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Abstract

We present a novel negotiation protocol to facili-
tate energy exchange between off-grid homes that
are equipped with renewable energy generation and
electricity storage. Our solution imposes additional
constraints on negotiation such that it reduces a
complex interdependent multi-issue problem to one
that is tractable. We prove that using our protocol,
agents can reach a Pareto-optimal, dominant strat-
egy equilibrium in a decentralized and timely fash-
ion. We empirically evaluate our approach in a re-
alistic setting. In this case, we show that energy ex-
change can be useful in reducing the capacity of the
energy storage devices in homes by close to 40%.

1 Introduction

It is estimated that 1.6 billion people live without access
to electricity; mostly in the Indian subcontinent and Sub-
Saharan Africa [IEA, 2008]. This population is divided in
very small communities scattered over vast areas of land and
hence, providing them with centralized power distribution has
not been justified to date due to the huge capital cost of such
infrastructure and the lack of demand. However, the oppor-
tunity for demand cannot become established if there is no
supply. To address this dilemma, a number of initiatives
have begun to provide these communities with off-grid re-
newable microgeneration. infrastructure such as solar panels,
and electric batteries for storagel. However, these resources
are operated in isolation. Our aim is to investigate whether
the interconnection and decentralized coordination of such
resources could result in their more efficient use and be bene-
ficial to the connected homes in the community. We envision
that such interconnection and coordination could lead to the
creation of a grid from the ground up and allow these commu-
nities to take an evolutionary jump straight to the smart grid,
in the same way that many of them have bypassed landlines
and leapt straight to cell phone technology.

As a first step towards this vision, we investigate the pos-
sibility of exchanging energy between two interconnected
homes. The core challenge is to enable the autonomous coor-
dination of energy infrastructure in these individual house-
holds to ensure that energy is used efficiently. Given the
lack of a centralised system, absence of banking/payment sys-
tems and low-processing power at hand, we need a tractable
and decentralized energy exchange solution, that can operate

without financial payments between houses, and provides a
benefit to all participants, compared to being disconnected.

Now, the idea of energy exchange is not new. There are
several real world examples where energy exchange is used
to improve energy management between countries (e.g. Fin-
land and Sweden) and between cities (e.g. Dehli and Madya
Pardesh, India). Indeed, exchange of energy has already been
shown to result in efficient use of energy and cost savings in
utility companies [Ehtamo et al., 1988]. In this context, Ru-
usunen et al. [1991] considered a group of utility companies,
each owning a generator, connected together to form a power
pool. The cost of energy generation was different for each
company and varied over the course of a day, allowing en-
ergy exchange to be beneficial to all. In their solution, energy
generation and consumption is monitored by the pool opera-
tor who audits the cost and utility functions of the participants
and distributes the cost savings among them. The energy ex-
change takes place according to a static exchange agreement
which is established manually, prior to the exchange.

In contrast, Rosenschein and Zlotkin [1994] argued that
in general, such mediated solutions are unnecessary, and au-
tomatic negotiation between software agents is a more effi-
cient approach. They seek to design the rules of interac-
tion for these negotiations such that a society of agents, as
a whole, exhibits desirable properties such as stability (e.g.
Nash equilibrium), efficiency (Parteo-optimality) and sim-
plicity (strategy-proofness). Agents interact with each other
in a decentralized manner obeying the rules of encounter.
Careful design of such rules prevents the agents from being
able to exploit the system and also reduces the overall com-
plexity of interaction for the agents. They show examples of
such rules for certain domains but conclude that there is no
universal set of rules for general encounters and, therefore,
a specific set of rules is required for a specific domain. Our
work is in line with this approach, however, our setting is
more challenging than the ones they consider since negotia-
tion over energy exchange is multi-issue because agents are
required to decide over the amount of energy exchange and
also, how this exchange is scheduled across the day. Further-
more, these issues are interdependent as the recipient’s utility
for any period may depend on the energy received in earlier
periods (since energy can be stored in our setting).

ISee the Rural Solar Homes in India
(www.tatabpsolar.com), the Solar Homes program in
Bangladesh (www.gshakti.org) and the Solar Village program
in Ethopia (www.solarsenegal.com).



More recent work addressing interdependent issues has fo-
cused on two tracks. Hindriks et al. [2006] attempt to re-
move interdependencies by approximating the utility space.
However, they conclude that their technique only works with
certain classes of utility functions where issues are not highly
dependent (which is not the case in the problem of energy ex-
change) and cannot be applied to more general cases. Hattori
et al. [2007], Tto et al. [2007], and Fujita et al. [2010] take
a different approach and assume a central authority (a medi-
ator) to which agents provide information about their utility
functions. This centre calculates the set of Pareto-optimal so-
lutions, from which the agents choose one. However, these
solutions require the presence of an unbiased and indepen-
dent mediator, capable of carrying out intensive computa-
tions. Such assumptions are hard to hold in our decentralized
setting where there is no centre and households are required
to negotiate directly to each other.

In contrast, in this paper, we address the problem of in-
terdependent multi-issues negotiation to exchange energy, by
providing a negotiation protocol which imposes three key re-
strictions on the offers that agents can make, and effectively
reduces this problem to a single-issue negotiation problem but
only minimally reduces the efficiency of the solutions found.
We show that our approach leads to a Pareto-optimal, dom-
inant strategy equilibrium and makes it easier for agents to
compute optimal offers. In more detail, this work advances
the state-of-the-art in the following ways:

1. We present a novel negotiation protocol that reduces the
complexity of interdependent multi-issue negotiation in
energy exchange problem, to a single-issue negotiation.

2. We prove that: (i) this protocol leads to a dominant strat-
egy equilibrium and (ii) the outcome is Pareto-optimal.
Offers can be calculated optimally using linear program-
ming and the negotiation stops in two rounds.

3. We empirically evaluate our protocol in an example and
show that in this case (i) the energy saved using our pro-
tocol can be up to 84% of the energy that can be saved
using the Nash bargaining solution (ii) agents can in-
crease their utility via our protocol up to 22% compared
to utility without exchange and (iii) agents can maintain
their utility with less battery storage (up to 37% less).

The rest of the paper is structured as follows. Our model is
explained in Section 2 followed by a discussion of a theoret-
ical solution in Section 3. Section 4 presents our negotiation
protocol and its properties. We evaluate our protocol in a spe-
cific setting in Section 5 and conclude in Section 6.

2 Energy Exchange In Homes: the Model

In this section, we outline a model of energy exchange in
two connected homes, each with a renewable generation unit,
some loads and a battery to store electricity. Specifically, let
a be an agent with a generation capability k = (k1, ..., ky)
representing the energy it can generate in n time periods and
aload h = (hq, ..., h,) representing its loads requirements.
The battery is characterised by four parameters: a maximum
storage capacity, s, a maximum charging rate, ¢4, maxi-
mum discharging rate, d,, ., and efficiency e. The efficiency
describes the loss of energy when the battery is charged. We
describe the dynamic state of the battery by: the energy flow
into the battery (charge) ¢ = (c¢y, ..., ¢, ), the flow going out

(discharge) d = (d, ..., d,,) and the amount of charge stored
in battery at any given time ¢ = (g1, ..., qn)-

The generation capability k denotes the energy that can be
generated, however, an agent may reduce its generation if the
energy to be generated can neither be used immediately nor
stored due to the limited battery flow or capacity. To cap-
ture this possibility, we use a generation, g = (g1, ..., gn), t0
indicate the actual energy generated and wasted energy, w,
to denote the energy that was not generated or wasted. It is
obvious that k = g + w.

Using the battery, an agent can compute an energy allo-
cation, p = (p1, ..., Pn ), allocating the generated energy g to
loads h. Finally, the link flow l = (l1, ...,1,,) is used to denote
the flow on the link between agents.

The utility of agent a at time ¢ is the ratio of load p; that
is powered at time ¢, to total load required (h;). The overall
utility u® is the sum of these ratios, given by:

n
wr =3y 1 (1)
hy
t=1

Thus, the goal of an agent is to power as much load as
possible to maximise its utility. The battery is useful here
as it gives the agent flexibility in deciding when to store and
when to use energy and thus, it enables the agent to find an
optimal energy allocation, p*, to maximize utility, given by:

p* = argmax Z (Zt) 2)
t

This can be transformed to a linear programming model
subjected to the following constraints:

Constraint 1: At any given time t, the allocated power
pr € p depends on the generated power g;, battery charging
flow ¢, discharging flow d; and link flow [;.

De =gt —c+di +1; (c1)

Constraint 2: The current battery state ¢; depends on the last
battery state q(;—1), charge c;_1) and discharge d(;_1). The
charge flow ¢; € c is subjected to the battery efficiency e.
Also, the first state of the battery ¢; must equal the last bat-
tery state of the battery g, to ensure there is no net change of
battery charge over the day so that the utility remains depen-
dent only on the energy generated in n time periods.

Jt>1

=1 (c2)

g = qe—1) e X ci—1) — di—1)
. =
qn + e X Cn — dn

Constraint 3: Allocated power p; must not exceed load h;.

pe<h: Vp.€p, hh €h (c3)

Constraint 4: The battery state ¢, must not exceed the max-
imum capacity s. Also, the battery state cannot be negative,
i.e. energy must be stored before it is drawn.

0<q¢<s Vg €gq (ca)

Constraint 5: At any time period ¢, the battery charge flow
¢y must not exceed the maximum charge limit ¢,,4,. Also
charge flow is always positive.

0<ci<Cmaz YerE€EcC (c5)



Constraint 6: At any time period ¢, the battery discharge flow
d; must not exceed the maximum discharge limit d,;, 4. Also
discharge flow is always positive.

0<d; <dpar YVdi€d (ce)

Constraint 7: Wasted energy w; is always positive and cannot
exceed the energy k, that can be generated at time ¢.

O<wi <k Ywew, ki €k (c7)

Constraint 8: Battery efficiency must be between 0 to 1 (i.e.
0% to 100%).
0<e<1 (cs)

Now, an agent can compute an energy allocation p*
which maximizes its utility via Equation 2 and constraints
{c1,...,cg}. When an agent’s objective is to compute a link
flow that can maximize its utility, it can compute it as the
following. Given Equation 1, substituting for p; from c;:

o _ (g —ci+di+1
B

t=1

The objective is then to find the optimal link flow 1*, such
that Equation 3 is maximized:

I* — argmax Z (gt_ct—"dt—"lt> 4)

el = hy

subjected to all constraints {c1, ..., cg} as listed above.

Given this model, the problem of finding an energy ex-
change agreement between two self-interested agents can
now be simplified to the problem of finding an agreed link
flow, I, that provides each agent with greater utility than when
disconnected (i.e., when I = 0). However, the set of all such
links is exponential in the number of time periods and thus, it
is a challenging task for both agents to agree on a link given
that each agent will prefer a different one (i.e., the link which
maximizes its own utility).

In the next section, we elaborate on a game theoretic solu-
tion to find an agreed link flow between agents. In so doing,
we establish the benchmark against which we compare our
protocol (which we detail in Section 4).

3 The Nash Bargaining Solution: A
Theoretical Benchmark

Given the model above, we now describe a game theoretic so-
lution, known as the Nash bargaining solution [Nash, 1950;
1953], which allows the agents to find a satisfying solution
for both. Nash bargaining solution (NBS) is defined by four
axioms that must hold true: (i) invariance to utility scales (it
is independent of how agents scale their utility) (ii) symme-
try (it does not depend on the identity of agents), (iii) Pareto-
optimal (the outcome is such that no agent can improve upon
its utility without making another agent worse off) and inde-
pendence from irrelevant alternatives. These axioms define a
unique solution that maximizes the product of gains in utility
of agents. Note that the NBS does not provide the mecha-
nism by which agents might reach agreement, but it serves
as the solution concept against which we will compare our
own protocol. In the context of energy exchange, the gain
in utility comes from the fact that via exchange an agent can

avoid energy storage losses and utilize energy that will be un-
used otherwise. To be clearer on this point, if an agent has
100% efficient battery and infinite storage, it cannot increase
its utility via exchange.

Finding the NBS in the energy exchange problem basically
involves finding the link flow between agents that maximizes
the product of gains in their utility. Assuming two agents
a and b, let d® and d® be the utilities that agents can avail
when they are disconnected (also called disagreement utili-
ties). These disagreement utilities are the maximum utilities
that @ and b can get when the link flow I = 0, as we explained
in Section 2. Let the solution set S gg be the set of all fea-
sible link flows between a and b. Nash [1953] requires this
set to be compact! and convex? for the solution to be unique.
Since agents will only exchange if they get more utility than
their disagreement utilities, V¥ I € Sxps : (u®(l),u’(l)) >
(d*,d"). Given the set Syps, the Nash bargaining solution,
Iy Bs, is obtained by:

Inps = argmax  [u®(l) —d*] x [u’(1) —d"] (5
l

This equation is subjected to constraints listed in Section 2
for both agents a and b. Given compactness and convexity,
computing the optimal solution is straight forward using con-
vex optimization. However, interdependency between issues
gives rise to a non-convex solution set with multiple NBS
[Fujita, Tto, and Klein, 2010] whereby stochastic optimiza-
tion techniques (we use simulated annealing) is needed to find
the NBS. In general, negotiation mechanisms which aim to
reach the NBS come with the implicit assumption that agents
reveal their information truthfully either to each other or to
a mediator so that the NBS can be computed. In a society
of honest agents, where time and computational power are
abundant, such mechanisms can be a good candidate to solve
the problem of energy exchange. However, these assump-
tions do not hold in our setting thus the direct use of NBS is
not valid in our setting. However, it can serve as an upper
bound of the performance of a negotiation protocol. In the
next section, we propose a negotiation protocol which does
not require such assumptions and can be used to reach energy
exchange agreements in the settings describe earlier.

4 Energy Exchange Protocol

Here we propose our energy exchange protocol (EEP) which
allows agents to make offers to each other in order to reach
an agreement on the link flow between them. We call these
offers link flow offers and the agreement, an exchange agree-
ment. The protocol imposes restrictions on the offers that
agents can make and dictates that whichever offer minimizes
the load on the link is selected as the exchange agreement.
The restrictions on the offers reduce the set of feasible solu-
tions between agents and ensure that the solution is reached
with certain properties (listed in Section 4.2).

Before we define our protocol, we define our assumptions
and terminology. We consider each exchange agreement in
isolation, independent of the past and future exchange agree-
ments. Also, we consider exchange over finite time (e.g. a

'A set is compact if it is closed and bounded.

2A set C' is convex if for all z and y in C' and all ¢ in the interval
[0, 1], the point (1 — ¢)z + ¢(y) is in C.



day) which can be divided into exchange periods. An ex-
change period is a unit of time for energy exchange and con-
sists of at least one time period. A time period is an atomic
unit of time and each entry in a profile (e.g. energy gener-
ation) is described against a single time period. Given this
protocol, we assume two agents a and b, with utility func-
tions 1 and u”, disagreement utilities d* and d® respectively,
and let S, be the set of possible link flows between them, i.e.
ViesS,: (ul),ul) > (d*,d’), the same set as de-
fined in Section 3. The EEP imposes three restrictions, 71, 72
and 73 on the offers and allows agents to make offers at most
once such that the negotiation results in a dominant strategy
equilibrium and a Pareto-optimal outcome. The outcome (the
agreed link flow) is denoted by 1°*. Figure 1 describes the
EEP in detail.

4.1 Computing the Valid Link Flow Offers

Given the protocol, we now define how agents can compute
valid link flow offers. As discussed in Section 2, each agent
will prefer the link flow that maximizes its own utility. An
agent making an offer can compute a valid link flow offer
which maximizes its utility by using Equation 4 with two
more constraints, {71, 72} (in addition of ({c1, ...cs }), and an
agent making a counter-offer needs to include a further con-
straint r3. In fact, agents can offer any link flow provided it
is valid, not just the one that maximizes its utility. However,
in Section 4.2, we prove that the dominant strategy for agents
is to offer the link flow that maximizes its utility, leaving no
need for them to strategize.

Before we explain the properties of the EEP, we give an
intuitive example to show how it will work in action:

Example 1. Imagine that in a society of agents, the following
are the already agreed conventions:

1. The total time of an exchange is 24 hours. The exchange
starts at 0600 hours local time and ends at 0600 hours
next day.

2. This day is divided into two exchange periods, each con-
sists of 6 two-hours-long time periods.

Given these conventions, an agent a computes a valid link
flow offer, 1* = (2,2,2,2,2,2, -2, -2, -2 -2, -2 —2),
which maximizes its utility. Agent a makes this offer to agent
b. However, Agent b finds that its utility is maximized with
the link flow, 1° = (1,1,1,1,1,1,—-1,—1,—1,—1,—1,—1).
Since 1° <3 1%, b makes this offer to a. Agent a accepts this
offer and exchange takes place as per 1°.

4.2 Properties of Our protocol

Before outlining the properties, we describe our notation. Let
S be the set of valid link flows between a and b obeying
the rules defined by the EEP. If 3 1 € S : w*(l) > 0
then VIV € S : 0 < V' < I, w*(l') > 0. For
example, if agent a prefers an exchange (2,2,—2,—2),
then (1,1, —1,—1) is also a feasible link flow for a, since
(1,1,-1,—1) € Sand (1,1,-1,-1) < (2,2, -2,-2), al-
though w*[(1,1,-1,-1)] < u®[(2,2,—2 — 2)]. It actually
follows that given a link I* € S : w*(l*) > w*(l) VI €
S:l#1I* thenalll € §:0 <1 < I* are feasible and u®
is a strictly monotonically increasing function on this range.

3The inequality here is the vector inequality.

Energy Exchange Protocol (EEP)

1. Agent a submits a valid link flow offer I* to agent b. An offer
is valid if it meets the following criteria.

e The offer must have exactly two exchange periods. Each
exchange comprises of an equal number of consecutive
time periods. The sum of magnitude of energy in time
periods of an exchange period must be equal to other ex-
change period.

DRI GY

t=1 t=n/2+1
e The amount of energy in each time period is equal.
l:(ll7 ..... ln)ESZ Vltell‘lt‘:‘lt+1| (7’2)

2. On receiving the offer I*, Agent b has three options:.

e Reject: b can reject an offer, e.g. when exchange is not
beneficial to b. It happens when =31 € S : u®(1) > 0.
Agent b indicates its rejection by sending the REJECT
message. The agreed link flow is I°® = 0. The EEP
terminates.

e Accept: b can accept I* by sending the ACCEPT mes-
sage. The agreed link flow is [¢® = [* . The EEP termi-
nates.

e Counter-offer: Finally, b can make a counter offer I°
which meets above criteria (r1,r2). In addition, it must
ensure that: b a

° <1 (rs)

3. On receiving the counter offer, I°, Agent a has two options:

e Accept: It can accept I° and send the ACCEPT message
to b. The agreed link flow is 1°® = 1% . The EEP termi-
nates.

e Reject: It can reject I° and send the REJECT message
to b. The link flow is not agreed, I°® = 0. The EEP
terminates.

Figure 1: The Negotiation Protocol

This monotonicity arises from the fact that the negotiation has
been reduced to a single-issue, i.e. the amount of flow in one
time period (since the amount of energy in each time period
must be equal - see r3). Now we prove the properties.

1. Dominant Strategy Equilibrium

Theorem 1. The agent making an initial offer has a
dominant strategy which is to offer the link that maxi-
mizes its own utility.

Proof. Let’s assume two agents a and b, and I* € §
is the link that optimizes the utility of agent a. Let’s
imagine that ¢ wants to manipulate the protocol by re-

porting some other link I“cSto agent b. Table 1 lists
all possible scenarios that a faces in this case. It is ev-

ident that reporting {* weakly dominates reporting i

Specifically, in the first two cases, reporting i gives the
same utility as reporting 1%, however it is strongly dom-

. . ~a

inated in the rest of the four cases (unless I =I%). Thus,
. . . oy . sa

an agent maximizes its utility by reportingl =1¢. [

Theorem 2. An agent making a counter-offer has a
dominant strategy to offer the link that maximizes its own



Case Agent a reports “ Agent a reports 1% Result

Chosen Link Chosen Link

min(ia,lb) u® min(la,lb)
"> >1° ® u®(1%) ® w®(1%) w® (1) = u(1%).
>0 >1° ® u? (1) ® u®(1%) u(1%) = w2 (1°).
> > ?“ “ w(1%) ® u®(1%) w(0") < ut(1%) 1% < 1% < 1® (monotonicity).
> >0 8 u®(1") = wt(1@®) | w(1%) <u(1®) - ut(1®) >utW)VIE S L #1°
> > [ uwt(1”) s w(1%) | wt1") < ut(1®) - ut(l®) >ut)VIES 1 A1
> >1° ® u®(1%) @ wt(1) | uw(1®) < u*(1%) w1 > utA)VIEe S 1L #1%

Table 1: Reporting the link, I*, which maximizes its utility, is the dominant strategy for agent a.

utility.
Proof. Tmagine agent a with I[* € S which optimizes its
utility and I’ € S, the offer it has received from agent

b. If 1" is the link that @ wants to report b to manipulate
the protocol, then Table 1 lists all the possible scenarios.

Again, reporting I weakly dominates " O

It is evident that revealing the link that maximizes its
utility, is a weakly dominant strategy for both initial-
offer and counter-offer making agents. As a by-product,
this property also renders the order, in which agents
make offers to each other, irrelevant. The solution is the
same no matter which agent commences the negotiation.
The result is always a dominant strategy equilibrium.

2. Pareto-Optimality

Let’s imagine that 31 € S : u*(l) > 0 and u®(1) > 0.
As proved above, agent a and b will reveal truthfully
the links % and lb, that maximizes their utilities ©® and
ub. Assume that 1* > I1°, then the EEP dictates that 1°
is the agreed link flow. Since 1 maximizes u® and it
is unique (u” is strictly monotonic), any other link flow
which increases u® will decrease u?, hence the protocol
is Pareto-optimal.

3. Tractability
Our solution is tractable as each agent needs to make at
most one offer. Also, an optimal offer can be computed
using standard linear programming solver (Section 2).

5 Empirical Evaluation

Having proven the properties of our protocol, we now set-up
a realistic example to demonstrate its practical applicability.
To this end, we consider an example of energy exchange be-
tween two agents, where one agent has a 1.5kW wind turbine
and the other has a 1.75kW solar panel. The energy gen-
eration data for the wind turbine comes from a wind farm
near Lugo, Northwest Spain (www.sotaventogalicia.com),
while the output of the solar panel is estimated to be di-
rectly proportional to the daily radiance for the same re-
gion (www.re.jrc.ec.europa.eu/pvgis/apps/radday.php). We
use data for July 2010, estimate the average generation for a
day and scale it to match the output of a 1.5kW wind turbine
and a 1.75kW solar panel. At present, the load requirements
of homes in remote areas are not available so we use load
data, recorded and provided by a UK electric company in low-
income homes equipped with smart meters. We also assume
that agents have identical batteries that have a maximum ca-
pacity, s = 20kWh, a maximum charging rate, ¢ = 4kWh,
a maximum discharging rate, d = —4kWh and efficiency,

e = 90%. We note that the generation data for agents have
some disparity and all other data (including loads) and batter-
ies are identical for both agents. Given these profiles, agents
can compute their utilities (without exchange) using a lin-
ear programming solver (see Section 2). We use IBM ILOG
CPLEX, a powerful optimizer, which provides easy and rich
methods to model constraints, variables and objective func-
tions and flexible interfaces to many development tools.

For a comparative analysis of our protocol, we compute
the utilities that agents can get (i) without exchange, (ii) by
computing the NBS using simulated annealing (see Section 3)
and (iii) by using our EEP (Section 4.1). Moreover, we con-
sider how these utilities vary as we reduce the battery flow
and storage capacity of agent a as shown in Figure 2.

Consider first Figure 2(a) which shows the utilities of agent
a and b, and the total energy saved via exchange, as the bat-
tery efficiency of agent a is reduced. All the other factors,
(including the battery efficiency of agent b) are kept con-
stant. We can see that agents can increase their utilities via
exchange. The amount by which it increases depends on the
type of solution used and the battery efficiency. The total en-
ergy saved via exchange is the energy which would otherwise
be lost (either in storage loss or due to limited battery flow
or storage - Section 3) without exchange. We also see that as
the battery efficiency of agent a is reduced, so does its abil-
ity to meet its load, therefore, its utility reduces. While for
b, this reduction in the battery efficiency of a does not affect
its utility for without exchange and with the EEP, however,
for the NBS its utility increases. The reason that b gets better
utility via the NBS as the battery efficiency of a is reduced, is
because storage loss for a increases and thus, the amount of
energy that can be saved in exchange via exchange increases,
as shown in Figure 2(a). However, this saved energy is the
result of cooperation between agents and the NBS divides it
between both agents and hence, the increase in utility of b.
Thus, with reduction in the battery efficiency, the energy ex-
change becomes more beneficial as agents can reduce their
storage losses by exchanging energy.

We also note that the NBS gives both agents better util-
ities compared to the EEP, however, its computation comes
with the assumptions discussed in Section 3. To compare the
EEP against the NBS, we measure the difference in the energy
saved using these solutions. We observe that this difference
depends on the battery efficiency of a and that the EEP can
save from 29% to 84% (Figure 2(a) and Figure 2(b), respec-
tively) compared to the energy saved with the NBS.

Figure 2(b) shows the utilities of the agents as the bat-
tery capacity of agent a is reduced. Again, as in Figure 2(a),
agents can get better utilities with exchange. Also evident is
the fact that as storage is reduced, energy exchange becomes
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Figure 2: Total energy saved and utility of agents (without exchange, with EEP and with NBS), as battery efficiency and capacity is reduced.

more useful as agents can exchange energy instead of storing
it. An important observation here is that an agent can main-
tain the same level of utility with a smaller battery via ex-
change that it obtains otherwise. For example, we see that a
maintains the same level of utility in exchange via our proto-
col with a 7kWh battery that it gets without exchange with an
11kWh battery. This corresponds to almost a 37% reduction
in battery size. Though, the same phenomenon can be seen
for battery efficiency, what makes battery capacity more in-
teresting here is the strongly correlated relationship between
the battery capacity and cost, and thus, reducing the battery
size will significantly reduce its cost.

6 Conclusion and Future Work

The problem of energy exchange in homes is an interdepen-
dent multi-issue negotiation problem. Such problems are
complex and computationally expensive to negotiate over.
We present a novel negotiation protocol, the EEP, which im-
poses certain restrictions to reduce the complexity of the en-
ergy exchange problem and leads to a dominant strategy equi-
librium and a Pareto-optimal outcome. We prove these prop-
erties of the EEP and demonstrate via example that agents can
increase their utility (up to 22%), reduce the required stor-
age capacity (up to 37% less) and that the energy saved using
the EEP can be up to 84% of the energy that can be saved
using the NBS. In our example, only the energy generation
data for agents is different and introducing diversity in other
data (e.g. loads) can make energy exchange more useful and
lead to even better results. We conclude from our presented
work and the empirical results that energy exchange between
homes has the obvious potential of better energy manage-
ment. Although, we have confined our vision to homes in
developing countries, energy exchange can also be useful in
the smart grid vision. In future work, we aim to extend this
model and investigate a similar set of rules to reach a dom-
inant strategy equilibrium in multiagent society with less re-

strictions. We also aim to investigate the cases where energy
generation is uncertain and where loads are deferrable.
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