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Abstract. In this paper we study optimization problems with verifiable
one-parameter selfish agents introduced by Auletta et al. [ICALP 2004].
Our goal is to allocate load among the agents, provided that the secret
data of each agent is a single positive rational number: the cost they
incur per unit load. In such a setting the payment is given after the
load completion, therefore if a positive load is assigned to an agent, we
are able to verify if the agent declared to be faster than she actually is.
We design truthful mechanisms when the agents’ type sets are upper-
bounded by a finite value. We provide a truthful mechanism that is
c · (1 + ε)-approximate if the underlying algorithm is c-approximate and
weakly-monotone. Moreover, if type sets are also discrete, we provide
a truthful mechanism preserving the approximation ratio of the used
algorithm. Our results improve the existing ones which provide truthful
mechanisms dealing only with finite type sets and do not preserve the
approximation ratio of the underlying algorithm. Finally we give a full
characterization of the Q||Cmax problem by using only our results. Even
if our payment schemes need upper-bounded type sets, every instance
of Q||Cmax can be ”mapped” into an instance with upper-bounded type
sets preserving the approximation ratio.

1 Introduction

Optimization problems dealing with resource allocation are classical algorithmic
problems and they have been studied for decades in several models: centralized
vs. distributed algorithms, on-line vs. off-line algorithms and so on. The under-
lying hypothesis has been that the input is available to the algorithm (either
from the beginning in off-line algorithms or during its execution in on-line algo-
rithms). This assumption turns out to be unrealistic in the context of modern
networks like the Internet. Here, the various parts of the input are owned by
selfish (but rational) agents as part of their private information (called the type)
and thus the optimization algorithm will have to ask the agents for their type
and then work on the reported types. In this context, it is realistic to assume
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that an agent will lie about her type if this leads to a solution S that she prefers,
even in spite of the fact that S is not globally optimal.

The field of mechanism design is the branch of Game Theory and Microeco-
nomics that studies ways of inducing, through payments, the agents to report
their true type so that the optimization problem can be solved on the real input.
In this paper we study the design of algorithms for solving (or approximately
solving) combinatorial optimization problems in presence of selfish agents.

Following the standard notation used in the study of approximation of com-
binatorial optimization problems (see, e.g., [10]), we consider problems defined
as four-tuples (I, m, sol, goal), where I is the set of instances of the problem;
sol(I) is the set of feasible solutions of instance I; m(S, I) is the measure of the
feasible solution S of instance I and goal is either min or max. Thus, the opti-
mization problem consists in finding a feasible solution S∗ for instance I such
that m(S∗, I) = opt(I) := goalS∈sol(I)m(S, I). A c-approximation algorithm
A for Π = (I, m, sol, goal) is such that for all I ∈ I, max{m(A(I), I)/opt(I),
opt(I)/m(A(I), I)} ≤ c.

In an optimization problem Π with selfish agents, there are m agents which
privately know part of the input. Thus every instance I ∈ I consists of two parts
I = (T, σ), where the vector T = (t1, t2, . . . , tm) is the private part of the input
and σ is the public part of the input. In particular, we assume that ti is known
only to agent i, for i = 1, 2, . . . , m and we call ti the type of agent i. The type
set Θi of agent i is the set of the possible types of agent i. In this setting, each
agent will report some value bi ∈ Θi (which can be different from her true type
ti). An algorithm A for the optimization problem Π with selfish agents receives
as input the vector of bids B = (b1, b2, . . . , bm), instead of the true instance T it
is supposed to solve. Each selfish agent incurs some monetary cost, costi(S, ti),
depending on the feasible solution S and her private data ti. Since every agent
i is selfish, she might declare bi �= ti so to induce A to return a cheaper solution
for agent i. Unfortunately, even though A is c-approximating for the instance T ,
for B �= T the solution returned by A on input B might have measure, w.r.t.
the true instance T , far-off the optimum opt(T ).

In order to obtain a correct solution, algorithm A is equipped with a payment
scheme P = (P1, . . . , Pm) in order to induce every agent to report her true type.
After a solution S = A(B, σ) is computed, each agent i is awarded payment
Pi(S, B, σ). We assume that each agent i is rational in the sense that she picks
her type declaration bi so to maximize her profit.

Definition 1. Let Π be an optimization problem with one-parameter selfish
agents and A be an algorithm for Π, and P be a payment scheme. The profit
function profit of agent i with respect to the pair (A, P ) when B is the sequence of
bids, σ is the public information, ti is the true type of agent i, and S = A(B, σ),
is defined as profiti(S, B, σ, ti) := Pi(S, B, σ) − costi(S, ti).

It is natural to consider mechanisms in which the profit of the i-th agent is
maximized when she reports bi = ti. We have thus the following classical no-
tion of a truthful mechanism. In the definition of a truthful mechanism (and



Improvements for Truthful Mechanisms 149

in the rest of the paper) the following notation turns out to be useful. Let
X = (x1, . . . , xk) be a vector. For any 1 ≤ i ≤ k, the writing X−i denotes the
vector X−i := (x1, . . . , xi−1, xi+1 . . . , xk) and the writing (y, X−i) denotes the
vector (y, X−i) := (x1, . . . , xi−1, y, xi+1 . . . , xk).

Definition 2. The pair M = (A, P ) is a truthful mechanism for selfish agents
if and only if for all σ, for all agents i, and all type declarations B, it holds
profiti(A((ti, B−i), σ), (ti, B−i), σ, ti) ≥ profiti(A(B, σ), B, σ, ti).

In such a way, every agent maximizes her profit when she is truthful. Thus, we
assume that in a truthful mechanism every agent always reports her true type,
and algorithm A always works on the true instance T . As a consequence, we say
that a truthful mechanism M = (A, P ) is c-approximating for an optimization
problem Π with selfish agents, if A is a c-approximating algorithm for every
instance I of Π . Since, in a truthful mechanism, agents are not sure to have a
positive profit, they would not participate in such a mechanism unless they were
coerced. This motivates the following definition.

Definition 3. A truthful mechanism satisfies voluntary participation condition
if agents who bid truthfully never incur a net loss, i.e. for all public information
σ, for all agents i, and for all other agents’ bids B−i,

profiti(A((ti, B−i), σ), (ti, B−i), σ, ti) ≥ 0.

We now review the concept of optimization problem Π with one-parameter selfish
agents (as discussed in [2]). Here, each agent i has as private information a single
parameter ti ∈ Q. Moreover, a feasible solution S of an instance I of Π defines,
for each agent i, an amount wi(S) of assigned work. We call such a solution S
schedule. Notice that in the definition of one-parameter problem ([2]) the total
amount of work to schedule can depend on the private part of the input B.
However we restrict ourselves, as in wide part of literature, to the case in which
the amount of work assigned to all agents depends only on the public information
(and not on the agent bids). We denote such an amount of load just as W > 0.
The cost function of agent i has the following special form.

Definition 4. Let S be a feasible solution of Π. Then, the cost function costi(S,
ti) is defined as costi(S, ti) := wi(S) · ti.

Scheduling problems are typical examples of optimization problem for one-
parameter selfish agents. In a scheduling problem, the input consists of m machine
speeds s = (s1, s2, . . . , sm) and n job weights W = (w1, w2, . . . , wn). A schedule
S is an assignment of jobs to machines. Let wi(S) be the sum of the weights of the
jobs assigned to machine i by schedule S. In a scheduling problem the task con-
sists in computing a schedule that minimizes a certain cost function associated
with the schedule. For instance, in the Q||Cmax problem the cost of a schedule S
is the makespan MS(S) that is the maximum completion time of the machines.
Formally, MS(S) = max1≤j≤m{wj(S)

sj
}. We consider the setting in which each
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machine i is owned by a different agent and the speed si of machine i is the
private information of agent i. To be in a setting of one-parameter selfish agents,
we consider ti = 1/si as the type of agent i. The public information σ is the
sequence W = (w1, w2, . . . , wn) of job weights. We recall that Q||Cmax problem
is NP-hard. Throughout the paper we use Q||Cmax as our main example.

A mechanism M for verifiable one-parameter selfish agents is a pair M =
(A, P ) working as follows.

1. The allocation algorithm A takes as input the sequence of bids B = (b1, b2,
. . . , bm) and the public part σ and outputs a schedule S = A(B, σ) for the m
agents. We recall that wi(S) denotes the amount of load assigned to agent i
by the schedule S computed by algorithm A on input B and σ.

2. Each agent i is observed to complete her assigned load in time Ti ≥ wi(S) ·ti.
Notice that agent i completes the load wi(S) assigned to her in time wi(S)·ti.
Agent i can however delay the release of the works and thus obtain a larger
observed completion time and the mechanism has no way of detecting it.
However, agent i cannot be observed to finish her load before the actual
completion time wi(S) · ti. Since wi(S) · ti is the request time for agent i to
complete the load wi(S), we denote with si = 1

ti
the speed of agent i.

3. Finally, after agent i releases the assigned works, she is awarded payment
computed by applying function Pi on arguments S, B, σ, and the observed
completion time Ti of machine i.

We stress that in this setting, payments are provided after the execution of
the load and thus agents are (partially) verifiable in the following sense. If agent
i receives an amount of load greater then 0, the mechanism can find out whether
agent i has declared to be faster than she actually is (that is, bi < ti). Indeed,
in this case the claimed completion time wi(S) · bi is smaller than the actual
completion time wi(S) · ti and thus we have that Ti ≥ wi(S) · ti > wi(S) · bi.
Since payments are provided after the completion of loads, the mechanism can
make it inconvenient to claim faster speeds. On the other hand, the mechanism
cannot find out if an agent has declared to be slower than she actually is, since
the agent can decide to delay some of the jobs.

Henceforward we refer to Π as an optimization problem for verifiable one-
parameter selfish agents. Let us now instantiate the definitions of profit and
truthful mechanism in this new scenario.

Definition 5. Let A be an algorithm for Π, and P be a payment scheme. The
profit function profit of agent i with respect to the pair (A, P ), when B is the
sequence of bids, σ is the public information, ti is the true type of agent i,
S = A(B, σ), and Ti is the observed completion time of agent i for the load
wi(S), is defined as profiti(S, B, σ, ti, Ti) := Pi(S, B, σ, Ti) − costi(S, ti).

Definition 6. Let A be an algorithm for Π, and P be a payment scheme. A pair
M = (A, P ) is a truthful mechanism with respect to Π, if for all σ, for all i, for
all bid vectors B, and for all observed completion times Ti ≥ wi(A(B, σ)) · ti, it
holds that profiti(S, (ti, B−i), σ, ti, wi(S) · ti) ≥ profiti(A(B, σ), B, σ, ti, Ti) where
S = A((ti, B−i), σ).
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Note that these new definitions are not redundant, since in this case we have to
take into account the observed completion time also.

Given a truthful mechanism M = (A, P ) for Π , in [4] the authors give a
necessary condition that algorithm A must satisfy.

Definition 7 (weakly-monotone algorithm). Let Π be an optimization
problem for verifiable one-parameter selfish agents and A be an algorithm for
Π. Algorithm A is weakly-monotone if and only if, for all σ, for all i, for all
declared bid vectors B such that wi(A(B, σ)) = 0 and for all b′i ∈ Θi with b′i > bi

it holds that wi(A((b′i, B−i), σ)) = 0.

In other words a weakly-monotone algorithm A has the following property. Fix
some input (B, σ) for which algorithm A assigns no load to agent i. If agent i
declares to be slower (that is, she declares b′i > bi) and the declared bids of the
other agents remain the same, then A assigns no load to agent i.

Lemma 1 ([4]). Let Π be an optimization problem for verifiable one-parameter
selfish agents. If M = (A, P ) is a truthful mechanism for Π, then A is a weakly-
monotone algorithm.

2 Previous Works and Our Contribution

The celebrated VCG mechanism [5,6,7,11] is the prominent technique to derive
truthful mechanisms for optimization problems. However, this technique applies
only to utilitarian problems, that are problems where the objective function is
equal to the sum of the cost functions of the agent (e.g., shortest path, min-
imum spanning tree, etc.). In the seminal papers by Nisan and Ronen [8,9] it
is pointed out that VCG mechanisms do not completely fit in a context where
computational issues play a crucial role since they assume that it is possible to
compute an optimal solution of the corresponding optimization problem (maybe
a NP-hard problem). Scheduling is a classical optimization problem that is not
utilitarian (since we aim at minimizing the maximum over all machines of their
completion times) and it is NP-hard. Moreover, scheduling models important fea-
tures of different allocation and routing problems in communication networks.
Thus, it has been the first problem for which non VCG-based techniques have
been introduced.

Nisan and Ronen [8,9] give an m-approximation truthful mechanism for the
problem of scheduling tasks on m unrelated machines, when each machine is
owned by a different agent that declares the processing times of the tasks as-
signed to her machine and the algorithm has to compute the scheduling based
on the values declared by the agents. In [2], is considered the simpler variant
of the task scheduling on uniformly related machines (in short Q||Cmax), where
each machine i has a speed si and the processing time of a task is given by
the ratio between the weight of the task and the speed of the machine. They
characterized the class of allocation algorithms A for one-parameter problems
that admit payment scheme P for which M = (A, P ) is a truthful mechanism.
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Essentially, truthful mechanisms for one-parameter selfish agents must use mono-
tone algorithms and, in this case, the payment scheme is uniquely determined
(up to an additive factor). Intuitively, monotonicity means that increasing the
speed of exactly one machine does not make the algorithm decrease the work
assigned to that machine. The result of [2] reduces the problem of designing a
truthful mechanism for Q||Cmax to the algorithmic problem of designing a good
algorithm which also satisfies the additional monotonicity requirement. Efficient
mechanisms for computing scheduling on related machines with small makespan
(a special case of one-parameter agents) have been provided by Archer and Tar-
dos [2] and, subsequently by Auletta et al. [3] and by Andelman, Azar and
Sorani [1].

Afterwards, Auletta et al [4] consider optimization problem for verifiable one-
parameter problems. In this model, payments are given to the agents only after
the agents have completed the load assigned. This means that for each agent
that receives a positive load, the mechanism can verify if the agent declared to
be faster than she actually is. They showed that, in order to have a truthful
mechanism for verifiable one-parameter selfish agents, a necessary condition is
that the used algorithm must be weakly-monotone.

Our Contribution. In this work, we extend some results given in [4]. The au-
thors were the first to study optimization problems for verifiable one-parameter
selfish agents. Intuitively a verifiable agent is an agent that may lie in reporting
its types but the mechanism can verify whether agent i underbids (i.e. declares a
bi < ti), provided that the load assigned to this agent is positive. For instance, for
scheduling problems the mechanism can verify, through the observed completion
time of agent i, if she declares to be faster than she actually is, provided that at
least one job has been assigned to her. In [4] was showed that if M = (A, P ) is
a truthful mechanism for an optimization problem for verifiable one-parameter
selfish agents then A must be weakly-monotone. They also provide a payment
scheme P which allows to have a truthful mechanism, when the cardinality of
type sets is finite.

In Section 3, we give very simple and efficient payment schemes, leading to
polynomial-time truthful mechanisms, for a wide class of optimization problems
with verifiable one-parameter selfish agents. In particular, we provide a payment
P (1) that works for discrete and upper-bounded type sets (see Section 3). In this
setting, we need that agents bid from sets in which there is always a gap between
the inverse of two types. Considering scheduling problems (where types are the
inverse of machines’ speed), our assumption is satisfied when it is not possible
to have machines executing j instructions per second, for every possible j ∈ Q.
Indeed, in the market there are only machines of certain (sufficiently far apart)
speeds. Moreover, we need that the agents cannot declare more than a finite
value. In scheduling problems, this means that an infinitely slow machine does
not exist. Thus our hypothesis applies to many real life applications.

From a theoretical point of view, our results improve the ones given in [4],
as follows: (i) the class of the discrete and upper-bounded type sets properly
includes the class of finite type sets; (ii) our mechanism preserves the approxi-
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Table 1. Comparing Results (c is the approximation of a given weakly monotone
algorithm)

Problem Version Payments Time Complexity Apx Ratio

Θi finite and discrete [4] poly(|Θi|, m, n) c

Smooth problems [4] poly(log1+ε |Θi|, m,n) c · (1 + ε)

Θi upper bounded and discrete poly(m, n) c

Smooth problems with Θi

upper bounded (continuous)
poly(m, n) c · (1 + ε)

mation ratio c of the algorithm it uses, while the mechanism given in the paper [4]
needs that the problem is smooth (see Def. 11) in order to obtain a c · (1 + ε)-
approximation. (This assumption is required to round the input bids in order to
have payments computable in polynomial time.)

In Section 4, we give a payment scheme P (2), leading to polynomial-time
truthful mechanisms (Theorem 3), for agents having rational type sets upper-
bounded (but not discrete). In order to obtain truthful mechanism we round the
agents’ bid. Using this rounding technique, if the algorithm used by the mech-
anism is c-approximate, then nothing can be said about the approximation of
the same algorithm when it runs on rounded bids. However, if the problem is
smooth then the mechanism is c · (1 + ε)-approximate (see Theorem 4). To best
of our knowledge this is the first result showing that weakly-monotonicity of
algorithms is a sufficient condition for the existence of truthful mechanisms for
optimization problems with verifiable one-parameter selfish agents with contin-
uous type sets. It left open the case when type sets are not upper-bounded. In
Table 1 we summarize our results comparing them to the previous ones.

Finally, in Section 5, as application of our results, we fully characterize
Q||Cmax problem with verifiable one-parameter selfish agents reducing any un-
bounded instance to a bounded one, so obtaining a polynomial-time c · (1 +
ε)-approximate truthful mechanism, given a c-approximate weakly-monotone
polynomial-time algorithm.

3 A Payment Scheme for Discrete Types

In this section, we consider only type sets Θi having the following property.

Definition 8. A set Θi is said discrete and upper-bounded if: (i) there exists
a value ∆i ∈ R+ such that, for all b, b̄ ∈ Θi, b �= b̄, |b−1 − b̄−1| ≥ ∆i (discrete),
and (ii) there exists a finite value supi ∈ R+ such that supi ≥ b, ∀b ∈ Θi

(upper-bounded).

Next we define a payment scheme which allows us to construct truthful mecha-
nism for Π , when agents have type sets discrete and upper-bounded.

Definition 9. Let S be a schedule, B be a bid vector, σ be the public part of
the input, Ti be the observed completion time and c

(1)
i ∈ R+ be a constant (to be

given). For each i = 1, . . . , m, we define
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P
(1)
i (S, B, σ, Ti) :=

{
W
bi

· c(1)
i if wi(S) �= 0 and Ti = wi(S) · bi;

0 otherwise.

The idea behind the payment P
(1)
i is to give the agent i a disincentive to declare

to be slower than she actually is. On the other hand, agent i is also discouraged
to declare to be faster, if we use verification and weakly-monotone algorithms,
as shown in the next theorem.

Theorem 1. Let Π be an optimization problem for verifiable one-parameter
selfish agents and A be a polynomial-time weakly-monotone algorithm for Π.
If every Θi is upper-bounded by a finite value supi and discrete w.r.t. a known
value ∆i, then for every 1 ≤ i ≤ m there exists a value for the constant c

(1)
i such

that M = (A, P (1)) is a polynomial-time truthful mechanism for Π. Moreover,
M satisfies voluntary participation condition.

Proof. Let Sti be the schedule computed by A when takes as input (ti, B−i),
and Sbi be the one on the input (bi, B−i). To demonstrate that M is a truthful
mechanism, we show that for all bi ∈ Θi and for all Ti ≥ wi(Sbi) · ti the following
relation holds

Λi = profiti(Sti , (ti, B−i), σ, ti, wi(Sti) · ti) − profiti(Sbi , B, σ, ti, Ti) ≥ 0.

For sake of readability we denote (ti, B−i) as T and wi(Sti) · ti as Ti
∗. We first

consider the case wi(Sbi) = 0. Since profiti(Sbi , B, σ, ti, Ti) = 0 we have

Λi =
W
ti

· c(1)
i − wi(Sti) · ti ≥ W ·

(
c
(1)
i

supi

− supi

)
≥ 0 (1)

for all the values c
(1)
i ≥ sup2

i . By the above calculations, we also have that
profiti(Sti ,T, σ, ti, Ti

∗) ≥ 0, and thus M satisfies voluntary participation condi-
tion. Let wi(Sbi) > 0. We distinguish two cases.

Case 1(bi > ti). Since A is weakly-monotone it holds that wi(Sti) > 0. If
profiti(Sbi , B, σ, ti, Ti) < 0, from Eq. 1 we have Λi > 0 for c

(1)
i ≥ sup2

i .
Let profiti(Sbi , B, σ, ti, Ti) ≥ 0. Then we have:

Λi = W ·
(

1
ti

− 1
bi

)
· c(1)

i − (wi(Sti) − wi(Sbi)) · ti

≥ W · ∆i · c(1)
i −W · supi ≥ 0

for all the values c
(1)
i ≥ supi/∆i.

Case 2 (bi ≤ ti). Since T > wi(Sbi) · bi, we have that P
(1)
i (Sbi , B, σ, Ti) = 0

and profiti(Sbi , B, σ, ti, Ti) < 0. Therefore, from Eq. 1 we have Λi >

profiti(Sti ,T, σ, ti, Ti
∗) ≥ 0 for c

(1)
i ≥ sup2

i .

Hence, for c
(1)
i ≥ max{sup2

i ,
supi

∆i
}, M is truthful. It is straightforward that

payment scheme P (1) is computable in polynomial time. ��
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As argued in Section 1, if A is the algorithm used in a truthful mechanism, then
it always works on true types, since every agent always reports her true type. As
a consequence, if A is c-approximate and M = (A, P ) is a truthful mechanism
then M is c-approximate as well. Thus, from Theorem 1 we have the following.

Theorem 2. Let Π be an optimization problem for verifiable one-parameter
selfish agents and A be a polynomial-time c-approximating weakly-monotone al-
gorithm for Π. If every Θi is upper-bounded by a finite value supi and is discrete
w.r.t. a known value ∆i, then M = (A, P (1)) is a polynomial-time c-approximate
truthful mechanism for Π, satisfying voluntary participation condition.

Notice that if a type set is finite then it is discrete and finitely upper-bounded.
Conversely if a type set is discrete and finitely upper-bounded it could contain
infinite values. For instance consider the case in which for every i = 1, . . . , m,
Θi ⊆ {i−1|i ∈ N}. This is a special case of the discrete and upper-bounded type
set: ∆i = 1 and supi = 1, for every type set Θi.

4 A Payment Scheme for Rational Types

In this section, we show how to extend our payments in order to deal with
rational type set which are only upper-bounded by a finite value supi. To do
that, we apply a rounding technique on types. Given a bid vector B, we denote
by BR the vector obtained by B by replacing each element bi with a rounded
value bR

i of bi. If αγ < b−1
i ≤ αγ+1, then bR

i = 1/αγ+1 for some γ ∈ Z. Thus, if
B = (b1, b2, . . . , bm) then BR = (bR

1 , bR
2 , . . . , bR

m). Given an algorithm A for Π ,
we define algorithm Aα as the algorithm that, on input B and σ, simply run
algorithm A on input BR and σ.

Definition 10. Let S be a schedule, B be a bid vector, σ be the public part of
the input, Ti be the observed completion time and c

(2)
i ∈ R+ be a constant (to be

given). For each i = 1, . . . , m, we define

P
(2)
i (S, B, σ, Ti) :=

{
W
bR

i

· c(2)
i if wi(S) �= 0 and Ti = wi(S) · bi;

0 otherwise.

The idea behind payment scheme P (2) is similar to the one for P (1). The differ-
ence is that we consider the rounded bid bR

i instead of the declared bid bi and
the used constant c

(2)
i is essentially different from c

(1)
i . In the next theorem, we

will better clarify the meaning of constant c
(2)
i .

Theorem 3. Let Π be an optimization problem for verifiable one-parameter
selfish agents whose types are positive rational, and let A be a polynomial-time
weakly-monotone algorithm for Π. If every Θi is upper-bounded by a finite value
supi, then for every 1 ≤ i ≤ m there exists a value for the constant c

(2)
i , such

that M = (Aα, P (2)) is a polynomial-time truthful mechanism for Π. Moreover,
M satisfies voluntary participation condition.
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Proof. First note that, if A is weakly-monotone then Aα is weakly-monotone as
well. Let B be a vector of bids, and Sti be the schedule computed by algorithm
Aα when it takes as input (ti, B−i), and Sbi be the one on input (bi, B−i). To
show that M is truthful, we prove that for all bi ∈ Θi and Ti ≥ wi(Sbi) · ti,

Λi = profiti(Sti , (ti, B−i), σ, ti, wi(Sti) · ti) − profiti(Sbi , B, σ, ti, Ti) ≥ 0.

For the sake of readability we denote T = (ti, B−i) and Ti
∗ = wi(Sti) · ti. We

first consider the case wi(Sbi) = 0. In this case we have:

Λi = profiti(Sti ,T, σ, ti, Ti
∗) ≥ W ·

(
αγ+1 · c(2)

i − 1
αγ

)
≥ 0 (2)

when

γ ≥ − logα c
(2)
i

2
− 1

2
. (3)

At the end of the theorem, we discuss how to choose c
(2)
i in order M to be

truthful. From Eq. 2, we also have that profiti(Sti ,T, σ, ti, Ti
∗) ≥ 0, thus M

satisfies voluntary participation condition.
It remains to show the case wi(Sbi) > 0. We distinguish two cases:

Case 1(bi > ti). Since A is weakly-monotone and bR
i ≥ tRi it holds

that wi(Sti) > 0. W.l.o.g. we only consider the case in which
profiti(Sbi , B, σ, ti, Ti) ≥ 0. We first analyze the case bR

i = tRi , i.e. bi and
ti are rounded to the same power of α.

Λi = W ·
(

1
tRi

− 1
bR
i

)
· c(2)

i − (wi(Sti) − wi(Sbi)) · ti = 0.

Here, we analyze the remaining case in which bR
i > tRi . Then, for some γ ∈ Z,

it holds:

Λi = W ·
(

1
tRi

− 1
bR
i

)
· c(2)

i − (wi(Sti) − wi(Sbi)) · ti ≥

≥ W ·
(

1
tRi

− 1
bR
i

)
· c(2)

i −W · ti ≥ W ·
(

(αγ+1 − αγ) · c(2)
i − 1

αγ

)
(4)

By simple calculations we have that Eq. 4 is greater or equal to 0 when:

γ ≥ − logα(c(2)
i )

2
− logα (α − 1)

2
. (5)

As in the previous case, we postpone the discussion of choosing c
(2)
i for the

end of the theorem.
Case 2 (bi ≤ ti). Since T > wi(Sbi)·bi, we have that P

(2)
i (Sbi , B, σ, Ti) = 0 and

profiti(Sbi , B, σ, ti, Ti) < 0, implying that Λi ≥ profiti(Sti ,T, σ, ti, Ti
∗) ≥ 0.
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Here we discuss how to choose the constant c
(2)
i in order to satisfy both Eq. 3

and Eq. 5, for any value of γ. In particular, we just show for the case in
which γ = γmin, where γmin is the minimal value that γ can have. Since

1
supi

≤ ( 1
supi

)R = αγmin , by simple calculations we have γmin = 	logα
1

supi

.

Since logα(c(2)
i ) can have as value any real number by varying c

(2)
i , we can com-

pute a value of c
(2)
i such that both Eq. 3 and Eq. 5 are satisfied when γ = γmin.

Hence, it is straightforward that payment scheme P (2) is computable in polyno-
mial time. ��

Note that, if in Def. 10 the constant c
(2)
i is not used, then from Eq. 3 and Eq. 5

we may observe that in order M to be truthful, type sets Θi must be upper-
bounded by a constant which depends on the value of max {− 1

2 ,− logα(α−1)
2 }.

Thus, c
(2)
i allows us to deal with any type set Θi that is upper-bounded by any

constant supi.
In order to have truthful mechanism for the problem at hand, involving agents

having type set upper-bounded by a finite value, we round the bids. But what
about the approximation? If A is a c-approximation algorithm, then nothing can
be said about the approximation of Aα. Next, we define the class of problems
for which the rounding increases the approximation of Aα by a guarantee factor
with respect to the approximation guarantee of A. Henceforth, we restrict our
attention only to minimization problems. We stress that similar arguments can
be applied for maximization problems as well.

Definition 11. Fix ε > 0 and δ > 1. A one-parameter minimization problem
Π = (I, m, sol, min) is (δ, ε)-smooth if, for any pair of instances I = (T, σ) and
Ĩ = (T̃ , σ) such that ti ≤ t̃i ≤ δ · ti for i = 1, 2, . . . , m, and for all S ∈ sol(σ), it
holds that m(S, I) ≤ m(S, Ĩ) ≤ (1 + ε) · m(S, I).

For instance, observe that Q||Cmax is (α, α − 1)-smooth for all α > 1. From the
above definition, the following remark is straightforward.

Remark 1. Let Π be a (δ, ε)-smooth one-parameter minimization problem and
let I = (T, σ) and Ĩ = (T̃ , σ) be two instances of Π such that ti ≤ t̃i ≤ δ · ti, for
i = 1, 2, . . . , m. Then, any c-approximate solution S for I is c·(1+ε)-approximate
for Ĩ and any c-approximate solution S̃ for Ĩ is c · (1 + ε)-approximate for I.

From Theorem 3 and the above remark we have the next theorem.

Theorem 4. Let Π be a (α, α − 1)-smooth optimization problem for verifi-
able one-parameter selfish agents whose types are positive rational, and let A be
polynomial-time c-approximate weakly-monotone algorithm for Π. If every Θi is
upper-bounded by a finite value supi, then M = (Aα, P (2)) is (α · c)-approximate
polynomial-time truthful mechanism for Π, satisfying voluntary participation
condition.
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5 Applications to Q||Cmax Problem

In this section we give a non-trivial application of our results to the well known
Q||Cmax problem. In the case in which type sets are discrete, then given a
c-approximate polynomial-time weakly-monotone algorithm for Q||Cmax prob-
lem, we can construct c-approximate polynomial-time truthful mechanism for
Q||Cmax. On the other hand, when we have no constraints on the type sets, then
given a c-approximate polynomial-time weakly-monotone algorithm for Q||Cmax

problem, we can construct c·(1+ε)-approximate polynomial-time truthful mech-
anism for Q||Cmax, for every ε > 0.

We refer to the Section 1 for the definition of the problem. In the Q||Cmax

problem with verifiable one-parameter selfish agents1, the machines are owned
by verifiable selfish agents wishing to maximize their own profit (as discussed
in the section 1) disregarding the global makespan minimization. In particular,
the job weights W = (w1, w2, . . . , wn), are the public part of the input, and the
speeds of the machines are the private part of the input, that is, each agent i
privately knows the speed of her machine. As usual, we assume that the types
of the agents are the inverse of the speed.

As shown in Theorem 1 and Theorem 3, to apply our payment schemes, type
sets must be upper-bounded by a finite value. For Q||Cmax problem, since types
are the inverse of the speeds, it means that the speed of every agent (the inverse
of the declared bid) has to be lower-bounded by a constant greater than 0, but
this could not be the case. Therefore, here we show a method to deal with these
cases. We show that it is always possible to reduce any instance of Q||Cmax to
the one where every type set is upper-bounded by a finite value preserving the
optimum of the instance.

The idea is to give a lower bound on the speed (an upper bound on the
declared bid) to each agent depending on the declaration of the other agents.
Thus, if an agent declares a speed value too small with respect to the other
declared speeds, then she can be discarded. Let us proceed more formally.

To compute the lower bound of each agent we execute the following algorithm
taking as input the bid vector B and the weight of the jobs W . (We call this
algorithm BoundTypes(B, W ).)

1. For all i ∈ {1, . . . , m}, if si is lower-bounded by a constant ŝi > 0, then
use this value as lower bound for the machine i, otherwise execute the steps
2 − 3.

2. Let k be a fastest machine in {1, . . . , i − 1} ∪ {i + 1, . . . , m} w.r.t. the bid
vector B (that is a machine with a smallest bid without considering machine
i); let timei be the time needed (considering the bid bk) for machine k to
execute all the jobs: timei = W · bk.

3. Let wj be a minimum weight job; use the value ŝi = wj

timei
as a lower bound

for the speed of machine i.
1 In the rest of the paper, with an abuse of notation, we will simply call Q||Cmax

problem the one with verifiable one-parameter selfish agents since here we deal only
with the latter.
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To understand the motivation of this method, we consider the following: if
the machine i declares bi > 1

ŝi
, then for any optimum solution OPT we have

wi(OPT ) = 0, since there exists a machine requiring less time to execute all
jobs with respect to the time needed to machine i to complete a job having the
smallest weight. Let A be a weakly-monotone algorithm for Q||Cmax problem.
Now, we describe a weakly-monotone algorithm A′ for Q||Cmax which uses A
as a subroutine. A′ has the same approximation ratio of A and can be used to
deal with machines having unbounded speeds. It takes as input the bid vector
B and the weight vector W and outputs a schedule S.

1. Let (ŝ1, · · · , ŝm) = BoundTypes(B, W ); let B̂ the bids vector B without the
machines bidding bi > 1

ŝi
; let Ŝ be the schedule returned by A executed on

B̂ and W ;
2. Let S be a schedule equal to Ŝ for all machines declaring bi < 1

ŝi
assigning

0 to all the other machines; return S as the schedule.

Now, we show that this algorithm leads to a truthful mechanism (together
with our payment schemes) and that it has the same approximation ratio as the
algorithm A.

Lemma 2. If A is a weakly-monotone c-approximate algorithm for Q||Cmax

problem, then A′ is a weakly-monotone c-approximate algorithm for Q||Cmax

problem.

Proof. We first show that A′ is a scheduling algorithm. Since A is a scheduling
algorithm, we only have to show that at least one machine is given as input
to algorithm A. Now, we show that we never discard the fastest machines. Let
i be a fastest machine in {1, . . . , m} and k a fastest machine in {1, . . . , i −
1} ∪ {i + 1, . . . , m}. Then, obviously sk = 1

bk
≤ 1

bi
= si. Let T be the time

needed by machine k to execute all jobs and let w be a smallest job. From
the definition of ŝi, we have ŝi = w

T = w
W · sk ≤ sk ≤ si. This implies that

the fastest machines are surely not discarded. We now prove that A′ is weakly-
monotone. Fix a bid vector B, and suppose that wi(A′(B, W )) = 0. We prove
that wi(A′((b′, B−i), W )) = 0, for every b′ ≥ bi. In the case b′ > 1

ŝi
, trivially

wi(A′((b′, B−i), W )) = 0, since machine i will be discarded. If b′i ≤ 1
ŝi

, then
machine is not discarded and wi(A′((b′, B−i), W )) = 0, given that algorithm A
is weakly-monotone. Finally, to show that the algorithm A′ is a c-approximate
algorithm, we only prove that the deletion of the ”slowest” machines that does
not modify the optimum. More specifically, let I be the initial instance of the
problem and OPT be an optimum solution for I. If bi > 1

ŝi
(i.e. machine i is a

discarded machine), then wi(OPT ) = 0. In fact, the time needed by the machine
i to complete the smallest job w is greater then the time needed to the fastest
machine to complete the overall jobs. ��

Algorithm A′, using the algorithm BoundTypes, reduces any (potentially un-
bounded) instance I of Q||Cmax to a bounded instance Î of Q||Cmax. Thus we
can apply our payment scheme. By Lemma 2 and Theorem 2 we have:
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Theorem 5. Let A be a c-approximate polynomial-time weakly-monotone algo-
rithm for Q||Cmax problem. If every Θi is discrete w.r.t. a known value Λi, then
there exists a c-approximate polynomial-time truthful mechanism M = (A′, P (1))
for Q||Cmax, satisfying voluntary participation condition.

By Lemma 2, Theorem 4 and since Q||Cmax problem is (1 + ε, ε)-smooth we
have:

Theorem 6. Let A be a c-approximate polynomial-time weakly-monotone al-
gorithm for Q||Cmax problem. Then, for any ε > 0, there exists a c · (1 + ε)-
approximate polynomial-time truthful mechanism M = (A′, P (2)) for Q||Cmax,
satisfying voluntary participation condition.

Acknowledgments. We wish to thank the authors of [4] for providing us with a
full version of their paper.
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