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Abstract

Given an undirected and vertex weighted graphthe Weighted Feedback Vertex Problem (WFVP) consists in finding a
subsetF € V of vertices of minimum weight such that each cycléiwontains at least one vertexi The WFVP on general
graphs is known to be NP-hard. In this paper we introduce a new class of graphs, nandéyrtbedgraphs, and give a linear
time algorithm to solve WFVP on it.
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1. Introduction cardinality. When with each vertex of G is associ-
ated a weighiv(v) we have avertex weighted graph

Vertex Se(FVS) of G is a subsetr € V of vertices ~ Weighted graplG consists in finding an FVS of min-
such that each cycle i contains at least one ver- imum weight, where the weight of the set is the sum
tex in F, i.e., the Subgrapf(}" induced by the set of the Weights of its elements. Both FVP and WFVP
V \ F of vertices is acyclic. ThEeedback Vertex Prob-  have application in several areas of computer science
lem (FVP) consists in finding an FVS of minimum  such as circuit testing, deadlock resolution, placement
of converters in optical networks, combinatorial cut
- design. The FVP on general graph is known to be NP-
* Corresponding author. Tel.: +39 089 963326, fax: +39 089 hard [5] For the WFVP the best known approximation
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graphs [3], permutation graphs [6], convex bipartite of vertexu in 7. We define theheighth(u) of a ver-
graphs [3]. texu in T, recursively as follows. li: is a leaf then
In this paper we introduce a new class of graphs, h(u) = 0, otherwiseh(u) = max.cc, {h(x)} + 1. We
namely thediamondgraphs, and give a linear time al- define the height(T) of the tree to be equal to the
gorithm to solve WFVP on it. height of its root. Given a vertex of T, the subtree
The sequel of the paper is organized as follows. T, rooted inu is the subgraph of induced by the set
Section 2 describes the class of diamond graphs. Sec-of vertices constituted by and its descendants ih.
tion 3 contains the description of our linear time al- Now we introduce the class @fiamondgraphs.
gorithm based on dynamic programming to optimally
solve WFVP on diamonds. In Section 4 we will dis- Definition 1. A weighteddiamond D, ; = (V, E, w)
cuss how this polynomial result can be used to improve with apicesr andz (r,z € V), is an undirected and
an approximated solution on a general graph, that is vertex weighted graph where (i) eaehe V is in-
the object of our further research. cluded in at least one simple path betweendz and
(i) D, .\ {z} isatree.

2. Theclass of diamond graphs We refer to the two vertices andz of a diamond
D, ; as, respectively, thepperandlowerapex ofD;. .,
In this section we describe formally the class of di- and, to the subgraph, . \ {z} as the tre€T, rooted
amond graphs. First we introduce the needed notationin r associated witlD, ;. Consider Fig. 1(a) as an ex-
(for any additional definition and notation we refer ample. We have the diamontd; 1o with upper apex

to [4]). r =1 and lower apex = 10. Note that by deleting
Let G = (V, E,w) be an undirected and vertex vertexz we obtain the tre1 = D110\ {z}.
weighted graph, wher® is the set of verticesE is We denote byD,, , = (V,, E,, w) the subdiamond

the set of edges, and;(v) is a positive weight asso-  of D, ;, with apices: andz, induced by the vertices of
ciated with each vertex € V. Given a subseX C V T, and vertex;. We define theheighti (D, ;) of the
of vertices, we define its weighw (X) as the sum of  diamondD, ; to be equal to the height of the associ-

the weights of its elements, i.6¥(X) =) cx w(v). ated treeT,.
If X =¢ thenW(X) =0. We denote byG \ X the Finally, observe that given a diamonti, ,, we
subgraph ofG induced by the set of vertices \ X. can see it as composed by the upper apexd the

A tree is an acyclic and connected graph. Given a subdiamondsD,, ;, for eachr; € C,, where all of
rooted treeT, we denote byC, the set of children  them have the common lower apexConsider again

(@) (b) (©)

Fig. 1. (a) A diamond with apices= 1 andz = 10. (b) The acyclic subgrapby 10\ F with a single path between vertices 1 and 10 when
F = {4,5,6) and (c) the subgrapPy 10\ ', with £ = {3, 4} without any path between vertices 1 and 10.
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Fig. 1(a). The subgraph composed by the vertex set Proof. By contradiction let us suppose that there ex-

{4,7,8,9,10} is a diamond with apices = 4 and
7 =10 (D4,10), Wwhose associated tree is the subifge
of Th. The height offy is h(T4) = h(4) = 1 that is also
the height of D4 10. Moreover, we can se®q 1o as
composed by vertex 1 and the two subdiamobéso
and D3 1o.

3. Thedynamic programming algorithm

To simplify notation, in the rest of the section we
denote a diamond, ; just asD,, since all considered
diamonds have the same lower apex

In this section, we propose a linear time algorithm
to solve the WFVP on a diamond based on dynamic
programming. We will introduce two new problems on
diamonds (thé’athproblem and thé&oPathproblem)
and show how to obtain a minimum weighted FVS on
D, by the optimum solutions of these two problems.
We then prove they have an optimal substructure prop-
erty that allows us to optimally solve them by means
of dynamic programming.

In the sequel of the paper we will consider a di-
amond D, with upper apex- and lower apex. To
better clarify the role of the two new problems in our
resolution algorithm, we state now the following ob-
servation.

Observation 1. By definition of diamond, the s&t =

{z} is an FVS ofD,. Hence, an optimum solutioA™

of WFVP on D, is such that, either it is composed
of the single vertex (i.e., F* = {z}) or, it does not
contain vertex; and it is such thatV (F*) < w(z).
Therefore, the WFVP on a diamond can be solved, first
by looking for the minimum FVS, saﬁ, that does not
contain vertex;, and then, by choosing the minimum
weight set betwee# and{z}.

Let £ C V \ {z} be an FVS onD,. Note that the
subgraphD, \ F either contains a single simple path
betweenr andz or it does not contain any of such a
path, as it is stated by the following proposition.

Propositipn 1. Given a diamondD, with apicesr
andz, if F C V\{z}isan FVS olD,, thenAthere exists
at most one path betweerandz in D, \ F.

ist two distinct pathsp1 and p, betweenr andz in
D, \ F. Letv + z be the last vertex of the common
longest subpath op; and p, starting fromr. Then
the subpaths from to z of p1 andpo, joined together,
form a cycle inD, \ F, but this is a contradiction since
D, \ F must be acyclic being’ an FVS ofD,. 0O

For example, consider again the diamond in Fig. 1.
The setf = {4, 5, 6} is an FVS that does not contain
vertexz and such that there exists the simple pAt&:
{1,3, 10} connecting- andz in D, \ F (see Fig. 1(b)).
The setf = {3, 4} is an FVS that does not contain
and such that there is no path connectingnd z in
D, \ F (see Fig. 1(c)).

Now, we are ready to define two new problems that
will be useful to solve WFVP oD, .

Path problem. Given a diamondD,, find a subset
F;t € V\{z} of minimum weight such that (ip, \ F,"
does not contain cycles, and (ii) there exists exactly a
single path inD, \ F;© between- andz.

NoPath problem. Given a diamondD,, find a subset
F7 C V\{z} of minimum weight such that (ip, \ F,~
does not contain cycles, and (ii) there does not exist a
path inD, \ F~ between andz.

From the above observations it follows that the op-
timum solutionF* of WFVP onD, is such that:

W(F*) =min{w(z), W(F"), W(F)}

and, therefore we have eith&r = {z} or F* = F* or
F*=F".

Hence, we are interested now in solving b&tth
andNoPathproblems.

3.1. Optimal substructure and recursion rules

In this section, we conjunctly characterize the
structure of an optimal solution for botRath and
NoPath problems. We recall that a problem has the
optimal substructure property if any optimal solution
to the problem contains within it optimal solutions
to subproblems [4]. We will see that bofath and
NoPath problems, defined orD,, have an optimal
substructure property by considering as subproblems
those of determining the solution Rath andNoPath
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on the subdiamond®,,, for eachu € V \ {z}. Let us
denote byF, and F, the optimal solutions oPath
and NoPath problem, respectively, o®,. Now, we
prove that the optimal solutiofi," (F,) contains, for
eachu; € C,, eitherF,| or F,_.

Proposition 2. Given the optimum solutioR,; on D,,,
then each sef,, = F,F N V,.,u; € C,, is an optimum
solution to either Path problem or NoPath problem
onD,,.

Proof. By feasibility of F,", it follows thatz ¢ F,,
and Dy, \ F,, is acyclic. Then, the sef,, respects
condition (i) for bothPath problem andNoPathprob-
lem on the subdiamond®,,. Now, two cases, based
on the fact that either there exists a path between
and z on D, \ F,, or not, may occur. If there is
such a path, thet),, is the optimum solution set for
Pathproblem onD,,, i.e., F,, = F,}. Indeed, if there
were another feasible sgf. for Pathproblem onD,,
such thatW (F;; ) < W(F,), we could obtain the set
F,© = (F]\ F,,) UF,, thatis feasible foPathprob-
lem onD, and such thaW (F,*) < W(F,}) obtaining
a contradiction. If there does not exit any path between
u; andz on D, \ F,,, then by applying a similar rea-
soning it follows thatr,, = F,.. O

The same considerations can be made for the opti-
mum solutionF,;~ of theNoPathproblem as stated by
the following proposition.

Proposition 3. Given the optimum solutioF,” on D,,,
then each sef,, = F, NV,,;, u; € Cy, is an optimum
solution to either Path problem or NoPath problem
on Dy, .

Following Lemmas 1 and 2, we describe how to
build the weights of set$,F and F, on D,, by con-
sidering the value of optimum solution éfath and
NoPathproblems onD,, for eachx € C,. In the next
section we will use these values to construct the opti-
mum setsF" and F,".

Lemma 1.

CaseA: h(u) =0.
W(F) =0.

CaseB: h(u) >0and(u,z) € E.
W(F;_) = erCu W(Fx_)'
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CaseC: h(u) >0and(u,z) ¢ E.
W(F) = minxeCu{W(F;)‘i‘zyecu\{x} W(F;)}

Proof. CaseA is easily verified since, = .

CaseB: if (u,z) € E, sinceu ¢ F,t, then the path
connectingu andz in D, \ F," is composed by the
single edg€gu, z). Thus, to avoid cycles i, \ F,",
the setF,! is obtained, by Propositions 1 and 2, by the
union of the optimum setg, x € C,,, and we obtain
W(ES) =Y ec, WED.

CaseC: if (u,z) ¢ E, sinceu ¢ F,", in order to
have a path betweenandz in D, \ F," and by apply-
ing Propositions 1 and 2, the optimum set is obtained
by the minimum weight union of exactly one s&f,

x € Cy, and,Fy, y € C, \ {x}. Therefore,W (F,/) =

minxeCu{W(FJ) + Z),Ecu\{x} W(F;)} O
Lemma 2.

CaseA: h(u) =0.

W(F,) = w(u).
CaseB: h(u) >0and(u,z) € E.

W(F,) =w)+ 3 cc, MN{W(F), W(F)}.
CaseC: h(u) >0and(u,z) ¢ E.

W(F,) = min{w(u) + Y min{w(F), WEDH),

xeCy

> W(F;)}.

xeCy,

Proof. CaseA is easily verified since,,” = {u}.

CaseB: if (u,z) € E, thenu € F,; otherwise
there would be a path betweanandz in D, \ F, .
Therefore, by applying Propositions 1 and 3, we se-
lect on each subdiamonf,, x € C,, the minimum
weighted set amongd';” and F, . Then W(F,) =
w) + Y e, MW (F), W(FD)}.

CaseC: if (u,z) ¢ E, thenu can either belong
to F,7 or not. If u € F,7, there is no path between
u andz in D, \ F,, thus we have the same solu-
tion as for Case B. liu ¢ F,” then to avoid paths
between the apices iD, \ F,, the optimum set
is obtained by the union of the optimum solutions
of the NoPath problem on the subdiamond®,
for each childx of vertex u, therefore we would
have W(F,) = ercu W(F, ). Thus, for this case,
W(F,) =minfw@)+Y_ e, MW (F7), W(F},

2vec, WD) O
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According to lemmas above, the computation of the of Lemma 1, we can evaluate mit, {S — W(F, ) +
optimum weighted FVS value can be carried out by a W(F;")}, whereS =}~ - W(F, ), which can be
dynamic programming algorithm. The algorithm scans accomplished in QC,|) time. Thus, the computa-
all the vertices off;. through a postorder visit starting ~ tional complexity of the algorithm is given by
from the root node-. At each vertex:, both weight _ _

W(F}) andW (F,), to PathandNoPathproblems on Z O(ICul) = O(1E) = O(VI).
D, are computed. Once that the weights of these sets
are computed for the upper apexthe optimum set
among(z}, F. andF,~ is chosen.

The computational complexity of the algorithm,
sketched above, is given by the sum of the compu-
tational complexity needed to comput&(F,") and
W(F, ), for each vertexu of the treeT,. The com-
putation involved in both cases A of Lemmas 1 and 2
takes O(1) time. For cases B it takes|QY)) time. The detailed dynamic programming algorithm is
Indeed, the computation d¥ (F,") is carried out by given in Fig. 2.
computing the sum offC, | values, while, to compute
W(F,"), |Cy,| minimum operations between two val- 3.2, Construction o+ and F~ sets
ues are carried out and the sum|@f,| + 1 values
is computed. It follows directly that the evaluation of In this section we describe the linear time recursive
W (F,), for case C of Lemma 2, takes [0}, |) time. procedure, Build_Solution, to build the feedback ver-
Finally, observe that, to comput® (F,) for case C tex set whose optimum value is found by our dynamic

ueV\{z}

where the last relation follows from the fact that
for any diamond E| < 2|V|. The above observations
prove the following theorem.

Theorem 1. The solution value of the weighted feed-
back vertex set problem on diamonds can be computed
o V) time.

Input: A weighted diamond, = (V, E, w) with upper apex and lower apex.
Output: The weightW (F*) of an optimum weighted feedback vertex set.

Compute_set_valuebg, r);
W (F*) = min{w(z), W(F;5), W(F,));
return W(F*);

Procedure Compute_set_valuebf, u)
/* Case A of Lemmas 1 and 2 */
If h(u) =0then
W(E) =0; W(F;,) =w); return;
for each x € V such thatr is a child ofu in 7 do
Compute_set_valueb, x);
/* Case B of Lemmas 1 and 2 */
If (u,z) € E then
W(FD =Y ec, WED:;
W(F) = w@) + Y yec, MN(W (D), WED);
/* Case C of Lemmas 1 and 2 */

else
W(Fb:xrgicrl{W(F;H > W(Fy—)};
veCu—{x)
W(F,;):min{w(u)+ > min{W(F), WED), Y W(F;)};
xeCy, xeCy
return;

Fig. 2. The dynamic programming algorithm.
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Input: Ty, u, flage {+, —}
Output: Print the vertices oF,ﬂag
Build_Solution(;, r, flag);

Procedure Build_Solution(;, u, flag)
if (lag== — AND [, ==true)
print(u);
if u is not a leaf
for each child x of u do

if flag== + then
Build_Solution;, x, P{);
else

Build_Solution(;, x, Py );

Fig. 3. Build_Solution procedure.

Vertex | I, | Pf | P,
1 1] - | -
2 1] - | +
4 1 + +
5 1] - | +
6 1] - | +

Fig. 4. On the left a diamond whose optimum weighted FVS is
F* = {2} is given, and on the right, the values of the labels asso-
ciated with each vertex are shown.

Consider as an example the diamond in Fig. 4. The

programming algorithm presented in the previous sec- upper apex is =1 and the lower apex ig = 3

tion. By Lemmas 1 and 2, given a vertexof 7., an
easy way to build the optimal sefs, and F,\ is to
store the optimal sets),; and F; for eachu; € C,.
However, from an implementation point of view, this

the label on each vertex denotes its weight, for ex-
ample, vertex 1 has weight(1) = 33. The optimum
weighted FVS isF* = {2} whose optimum weight is
W(F*) = minfw(z), W(F;"), W(F] )}, where F}" =

choice would require both the storage of a large quan- {2} and F{ = {1,5, 6). The values of the labels to

tity of data and the use of complex data structures to pild the optimum set&+ and F~ are given in Fig. 4.
manage sets. Now, we describe a more efficient strat- . »

egy to build these optimum sets. In orderto do that, we 4 5 6 gare, respectively, = {4}, F; = {5}, Fy =

associate with each vertexof 7, a boolean variable
I, that holdsTRUE if and only if u € F,7. Moreover,
for each vertexu # r of T,, we associate two vari-
ablesP;f and P, with values from{+, —}. In more
detail, givenx € C,, P =+ (P, =+) if Ff CF;f
(FF<F)andPf =— (P; =-)if Ff CF}
(F S F)).

The optimum setg,” associated with the vertices
{6}, and therefore[4 = Is = I =true. The se'd‘«“{r =
{5, 6} is computed by selecting,” = ¢, Fy = {5} and
Fg = {6}, therefore P, = +, P = —andPg = —.

It is easy to see that the time complexity of pro-
cedure Build_Solution is linear. Hence, we have the
main result of this section.

These variables are set during the execution of the Theorem 2. The weighted feedback vertex set problem
dynamic programming algorithm and are used by the on diamonds can be solved@(|V|) time.

procedure Build_Solution shown in Fig. 3. This pro-
cedure takes as input the trég a vertexu € T, and a
flag e {+, —}, and returns either the optimum s&f

or F, according to the value of flag.

For example, by calling Build_Solutiofi, u, +)
the setF, is returned. Note that this set (by Propo-
sitions 2 and 3) contains, for each childf «, either
F or F_, and this information is described by the
value of P;". Therefore, the procedure is recursively
called on each child of u with parameterg;, x, P.

A similar reasoning is applied when Build_Solution is
called to buildF,~. However, since in this casecan
either belong ta¥~ or not, the value of the variablg
has to be considered too.

4, Conclusion and further research

In this paper we have presented the family of di-
amond graphs where it is possible to solve WFVP in
linear time. We described a dynamic programming al-
gorithm to compute both the value and the vertices
that compose the optimal solution in(A) time. Ob-
ject of our further research is both (i) the study of
the larger class of multidiamond graphs (diamonds
with multi-upper and/or lower apices), and (ii) the use
of our exact algorithm on diamonds to improve the
approximated solution returned by existing heuristics
that solve WFVP on general graphs. To better clarify
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