
Practical Short Signature Batch Verification

Anna Lisa Ferrara1, Matthew Green2, Susan Hohenberger3,
and Michael Østergaard Pedersen4

1 University of Illinois at Urbana-Champaign
2 Independent Security Evaluators

3 Johns Hopkins University
4 Lenio A/S

Abstract. In many applications, it is desirable to work with signatures
that are short, and yet where many messages from different signers be ver-
ified very quickly. RSA signatures satisfy the latter condition, but are gen-
erally thousands of bits in length. Recent developments in pairing-based
cryptography produced a number of “short” signatures which provide
equivalent security in a fraction of the space. Unfortunately, verifying
these signatures is computationally intensive due to the expensive pair-
ing operation. Toward achieving “short and fast” signatures, Camenisch,
Hohenberger and Pedersen (Eurocrypt 2007) showed how to batch verify
two pairing-based schemes so that the total number of pairings was inde-
pendent of the number of signatures to verify.

In this work, we present both theoretical and practical contributions.
On the theoretical side, we introduce new batch verifiers for a wide
variety of regular, identity-based, group, ring and aggregate signature
schemes. These are the first constructions for batching group signatures,
which answers an open problem of Camenisch et al. On the practical
side, we implement each of these algorithms and compare each batching
algorithm to doing individual verifications. Our goal is to test whether
batching is practical; that is, whether the benefits of removing pairings
significantly outweigh the cost of the additional operations required for
batching, such as group membership testing, randomness generation, and
additional modular exponentiations and multiplications. We experimen-
tally verify that the theoretical results of Camenisch et al. and this work,
indeed, provide an efficient, effective approach to verifying multiple sig-
natures from (possibly) different signers.

1 Introduction

As we move into the era of pervasive computing, where computers are everywhere
as an integrated part of our surroundings, there are going to be a host of devices
exchanging messages with each other, e.g., sensor networks, vehicle-2-vehicle
communications [1,2]. For these systems to work properly, messages must carry
some form of authentication, but the system requirements on the authentication
are particularly demanding. Any cryptographic solution must simultaneously be:

M. Fischlin (Ed.): CT-RSA 2009, LNCS 5473, pp. 309–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

310 A.L. Ferrara et al.

1. Short: Bandwidth is an issue. Raya and Hubaux argue that due to the lim-
ited spectrum available for vehicular communication, something shorter than
RSA signatures is needed [3].

2. Quick to verify large numbers of messages from different sources: Raya and
Hubaux also suggest that vehicles will transmit safety messages every 300ms
to all other vehicles within a minimum range of 110 meters [3], which in
turn may retransmit these messages. Thus, it is much more critical that
authentications be quick to verify rather than to generate.

3. Privacy-friendly: Users should be held accountable, but not become publicly
identifiable.

Due to the high overhead of using digital signatures, researchers have de-
veloped a number of alternative protocols designed to amortize signatures over
many packets [4,5], or to replace them with symmetric MACs [6]. Each approach
has significant drawbacks; e.g., the MAC-based protocols use time-delayed deliv-
ery so that the necessary verification keys are delivered after the authenticated
messages arrive. This approach can be highly efficient within a restricted setting
where synchronized clocks are available, but it does not provide non-repudiability
of messages (to hold malicious users accountable) or privacy. Signature amortiza-
tion requires verifiers to obtain many packets before verifying, and is vulnerable
to denial of service. Other approaches, such as the short, undeniable signatures
of Monnerat and Vaudenay [7,8] are inappropriate for the pervasive settings we
consider, since verification requires interaction with the signer.

In 2001, Boneh, Lynn and Shacham developed a pairing-based signature that
provides security equivalent to 1024-bit RSA at a cost of only 170 bits [9] (slightly
larger than HMAC-SHA1). This was followed by many signature variants, some
of them privacy-friendly, which were also relatively short, e.g., [10,11,12,13]. Un-
fortunately, the focus was on reducing the signature size, but less attention was
paid to the verification cost which require expensive pairing operations.

Recently, Camenisch, Hohenberger and Pedersen [14] took a step toward
speeding up the verification of short signatures, by showing how to batch verify
two short pairing-based signatures so that the total number of dominant (pair-
ing) operations was independent of the number of signatures to verify. However,
their solution left open several questions which this work addresses.

First, their work was purely theoretical. To our knowledge, we are the first
to provide a detailed empirical analysis of batch verification of short signatures.
This is interesting, because our theoretical results and those of Camenisch et
al. [14] reduce the total number of pairings by adding in other operations, such
as random number generation and small modular exponentiations, so it was
unclear how well these algorithms would perform in practice. Fortunately, in
section 5, we verify that these algorithms do work well.

Second, Camenisch et al. [14] dealt only with batching regular and identity-
based signatures. They specifically mentioned batching group signatures as an
interesting open problem. Here, we present the first batch verifier for a group sig-
nature scheme, as well as new verifiers for many other types of regular, identity-
based, ring and aggregate signatures.

Practical Short Signature Batch Verification 311

Finally, Camenisch et al. [14] did not address the practical issue of what to do
if the batch verification fails. How does one detect which signatures in the batch
are invalid? Does this detection process eliminate all of the efficiency gains of
batch verification? Fortunately, our empirical studies reveal good news: invalid
signatures can be detected via a recursive divide-and-conquer approach, and if
< 15% of the signatures are invalid, then batch verification is still more efficient
than individual verification. At the time we conducted these experiments, the
divide-and-conquer approach was the best method known to us. Recently, Law
and Matt [15] proposed three new techniques for finding invalid signatures in a
batch. One of their techniques allows to save approximately half the time needed
by the simple divide-and-conquer approach, for large batch sizes. Thus, while our
numbers seem good, they can be further improved.

Overall, we conclude that many interesting short signatures can be batch
verified, and that batch verification is an extremely valuable tool for system
implementors. As an example of our results in section 5, for the short group
signatures of Boneh, Boyen and Shacham [10], we see that when batching 200
group signatures (in a 160-bit MNT curve) individual verification takes 139ms
whereas batch verification reduces the cost to 25ms per signature (see Figure 3).

2 Algebraic Setting: Pairings

Let PSetup be an algorithm that, on input the security parameter 1τ , outputs
the parameters for a bilinear pairing as (q, g1, g2,G1,G2,GT , e), where G1 =
〈g1〉,G2 = 〈g2〉 and GT are of prime order q ∈ Θ(2τ). The efficient mapping
e : G1 × G2 → GT is both: (bilinear) for all g ∈ G1, h ∈ G2 and a, b ← Zq,
e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h generates
G2, then e(g, h) �= 1. This is called the asymmetric setting; in the symmetric
setting, G1 = G2.

In the asymmetric setting, the best we can hope for are group elements in
G1,G2 and GT of size 160, 512 and 1024 bits respectively. In the symmetric
setting, it seems the best curve is a supersingular curve (with k = 2), where
G1 = G2 and GT will be of size 512 and 1024 bits respectively. Most of the
signature schemes we discuss can be implemented in the asymmetric setting to
take advantage of the smaller group sizes. We discuss this more and the case of
batching composite order groups in the full version of this paper [16].

Testing Membership. Our proofs will require that elements of purported signa-
tures are members of G1, but how efficiently can this fact be verified? Deter-
mining whether some data represents a point on a curve is easy. The question
is whether it is in the correct subgroup. Assume that the subgroup has order q.
The easy way to verify if y ∈ G1 is simply to test yq = 1. Since q might be quite
large this test is inefficient, but as we will see later the time required to test
membership of group elements are insignificant compared to the time required
to do the pairings in the applications we have in mind. Yet, in some cases, there
are more efficient ways to test group membership [17].

312 A.L. Ferrara et al.

3 Basic Tools for Pairing-Based Batch Verification

Let us begin with a formal definition of a pairing based batch verifier. Recall
that PSetup is an algorithm that, on input the security parameter 1τ , outputs
the parameters (q, g1, g2,G1,G2, GT , e), where G1,G2,GT are of prime order
q ∈ Θ(2τ). Pairing-based verification equation are represented by a generic pair-
ing based claim X corresponding to a boolean relation of the following form:
∏k

i=1 e(fi, hi)ci
?= A, for k ∈ poly(τ) and fi ∈ G1, hi ∈ G2 and ci ∈ Z∗

q , for
each i = 1, . . . , k. A pairing-based verifier Verify for a generic pairing-based
claim is a probabilistic poly(τ)-time algorithm which on input the representa-
tion 〈A, f1, . . . , fk, h1, . . . , hk, c1, . . . , ck〉 of a claim X , outputs accept if X holds
and reject otherwise. We define a batch verifier for pairing-based claims.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1τ) → (q, g1, g2,
G1,G2,GT , e). For each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a generic
pairing-based claim and let Verify be a pairing based verifier. We define a pairing-
based batch verifier for Verify as a probabilistic poly(τ)-time algorithm which
outputs:

– accept if X(j) holds for all j ∈ [1, η];
– reject if X(j) does not hold for any j ∈ [1, η] except with negligible probability.

3.1 Small Exponents Test Applied to Pairings

Bellare, Garay and Rabin proposed methods for verifying multiple equations of
the form yi = gxi for i = 1 to n, where g is a generator for a group of prime
order [18]. One might be tempted to just multiply these equations together and
check if

∏n
i=1 yi = g

∑n
i=1 xi . However, it would be easy to produce two pairs

(x1, y1) and (x2, y2) such that the product of them verifies correctly, but each
individual verification does not, e.g. by submitting the pairs (x1 − α, y1) and
(x2 + α, y2) for any α. Instead, Bellare et al. proposed the following method,
which we will later apply to pairings.

Small Exponents Test: Choose exponents δi of (a small number of) �b bits
and compute

∏n
i=1 y

δi

i = g
∑ n

i=1 xiδi . Then the probability of accepting a bad pair
is 2−�b. The size of �b is a tradeoff between efficiency and security. (In Section 5,
we set �b = 80 bits.)

Theorem 1. Let PSetup(1τ) → (q, g1, g2,G1,G2,GT , e) where q is prime. For
each j ∈ [1, η], where η ∈ poly(τ), let X(j) corresponds to a generic claim as
in Definition 1. For simplicity, assume that X(j) is of the form A

?= Y (j) where
A is fixed for all j and all the input values to the claim X(j) are in the correct
groups. For any random vector Δ = (δ1, . . . , δη) of �b bit elements from Zq, an
algorithm Batch which tests the following equation

∏η
j=1 A

δj
?=

∏η
j=1 Y

(j)δj is
a pairing-based batch verifier that accepts an invalid batch with probability at
most 2−�b .

Practical Short Signature Batch Verification 313

The proof closely follows the proof of the small exponents test by Bellare et
al. [18], we include a full proof of this theorem in the full version of this paper [16].
Thus, Theorem 1 provides a single verification equation, which we then want to
optimize.

3.2 Basic Batching Techniques

Armed with Theorem 1, let’s back up for a moment to get a complete picture
of how to develop an efficient batch verifier. This summarizes the ideas we used
to obtain the results in Figure 1, which we believe will be useful elsewhere.
Immediately after the summary, we’ll explain the details.

Summary: Suppose you have η bilinear equations. Batch verify them as follows:

1. Apply Technique 1 to the individual verification equation, if applicable.
2. Apply Theorem 1 to the equations. This combines all equations into a single

equation after checking membership in the expected algebraic groups and
using the small exponents test.

3. Optimize the resulting single equation using Techniques 2, 3 and 4.
4. If batch verification fails, use the divide-and-conquer approach to identify

the bad signatures.

Technique 1 Change the verification equation. Recall that a Σ-protocol is a
three step protocol (commit, challenge, response) allowing a prover to prove
various statements to a verifier. Using the Fiat-Shamir heuristic a Σ-protocol
can be turned into a signature scheme, by forming the challenge as the hash
of the commitment and the message to be signed. The signature is then either
(commit, response) or (challenge, response). The latter is often preferred, since
the challenge is usually smaller than the commitment, which results in a smaller
signature. However, we observed that this often causes batch verification to be-
come very inefficient, whereas using (commit, response) results in a much more
suitable verification equation.

We use this technique to help batch the Hess IBS [19] and the group signatures
of Boneh, Boyen and Shacham [10] and Boyen and Shacham [11]. Indeed, we
believe that prior attempts to batch verify group signatures overlooked this idea
and thus came up without efficient solutions.

Combination Step: Given η pairing-based claims, apply Theorem 1 to obtain
a single equation. The combination step actually consist of two substeps:

1. Check Membership: Check that all elements are in the correct subgroup. Only
elements that could be generated by an adversary needs to be checked (e.g.,
elements of a signature one wants to verify). Public parameters need not be
checked, or could be checked only once.

2. Small Exponents Test: Combine all equations into one and apply the small
exponents test.

314 A.L. Ferrara et al.

Next, optimize this single equation using any of the following techniques in
any order.

Technique 2 Move the exponent into the pairing. When a pairing of the form
e(gi, hi)δi appears, move the exponent δi into e(). Since elements of G are usually
smaller than elements of GT , this gives a small speedup when computing the
exponentiation.

Replace e(gi, hi)δi with e(gδi

i , hi)

Technique 3. When two pairings with a common first or second element appear,

they can be combined. This can reduce η pairings to one. It will work like this:

Replace
η∏

i=1

e(gδi

i , h) with e(
η∏

i=1

gδi

i , h)

In rare cases, it might be useful to apply this technique“in reverse”, e.g., splitting
a single pairing into two or more pairings to allow for the application of other
techniques. For example, we do this when batching Boyen’s ring signatures [13],
so that we can apply Technique 4 below.

Technique 4 Waters hash. In his IBE, Waters described how hash identities to
values in G1 [20], using a technique that was subsequently employed in several
signature schemes. Assume the identity is a bit string V = v1v2 . . . vm, then
given public parameters u1, . . . , um, u

′ ∈ G1, the hash is u′
∏m

i=1 u
vi

i . Following
works by Naccache [21] and Chatterjee and Sarkar [22,23] documented the gen-
eralization where instead of evaluating the identity bit by bit, divide the k bit
identity bit string into z blocks, and then hash. (In Section 5, we SHA1 hash
our messages to a 160-bit string, and use z = 5 as proposed in [21].) Recently,
Camenisch et al. [14] pointed out the following method:

Replace
η∏

j=1

e(gj ,

m∏

i=1

u
vij

i) with
m∏

i=1

e(
η∏

j=1

gj
vij , ui)

In the full version of this paper [16], we apply this technique to schemes with
structures related to the Waters hash; namely, the ring signatures of Boyen [13]
and the aggregate signatures of Lu et al. [24].

3.3 Handling Invalid Signatures

If there is even a single invalid signature in the batch, then the batch verifier
will reject the entire batch with high probability. In many real-world situations,
a signature collection may contain invalid signatures caused by accidental data
corruption, or possibly malicious activity by an adversary seeking to degrade
service. In some cases, this may not be a serious concern. E.g., sensor networks
with a high level of redundancy may choose to simply drop messages that cannot

Practical Short Signature Batch Verification 315

be efficiently verified. Alternatively, systems may be able to cache and/or indi-
vidually verify important messages when batch verification fails. Yet, in some
applications, it might be critical to tolerate some percentage of invalid signatures
without losing the performance advantage of batch verification.

In Section 5.2, we employ a recursive divide-and-conquer approach, similar
to that of Pastuszak, Pieprzyk, Michalek and Seberry [25], as: First, shuffle the
incoming batch of signatures, and if batch verification fails, simply divide the
collection into two halves, and recurse on the halves. When this process termi-
nates, the batch verifier outputs the index of each invalid signature. Through
careful implementation and caching of intermediate results, much of the work of
the batch verification (i.e., computing the product of many signature elements)
can be performed once over the full signature collection, and need not be re-
peated when verifying each sub-collection. Thus, the cost of each recursion is
dominated by the number of pairings used in the batch verification algorithm.
In Section 5.2, we show that even if up to 15% of the signatures are invalid, this
technique still performs faster than individual verification.

Recently, Law and Matt [15] proposed three new techniques for finding invalid
signatures in a batch. One of their techniques, which is the most efficient for large
batch sizes, allows to save approximately half the time needed by the simple
divide-and-conquer approach. Thus, it is possible to do even better than the
performance numbers we present.

4 Batch Verifiers for Short Signatures

Given the basic batching tools in the last section, it still requires creativity to
figure out how best to apply them to batch any given scheme. In this section, we
present new results for batch verifying a selection of existing regular, identity-
based, group, ring, and aggregate signature schemes. To our knowledge, these
are the first such verifiers for group, ring and aggregate signatures. After a search
through the existing literature, we present the schemes with the best results.

Figure 1 shows a summary of our theoretical results, together with an indica-
tion of which batching techniques were used. Due to space limitations, we cannot
describe the details of each scheme. Instead, we demonstrate one example in the
Boneh, Boyen and Shacham [10] group signatures and then describe all remaining
signatures and their batch verifiers in the full version of this paper [16].

4.1 Batching the Boneh-Boyen-Shacham (BBS) Group Signatures

This scheme does not appear to batch well without making some alterations,
which increase the signature size by one group element, but where only 2 pairings
are sufficient to batch an arbitrary number of signatures. A group signature
scheme allows any member to sign on behalf of the group in such a way that
anyone can verify a signature using the group public key while nobody, but
the group manager, can identify the actual signer. A scheme consists of four
algorithms: KeyGen, Sign, Verify and Open, that, respectively generate public

316 A.L. Ferrara et al.

Scheme Model Individual-Verify Batch-Verify Reference Techniques

Group Signatures

BBS [10] RO 5η 2 §4.1 1,2,3
BS [11] RO 5η 2 [16] 1,2,3

ID-based Ring Signatures

CYH [12] RO 2η 2 [16] 2,3

Ring Signatures

Boyen [13] (same ring) plain � · (η + 1) min{η · � + 1, 3 · � + 1} [16] 2,3,4

Signatures

BLS [26] RO 2η s + 1 [26] 2,3
CHP [14] (time restrictions) RO 3η 3 [14] 2,3

ID-based Signatures

Hess [19] RO 2η 2 [16] 1,2,3
ChCh [27] RO 2η 2 [15] 2,3
Waters [20,21,28,23] plain 3η min{(2η + 3), (z + 3)} [14] 2,3,4

Aggregate Signatures

BGLS [29] (same users) RO η(� + 1) � + 1 [16] 2,3
Sh [30] (same users) RO η(� + 2) � + 2 [16] 2,3
LOSSW [24] (same sequence) plain η(� + 1) min{(η + 2), (� · k + 3)} [16] 2,3,4

Fig. 1. Signatures with Efficient Batch Verifiers. Let η be the number of signa-
tures to verify, s be the number of distinct signers involved and � be either the size
of a ring or the size of an aggregate. Boyen batch verifier requires each signature to
be issued according to the same ring. Aggregate verifiers work for signatures related
to the same set of users. In CHP, only signatures from the same time period can be
batched and z is a (small) parameter (e.g., 8). In LOSSW, k is the message bit-length.
RO stands for random oracle. The details of each scheme and its batch verifier are
provided in the full version of this paper [16].

and private keys for users and the group manager, sign a message on behalf of
a group, verify the signature on a message according to the group and trace a
signature to a signer. For our purposes, we focus on the verification algorithm.

The Boneh-Boyen-Shacham (BBS) Group Signatures. Let PSetup(1τ)→ (q, g1,
g2, G1, G2, GT , e), where H : {0, 1}∗ → Zq is a hash function and there exists
an efficiently-computable isomorphism ψ : G2 → G1. Let � be the number of
users in a group.

Key Gen. Select a random g2 ∈ G2 and sets g1 ← ψ(g2). Select h $← G1\{1G1},
r1, r2

$← Z∗
q , and set u, v such that ur1 = vr2 = h. Select γ $← Z∗

q , and set

w = gγ
2 . For i = 1 to n, select xi

$← Z∗
q , and set fi = g

1/(γ+xi)
1 . The public key is

gpk = (g1, g2, h, u, v, w), the group manager’s secret key is gmsk = (r1, r2) and
the secret key of the i’th user is gsk[i] = (fi, xi).
Sign. Given a group public key gpk = (g1, g2, h, u, v, w), a user private key
(f, x) and a message M ∈ {0, 1}∗, compute the signature σ as follows: Se-
lect α, β, rα, rβ , rx, rγ1 , rγ2

$← Zq. Compute T1 = uα; T2 = vβ ; T3 = f ·
hα+β , γ1 = x · α and γ2 = x · β, R1 = urα ; R2 = vrβ ;R3 = e(T3, g2)rx ·
e(h,w)−rα−rβ · e(h, g2)−rγ1−rγ2 ; R4 = T rx

1 · u−rγ1 ; R5 = T rx
2 · v−rγ2 . Compute

c = H(M,T1, T2, T3, R1, R2, R3, R4, R5). Compute sα = rα +c ·α; sβ = rβ +c ·β;

Practical Short Signature Batch Verification 317

sx = rx + c · x; sγ1 = rγ1 + c · γ1; sγ2 = rγ2 + c · γ2. The signature is σ =
(T1, T2, T3, c, sα, sβ , sx, sγ1 , sγ2).
Verify. Given a group public key gpk = (g1, g2, h, u, v, w), a message M and a
group signature σ = (T1, T2, T3, c, sα, sβ , sx, sγ1 , sγ2), compute the values R1 =
usα · T−c

1 , R2 = vsβ · T−c
2 , R3 = e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·(

e(T3, w) · e(g1, g2)−1
)c

, and R4 = T sx
1 · u−sδ1 ; R5 = T sx

2 · v−sδ2 . Accept iff
c

?= H(M,T1, T2, T3, R1, R2, R3, R4, R5).

An Efficient Batch Verifier for BBS Group Signatures. Computing R3

is the most expensive part of the verification above, but at first glance it is not
clear that this can be batched, because each R3 is hashed in the verification
equation. However, as described by Technique 1, the signature and the verifica-
tion algorithm can be modified at the expense of increasing the signature size by
one element. Let σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 , sγ2) be the new signature,
together with:
New Individual Verify. Given a group public key gpk = (g1, g2, h, u, v, w),
a message M and a group signature σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 ,
sγ2), compute the values R1 ← usα · T−c

1 ; R2 ← vsβ · T−c
2 ; R4 ← T sx

1 · u−sγ1 ;
R5 ← T sx

2 · v−sγ2 , then check the following equation

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sγ1−sγ2 · (e(T3, w) · e(g1, g2)−1
)c ?= R3.

Finally check if c ?= H(M,T1, T2, T3, R1, R2, R3, R4, R5). Accept if all checks
succeed, else reject.

Now we define a batch verifier, where the main objective is to use a constant
number of pairings.
Batch Verify. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let
σj = (Tj,1, Tj,2, Tj,3, Rj,3, cj , sj,α, sj,β , sj,x, sj,γ1 , sj,γ2) be the j’th signature
on the message Mj , for each j = 1, . . . , η. For each j = 1, . . . , η, compute the
following values:

Rj,1 ← usj,α · T−cj

j,1 Rj,2 ← vsj,β · T−cj

j,2

Rj,4 ← T
sj,x

j,1 · u−sj,γ1 Rj,5 ← T
sj,x

j,2 · v−sj,γ2

Now for each j = 1, . . . , η, check that cj
?= H(Mj, Tj,1, Tj,2, Tj,3, Rj,1, Rj,2, Rj,3,

Rj,4, Rj,5). Then check the following single pairing based equation

e(
η∏

j=1

(T sj,x

j,3 · h−sj,γ1−sj,γ2 · g−cj

1)δj , g2) · e(
η∏

j=1

(h−sj,α−sj,β · T c
3)δj , w) ?=

η∏

j=1

R
δj

j,3.

where (δ1, . . . , δη) is a random vector of �b bit elements from Zq. Accept iff all
checks succeed.

Theorem 2. For security level �b, the above algorithm is a batch verifier for the
BBS group signature scheme, where the probability of accepting an invalid signa-
ture is 2−�b . (Proof of this theorem appears in the full version of this paper [16].)

318 A.L. Ferrara et al.

5 Implementation and Performance Analysis

The previous work on batching short signatures [14] considers only asymptotic
performance. Unfortunately, this “paper analysis”conceals many details that are
revealed only through empirical evaluation. Additionally, the existing work does
not address how to handle invalid signatures.

We seek to answer these questions by conducting the first empirical investiga-
tion into the feasibility of short signature batching. To conduct our experiments,
we built concrete implementations of seven signature schemes described in this
work, including two public key signature schemes (BLS, CHP), three Identity-
Based Signature schemes (ChCh, Hess, Waters), a ring signature (CYH), and a
short group signature scheme (BBS). For each scheme, we measured the perfor-
mance of the individual verification algorithm against that of the corresponding
batch verifier. We then turned our attention to the problem of efficiently sorting
out invalid signatures.

Experimental Setup. To evaluate our batch verifiers, we implemented each signa-
ture scheme in C++ using the MIRACL library for elliptic curve operations [31].
Our timed experiments were conducted on a 3.0Ghz Pentium D 930 with 4GB
of RAM running Linux Kernel 2.6. All hashing was implemented using SHA1,1

and small exponents were of size 80 bits. For each scheme, our basic experiment
followed the same outline: (1) generate a collection of η distinct signatures on
100-byte random message strings. (2) Conduct a timed verification of this col-
lection using the batch verifier. (3) Repeat steps (1, 2) four times, averaging to
obtain a mean timing. To obtain a view of batching efficiency on collections of
increasing size, we conducted the preceding test for values of η ranging from 1 to
approximately 400 signatures in intervals of 20. Finally, to provide a baseline, we
separately measured the performance of the corresponding non-batched verifica-
tion, by verifying 1000 signatures and dividing to obtain the average verification
time per signature. A high-level summary of our results is presented in Figure 3.

Curve k R(G1) R(GT) SRSA Pairing Time

MNT160 6 160 bits 960 bits 960 bits 23.3 ms
MNT192 6 192 bits 1152 bits 1152 bits 33.2 ms
SS512 2 512 bits 1024 bits 957 bits 16.7 ms

Fig. 2. Description of the elliptic curve parameters used in our experiments. R(·) de-
scribes the approximate number of bits to optimally represent a group element. SRSA

is an estimate of “RSA-equivalent”security derived via the approach of Page et al. [32].

1 We selected SHA1 because the digest size closely matches the order of G1. One could
use other hash functions with a similar digest size, e.g., RIPEMD-160, or truncate
the output of a hash function such as SHA-256 or Whirlpool. Because the hashing
time is negligible in our experiments, this should not greatly impact our results.

Practical Short Signature Batch Verification 319

Signature Size (bits) Individual Verification Batched Verification∗

Scheme MNT160 MNT192 SS512 MNT160 MNT192 SS512 MNT160 MNT192 SS512

Signatures

BLS (single signer) 160 192 512 47.6 ms 77.8 ms 52.3 ms 2.28 ms 2.93 ms 32.42 ms
CHP 160 192 512 73.6 ms 119.0 ms 93.0 ms 26.16 ms 34.66 ms 34.50 ms

BLS cert + CHP sig 1280 1536 1536 121.2 ms† 196.8 ms† 145.3 ms† 28.44 ms† 37.59 ms† 66.92 ms†

Identity-Based Signatures

ChCh 320 384 1024 49.1 ms 79.7 ms 73.3 ms 3.93 ms 5.24 ms 59.45 ms
Waters 480 576 1536 91.2 ms 138.64 ms 61.1 ms 9.44 ms 11.49 ms 59.32 ms
Hess 1120 1344 1536 49.1 ms 79.0 ms 73.1 ms 6.70 ms 8.72 ms 55.94 ms

Anonymous Signatures

BBS (modified per §[16]) 2400 2880 3008 139.0 ms 218.3 ms 193.0 ms 24.80 ms 34.18 ms 198.03 ms
CYH, 2-member ring 480 576 1536 52.0 ms 77.0 ms 113.0 ms 6.03 ms 8.30 ms 105.69 ms
CYH, 20-member ring 3360 4032 10752 86.5 ms 126.8 ms 829.3 ms 43.93 ms 61.47 ms 932.66 ms
∗Average time per verification when batching 200 signatures.
†Values were derived by manually combining data from BLS and CHP tests.

Fig. 3. Summary of experimental results. Timing results indicate verification time per
signature. With the exception of BLS, our experiments considered signatures generated
by distinct signers.

Curve Parameters. The selection of elliptic curve parameters impacts both sig-
nature size and verification time. The two most important choices are the size
of the underlying finite field Fp, and the curve’s embedding degree k. Due to
the MOV attack, security is bounded by the size of the associated finite field
Fpk . Simultaneously, the representation of elements G1 requires approximately
|p| bits. Thus, most of the literature on short signatures recommends choosing
a relatively small p, and a curve with a high value of k. (For example, an MNT
curve with |p| = 192 bits and k = 6 is thought to offer approximately the same
level of security as 1152-bit RSA [32].) The literature on short signatures focuses
mainly on signature size rather than verification time, so it is easy to miss the
fact that using such high-degree curves substantially increases the cost of a pair-
ing operation, and thus verification time. To incorporate these effects into our
results, we implemented our schemes using two high-degree (k = 6) MNT curves
with |p| equal to 160 bits and 192 bits. For completeness, we also considered a
|p|=512 bit supersingular curve with embeddeing degree k = 2, and a subgroup
G1 of size 2160. Figure 2 details the curve choices along with relevant details such
as pairing time and “RSA-equivalent” security determined using the approach of
Page et al. [32].

5.1 Performance Results

Public-Key signatures. Figure 4 presents the results of our timing experi-
ments for the public-key BLS and CHP verifiers. Because the BLS signature does
not batch efficiently for messages created by distinct signers, we studied the
combination suggested in [14], where BLS is used for certificates which are cre-
ated by a single master authority, and CHP is used to sign the actual messages
under users’ individual signing keys. Unfortunately, the CHP batch verifier ap-
pears to be quite costly in the recommended MNT curve setting. This outcome
stems from the requirement that user public keys be in the G2 subgroup. This

320 A.L. Ferrara et al.

MNT160 MNT192 SS512

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

BLS (batched)
BLS (individual)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

BLS (batched)
BLS (individual)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

BLS (batched)
BLS (individual)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CHP (batched)
CHP (individual)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CHP (batched)
CHP (individual)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CHP (batched)
CHP (individual)

Fig. 4. Public-Key Signature Schemes. Per-signature times were computed by dividing
total batch verification time by the number of signatures verified. Note that in the BLS
case, all signatures are formulated by the same signer (as for certificate generation),
while for CHP each signature was produced by a different signer. Individual verification
times are included for comparison.

necessitates expensive point operations in the curve defined over the extension
field, which undoes some of the advantage gained by batching. However, batch-
ing still reduces the per-signature verification cost to as little as 1/3 to 1/4 that
of individual verification.

Identity-Based signatures. Figure 5 gives our measurements for three IBS
schemes: ChCh, Waters and Hess. (For comparison, we also present CHP signa-
tures with BLS-signed public-key certificates.) In all experiments, we consider
signatures generated by different signers. In contrast with regular signatures,
the IBSes batch quite efficiently, at least when implemented in MNT curves.
The Waters scheme offers strong performance for a scheme not dependent on
random oracles.2 In our implementation of Waters, we first apply a SHA1 to the
message, and use the Waters hash parameter z = 5 which divides the resulting
160-bit digest into blocks of 32 bits (as in [21]).

Anonymous signatures. Figure 6 gives our results for two privacy-preserving
signatures: the CYH ring signature and the modified BBS group signature. As
is common with ring signatures, in CYH both the signature size and verification
time grow linearly with the number of members in the ring. For our experiments
we arbitrarily selected two cases: (1) where all signatures are formed under a 2-
member ring (useful for applications such as lightweight email signing [33]), and

2 However, it should be noted that Waters has a somewhat loose security reduction,
and may therefore require larger parameters in order to achieve security comparable
to alternative schemes.

Practical Short Signature Batch Verification 321

MNT160 MNT192 SS512

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

Fig. 5. Identity-Based Signature Schemes. Times represent total batch verification time
divided by the number of signatures verified. “CHP+BLS cert” represents the batched
public-key alternative using certificates, and is included for comparison.

MNT160 MNT192 SS512

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CYH (ring=20)
BBS

CYH (ring=2)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CYH (ring=20)
BBS

CYH (ring=2)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e*

Number of signatures

CYH (ring=20)
BBS

CYH (ring=2)

∗Uses a different timescale.

Fig. 6. Anonymous Signature Schemes. Times represent total batch verification time
divided by the number of signatures verified. For the CYH ring signature, we consider
two distinct signature collections, one consisting of 2-member rings, and another with
20-member rings. The BBS signature verification is independent of the group size.

(2) where all signatures are formed using a 20-member ring.3 In contrast, both
the signature size and verification time of the BBS group signature are indepen-
dent of the size of the group. This makes group signatures like BBS significantly
more practical for applications such as vehicle communication networks, where
the number of signers might be quite large.

5.2 Batch Verification and Invalid Signatures

In Section 3.3, we discuss techniques for dealing with invalid signatures. When
batch verification fails, this divide-and-conquer approach recursively applies the
batch verifier to individual halves of the batch, until all invalid invalid signatures
have been located. To save time when recursing, we compute products of the form∏η

i=1 x
δi

i so that partial products will be in place for each subset on which me
might recurse. We accomplish this by placing each xδi

i at the leaf of a binary
tree and caching intermediate products at each level. This requires no additional
3 Although the CYH batch verifier can easily batch signatures formed over differently-

sized rings, our experiments use a constant ring size. Our results are representative
of any signature collection where the mean ring size is 20.

322 A.L. Ferrara et al.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
s

pe
r

si
gn

at
ur

e

% Invalid Signatures

Batched Verification
Individual Verification

Fig. 7. BLS batch verification in the presence of invalid signatures (160-bit MNT curve).
A “resilient” BLS batch verifier was applied to a collection of 1024 purported BLS sig-
natures, where some percentage were randomly corrupted. Per-signature times were
computed by dividing the total verification time (including identification of invalid
signatures) by the total number of signatures (1024), and averaging over multiple ex-
perimental runs.

computation, and total storage of approximately 2η group elements for each
product to be computed.

To evaluate the feasibility of this technique, we used it to implement a “re-
silient” batch verifier for the BLS signature scheme. This verifier accepts as
input a collection of signatures where some may be invalid, and outputs the in-
dex of each invalid signature found. To evaluate batching performance, we first
generated a collection of 1024 valid signatures, and then randomly corrupted
an r-fraction by replacing them with random group elements. We repeated this
experiment for values of r ranging from 0 to 15% of the collection, collecting mul-
tiple timings at each point, and averaging to obtain a mean verification time.
The results are presented in Figure 7.

Batchedverification ofBLS signatures is preferable to the näıve individual verifi-
cation algorithm even as the number of invalid signatures exceeds 10% of the total
batch size. The random distribution of invalid signatures within the collection is
nearly the worst-case for resilient verification. In practice, invalid signatures might
be grouped together within the batch (e.g., if corruption is due to a burst of EM
interference). In this case, the verifier might achieve better results by omitting the
random shuffle step or using another re-ordering technique.

6 Conclusion and Open Problems

Our experiments provide strong evidence that batching short signatures is prac-
tical, even in a setting where an adversary can inject invalid signatures. We
present new algorithms for batching a host of short signature schemes, including
the first such verifiers for group, ring and aggregate signatures. At a deeper level,
our results indicate that efficient batching depends heavily on the underlying de-
sign of a signature scheme, particularly on the placement of elements within the
elliptic curve subgroups. For example, the CHP signature and the ChCh IBS
have comparable size and security, yet the latter scheme can batch more than

Practical Short Signature Batch Verification 323

250 signatures per second (each from a different signer), while our CHP imple-
mentation clocks in at fewer than 40. Designers should take these considerations
into account when proposing new pairing-based signature schemes.

It remains open to batch verify a group signature scheme without random
oracles. While many candidate schemes exist, it is not clear how to batch ver-
ify them. It also remains open to verify a batch of very short signatures (one
group element) in constant pairings without the time-period restriction used by
Camenisch et al. [14], even with random oracles.

Acknowledgments

Anna Lisa Ferrara and Matthew Green performed part of this work while at
the Johns Hopkins University. Matthew Green and Susan Hohenberger were
supported by the NSF under grant CNS-0716142 and a Microsoft New Faculty
Fellowship. Michael Østergaard Pedersen performed part of this research while
at the University of Aarhus.

References

1. Car 2 Car: Communication consortium, http://car-to-car.org
2. SeVeCom: Security on the road, http://www.sevecom.org
3. Raya, M., Hubaux, J.-P.: Securing vehicular ad hoc networks. J. of Computer

Security 15, 39–68 (2007)
4. Gennaro, R., Rohatgi, P.: How to sign digital streams. Inf. Comput. 165(1), 100–

116 (2001)
5. Lysyanskaya, A., Tamassia, R., Triandopoulos, N.: Multicast authentication in fully

adversarial networks. In: IEEE Security and Privacy, pp. 241–253 (2004)
6. Perrig, A., Canetti, R., Song, D.X., Tygar, J.D.: Efficient and secure source au-

thentication for multicast. In: NDSS 2001, The Internet Society (2001)
7. Monnerat, J., Vaudenay, S.: Undeniable signatures based on characters: How to sign

with one bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 69–85. Springer, Heidelberg (2004)

8. Monnerat, J., Vaudenay, S.: Short 2-move undeniable signatures. In: Nguyên, P.Q.
(ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 19–36. Springer, Heidelberg (2006)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

11. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS,
pp. 168–177 (2004)

12. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005)

13. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

14. Camenisch, J.L., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007), http://eprint.iacr.org/2007/172

http://car-to-car.org
http://www.sevecom.org
http://eprint.iacr.org/2007/172

324 A.L. Ferrara et al.

15. Law, L., Matt, B.J.: Finding invalid signatures in pairing-based batches. In: Gal-
braith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 34–53.
Springer, Heidelberg (2007)

16. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signa-
ture batch verification, Cryptology ePrint Archive: Report 2008/015 (2008)

17. Chen, L., Cheng, Z., Smart, N.: Identity-based key agreement protocols from pair-
ings, Cryptology ePrint Archive: Report 2006/199 (2006)

18. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

19. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidel-
berg (2003)

20. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

21. Naccache, D.: Secure and practical identity-based encryption, Cryptology ePrint
Archive: Report 2005/369 (2005)

22. Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

23. Chatterjee, S., Sarkar, P.: HIBE with short public parameters without random
oracle. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–
160. Springer, Heidelberg (2006)

24. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

25. Pastuszak, J., Michatek, D., Pieprzyk, J., Seberry, J.: Identification of bad signa-
tures in batches. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp.
28–45. Springer, Heidelberg (2000)

26. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

27. Cha, J.C., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

28. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

29. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

30. Shao, Z.: Enhanced aggregate signatures from pairings. In: Feng, D., Lin, D., Yung,
M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 140–149. Springer, Heidelberg (2005)

31. Scott, M.: Multiprecision Integer and Rational Arithmetic C/C++ Library
(MIRACL). Published by Shamus Software Ltd. (October 2007),
http://www.shamus.ie/

32. Page, D., Smart, N., Vercauteren, F.: A comparison of MNT curves and supersin-
gular curves. Applicable Algebra in Eng. Com. and Comp. 17(5), 379–392 (2006)

33. Adida, B., Chau, D., Hohenberger, S., Rivest, R.L.: Lightweight email signatures
(Extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116,
pp. 288–302. Springer, Heidelberg (2006)

http://www.shamus.ie/

	Practical Short Signature Batch Verification
	Introduction
	Algebraic Setting: Pairings
	Basic Tools for Pairing-Based Batch Verification
	Small Exponents Test Applied to Pairings
	Basic Batching Techniques
	Handling Invalid Signatures

	Batch Verifiers for Short Signatures
	Batching the Boneh-Boyen-Shacham ({\sf BBS}) Group Signatures

	Implementation and Performance Analysis
	Performance Results
	Batch Verification and Invalid Signatures

	Conclusion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

