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Abstract

Given an undirected and vertex weighted graphG, the Weighted Feedback Vertex Problem (WFVP) consists in findi
subsetF ⊆ V of vertices of minimum weight such that each cycle inG contains at least one vertex inF . The WFVP on genera
graphs is known to be NP-hard. In this paper we introduce a new class of graphs, namely thediamondgraphs, and give a linea
time algorithm to solve WFVP on it.
 2004 Elsevier B.V. All rights reserved.
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Given an undirected graphG = (V ,E), aFeedback
Vertex Set(FVS) of G is a subsetF ⊆ V of vertices
such that each cycle inG contains at least one ve
tex in F , i.e., the subgraphG′ induced by the se
V \F of vertices is acyclic. TheFeedback Vertex Prob
lem (FVP) consists in finding an FVS of minimum
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The Weighted Feedback Vertex Problem (WFVP) o
weighted graphG consists in finding an FVS of min
imum weight, where the weight of the set is the s
of the weights of its elements. Both FVP and WFV
have application in several areas of computer scie
such as circuit testing, deadlock resolution, placem
of converters in optical networks, combinatorial c
design. The FVP on general graph is known to be N
hard [5]. For the WFVP the best known approximati
algorithm has approximation ratio 2 (see, for exa
ple, [2,1]). This problem becomes polynomial wh
addressed on interval graphs [7], co-comparab

.
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graphs [3], permutation graphs [6], convex bipartite
graphs [3].
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of vertexu in T . We define theheighth(u) of a ver-
tex u in T , recursively as follows. Ifu is a leaf then
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In this paper we introduce a new class of grap
namely thediamondgraphs, and give a linear time a
gorithm to solve WFVP on it.

The sequel of the paper is organized as follo
Section 2 describes the class of diamond graphs.
tion 3 contains the description of our linear time
gorithm based on dynamic programming to optima
solve WFVP on diamonds. In Section 4 we will di
cuss how this polynomial result can be used to impr
an approximated solution on a general graph, tha
the object of our further research.

2. The class of diamond graphs

In this section we describe formally the class of
amond graphs. First we introduce the needed nota
(for any additional definition and notation we ref
to [4]).

Let G = (V ,E,w) be an undirected and verte
weighted graph, whereV is the set of vertices,E is
the set of edges, and,w(v) is a positive weight asso
ciated with each vertexv ∈ V . Given a subsetX ⊆ V

of vertices, we define its weightW(X) as the sum o
the weights of its elements, i.e.,W(X) = ∑

v∈X w(v).
If X = ∅ then W(X) = 0. We denote byG \ X the
subgraph ofG induced by the set of verticesV \ X.
A tree is an acyclic and connected graph. Given
rooted treeT , we denote byCu the set of children
-

h(u) = 0, otherwiseh(u) = maxx∈Cu{h(x)} + 1. We
define the heighth(T ) of the tree to be equal to th
height of its root. Given a vertexu of T , thesubtree
Tu rooted inu is the subgraph ofT induced by the se
of vertices constituted byu and its descendants inT .

Now we introduce the class ofDiamondgraphs.

Definition 1. A weighteddiamondDr,z = (V ,E,w)

with apicesr and z (r, z ∈ V ), is an undirected an
vertex weighted graph where (i) eachv ∈ V is in-
cluded in at least one simple path betweenr andz and
(ii) Dr,z \ {z} is a tree.

We refer to the two verticesr andz of a diamond
Dr,z as, respectively, theupperandlowerapex ofDr,z,
and, to the subgraphDr,z \ {z} as the treeTr rooted
in r associated withDr,z. Consider Fig. 1(a) as an e
ample. We have the diamondD1,10 with upper apex
r = 1 and lower apexz = 10. Note that by deleting
vertexz we obtain the treeT1 = D1,10 \ {z}.

We denote byDu,z = (Vu,Eu,w) the subdiamond
of Dr,z, with apicesu andz, induced by the vertices o
Tu and vertexz. We define theheighth(Du,z) of the
diamondDu,z to be equal to the height of the asso
ated treeTu.

Finally, observe that given a diamondDr,z, we
can see it as composed by the upper apexr and the
subdiamondsDri,z, for each ri ∈ Cr , where all of
them have the common lower apexz. Consider again
en
Fig. 1. (a) A diamond with apicesr = 1 andz = 10. (b) The acyclic subgraphD1,10 \ F̂ with a single path between vertices 1 and 10 wh

F̂ = {4,5,6} and (c) the subgraphD1,10 \ F̂ , with F̂ = {3,4} without any path between vertices 1 and 10.
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Fig. 1(a). The subgraph composed by the vertex set
{4,7,8,9,10} is a diamond with apicesr = 4 and
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z = 10 (D4,10), whose associated tree is the subtreeT4
of T1. The height ofT4 is h(T4) = h(4) = 1 that is also
the height ofD4,10. Moreover, we can seeD1,10 as
composed by vertex 1 and the two subdiamondsD2,10
andD3,10.

3. The dynamic programming algorithm

To simplify notation, in the rest of the section w
denote a diamondDr,z just asDr , since all considered
diamonds have the same lower apexz.

In this section, we propose a linear time algorith
to solve the WFVP on a diamond based on dyna
programming. We will introduce two new problems
diamonds (thePathproblem and theNoPathproblem)
and show how to obtain a minimum weighted FVS
Dr by the optimum solutions of these two problem
We then prove they have an optimal substructure p
erty that allows us to optimally solve them by mea
of dynamic programming.

In the sequel of the paper we will consider a
amondDr with upper apexr and lower apexz. To
better clarify the role of the two new problems in o
resolution algorithm, we state now the following o
servation.

Observation 1. By definition of diamond, the setF =
{z} is an FVS ofDr . Hence, an optimum solutionF ∗
of WFVP on Dr is such that, either it is compose
of the single vertexz (i.e., F ∗ = {z}) or, it does not
contain vertexz and it is such thatW(F ∗) � w(z).
Therefore, the WFVP on a diamond can be solved,
by looking for the minimum FVS, saŷF , that does no
contain vertexz, and then, by choosing the minimu
weight set between̂F and{z}.

Let F̂ ⊆ V \ {z} be an FVS onDr . Note that the
subgraphDr \ F̂ either contains a single simple pa
betweenr andz or it does not contain any of such
path, as it is stated by the following proposition.

Proposition 1. Given a diamondDr with apicesr

andz, if F̂ ⊆ V \ {z} is an FVS ofDr , then there exists
at most one path betweenr andz in Dr \ F̂ .
Dr \ F̂ . Let v �= z be the last vertex of the commo
longest subpath ofp1 and p2 starting fromr . Then
the subpaths fromv to z of p1 andp2, joined together
form a cycle inDr \ F̂ , but this is a contradiction sinc
Dr \ F̂ must be acyclic beinĝF an FVS ofDr . �

For example, consider again the diamond in Fig
The setF̂ = {4,5,6} is an FVS that does not conta
vertexz and such that there exists the simple pathP =
{1,3,10} connectingr andz in Dr \ F̂ (see Fig. 1(b)).
The setF̂ = {3,4} is an FVS that does not containz
and such that there is no path connectingr and z in
Dr \ F̂ (see Fig. 1(c)).

Now, we are ready to define two new problems t
will be useful to solve WFVP onDr .

Path problem. Given a diamondDr , find a subse
F+

r ⊆ V \{z} of minimum weight such that (i)Dr \F+
r

does not contain cycles, and (ii) there exists exact
single path inDr \ F+

r betweenr andz.

NoPath problem. Given a diamondDr , find a subse
F−

r ⊆ V \{z} of minimum weight such that (i)Dr \F−
r

does not contain cycles, and (ii) there does not ex
path inDr \ F−

r betweenr andz.

From the above observations it follows that the o
timum solutionF ∗ of WFVP onDr is such that:

W(F ∗) = min
{
w(z),W(F+

r ),W(F−
r )

}
and, therefore we have eitherF ∗ = {z} or F ∗ = F+

r or
F ∗ = F−

r .
Hence, we are interested now in solving bothPath

andNoPathproblems.

3.1. Optimal substructure and recursion rules

In this section, we conjunctly characterize t
structure of an optimal solution for bothPath and
NoPathproblems. We recall that a problem has t
optimal substructure property if any optimal soluti
to the problem contains within it optimal solution
to subproblems [4]. We will see that bothPath and
NoPath problems, defined onDr , have an optima
substructure property by considering as subprobl
those of determining the solution toPathandNoPath
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on the subdiamondsDu, for eachu ∈ V \ {z}. Let us
denote byF+

u andF−
u the optimal solutions ofPath
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CaseC: h(u) > 0 and(u, z) /∈ E.
W(F+

u ) = minx∈Cu{W(F+
x )+∑

y∈C \{x} W(F−
y )}.
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and NoPathproblem, respectively, onDu. Now, we
prove that the optimal solutionF+

u (F−
u ) contains, for

eachui ∈ Cu, eitherF+
ui

or F−
ui

.

Proposition 2. Given the optimum solutionF+
u onDu,

then each setFui
= F+

u ∩ Vui
, ui ∈ Cu, is an optimum

solution to either Path problem or NoPath proble
onDui

.

Proof. By feasibility of F+
u , it follows that z /∈ Fui

and Dui
\ Fui

is acyclic. Then, the setFui
respects

condition (i) for bothPathproblem andNoPathprob-
lem on the subdiamondDui

. Now, two cases, base
on the fact that either there exists a path betweeui

and z on Dui
\ Fui

or not, may occur. If there i
such a path, thenFui

is the optimum solution set fo
Pathproblem onDui

, i.e.,Fui
= F+

ui
. Indeed, if there

were another feasible setF ′
ui

for Pathproblem onDui

such thatW(F ′
ui

) < W(Fui
), we could obtain the se

F ′+
u = (F+

u \ Fui
) ∪ F ′

ui
that is feasible forPathprob-

lem onDu and such thatW(F ′+
u ) < W(F+

u ) obtaining
a contradiction. If there does not exit any path betw
ui andz on Dui

\ Fui
, then by applying a similar rea

soning it follows thatFui
= F−

ui
. �

The same considerations can be made for the o
mum solutionF−

u of theNoPathproblem as stated b
the following proposition.

Proposition 3. Given the optimum solutionF−
u onDu,

then each setFui
= F−

u ∩ Vui
, ui ∈ Cu, is an optimum

solution to either Path problem or NoPath proble
onDui

.

Following Lemmas 1 and 2, we describe how
build the weights of setsF+

u andF−
u on Du, by con-

sidering the value of optimum solution ofPath and
NoPathproblems onDx , for eachx ∈ Cu. In the next
section we will use these values to construct the o
mum setsF+

r andF−
r .

Lemma 1.

CaseA: h(u) = 0.
W(F+

u ) = 0.
CaseB: h(u) > 0 and(u, z) ∈ E.

W(F+
u ) = ∑

x∈Cu
W(F−

x ).
u

Proof. CaseA is easily verified sinceF+
u = ∅.

CaseB: if (u, z) ∈ E, sinceu /∈ F+
u , then the path

connectingu and z in Du \ F+
u is composed by the

single edge(u, z). Thus, to avoid cycles inDu \ F+
u ,

the setF+
u is obtained, by Propositions 1 and 2, by t

union of the optimum setsF−
x , x ∈ Cu, and we obtain

W(F+
u ) = ∑

x∈Cu
W(F−

x ).
CaseC: if (u, z) /∈ E, sinceu /∈ F+

u , in order to
have a path betweenu andz in Du \F+

u and by apply-
ing Propositions 1 and 2, the optimum set is obtain
by the minimum weight union of exactly one setF+

x ,
x ∈ Cu, and,F−

y , y ∈ Cu \ {x}. Therefore,W(F+
u ) =

minx∈Cu{W(F+
u ) + ∑

y∈Cu\{x} W(F−
y )}. �

Lemma 2.

CaseA: h(u) = 0.
W(F−

u ) = w(u).

CaseB: h(u) > 0 and(u, z) ∈ E.
W(F−

u ) = w(u) + ∑
x∈Cu

min{W(F−
x ),W(F+

u )}.
CaseC: h(u) > 0 and(u, z) /∈ E.

W(F−
u ) = min

{
w(u) +

∑
x∈Cu

min
{
W(F−

x ),W(F+
x )

}
,

∑
x∈Cu

W(F−
x )

}
.

Proof. CaseA is easily verified sinceF−
u = {u}.

Case B: if (u, z) ∈ E, then u ∈ F−
u otherwise

there would be a path betweenu andz in Du \ F−
u .

Therefore, by applying Propositions 1 and 3, we
lect on each subdiamondDx , x ∈ Cu, the minimum
weighted set amongF+

x and F−
x . Then W(F−

u ) =
w(u) + ∑

x∈Cu
min{W(F−

x ),W(F+
x )}.

CaseC: if (u, z) /∈ E, then u can either belong
to F−

u or not. If u ∈ F−
u , there is no path betwee

u and z in Du \ F−
u , thus we have the same sol

tion as for Case B. Ifu /∈ F−
u then to avoid paths

between the apices inDu \ F−
u , the optimum se

is obtained by the union of the optimum solutio
of the NoPath problem on the subdiamondsDx

for each childx of vertex u, therefore we would
haveW(F−

u ) = ∑
x∈Cu

W(F−
u ). Thus, for this case

W(F−
u ) = min{w(u)+∑

x∈Cu
min{W(F−

x ),W(F+
x )},∑

x∈Cu
W(F−

x )}. �



F. Carrabs et al. / Information Processing Letters 94 (2005) 29–35 33

According to lemmas above, the computation of the
optimum weighted FVS value can be carried out by a
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x ), which can be
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E,w
dynamic programming algorithm. The algorithm sca
all the vertices ofTr through a postorder visit startin
from the root noder . At each vertexu, both weight
W(F+

u ) andW(F−
u ), to PathandNoPathproblems on

Du are computed. Once that the weights of these
are computed for the upper apexr , the optimum se
among{z}, F+

r andF−
r is chosen.

The computational complexity of the algorithm
sketched above, is given by the sum of the com
tational complexity needed to computeW(F+

u ) and
W(F−

u ), for each vertexu of the treeTr . The com-
putation involved in both cases A of Lemmas 1 an
takes O(1) time. For cases B it takes O(|Cu|) time.
Indeed, the computation ofW(F+

u ) is carried out by
computing the sum of|Cu| values, while, to comput
W(F−

u ), |Cu| minimum operations between two va
ues are carried out and the sum of|Cu| + 1 values
is computed. It follows directly that the evaluation
W(F−

u ), for case C of Lemma 2, takes O(|Cu|) time.
Finally, observe that, to computeW(F+

u ) for case C

Input: A weighted diamondDr = (V ,
∗
Output: The weightW(F ) of an optimum
u

accomplished in O(|Cu|) time. Thus, the computa
tional complexity of the algorithm is given by∑
u∈V \{z}

O
(|Cu|

) = O
(|E|) = O

(|V |),
where the last relation follows from the fact th
for any diamond|E| � 2|V |. The above observation
prove the following theorem.

Theorem 1. The solution value of the weighted fee
back vertex set problem on diamonds can be comp
O(|V |) time.

The detailed dynamic programming algorithm
given in Fig. 2.

3.2. Construction ofF+
r andF−

r sets

In this section we describe the linear time recurs
procedure, Build_Solution, to build the feedback v
tex set whose optimum value is found by our dynam

) with upper apexr and lower apexz.

weighted feedback vertex set.
Compute_set_values(Dr, r);
W(F ∗) = min{w(z),W(F+

r ),W(F−
r )};

return W(F ∗);

Procedure Compute_set_values(Dr,u)
/* Case A of Lemmas 1 and 2 */
If h(u) = 0 then

W(F+
u ) = 0; W(F−

u ) = w(u); return;
for each x ∈ V such thatx is a child ofu in Tr do

Compute_set_values(Dr,x);
/* Case B of Lemmas 1 and 2 */
If (u, z) ∈ E then

W(F+
u ) = ∑

x∈Cu
W(F−

x );
W(F−

u ) = w(u) + ∑
x∈Cu

min{W(F−
x ),W(F+

x )};
/* Case C of Lemmas 1 and 2 */
else

W(F+
u ) = min

x∈Cu

{
W(F+

x ) +
∑

y∈Cu−{x}
W(F−

y )

}
;

W(F−
u ) = min

{
w(u) +

∑
x∈Cu

min{W(F−
x ),W(F+

x )},
∑

x∈Cu

W(F−
x )

}
;

return;

Fig. 2. The dynamic programming algorithm.
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Input: Tr , u, flag∈ {+,−}
Output: Print the vertices ofF flag
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Build_Solution(Tr , r,flag);

Procedure Build_Solution(Tr ,u,flag)

if (flag== − AND Iu == true)
print(u);

if u is not a leaf
for each child x of u do

if flag== + then
Build_Solution(Tr , x,P+

x );
else

Build_Solution(Tr , x,P−
x );

Fig. 3. Build_Solution procedure.

programming algorithm presented in the previous s
tion. By Lemmas 1 and 2, given a vertexu of Tr , an
easy way to build the optimal setsF−

u andF+
u is to

store the optimal setsF−
ui

andF+
ui

for eachui ∈ Cu.
However, from an implementation point of view, th
choice would require both the storage of a large qu
tity of data and the use of complex data structure
manage sets. Now, we describe a more efficient s
egy to build these optimum sets. In order to do that,
associate with each vertexu of Tr a boolean variable
Iu that holdsTRUE if and only if u ∈ F−

u . Moreover,
for each vertexu �= r of Tr , we associate two vari
ablesP +

u andP −
u with values from{+,−}. In more

detail, givenx ∈ Cu, P +
x = + (P −

x = +) if F+
x ⊆ F+

u

(F+
x ⊆ F−

u ) and P +
x = − (P −

x = −) if F−
x ⊆ F+

u

(F−
x ⊆ F−

u ).
These variables are set during the execution of

dynamic programming algorithm and are used by
procedure Build_Solution shown in Fig. 3. This pr
cedure takes as input the treeTr , a vertexu ∈ Tr and a
flag∈ {+,−}, and returns either the optimum setF+

u

or F−
u according to the value of flag.

For example, by calling Build_Solution(Tr,u,+)
the setF+

u is returned. Note that this set (by Prop
sitions 2 and 3) contains, for each childx of u, either
F+

x or F−
x , and this information is described by th

value ofP +
x . Therefore, the procedure is recursive

called on each childx of u with parametersTr, x,P +
x .

A similar reasoning is applied when Build_Solution
called to buildF−

u . However, since in this caseu can
either belong toF−

u or not, the value of the variableIu

has to be considered too.
Fig. 4. On the left a diamond whose optimum weighted FVS
F ∗ = {2} is given, and on the right, the values of the labels as
ciated with each vertex are shown.

Consider as an example the diamond in Fig. 4. T
upper apex isr = 1 and the lower apex isz = 3,
the label on each vertex denotes its weight, for
ample, vertex 1 has weightw(1) = 33. The optimum
weighted FVS isF ∗ = {2} whose optimum weight is
W(F ∗) = min{w(z),W(F+

1 ),W(F−
1 )}, whereF+

1 =
{2} and F−

1 = {1,5,6}. The values of the labels t
build the optimum setsF+

u andF−
u are given in Fig. 4.

The optimum setsF−
u associated with the vertice

4, 5, 6, are, respectively,F−
4 = {4}, F−

5 = {5}, F−
6 =

{6}, and therefore,I4 = I5 = I6 = true. The setF+
2 =

{5,6} is computed by selectingF+
4 = ∅, F−

5 = {5} and
F−

6 = {6}, therefore,P +
4 = +, P +

5 = − andP +
6 = −.

It is easy to see that the time complexity of pr
cedure Build_Solution is linear. Hence, we have
main result of this section.

Theorem 2. The weighted feedback vertex set probl
on diamonds can be solved inO(|V |) time.

4. Conclusion and further research

In this paper we have presented the family of
amond graphs where it is possible to solve WFVP
linear time. We described a dynamic programming
gorithm to compute both the value and the verti
that compose the optimal solution in O(n) time. Ob-
ject of our further research is both (i) the study
the larger class of multidiamond graphs (diamon
with multi-upper and/or lower apices), and (ii) the u
of our exact algorithm on diamonds to improve t
approximated solution returned by existing heuris
that solve WFVP on general graphs. To better cla
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this idea, letG be a graph andF be an approximate
FVS returned by a given approximation algorithm. We

w
ub-
ex
uc-
nd
he

ns
ted

graphs, in: ISAAC95, Algorithms and Computation, in: Lecture
Notes in Comput. Sci., vol. 1004, Springer-Verlag, Berlin, 1995,

p
ial

in
In-

o-

ity:
San

ion

d
ess.
could improve the solution of the given setF by sub-
stituting one or more of its vertices, sayF ′ ⊆ F , with a
setS ⊆ V \F of less weight such that the resulting ne
set is an FVS. Consider, for example, the acyclic s
graphG \ F = T , and, assume to add to it the vert
z ∈ F . The resulting graph is, after appropriate red
tion operations, either a diamond or a multidiamo
and by applying our algorithm we could improve t
initial FVS.
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