain-specific applications. Two recent papers give us hope: in [I§],
the authors addressed the reachability problem for asynchronous programs com-
municating via unbounded bags of messages using counter systems, and a year
later, a convergent under- and over-approximation of counter contents led to a
practical implementation of dataflow analysis for asynchronous programs [I1].
A similar scheme for queue systems would be interesting and useful.

References

1. Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. In: LICS,
pp. 160-170. IEEE Computer Society, Los Alamitos (1993)

2. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348-359. Springer, Heidelberg (2005)

3. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207-220. Springer, Heidelberg (2007)

4. Cécé, G., Finkel, A.: Programs with quasi-stable channels are effectively recogniz-
able (extended abstract). In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp.
304-315. Springer, Heidelberg (1997)

5. Chadha, R., Viswanathan, M.: Decidability results for well-structured transition
systems with auxiliary storage. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR.
LNCS, vol. 4703, Springer, Heidelberg (2007)

6. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets. Theor.
Comput. Sci. 147(1-2), 117-136 (1995)

7. Gay, D., Levis, P., von Behren, J.R., Welsh, M., Brewer, E.A., Culler, D.E.: The
Nesc language: A holistic approach to networked embedded systems. In: PLDI, pp.
1-11. ACM Press, New York (2003)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

9. Ibarra, O.H.: Verification in queue-connected multicounter machines. Int. J. Found.
Comput. Sci. 13(1), 115-127 (2002)

10. Ibarra, O.H., Dang, Z., San Pietro, P.: Verification in loosely synchronous queue-
connected discrete timed automata. Theor. Comput. Sci. 290(3), 1713-1735 (2003)

11. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL, pp. 339-350. ACM Press, New York (2007)

314

12.

13.
14.
15.

16.

17.

18.

19.

S. La Torre, P. Madhusudan, and G. Parlato

La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161-170. IEEE Computer Society Press, Los Alamitos
(2007)

Libasync, http://pdos.csail.mit.edu/6.824-2004/async/.

Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446-455. ACM, New York (2007)

Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state
machines. Acta Inf. 29(6/7), 499-522 (1992)

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93-107.
Springer, Heidelberg (2005)

Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI, pp. 14-24. ACM,
New York (2004)

Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300-314. Springer, Heidelberg (2006)

Zeldovich, N., Yip, A., Dabek, F., Morris, R., Mazieres, D., Kaashoek, M.F.: Mul-
tiprocessor support for event-driven programs. In: USENIX (2003)

http://pdos.csail.mit.edu/6.824-2004/async/

	Context-Bounded Analysis of Concurrent Queue Systems
	Introduction
	Queue Systems
	The Bounded Context-Switching Reachability Problem
	Unbounded Context-Switching: Decidable Architectures
	Decidable Architectures for Recursive Programs
	Decidable Architectures for Non-recursive programs
	The Well-Queueing Assumption and Absence of Shared Memory

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

