
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Open Semantic Hyperwikis

by
Philip R. Boulain

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

28th February 2011

http://www.soton.ac.uk
mailto:prb@ecs.soton.ac.uk
http://www.soton.ac.uk/about/academicschools/esm.shtml
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Open Semantic Hyperwikis

by Philip R. Boulain

Wikis are lightweight, community-editable, web-based hypertext systems, which can be
described as a website that anybody can edit. From this collaborative base has grown
significant efforts at large-scale knowledge management such as Wikipedia. Recently,
‘semantic’ wiki systems have been developed with typed links, such that the structure
of nodes and links is analogous to an RDF graph of resources and arcs: a machine-
processable representation of the relations between articles which can form part of the
web of linked data. Despite this, the hypermedia side of wiki systems has so far largely
been constrained to the web model of simple embedded, unidirectional links.

This research considers the hypertext origins of wiki systems, asks, and answers how the
technologies developed during decades of hypertext research may be applied to better
manage their document, and thus knowledge, structure. We present experimental ev-
idence supporting the hypothesis that additional hypermedia features would be useful
to wiki editors on both macro- and micro-scales. Quantitative analysis of editing logs
from a large-scale wiki shows that hyperstructure changes form a substantial proportion
of editing effort. Conversely, qualitative user studies show that individual user editing
can be better supported by classical but since overlooked hypertext features such as
first-class links and transclusion.

We then specify an extensive model for a ‘open semantic hyperwiki’ system which draws
from these fields, based around first-class links with support for transclusion and ad-
vanced functional link types, with defined semantics for the role of versioning and para-
metric nodes in the linked data world, while mindful to preserve the core simplicity
that allows non-expert users to contribute. This is followed by a practical approach to
its implementation in terms of an existing experimental modular wiki foundation, and
the actual prototype implementation, which has been made available as open source
software. Finally, we work through applying the system to a set of real-world use cases
which are currently employing classic, non-semantic wiki software, and evaluate the
implementation in comparison to a conventional semantic wiki in a user study.

http://www.soton.ac.uk
http://www.soton.ac.uk/about/academicschools/esm.shtml
http://www.ecs.soton.ac.uk
mailto:prb@ecs.soton.ac.uk

Contents

Declaration of Authorship xii

Acknowledgements xiii

1 Introduction 1
1.1 Problem . 1
1.2 Solution . 2
1.3 Structure . 2

2 Literature review 4
2.1 Introduction . 4
2.2 Semantic Web . 4

2.2.1 Web technologies . 5
2.2.2 Data model . 5
2.2.3 Triple stores . 6
2.2.4 SPARQL . 6
2.2.5 Linked data . 7

2.2.5.1 303 convention . 7
2.2.5.2 RDF in attributes . 8

2.3 Open hypermedia . 9
2.3.1 Documentation . 9
2.3.2 The Memex . 9
2.3.3 Xanadu . 10
2.3.4 HyTime . 11
2.3.5 Microcosm . 12
2.3.6 Hyper-G . 12
2.3.7 Auld Linky and AHA! . 13
2.3.8 Trellis . 14
2.3.9 World Wide Web . 14
2.3.10 Dexter hypertext reference model 15
2.3.11 FOHM . 18
2.3.12 Other models . 19

2.3.12.1 State machines . 19
2.3.12.2 XLink . 20
2.3.12.3 COHSE and Magpie . 21
2.3.12.4 ScholOnto . 21

2.4 Conventional wikis . 21

ii

CONTENTS iii

2.4.1 Systems . 22
2.4.1.1 WikiBase . 22
2.4.1.2 MediaWiki . 22
2.4.1.3 Weerkat . 23

2.4.2 Research . 24
2.4.2.1 User studies . 24
2.4.2.2 Statistical analysis . 25
2.4.2.3 Hypertext capabilities . 27

2.5 Semantic wikis . 28
2.5.1 IkeWiki . 28
2.5.2 Makna . 28
2.5.3 Kaukolu Wiki . 29
2.5.4 COW . 29
2.5.5 OntoWiki . 30
2.5.6 OpenRecord . 30
2.5.7 Semantic MediaWiki . 31
2.5.8 General observations . 31

2.6 Seven issues . 32
2.7 Conclusions . 34

3 Open Hypermedia and Semantic Wiki 36
3.1 Introduction . 36
3.2 Adapting Dexter to embedded, anonymous links 36
3.3 Modelling Semantic MediaWiki in Dexter 38

3.3.1 Nodes . 39
3.3.2 Internal node links . 39
3.3.3 Templates . 40
3.3.4 Images . 40
3.3.5 External URLs . 41
3.3.6 Typed relations . 41
3.3.7 Inline queries . 43
3.3.8 Summary . 43

3.4 Relating Open Hypermedia and Semantic Web 44
3.4.1 Nodes are resources . 44
3.4.2 Links are triples . 45
3.4.3 Computed documents; computed and functional links 47
3.4.4 Generic links . 48
3.4.5 Non-embedded, first-class hyperlinks 48
3.4.6 Contextual/adaptive alternation and level-of-detail 49
3.4.7 Transclusion . 50

3.5 Conclusions . 53

4 Open Semantic Hyperwiki 54
4.1 Introduction . 54
4.2 Improved transclusion . 54

4.2.1 Content re-use . 54
4.2.2 General-purpose aggregation . 56

CONTENTS iv

4.2.3 Editing solution . 57
4.3 Any-anchor link editing . 57

4.3.1 First-class links . 58
4.4 Generic links . 58
4.5 Level of detail . 59
4.6 Interoperability . 59
4.7 Instance property editing . 60
4.8 Conclusions . 61

5 Experiment I: Macro-scale 62
5.1 Introduction . 62
5.2 Hypothesis . 62
5.3 Dataset . 63
5.4 Procedure . 64
5.5 Tools developed . 68
5.6 Results . 69

5.6.1 Index management . 69
5.6.2 Link management . 70
5.6.3 Overall editing distribution . 72
5.6.4 Limitations of detection . 74

5.7 Conclusions . 75

6 Experiment II: Micro-scale 76
6.1 Introduction . 76
6.2 Procedure . 76
6.3 Results . 80

6.3.1 Participant two . 80
6.3.1.1 Off-line review . 80
6.3.1.2 On-line self-report . 81

6.3.2 Participant three . 81
6.3.2.1 Off-line review . 81
6.3.2.2 On-line self-report . 82

6.3.3 Participant four . 83
6.3.3.1 Off-line review . 83
6.3.3.2 On-line self-report . 84
6.3.3.3 Remarks . 85

6.3.4 Participant five . 85
6.3.4.1 Off-line review . 85
6.3.4.2 On-line self-report . 85
6.3.4.3 Remarks . 86

6.3.5 Participant six . 86
6.3.5.1 Off-line review . 86
6.3.5.2 On-line self-report . 87

6.3.6 Participant seven . 88
6.3.6.1 Off-line review . 88
6.3.6.2 On-line self-report . 89
6.3.6.3 Remarks . 91

CONTENTS v

6.4 Conclusions . 91
6.4.1 Common observations . 91
6.4.2 Implications . 93

7 Model 96
7.1 Introduction . 96
7.2 Core type: the node . 97

7.2.1 Components of a node . 97
7.2.2 Embedded anchors and linking . 97

7.3 Identity, meta-nodes, and RDF . 99
7.4 Representations . 99
7.5 Versioning . 100

7.5.1 Sessions . 100
7.5.2 Revision identity . 100
7.5.3 Mutability of links . 101

7.6 Parametric nodes . 102
7.6.1 Node identity . 102
7.6.2 Resource identity . 104
7.6.3 Parametric links . 104
7.6.4 Eager vs. lazy evaluation . 104

7.7 Expressing features . 106
7.7.1 First-class, n-ary links . 106
7.7.2 Adaptive hypermedia . 106
7.7.3 Generic and functional links . 107
7.7.4 Transclusion . 107
7.7.5 Templating . 108
7.7.6 Composition . 108

7.8 Conclusions . 109

8 System design 111
8.1 Introduction . 111
8.2 Existing technology . 111
8.3 Link embedding . 112

8.3.1 Separation . 113
8.3.2 Embedding . 115

8.4 Link matching . 116
8.4.1 Static endpoints . 116
8.4.2 Computed endpoints . 116

8.4.2.1 Query . 116
8.4.2.2 Generic . 117
8.4.2.3 Parametric . 118
8.4.2.4 Functional . 119

8.5 Required modifications . 120
8.5.1 Initial . 120
8.5.2 Future . 121

8.6 Conclusions . 121

CONTENTS vi

9 System implementation 123
9.1 Introduction . 123
9.2 System changes . 123

9.2.1 SEML library . 123
9.2.2 DOM-oriented refactoring . 124

9.2.2.1 Storage . 125
9.2.2.2 Processing . 125

9.2.3 Node attributes . 126
9.2.3.1 Representation . 126
9.2.3.2 Versioning . 127

9.2.4 Link matching . 127
9.2.4.1 Visualisation . 127
9.2.4.2 Versioning . 128

Unversioned predicates and duck-typed links. 128
Unversioned known system URIs. 128

9.2.5 First-class linking and transclusion 129
9.2.5.1 Link embedding . 129
9.2.5.2 Link separation . 129
9.2.5.3 Subclass inference and transclusion 132

9.2.6 Generic linking . 133
9.2.6.1 Word dictionary . 133
9.2.6.2 Tree text map . 133
9.2.6.3 Generic LinkMatcher . 133

9.2.7 Instance property editing . 134
9.2.8 Usability tweaks . 135

9.2.8.1 Cross-link highlighting 135
9.2.8.2 Arc filtering . 136
9.2.8.3 Markup quick-reference 137
9.2.8.4 Base types . 137

9.3 Technical challenges . 137
9.3.1 Preview . 137
9.3.2 Limits of XHTML and linear markup 138
9.3.3 Generic linking . 139
9.3.4 Arbitary tranclusion . 140

9.4 Availability . 141
9.5 Conclusions . 141

10 Applications 143
10.1 Introduction . 143
10.2 Enterprise knowledge: University course notes 143
10.3 Software development: SDL documentation 146
10.4 Community: Tropes in media . 147
10.5 Conclusions . 150

11 Experiment III: Evaluation 151
11.1 Introduction . 151
11.2 Procedure . 151

CONTENTS vii

11.3 Results . 155
11.3.1 Participant nine . 156
11.3.2 Participant eight . 159
11.3.3 Participant ten . 161
11.3.4 Participant three . 163
11.3.5 Participant four . 167

11.3.5.1 Remarks . 168
11.3.6 Participant eleven . 168
11.3.7 Participant seven . 171

11.4 Conclusions . 175
11.4.1 Common observations . 175
11.4.2 Comparisons to Mediawiki . 178

11.4.2.1 Shared villain (Jaws) . 178
11.4.2.2 General and specific (London Underground) 178
11.4.2.3 Disambiguation links (Shelf) 179
11.4.2.4 Summarise specialisations (Multiple Units) 179
11.4.2.5 Link prose (Cake) . 179
11.4.2.6 Add attribute (Belgium) 180

11.4.3 Implications . 180

12 Conclusions and future work 182
12.1 Introduction . 182
12.2 Conclusions . 182

12.2.1 Wiki editing patterns . 182
12.2.2 Implementation of hypertext in wikis 183
12.2.3 Utility of hypertext in wikis . 184

12.3 Future work . 185
12.3.1 RDF mapping . 185
12.3.2 Other media types . 185
12.3.3 Advanced versioning . 186
12.3.4 Distributed model . 186

A Experiment II resources 188
A.1 Script: Off-line review . 188
A.2 Script: On-line self-report . 189
A.3 Questionnaire . 190

B Experiment III resources 191
B.1 Script: On-line self-report . 191
B.2 Questionnaire . 192

C Model ontology in Turtle 193

D SEML parser state diagram 195

E Open Weerkat entity types 197
E.1 Current . 197

E.1.1 node . 197

CONTENTS viii

E.1.2 link . 197
E.1.3 trans . 198
E.1.4 anchor . 198
E.1.5 heading . 198
E.1.6 em, strong, para, quote, q . 198
E.1.7 err . 198

E.2 Future . 198
E.2.1 section . 198

F Open Weerkat base nodes 199
F.1 Node . 199
F.2 Link . 199
F.3 Transclusion . 200
F.4 Query . 200
F.5 source, target . 200
F.6 sourceQuery, targetQuery . 200

Bibliography 201

List of Figures

2.1 SPARQL query example . 7
2.2 Dexter hypertext reference model components 15

3.1 Links with multiple source and destination anchors 45
3.2 Representing multiple link targets as a temporary class 46
3.3 Computed links vs. query results . 47
3.4 Example of Weerkat-style generic links . 48

4.1 Annotated sample of differences between Jaws texts 55

5.1 Data flow of Wikipedia experiment . 63
5.2 User distribution over total number of edits made; 0.04% subset 72
5.3 User distribution over total number of edits made, by category; 0.04%

subset . 73
5.4 Edit distribution over magnitude of edit; 0.01% subset 73

6.1 Fakepedia: a hi-fidelity Wikipedia simulation 79
6.2 Infobox editing in Fakepedia . 79

7.1 Weerkat model diagram legend . 96
7.2 Weerkat model linking . 98
7.3 Exemplary parametric node . 102
7.4 Instance-space of a parametric node . 103
7.5 A parametric, functional link . 104
7.6 Free-variable parametric link . 105
7.7 Desired composition . 110
7.8 Composition by parametric node . 110
7.9 Composite document . 110
7.10 Composite (‘fat’) link . 110
7.11 Open semantic hyperwiki model ontology 110

8.1 Legacy Weerkat high-level design . 112
8.2 Separation and embedding of a simple node’s source 113
8.3 Viewing links which apply to the whole node 115

9.1 SEML-based attribute editing, and tabular display 126
9.2 Prototype relations table . 128
9.3 Prototype instance property editing, and matching view 135
9.4 Prototype link cross-highlighting . 136
9.5 Markup quick-reference at the bottom of an edit page 136

ix

LIST OF FIGURES x

9.6 Demonstration of preview limitations in Open Weerkat 137
9.7 Example of regular and transclusive link sharing source anchor 139
9.8 Data flow complexity introduced by Generic linking 139
9.9 Attempted transclusion of a region spanning tree branches 140

10.1 Course Notes: Instance Property Editing 144
10.2 Course Notes: Generic Linking . 144
10.3 Course Notes: Transclusion . 145
10.4 TVTropes: a work and a trope in their system 148
10.5 TVTropes: a work and a trope in Open Weerkat 148

11.1 Open Weerkat prototype set up for experiment 153
11.2 Open Weerkat first-class link demonstration 153
11.3 Open Weerkat transclusion demonstration 154
11.4 Open Weerkat generic link demonstration 154
11.5 Full IPE listing for Belgium page . 155

D.1 SEML parser state diagram . 196

List of Tables

5.1 Proportions of edits related to index management 69
5.2 Proportions of edits related to link management 70
5.3 Categorisation of edits for 0.01% subset, Levenshtein 71

6.1 Summary of participant behaviours for tasks on Wikipedia 91

7.1 Weerkat model version identifiers . 101

11.1 Summary of participant behaviours for tasks on Weerkat 176

xi

Declaration of Authorship

I, Philip Richard Boulain,
declare that the thesis entitled
Open Semantic Hyperwikis
and the work presented in the thesis are both my own, and have been generated by me
as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission

Signed:
Date:

xii

Acknowledgements

Thanks to my parents for tolerating their son spending yet more time in education rather
than getting a real job; to Nick Gibbins and Nigel Shadbolt for attempting to focus my
efforts on generating something academically palatable; to Harry Mason for a fifteen-
times speed-up in the Levenshtein string comparison by suggesting top-and-tailing the
identical parts of the strings; to the LATEX, XY-pic, and GNUPLOT maintainers for
the software used to create this document and its diagrams, and likewise the whole
Apache/Perl stack for the prototype; to #ecs for being full of likewise unsympathetic,
burnt-out postgraduates and alumni, and Mair Allen-Williams in particular for encour-
aging me to get a Brompton and cycle more; and to Boston, Whitesnake, 38 Special, et.
al. for producing the large quantities of classic rock required to survive the all-nighters
without going insane and deciding to rewrite the entire thesis in Reverse Polish Notation.

xiii

Chapter 1

Introduction

In this document, we look at the overlap between two research areas: Open Hypermedia,
and the Semantic Web, with emphasis specifically on Semantic Wikis.

A hypermedia, or a hypertext, is a document which extends beyond the limits of paper.
There are many facets to hypertext research, but two common extensions beyond non-
electronic documents are greater cross-reference, by means of links which can be used
to navigate between or within documents, and greater re-use, as content may be freely
duplicated in multiple contexts. Open hypermedia extends this by considering links to
be standalone entities, which can be applied to a set of potentially immutable documents
in arbitrary groups; these links may also span heterogeneous systems.

The World Wide Web is a distributed set of interlinked documents. The Semantic Web,
an extension of this, intends to be a distributed set of interlinked data. It allows data
sources to be discovered and combined from disparate sources in the same manner as
one may discover, browse, and mentally cross-reference web pages.

A “wiki”, or “WikiWikiWeb” in full, is a lightweight, collaborative hypertext system
built on top of the existing World Wide Web. It is lightweight in that it offers only the
most basic of web-style linking primitives, and often an ad-hoc markup system which
maps to a subset of HTML. It is collaborative, as it allows modification from multiple
users—in many cases, any web user—usually with basic conflict-detection semantics,
and ideally with a history system to allow abuse to be undone as easily as it is made.

1.1 Problem

Wikis have been hugely successful systems, with prominent examples such as Wikipedia1

attracting millions of users writing over a million articles2. They also expand beyond en-
1http://www.wikipedia.org/
2http://en.wikipedia.org/wiki/Special:Statistics

1

http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Special:Statistics

Chapter 1 Introduction 2

cyclopædic uses: wikis have seen use in areas such as enterprise knowledge management,
software development, and community building.

However, we hypothesise that a significant proportion of the substantial effort expended
by these users is on tasks which could be automated. Reducing the maintenance burden
of working with these ad-hoc knowledge bases allows for more effort to be spent on
improving the quality of, or working with, the content.

1.2 Solution

There are already efforts to add Semantic Web features to wikis (‘semantic wikis’), of par-
ticular note Semantic MediaWiki [1], which solve some of these problems, but we believe
that the overlap with hypermedia allows for greater improvement still. The objective
of this research is to design and develop a prototype modified wiki to demonstrate how
open hypermedia systems can provide this further improvement. To accomplish this,
we surveyed the past developments of hypermedia research, tested the hypothesis that
there is actually link-editing inefficiency to improve upon, identified the priorities in
implementing an improved system, developed a model which addresses these improve-
ments, planned and implemented a prototype system, and evaluated it compared to a
conventional wiki.

1.3 Structure

In the next chapter, the semantic web is explained in more depth, and notable hypertext
and semantic wiki systems are covered and compared in more detail. Chapter 3 looks
at the correlations discovered between the areas of Semantic Web, Open Hypertext, and
wikis. It begins with a description of the Semantic MediaWiki system in terms of the
Dexter hypertext model, then extends and inverts this to express common hypertext
features in semantic wiki terms. Chapter 4 expands upon the concept of Open Semantic
Hyperwiki: a semantic wiki reinforced with a richer hypertext structure. It puts forward
arguments for specific improvements which should prove beneficial to users of such a
system. To demonstrate the current limitations of wikis, chapter 5 presents an experi-
ment performed on the large-scale Wikipedia system, which measures the proportion of
editing effort expended on link maintenance tasks, compared to providing encyclopædic
content. We follow this with a small-scale experiment in chapter 6 to identify the tasks
individual editors set themselves, and how they act to achieve them. This informs our
parallel work on a model for open semantic hyperwikis in chapter 7, where we for-
malise the hypothetical system of past chapters. Chapter 8 then addresses the task of
implementing the model as a prototype system, building on a past system for large com-
ponents, and working through the detail of more intricate linking problems. Chapter 9

Chapter 1 Introduction 3

details our creation of this prototype system, along with the complexities introduced to
a modular system of orthogonal components by the interlinked nature of some hyper-
text features. Chapter 10 then shows how our model and system could be applied to
concrete, non-encyclopædic examples of wiki use, and how its functionality would be
beneficial. To then evaluate the prototype system in the hands of an untrained novice
user, chapter 11 revisits the small-scale experiment, this time using our technology in
place of Mediawiki. We capture user reaction to the enriched hypertext experience and
how they decide and attempt to apply the new capabilities to familiar real-world tasks.
We finish with chapter 12, in which we summarise our findings, and propose directions
in which this research can be continued, such as more advanced versioning support,
non-text content types, and forming a distributed, seamless hyperdocument between
multiple wikis.

Chapter 2

Literature review

2.1 Introduction

This chapter explains the Semantic Web in more depth, covers how it extends from
the World Wide Web, and how it relates to research fields such as Intelligent Agents.
It covers technologies used, both of the existing Web and new, and some of the issues
around them. We then move on to notable hypertext systems and models and, in
particular, defining features which apply to, or could be applied to, semantic wikis.
This is followed by coverage of current semantic wikis, comparing their approaches to
the idea of adding semantics to wikis, and their different feature-sets. Finally, we consider
Halasz’s seminal “seven issues” in the overarching context of the modern hypertext and
semantic wiki environment.

2.2 Semantic Web

If the World Wide Web can be seen as a distributed network of human-readable docu-
ments, then the Semantic Web can be thought of as a distributed network of machine-
processable data. It follows the same open principles: that anyone can publish using
open standards, with no centralised control. The “information bus” [2] between het-
erogeneous server and client implementations remains, such that any consumer should
be able to use and combine data from any set of providers, but instead of a generic
hypertext markup language, the Semantic Web uses a generic data model: RDF [3].

The Semantic Web aims to add enough structured metadata to web content to elevate
it from being just human-understandable, to also machine-understandable. As well as
the existing natural language documents, the web would contain information about the
key classes, instances, and the relations between them, which computer programmes
could then use to perform more intelligent queries, and even derive new conclusions.

4

Chapter 2 Literature review 5

Search engines could ensure that they found pages with the correct concept, ignor-
ing homonyms but possibly finding synonyms. Intelligent Agents—autonomous, goal-
driven programmes, to which a user delegates tasks at a higher level than individual
actions—could potentially use this information to fulfil more complicated requests. The
well-known Scientific American article by Berners-Lee et. al. [4] gives an example of
scheduling therapy appointments and making travel plans based on availability and lo-
cation information offered in a consistent manner—or at least a manner which maps to
a consistent representation—by the therapists’ websites.

2.2.1 Web technologies

The unique identifier of the web, the URI1, is extended to refer to any kind of resource,
such as a class, rather than just documents. RDF serialisations (e.g. using XML) are
still sent over the same transport layer, HTTP.

2.2.2 Data model

One can describe semantic web resources using nothing more than RDF statements:
triples that state that a resource has a property with some value, where the first two,
and possibly the value, are identified as URIs. This use of URIs allows for uniqueness
and disambiguation between meanings of English language terms, such as ‘title’ (‘Mr.’;
‘of a document’; ‘title deed’). These can each be given distinct identifiers, such as ‘http:

//purl.org/dc/elements/1.1/title’ for the title of a document. To state that the
EPrints document record with identity ‘oai:eprints.ecs.soton.ac.uk:12900’ (the
resource) has a title (the property) of “Weerkat: An extensible semantic Wiki” (the
value: a literal, in this case), one could use the triple ‘<oai:eprints.ecs.soton.ac.uk:

12900> <http://purl.org/dc/elements/1.1/title> "Weerkat: An extensible se-

mantic Wiki"’.

On an uncontrolled, decentralised—and thus, ultimately, scalable—system such as the
Semantic Web, it is not possible to enforce consistent terminology: one business may de-
scribe part of their mailing address using a property of ‘http://purl.org/snailmail/-

zipcode’, and another ‘http://www.postoffice.co.uk/rdf/postcode’. While both
mean the same thing, a programme has no reliable way of determining this by itself.
Ideally, the two businesses, and many others, above would use a common ontology for
mailing addresses, effectively agreeing on that particular model of the real-world con-
cept. An ontology, in the context of knowledge management, is “an explicit specification
of a conceptualisation” [5]: it defines precisely how a system is modelled, such that the
model may be used by and combined with with other data sources. RDF Schema [6]
(RDFS) is one vocabulary which offers a simple type system for the RDF model. Such

1Uniform Resource Identifier

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
oai:eprints.ecs.soton.ac.uk:12900
oai:eprints.ecs.soton.ac.uk:12900
oai:eprints.ecs.soton.ac.uk:12900
http://purl.org/dc/elements/1.1/title

Chapter 2 Literature review 6

schema can declare taxonomies of classes and properties, and simple type constraints on
the range and domain of properties. RDFS also provides properties for annotating these
resources for human presentation, and to document the intended usage of the schema.

OWL [7] is another common ontology language, which builds on RDFS and provides
semantics based on description logic. It can describe classes in terms of restrictions
such as cardinality, range, and value constraints on their properties, and the relations
between these classes. An OWL ontology can define class and property equivalence
relations, which can specify that the ‘zipcode’ and ‘postcode’ above are actually the
same thing. Inference can be used for both consistency checking of data, ensuring that
statements do not contradict (e.g. ‘YellowThings are only coloured yellow’, ‘apples are
green’, ‘yellow and green are distinct’, ‘apples are YellowThings’), and for classifying
instances (e.g. ‘rubber ducks are yellow’, therefore ‘rubber ducks are YellowThings’).

2.2.3 Triple stores

To manipulate large semantic web datasets, the RDF statements are usually loaded
into specialised databases, known as triple stores. These systems are optimised for the
efficient storage and query of large numbers of interrelated triples, and have evolved from
earlier layers on top of conventional relational databases, such as 3store [8] or Redland2,
to outright bespoke storage models, such as 4store [9].

2.2.4 SPARQL

Much as a relational database is queried using SQL, one must be able to make queries
of a triple store. The contemporary, storage-independent language for expressing such
queries is the SPARQL Query Language [10].

SPARQL queries have a syntax reminiscent of SQL, and can contain a WHERE clause
for pattern-matching with wildcard variables. Within this, FILTER constraints can be
added for more complicated matching, such as numerical inequalities or matching strings
against regular expressions.

The results of a SPARQL SELECT query are a set of bindings, not a list of triples.
Figure 2.1 shows a trivial example. The query 2.1(c) returns a set of bindings 2.1(b) for
each variable when executed over the dataset 2.1(a). In this case, we receive two possible
bindings, where our single variable c has been bound to red in one possible satisfaction
of our query, and yellow in the other.

A HTTP service which acts as a SPARQL interface to some knowledge base is generally
referred to as a SPARQL endpoint. Theoretically, software other than triple stores

2http://librdf.org/

http://librdf.org/

Chapter 2 Literature review 7

Subject Predicate Object
ball colour red
ball colour yellow
ball pattern striped

(a) RDF statements

Result No c
1 red
2 yellow
(b) Resultant bindings

SELECT ?c WHERE { ball colour ?c . }
(c) SPARQL query

Figure 2.1: An small set of triples and the bindings returned by an example query
upon them. Namespacing is not show for conciseness.

may provide such interfaces, although currently semantic wiki-related systems such as
Semantic MediaWiki and DBPedia implement SPARQL endpoints by automating RDF
export into a sideband triplestore which then services such queries.

It is worth noting that, unlike SQL, current SPARQL only deals with read operations—
adding, modifying, or removing triples from a store requires another, store-specific,
mechanism.

2.2.5 Linked data

In 2006, Tim Berners-Lee published a design issues paper on ‘linked data’ [11], an
attempt to refocus the Semantic Web on the ability to navigate between sets of related
machine processable data, rather than simply ‘dumping’ it on the web.

Of his points, crucial were the use of HTTP protocol URIs for naming resources, so
that there is a simple and obvious mechanism to retrieve something pertaining to that
resource; and to link to other URIs.

2.2.5.1 303 convention

Conventions have been proposed [12] to use HTTP’s content type negotiation and redi-
rection capabilities to distinguish between and relate URIs for the identity of a resource
(e.g. the person “Wendy Hall”), a representation of a resource (e.g. an image of Wendy
Hall), and metadata about a resource (e.g. a RDF document describing Wendy Hall).
In particular, the ‘303 convention’ uses HTTP status code 303, “See Other”, to redirect
a request for an identity URI to either an appropriate representation, or to the meta-
data document, depending on whether the client requested a result of RDF type. This
redirection, rather than merely returning the requested type directly, allows the client
to become aware of the URI for this particular representation. To get from an HTML
representation to a metadata document, the “link” header element can be used; this
document then defines the resource in terms of its identifier.

Chapter 2 Literature review 8

An alternative approach, suitable for small, largely-static data sets, modifies this to use
the fragment identifier in identity URIs. For example, http://www.w3.org/1999/02/

22-rdf-syntax-ns#Resource identifies the class of resources in the RDF model. HTTP
requires that clients remove the fragment identifier before retrieving URIs, resulting in an
URI of http://www.w3.org/1999/02/22-rdf-syntax-ns. This may return the RDF
metadata directly (thus serving as an identifier for it), or may go via a stage of 303
indirection to allow for alternate representations, as above.

These conventions are a fairly pragmatic way to both keep distinct, yet associate, the
facets of a resource, but they are not without shortcomings. An obvious wrinkle is the
increased number of HTTP requests needed to resolve the identifier URI down to a
suitable representation. Another is the inability to provide the relation between repre-
sentation and metadata in formats which do not support embedding such header data
(e.g., plain text), or to access this relation without downloading the whole document.
Attempts have been made to preserve the HTTP Link header for this purpose, which
could express the relation in the protocol layer, and in response to HEAD requests
(which do not include the content body), but have expired without acceptance. [13, 14]

A more serious problem is that of overloading the RDF content type. The 303 approach
redefines part of content negotiation such that a request for data of RDF type is under-
stood as a request for metadata: rather than returning the content in that format, the
server returns a description about the content. As a result, there is no unambiguous way
to request the actual content in RDF format, even though this may be sensible for, for
example, a press release stating that a new product has been made available. Likewise,
one cannot request metametadata for the metadata: if the 303 convention has provided
a client with the URI of metadata for Wendy Hall, the client cannot then ask for meta-
data about this data, such as who provided it, or when it was last updated. Requests
for RDF to the metadata address will be interpreted as a post-redirection requests for
the metadata itself. URIQA [15] disambiguates this by adding explicit ‘metadata’ oper-
ations to HTTP, but these are not standard. An explicit relation to the metametadata,
e.g. via the HTTP Link header, would also allow the client to discover the correct URI
to request.

2.2.5.2 RDF in attributes

One way to embed metadata into regular web documents is RDFa [16]. It allows type
information to be added to links within a page via additional XHTML attributes, and
for literal content to be used as RDF literals. The implicit subject of such statements
is the page itself, as with semantic wikis, but the tree structure of the document can be
used to scope branches to describe other URIs.

http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns

Chapter 2 Literature review 9

2.3 Open hypermedia

Hypermedia is a long-standing field of research into the ways in which documents can
expand beyond the limitations of paper, generally in terms of greater cross-referencing
and composition (reuse) capability.

2.3.1 Documentation

Otlet’s work on documentation [17], near the beginning of the 20th century, is some of the
earliest evidence of structured organisation of documents, with indices into, and refer-
ences between, them. While his technology was based on index cards and sheets of paper,
the system he envisaged would effectively be a universal, dynamic Encyclopedia, “formed
by linking together materials and elements scattered in all relevant publications” [18].
Knowledge resources such as books were broken down into the elements of information
they presented, as one may do with the Semantic Web, not the presentational divisions,
such as chapters and paragraphs. Documents were indexed by a ‘Universal Decimal
Classification’, which formed a taxonomy of subjects, and was intended to allow index-
ing upon facets of documents, such as their date. Otlet even envisaged that documents
would be accessed remotely via a hypothetical, globally-distributed Universal Network
of Information and Documentation, using a workstation with screens and speakers. The
system was let down by sheer lack of scalability arising from the overheads of dealing
with physical searching and copying, but the vision was surprisingly prescient, as more
recent systems still work to fulfil the same goals.

2.3.2 The Memex

Bush’s As We May Think [19] introduces the standard hypothetical early hypertext ma-
chine, the ‘memex’, and defines the “essential feature” of it as “the process of tying
two items together”. This linking between documents is the common feature of hyper-
text systems, upon which other improvements are built. Bush’s ‘trails’ formed arbitrary
linked lists over the set of available documents, but their sharable nature, and the model
used by later hypertext systems, effectively forms a graph of documents, which greatly
enables exploration of subjects. As well as the original binary (two endpoint) links,
hypertext systems have been developed with features including n-ary links (multiple
documents link to multiple other documents), typed links (links which indicate some-
thing about why or how documents are related), and composite documents, which are
formed by combining a set of other, linked, documents.

Open Hypermedia is the sub-field of hypermedia which focuses on how hypermedia can
interoperate, both with other hypermedia systems and users, and with non-hypermedia

Chapter 2 Literature review 10

resources. Two of the key features of open hypermedia systems are first-class links—
links which have identity, and are treated at objects at a similar level to documents—and
the separation of storage of links from document content into linkbases. By storing the
links in external repositories, rather than requiring them to be kept with documents,
they may refer to resources which are not hypermedia-aware, or cannot be modified.
It also becomes possible to share linkbases, as with Bush’s trails, and to change which
linkbases are currently being applied. As well as being one possible way to implement
adaptive hypermedia—the modification of which links are shown based on user context—
this allows users to have their own linkbases, group-shared linkbases, and any other
organisation which proves useful. This section covers some of the more notable systems
and models on the subject of open hypermedia.

2.3.3 Xanadu

One of the earliest projects attempting to implement globally-distributed, globally-
edited hypertext was Xanadu [20]. While implementation was infamously troubled,
Nelson’s compelling vision was that of a ‘document pool’ of content, contributed by
users across the system. The users could form arbitrary links between these documents,
and create compound documents via ‘transclusion’, an inclusion-by-reference mechanism
with licensing control (‘transcopyright’). The intent is to capture arbitrarily structured
information in such a way that comparison of adjacent versions and commentary is easy
to achieve, which makes this a very general form of hypertext. To support this, an inter-
esting addressing system known as ‘tumblers’ is used, which supports infinite subdivision
of addressing across multiple dimensions: for example, it is possible to subdivide the
concept of ‘user’ by organisation, department, down to individual, with as many levels
as is necessary. The ability to always subdivide a tumbler address allows for arbitrary
insertions to be made without the need for renumbering, which assists in maintaining
the permanence of link addresses.

Xanadu is interesting in that it was designed explicitly to allow anyone to effectively edit
anything by re-using it with new identity, even if only the original author could then
retire (and effectively replace) the older version. The ability to link from resources owned
by others, and transclusion, encourage communal commentary and ‘remixing’ in ways
familiar to the current ‘Web 2.0’ movement: in particular, the paradigm of commenting
on a web resource by making a blog post linking to it with commentary attached,
and the Creative Commons movement3. However, neither of these are as powerful as
Xanadu: the former comments are only associated with the resource in one direction,
such that one cannot find the comments from the resource, and must exist on a distinct
page. They cannot be interweaved with the resource as one may add marginalia to a
printed document without explicitly copying the resource, which may be prohibited, or

3http://creativecommons.org/

http://creativecommons.org/

Chapter 2 Literature review 11

otherwise undesirable. While Creative Commons metadata can clarify these permissions,
it does not provide the same structure for fair licensing fees—micropayments—as was
envisaged for transcopyright. What transclusive mechanisms exist in the web today
(such as embeddable video players and inline frames) have restrictions on granularity,
only able to operate on entire documents rather than create composites from excerpts.

2.3.4 HyTime

HyTime [21] was an SGML-based format for the representation of hypermedia, evolved
from an effort to develop a standard music description language, with an emphasis
on presentation. It aimed to provide an abstraction of the common, linking parts of
arbitrary data formats, such that this information could be shared between applications.
HyTime supports five kinds of hyperlink: independent, property, contextual, aggregate,
and span. Independent links are ‘ordinary’ n-ary links, and contextual links are what
are more generally known as ‘embedded’ links—one end is the location of the link itself.
Aggregate links handle co-reference resolution: if two locations are linked via such a
link, they are logically considered to be the same location. This foreshadows the need
for equivalence relations in the Semantic Web (e.g. owl:sameAs): when combining
documents or data from disparate sources, multiple identifiers may be used for the same
resource. Span links are an implementation detail which allows SGML elements to be
ignored in documents conformant to a DTD other than that of HyTime. Property
links are similar to triples in RDF: they associate one link end with some other value
or link end, for a given attribute. Note that, unlike RDF, the attribute is not given
as another first-class object of the system: it does not have equal standing to other
resources, and cannot itself be a link endpoint (thus you cannot create property links
which annotate attribute types). The intent of property links are not to be a general
annotation mechanism, but to allow description of entities which cannot be modified to
describe itself ‘in the normal way’ (as part of the element itself).

HyTime also has a mechanism of ‘batons’ and ‘wands’ to control presentation of objects
(multimedia content, occuring within a chronological event, and with a spatial extent)
within a co-ordinate space. Batons are schedules of projectors, which map object events
from their source co-ordinates into display co-ordinates: for example, a two-dimensional
map dataset may be scaled to an arbitrary ratio by a suitable baton, and the object
is then displayed within this new context. HyTime supports basic types of batons,
such a linear scaling, but allows for application-specific batons. Wands are schedules of
modifiers, which can perform arbitrary modifications upon the objects themselves. As
objects are treated as generic, opaque media items, wands are likewise opaque and not
standardized. Both projectors and modifiers are scoped not only by their schedule, but
by the area in the co-ordinate space to which they apply.

Chapter 2 Literature review 12

2.3.5 Microcosm

Microcosm [22, 23] was an open hypertext system. One of its key features was that links
were kept separately from content, thus allowing links to be overlaid onto read-only
documents. This also allows links to be ‘generic’, i.e. not applicable only to documents
they were originally conceived for: such links have endpoints defined as tokens which
may appear in documents, for example, individual words. Early wiki systems featured
a limited form of generic links, where the tokens were the wiki page titles. ‘Local’ links
offer scope control on generic links, by only linking from such tokens within a given set
of documents. Microcosm’s clean and modular architecture applies linking to documents
by means of a chain of filters which act upon the document: arbitrary sets of linkbases
can be used by implementing them as filters and adding them to the chain. In this way,
there can be a common linkbase of links for a document set of interest to all users, and
upon this individual users, or groups of users, can add additional linkbases which are
specific to them.

Microcosm was also open in terms of integration with third-party applications: because
documents do not have the link data embedded, they can remain in their native formats,
handled by their original applications. To provide hypermedia functionality when using
these applications, either they must be extended (for example, using macro functionality)
to be Microcosm-aware, or a general-purpose ‘shim’ could be used which worked via the
system clipboard.

Such extension is still performed today to combine data sources: for example, it is
common to overlay Google Maps with other geographical data [24]. Advertising services
such as IntelliTXT4 use client-side shimming scripts to add generic links throughout the
body of normal web pages, without the need to modify the original document.

2.3.6 Hyper-G

Hyper-G [25] was a distributed hypermedia system which offered access via multiple
methods: a native Hyper-G client, a web interface, and a cut-down Gopher interface.
As well as documents within Hyper-G, links could reference documents on Gopher and
HTTP servers outside of the system. This mapping to a web interface was an interesting
development, as it was already allowing for the prevalence of web clients, and working
with these rather than trying to enforce use of the native Hyper-G client. Hyper-G’s
data model consists of SGML documents, including searches; clusters of documents
which form multilingual/multimedia aggregates; collections; and arbitrary, single-arc
links. Documents are indexed upon insertion, and the system provides a boolean search
service using these indicies, although the scope is limited to the local server. Collections
provide a “unified view of distributed resources”, by collating documents together in

4http://www.intellitxt.com/

http://www.intellitxt.com/

Chapter 2 Literature review 13

some order: they are compound documents. A document may be in many collections,
and collections may contain other collections, to provide multiple variations or orderings,
and to form hierarchies of structured data. Links are external to documents, and use
anchors stored with the link as byte offsets into the document at each endpoint. Only
the system, via the Hyper-G client, updates and deletes links, thus avoiding ‘dangling’
or broken links, although not to external HTTP resources. Because links are external,
even though they are unidirectional, they can be found and followed in reverse. Links are
intended to be used for cross-referencing, overlaid on the structure of collections. Hyper-
G handles large-scale distribution with link integrity, as envisaged but unimplemented
by Xanadu’s back-end–back-end protocol, by means of a specialised naming scheme
“scalable flood algorithm”; it ran systems with content to the order of tens of thousands
of documents.

2.3.7 Auld Linky and AHA!

Auld Linky [26, 27] was a ‘sculptural’ adaptive hypertext system. Sculptural hypertext
is a form of adaptive hypertext which starts with an assumption that all links should be
presented to the user, then removes those found to be inapplicable based on the context
of the link and associated documents. It acted as a link server, suitable for use with
Microcosm as a filter, and used FOHM (section 2.3.11) to represent hyperstructure. The
interaction with Microcosm shows that adaptive hypertext can be added as a link filter
to a suitably modular open hypertext system.

Auld Linky has been compared to the AHA! adaptive hypertext system [28]. AHA! took
a more deterministic, ‘scripting’ approach, where pages had behaviours which set user
context allowing other, specific pages to be seen. Pages themselves displayed content
selected from a mutually-exclusive set of representations. Linky’s sculptural approach,
however, resulted in the addition of links between the systems. There were concerns
that these links would ignore proper contextual preconditions when crossing over to the
other system, especially as the conditions are not semantic: rather than AHA! encoding
that some page A tells the reader about ‘cheese’, and that page B requires the reader to
have read about ‘cheese’, it merely encodes that page A allows the reader to proceed to
page B. Millard et. al. also found that Auld Linky’s representations of context needed
the ability to be subclassed, such that more complex taxonomies could be supported:
without this, a page which teaches ‘wine’ must also explicitly specify ‘red wine’, and any
other specialisations covered, else the user will not be considered to have the context to
view pages on such specialisations.

Chapter 2 Literature review 14

2.3.8 Trellis

Trellis [29] is an adaptive hypermedia model, and a pair of systems (αTrellis and
χTrellis), based on the mathematical field of Petri nets; a generalisation of state ma-
chines consisting of places which may contain tokens, and transitions between places.
Transitions are enabled when tokens are present on all incoming places, which means
that they may be fired. Firing a transition consumes a token from all incoming place,
and produces a token on all outgoing places.

Trellis emphasises the separation of content and structure. The content exists as a set
of ‘content elements’; in χTrellis, these also have generally applicable anchor points
defined within them. The structure exists as the Petri net, and the two are mapped
together. Each place on the Petri net is associated with a content element: when a
token is present in a place, that content element is visible. Petri net transitions take
the role of navigational buttons; activating a button triggers the transition, and updates
the visible contents based on the new token distribution. In χTrellis, each place may
specify mappings between anchors for the content element it displays, and the transitions
from that place. Because Trellis is built on a formal mathematical model, it is possible
to perform static analysis on the net, and determine which anchors can be triggered
immediately, eventually, or never; this can be used to style or hide them.

The separation of content and structure allow one to be replaced, while re-using the
other. Not only can the same content elements be re-used with a different structure
of links between them, but the structure can be maintained and the contents changed,
for example, to allow for translations. The model also makes the distinction between
semantics and pages found missing from AHA! above: the representation of a learnt
topic, a place with a token; and the entity which sets that topic as learnt, a transition
leading to it. As the model is amenable to analysis, it is possible to determine which
other places should also have tokens if a cross-system jump is made. There is not any
mechanism for subclassing topics in the α- and χTrellis versions; however the model’s
formal basis allows it to experiment with mathematical extensions to Petri nets.

2.3.9 World Wide Web

Berners-Lee’s World Wide Web [2, 30] is the system which has become, in popular
culture, ‘the web’. The Web was specifically designed with abstraction layers which
would allow it to distribute to a global scale across heterogenous systems: in particular,
a network-stream-based interface (HTTP) which allows a wide range of client and server
systems to interoperate; and HTML, which (as designed) presents documents in terms
of their content semantics, rather than layout specifics, thus allowing clients to adapt
display to their capabilities.

Chapter 2 Literature review 15

Atom 23
Content

Pres. Spec. Opaque

Anchors 1→Opaque

Link 12
Comp. Spec. 23
Anchor ID 1
Direction FROM
Comp. Spec. 5
Anchor ID 1
Direction TO

resolves
to

oo

resolves
to

//

Composite 5
An atom.
And another.
Anchors 1→Opaque

Figure 2.2: Dexter hypertext reference model components

The system also has a global naming mechanism, the URI, which is interesting in that it
is a reference which may be taken out of the system. URLs were specifically designed to
be ‘manageably short’ and consist of printable characters, such that they could be used in
non-hypertext-aware systems, such as Internet mail, or simply noted on a scrap of paper.
These addresses were intended to be more persistent than experience has since shown,
largely as they have not been widely used as designed. Web addresses ‘should refer to a
document’s registration with some “publishing” organization rather than any physical
location, so that its location may later be moved’, with the intent that the publishing
organisation would redirect to the server actually hosting the document; they also ‘should
not contain any information...such as the particular formats available for a document’.
This approach has found greater foothold on the Semantic Web, with services such
as PURL: the URI for title in Dublin Core is http://purl.org/dc/elements/1.1/.
purl.org is a publishing organization and, when the URI is resolved, PURL redirects
the client to a file dces.rdf on the dublincore.org server. These guidelines help to
avoid implementation and network infrastructure detail from ‘leaking’ into the document
identifier. Berners-Lee clarified this intent in an informal 1998 W3C posting [31].

The widespread usage of the Web on the Internet demonstrates that it is quite capable of
distributing to a global scale. However, we believe that there is scope for improvement
in its hypermedia features: not that such improvements are strictly necessary for its
function, but that they would be sufficiently beneficial as to be worthwhile. Bieber et al.
give an example of an inter- and intranet web application for an insurance company [32],
then speculate how high-level hypermedia could improve it. Some suggestions, such as
node and link typing, are now better covered by current research into the Semantic Web,
but others remain unaddressed: for example, transclusion is given as a way to generate
consistent insurance policy documents from a library of standard clauses. Computed,
user-private links are given as a way for a sales agent of the company to navigate from
customer names to all of their insurance policies with the company.

2.3.10 Dexter hypertext reference model

The Dexter hypertext reference model[33] provides a formal representation of the ab-
stractions used by the (envisaged) hypertext systems of its time. While it does not make

http://purl.org/dc/elements/1.1/

Chapter 2 Literature review 16

explicit allowance for open hypermedia, it does provide first-class links, modelled sepa-
rately from documents. It deals with systems as a stack of layers: ‘runtime’, ‘storage’,
and ‘within-component’, and how these layers interact (presentation and anchoring).
The model is of the classic ‘rigid’ hypermedia school of thought, in that it includes in-
variants which ensure formally correct behaviour. Indeed, the entire model is formalised
in Z notation.

The hypertext is treated as a set of components, which are a union of component informa-
tion and a base component: either atoms (document content, generally a ‘page’ granular-
ity), links, or composites (constructed from other base components). Components—note
that this includes links, thus they are first-class—have globally unique identity, expressed
as a unique identifier (UID): this is comparable to the use of URIs in the Semantic Web.
Resolver functions are used to map from some specification of a component (such as a
query, or even just a plain UID) to component UIDs (for example, to perform searching);
an accessor function can then retrieve a component given its UID.

Within-component addressing is provided by anchors, which have component-scoped
identifiers (therefore an anchor can only be addressed within the scope of the component
it applies to). The ‘value’ of an anchor—its mechanism for specifying some subset of
the component—is opaque, and meaningful only to the specific within-component layer.
‘Specifiers’ consist of a component specification, anchor id, direction (whether this is the
source, destination, both, or neither of the link), and possibly presentation specifications,
which are opaque, and meaningful only to the presentation layer. A link is a sequence
of two or more of these specifiers.

Figure 2.2 gives an overview of these components. On the left is an atom of content,
with some presentation information which is of interest to the presentation layer and
opaque to the rest of the system. This atom defines an anchor with an ID of 1, whose
‘target’ is likewise opaque to the wider system. On the right is a composite, which also
defines an anchor, and since anchor IDs are scoped by component, it also has an ID of
1 without ambiguity. In the centre is a link, consisting of two specifiers. Both specifiers
use literal component specifiers which point to a fixed component, and both specify the
first anchor within. Because the top specifier has a FROM direction and the bottom a
TO, the link is a simple directional one from the left Atom 23 to the right Composite 5.

Runtime behaviour, including editing, is addressed by an interesting approach of ‘instan-
tiating’ components (and their anchors, as ‘link markers’) via an instantiator function.
Components are instantiated within the context of an explicit browsing/editing session,
and the instances are given a unique instantiation indentifier (IID). The instantiator
function arbitrates between presentation detail provided to it within the context of the
session, and that which exists in the component, in order to determine the final presen-
tation information for the instantiated component: this allows for adaptive hypermedia.
Instantiated components may be edited, but in order to make these changes permanent,

Chapter 2 Literature review 17

the instances must be ‘realized’ back via a ‘realizer’ function. Although the model ex-
plicitly supports multiple, simultaneous instantiations of a given component, it does not
cover how to resolve multiple realisations of modified versions: an ‘edit conflict’ in the
terminology of wiki systems.

The Dexter model has been used as the basis for extensions [34, 35] to address some of
the facets of systems such as the Web: for example, embedded link anchors. Section 3.3
of this report suggests some modifications to Dexter to represent the class of hypermedia
systems containing Semantic MediaWiki.

Grønbæk and Trigg [34] define an object-oriented derivative of Dexter based on lo-
cation specifiers (‘LocSpecs’) and reference specifiers (‘RefSpecs’). LocSpecs permit
within-component addressing, defining a location either by some named position (e.g.
the fragment identifiers of an URI), by structure (e.g. “the third paragraph”), or by
computation (e.g. “the location of the string ‘hypertext’ ”). A specialisation of these,
ComponentLocationSpecifiers, addresses components by one of the same mechanisms.
RefSpecs wrap LocSpecs with some presentation detail within the scope of a parent com-
ponent. They specialise as either anchors, endpoints, or composite references. Anchors
exist purely as location markers, and may be ‘transient’ if constructed by run-time ac-
tions (e.g. to represent the point in the document at which the user clicked). Endpoints
are comparable to Dexter endpoints, although they do not permit a directionality of
NONE: the authors argue that there is no need to distinguish this from a direction of
BOTH, although example links in [33] use NONE in a role more similar to FROM. Com-
positeReferences are used to construct composite components. Queries as location or
reference specifiers are given as a way of implementing generic links; unlike Microcosm,
however, the genericity of the link applies to the individual endpoints, not the link as a
whole. It would be possible to represent a link with both specific and general anchors.

A hypertext is a collection of components. Components are much as in Dexter, although
the ‘base’ component distinction has gone: composite components can contain links and
other composite components. Links and composites are considered specialisations of
components, with the content of a component being defined in the basic component class:
thus such a link may also have content. Components can form simple tree structures,
which provides composition with automatic deletion: if a node in this tree is deleted,
then so are all child nodes, recursively.

LocSpecs are designed to have the same “free-floating pointer” behaviour as WWW
URIs: they can be recorded and passed to friends via non-hypertext-aware means, and
even constructed from scratch based on logical guesswork (the authors give an example
of attempting to find the WWW site for a company named ACME by guessing the
identifier http://www.acme.com). LocSpecs can also represent at-link-time computed
documents, such as search results. With the WWW, one cannot link to search results,
only the specification required to generate them, and they may be destroyed at the whim

Chapter 2 Literature review 18

of the implementation. Conversely, in distributed hypermedia systems with a garbage
collection-style approach, such results could be rendered permanent by creating links
to them using location specifiers. RefSpecs make link structures external and explicit,
with the same advantages as Microcosm (such as application to read-only data and, by
extension, linking with other people’s documents on the WWW). The authors expected
that graphically browsing such structures would be a significant part of hypermedia,
along with smooth integration of local and embedded, remote links.

D’Inverno et. al. [35] propose a model which addresses what they see as overcomplication
in Dexter; however, they do this at the cost of representing a simpler hypertext system.
Their model is based on binary links, which have specialisations to allow for typing.
Links and nodes (components with contents) are completely disjunct types, and there
is no readily-available mechanism for representing compound documents. Of note is the
reduced rigidity of the model in some areas: for example, the link-following operation is
permitted to fail with an error, not unlike the HTTP errors of the web. It also makes the
concept of history explicit, rather than being abstracted into session data, and raises (but
does not attempt to answer) several questions regarding how hypermedia history may
function, other than the stack-pointer behaviour familiar to modern WWW browsers. In
particular, the model allows for the removal of duplicates from the history list, instead
keeping only the most-recent visit to a page; and for filtering of which operations add
to the history.

The Dexter model is a relatively clean representation of hypertext, but more recent
hypertext systems do not map completely onto it. Features such as generic links cannot
be represented without revised versions of the model, and these revisions have oft omitted
the runtime layer, which is not often considered when comparing hypertext systems in
terms of the model.

2.3.11 FOHM

In 1996, with the Web showing growing popularity thanks to its distributed and inter-
operable nature, the Open Hypermedia Systems Working Group (OHSWG) began work
on a standard Open Hypermedia Protocol (OHP) to allow intercommunication between
open hypermedia systems.[36] However, this work focused only on navigational hyper-
text, with the expectation that it would be extended to cover other domains in future
work. This triggered several researchers to instead consider the commonalities between
the domains, and attempt to develop a unified data model.

A ‘Fundamental Open Hypertext Model’, FOHM [37] covers classic navigational, spatial,
and taxonomic hypermedia systems. Spatial systems are those which use graphical
positioning of documents to classify them within fuzzy sets: relations are generally
implicit. Taxonomic systems deal with individual categorisations of documents: each

Chapter 2 Literature review 19

user categorises documents as they best see fit, and the system creates a taxonomy (tree
of specialisations and generalisations) of categorisations based on this. Where users
disagree, the tree may gain ‘perspectives’: branches which are based on difference of
user opinion.

FOHM offers a core model, based on data objects to which context and behaviours may
be attached, and associations (links) which bind to references to data, again with context
and behaviour. A mapping is provided from the three basic systems covered to the core
model and back. Because hypermedia operations can also be described in terms of the
core model, it is possible to deal with the hypertext entirely in terms of the core model,
and map this to a specific system at display time.

FOHM’s links can capture structure, to allow for spatial hypermedia’s collections, such
as sets, lists, and matricies. Defining mappings between domains stimulates “cross fer-
tilization” of ideas: spatial sets are navigational n-ary links; lists fit the role of tours; do
matricies suggest another navigational feature? The taxonomic concept of perspectives
is seen as an analogue to context in navigational hypermedia, with the property that
the user could follow links to alternate contexts. Using these commonalities is seen as
the strength of FOHM, and the means by which it can address multiple domains fully
without unmanageable complexity.

2.3.12 Other models

2.3.12.1 State machines

Moreau and Hall [38] represent hypermedia systems as state machines. A state consists of
the current document, the current linkbase, and a set of documents; transitions between
states represent the action of following links, which are bidirectional and represented
as a pair of source and destination anchors. Each anchor contains a document pointer
and offset. They use this abstraction to compare the expressiveness of various classes of
hypertext systems. It is shown that there exists a ‘compilation function’ which converts
embedded links into an external linkbase, and an inverse, ‘decompilation’ function, which
embeds linkbases. As a result, embedded links are as expressive as simple linkbases.

The model is formally extended to cover other kinds of systems, and the expressivity
reasoned about. Simple adaptive links, where the linkbases depend on browsing history,
are shown to be no more expressive. This includes Trellis, as the ‘linkbase’ is a function
of token distribution in the Petri net, itself a function of transitions triggered, and
therefore browsing history. Generic links are as least as expressive as embedded links,
and potentially more so, as they can introduce additional relations. Whether these
relations are usefully expressive depends on the notion not of hyperstructure validity
(e.g. the endpoints exist), but semantic validity: that the link makes sense. WWW

Chapter 2 Literature review 20

browser-style history mechanisms, while acknowledged as a feature not of the hypertext
but the navigation tool, are proven to give a greater class of hypertext expressivity:
embedded links are as expressive as regular languages, yet history mechanisms raise this
complexity to the class of push-down automata.

Finally, Moreau and Hall consider functional links. These are defined as a pair of
functions: a predicate which, given an anchor and history list, determines if this anchor
is the source of a link; and a relation which, given the same inputs, returns a set of
destination anchors. Functional links offer the greatest expressiveness, equal to the class
of finite Turing machines (as hypermedia documents and linkbases cannot be infinite).

2.3.12.2 XLink

XLink [39] is a W3C recommendation for representing link structures within arbitrary
XML documents. It is implemented in terms of XML attributes, which allows it to be
applied to documents without modifying their element structure. It covers both sim-
ple (WWW-like, unidirectional, embedded, single-target) and extended (unconstrained)
links. There are four basic types of object involved in XLink links: resources, which
indicate document-local elements participating in the link; locators, which address re-
mote resources also participating; arcs, which define how the link is traversed; and titles,
which provide human-readable labels. To provide embedded link behaviour, simple links
act as local resources, including all their element content.

Links consist of resources, locators, and arcs; a link may, however, have no arcs, and less
than two endpoints, to allow for incomplete placeholders, or for links which only provide
attribute annotations. Arcs, and the link as a whole, may have a ‘role’, which corre-
sponds to an RDF property: this allows the arc, or every arc in the link, to be interpreted
as a RDF triple. There is a predicate which indicates that the target is another XLink
linkbase which should be applied to this document, comparable to owl:imports for
ontologies. Links may have behaviours—covering common cases such as new windows,
replacing previous contents, and delegating to document-specific behaviour—which are
‘actuated’ by some mechanism, such as the document being displayed, or at the user’s
request.

Unlike Dexter, which is a formal model, XLink specifies a vocabulary, and relaxes many
correctness constraints, such as endpoint counts. XLink allows for browser-time be-
haviour, as in FOHM, but does not make explicit allowance for contexts, nor composite
documents. It has been suggested, and demonstrated in a simple case [40], that XLink
could act as a common interchange or export format for open hypermedia systems. This
would aid the cross-system interoperability which is one of the goals of open hypermedia.

Chapter 2 Literature review 21

2.3.12.3 COHSE and Magpie

The COHSE project developed a ‘Conceptual Open Hypermedia Service’ which allowed
linkbases to be layered over web pages [41]. It used thesauri to be able to refine or
broaden terms as needed to seek an optimal number of links-to-concepts to add to a
page. The concepts are then mapped to a set of target documents, and these are then
culled for quality using ‘editorial knowledge’ before finally being linked into the HTML
document. Of note is that the linking information is entirely external to the documents,
with anchor points being implicit based on content matching, and sets of links can be
added or removed by enabling or disabling linkbases.

Magpie [42], a similar system, highlighted terms recognised from a pre-provided ontology,
with the ability to toggle the display of individual top-level classes. As terms are spotted,
they are added to an adjacent list interface, intended to augment browser history, and
which can also show related instances. For example identifying a person may also list
projects they worked upon. Direct manipulation of highlighted terms in the page is
also possible in order to display a listing of items associated via a given pre-specified
relationship, such as a projects in the same research area as an identified project.

2.3.12.4 ScholOnto

ScholOnto [43] is an ontology for argumentative hypertext within the domain of aca-
demic publications. It defines a vocabulary for explicitly semantically annotating the
relationships between research claims, allowing discourse such as confirmation, refuta-
tion, and extension of claims to be expressed. The intent of such annotations is to aid
discoverability of useful and related papers as academic research moves towards ‘open
access’ models where large bodies of documents are available and begin to strain the
usefulness of simple keyword, category, and citation-following systems. This provides a
solid use case for typed metadata links which can be traced in both directions, allowing
one to track down the foundation upon which new claims are based, and which future
developments they lead to.

2.4 Conventional wikis

While not precisely defined, the general understanding of a wiki is an online hypertext
which anyone can edit. Wikis are constructed as a set of pages which are interlinked
within the system, and authoring is performed through a web interface, usually using a
markup language designed to be less cumbersome and requiring less expert knowledge
for basic tasks than HTML. Most wiki systems also provide a degree of per-page version
control as a mechanism to limit the damage caused by malevolent editors.

Chapter 2 Literature review 22

2.4.1 Systems

2.4.1.1 WikiBase

WikiBase5, originally WikiWikiWeb is the name for the original wiki system developed
by Ward Cunningham for use on the Portland Pattern Repository website, and thus the
de facto standard for defining the term. It was designed to be a simple, collaborative
platform for a mailing list of software developers discussing programming patterns to
write about them with a greater degree of permanence, and was opened to them in 1995.
To this end the system largely eschewed, and mostly continues to do so, complicated
markup or much functionality beyond being a set of almost-plain text documents of
which new versions could be submitted.

Hyperlinking between articles is achieved by writing the target page’s name into the flow
of text in title case with no spacing, known as ‘CamelCase’. This means that, in this
earliest form of wiki software, linking to a page is as simple as mentioning it: every page
effectively has an implicit generic link to it from its title. Limited stylistic markup is
handled in an ad-hoc fashion with rules such as a number of adjacent quotes (’) around
a word marking it as italic: ’’like so’’.

Many following wiki systems, such as MoinMoin6 and UseModWiki7, remained close to
this model, in particularly its use of CamelCase linking.

2.4.1.2 MediaWiki

The Wikipedia online collaborative encyclopædia project originally used UseModWiki
as its engine, but migrated to a bespoke PHP wiki implementation during 2002–2003.
This system became known as MediaWiki.8

MediaWiki does not support CamelCase linking to page names; instead, links must be
explicitly marked with square brackets. For example: [[Camel Case]]. Its markup
remains ad-hoc, with traits such as using sequences of quotes for italic text or split-
ting paragraphs by leaving a blank line being carried forth all the way from WikiBase.
However, it has grown considerably and can result in pages which are as structurally
complicated as HTML documents, containing tables, inline images, links with differing
anchor texts and targets, and stylistic markup without the benefit of a consistent syntax
such as SGML or XML. This growth can be built upon yet further from the base system
by using “extensions”: additional code which hooks into the software to provide further
functionality.

5http://c2.com/cgi/wiki?WikiBase
6http://moinmo.in/
7http://www.usemod.com/cgi-bin/wiki.pl
8http://www.mediawiki.org/wiki/MediaWiki_history

http://c2.com/cgi/wiki?WikiBase
http://moinmo.in/
http://www.usemod.com/cgi-bin/wiki.pl
http://www.mediawiki.org/wiki/MediaWiki_history

Chapter 2 Literature review 23

MediaWiki also offers a macroing capability known as “templates”. Pages can be in-
cluded inline by linking them with braces instead of square brackets, and by default they
are sourced from a dedicated Templates namespace. Templates may be provided argu-
ments which are then substituted into placeholders in the template. On Wikipedia, and
sites using a similar set of extensions, templates may even have limited computational
ability, such as “if” clauses. This transformation occurs at the source level and, due
to the many quirks of the markup language, may lead to some remarkably convoluted
pages in order to achieve the desired effect.

For example, this is a small, single-line excerpt from a template created by the author:

{{#if:{{{image|}}}|{{TR}}{{TD}}[[image:{{{image}}}|250px]]|}}

It’s purpose, in the middle of a table, is to add a row, cell, and image should one have
been provided as an argument, and it follows the documented idioms for achieving this
type of goal. The triple-bracketed terms are placeholders for parameters; the pipe within
the brackets provides a default blank value should the parameter be omitted rather than
the parameter’s own name. This is necessary to get a ‘false’ value for the if-test. Note
also that the template row and column, TR and TD, are themselves template invocations.
This is because the table markup in MediaWiki uses pipe and hyphen characters which
would be ambiguous with the surrounding markup, and only work at the beginning of a
line. Those template pages contain a necessary linebreak and pipe character. The entire
template is highly sensitive to issues such as whitespace and has many cases where the
markup must be yet further complicated by the addition of HTML comments to ‘hide’
line-endings from the wiki parser while trying to retain some semblance of readability.

2.4.1.3 Weerkat

Weerkat [44] is a highly modular wiki previously developed by the author for experimen-
tation with wiki development. Most aspects of the system are implemented as pluggable
components, including parsing, rendering (which uses an incremental chain, the chain
itself being a plugged component), storage, conflict resolution, and user management.
Given this, we build upon it for the prototype developed in later chapters; this newer
version is distinguished by the name Open Weerkat.

The default markup used by Weerkat is a consistent syntax with a simple grammar com-
parable to S-expressions. The system included an experimental ontology-based generic
linking capability where terms defined in an installed (but not editable from the web
interface) RDF/XML ontology were automatically linked to concepts in an integrated
ontology browser. These automatic links would also display certain annotated properties
in-line when hovered over with the mouse cursor. Since Weerkat does not handle type
information like most semantic wikis, we do not list it here under that category.

Chapter 2 Literature review 24

2.4.2 Research

As a relatively newly emerged class of hypertext systems with a strong social aspect
and a tendency toward exposing their data and editing history openly, wikis have been
subject to various aspects of research.

2.4.2.1 User studies

Désilets, Paquet, and Vinson studied the usability of a conventional, WikiBase-style wiki
system by inexperienced, non-technical users.[45] They found that non-technical users
with minimal training could use the system to author an interactive fiction hyperdocu-
ment successfully.

The main source of problems they identified were related to creating and managing links;
using appropriate syntax to trigger some text to be a link, renaming pages and links
to them, changing the anchor text of links, and confusion between these aspects of the
link. The unidirectionality of links limited the usefulness of their mapping feature to
show the user adjacent pages in the hypertext.

Our experiments in chapters 6 and 11 on systems with support for finding incoming
links (MediaWiki and Open Weerkat respectively) show that this aspect can be resolved
technically, but we have limited overlap in the general editing behaviour due to differing
tasks and systems. For example, renaming pages was not part of the process. We, like
they, discovered that users may sometimes have problems with distinguishing the target
of the link from the anchor text of the link, albeit to a lesser degree, perhaps due to a
more experienced audience.

Research by Gaved et. al. sought information on user behaviour in wiki systems with
geolocation capability, oriented around providing local information.[46] They achieved
this via an e-mail survey directed at developers and administrators of such systems on
a mailing list. Their findings acknowledged the existence of “stub” pages which have
been created by users as an implicit form of request that another contributor provide
information on the subject, consistent with explicit justifications for this behaviour at
varying levels of structure (empty sections, dangling links) from participants in our
studies.

In addition, some light statistical data collection shows a sharp expotential drop-off in
edits (strictly, nodes created) against authors, consistent with our more in-depth findings
on Wikipedia. They proposed a typology of wiki users, with categories such as those who
create many stubs to cover a wide area, those who perfect a smaller number of pages, and
those who perform “housekeeping”, managing links between and maintaining articles.

Chapter 2 Literature review 25

2.4.2.2 Statistical analysis

Ortega and Gonzalez-Barahona performed a quantitative study on Wikipedia’s history,
looking at editor changes over time.[47] They look first at splitting editors by their
permissions level, and that as users are promoted to administrative status their contri-
butions to regular articles fall off. They then split editors into five buckets by number
of contributions, and look at these over time. This shows that the number of editors
making very few edits is growing faster than any other group, and is a rising percentage
of all contributions: this is comparable to the “long tail” result in our own quantitative
analysis showing that there is a strong power relation between the number of editors
and how few edits they make each.

They also compared across languages, to show that in Swedish Wikipedia, the greatest
fraction of total edits is still made by highly active editors, unlike English Wikipedia
where it has been overtaken by the combined edits of many less active editors. Their
research also suggested that the most-active editors in each group remained active over
time, but editors who are highly-active may have initially had periods of lower activity.

Wilkinson and Huberman have also looked into Wikipedia across time, from an article
perspective and demonstrating the effect of an article being marked as “featured”.[48] A
reasonably intuitive finding is that featured articles have more edits and more distinct
editors, and they also show that there are more edits in close temporal proximity to
each-other on such pages. They also show that a small number of articles attract a
large number of edits, and use this as an argument that the most important articles are
subjected to more critique and quality. As the number of edits to an article increases,
its visibility rises and provides a feedback mechanism encouraging further editing. This
is held over time: not only is the number of articles over the number of edits a lognormal
curve, but the mean edits per article rises logarithmically with article age.

Adler et. al. criticized the limitations of assessing editors by their edit counts or quantity
of text added, and proposed a metric of edit longevity instead.[49] With this they sought
to recognize the efforts of editors such as the “housekeepers” identified by Gaved et. al.
who may make very small changes which still increase the quality of the content. It
also allows spammers and vandals to be distinguished since their changes will have very
little longevity, being rejected by the community. The found that about half of what
most authors contribute survives to persist in the article, and that automated editing
“bots” can form outliers in both forming many contributions which are kept, and also
generating large quantities of vandalism.

They did not study quality of editors against number of editors, but did find support
that prolific editors tend toward being either all “good” or all “bad”, and that plotting
quality against individual edits shows that most edits are “good”. 10% of revisions had
a quality of less than 5%, and 66.67% of revisions had a quality of over 95%. This

Chapter 2 Literature review 26

former finding is higher than our own estimate of vandalism in section 5.6.3 of our
macro-scale experiment (5%), as our categorisation only looked at a cruder metric of
complete, immediate rollbacks.

Brandes et. al. studied relations between editors in the Wikipedia dataset to find groups
of co-operating and conflicting contributors.[50] By graphing these contributors and
connecting them with edges where they remove part of another’s edit, they are able
to show a visual distinction between articles with strong differences of opinion, and
those that are merely being heavily modified. They compared the degree of conflict to
the quality labels applied to the articles by the Wikipedia community, and found some
support that higher-quality, featured articles had less inter-group conflict.

Suh et. al. have made an argument that Wikipedia’s growth is slowing, supported by
the number of active editors reaching a plateau and the growth of articles themselves
slowing.[51] Like Ortega and Gonzalez-Barahona, part of their research involved bucket-
ing editors into wide categories by number of edits made. Suh et. al. then also looked at
what proportion of edits from editors in each group are reverted over time, and demon-
strated an increased “resistance” to edits from less frequent editors. Not only do editors
who make fewer contributions get reverted more often, but the separation of this pro-
portion from editors who make more contributions has widened over time. A by-group
breakdown of active editors—ones which have made at least one edit within a given
month—shows that it is these smaller groups which are also substantially more active.
This is subtly different from the finding that there are many more editors who have made
few edits, since the requirement for activity means it does not “accumulate” editors who
once made a single edit then never returned, and will “retire” prolific editors who have
since stopped or taken a break.

Another aspect which they conclude is leading to a slowdown in Wikipedia growth is
increased overhead in managing the size of the site. While we look at the cost of main-
taining the hyperstructure in our macro-scale experiment—the links, categories, and
lists—they looked at rise in activity of administrivia such as deleting pages, protect-
ing pages from editing from new users, and blocking users. They also argue a rise in
costs of co-ordination and bureaucracy such as forming and discussing policies for the
community.

Fong and Biuk-Aghai looked at categorisation and differencing of Wikipedia edits.[52]
This work postdates our macro-level study. Their approach differs from ours in that we
first parsed the article, then measured changes to the plaintext. We used the parsed
information from the markup to detect other types of changes.

Their approach is to first perform a lexing stage, then perform differencing at a sentence
and lexer token level. From this they can determine low-level categories such as inser-
tions, deletions, moves, and replacements. At a higher level they can determine that
certain patterns of insertions, for example Mediawiki’s square bracket tokens around

Chapter 2 Literature review 27

a word, are link additions. Other syntactic patterns allow them to detect category or
interwiki link changes, and guess at when a link is being disambiguated.

The differencing capability results in clearer displays of changes than are available in
stock Mediawiki thanks to a greater degree of sentence awareness. They make comment
that for deployment performance would be improved if the lexing for the differencing al-
gorithm were performed when a page is saved, and cached. Open Weerkat actually works
this way, keeping pages stored as completely parsed syntax trees, and thus in theory is
amicable to adopting such a differencing system with marginal changes: differencing is
already a pluggable module in the Weerkat design.

While they do not present large-scale statistical results, they performed a small-scale
evaluation against the expectations of a set of human classifiers, with an average agree-
ment of 84.1%.

2.4.2.3 Hypertext capabilities

Tolksdorf and Simperl devised a set of requirements for a semantic hypermedia sys-
tem and evaluated the World Wide Web, Semantic Web, and wikis against these.[53]
These requirements covered node and link typing, transclusion, annotation of resources,
computed links, separation of nodes and links (i.e. not embedded), global and local
overviews, history-based navigation, trails, and editing from the normal viewer.

They concluded that, while improving upon deficiencies of the Web, (semantic) wikis
are more closed systems with no interaction capabilities to external services or other
wikis, and stressed the need for first-class linking, distribution, and a common API and
data model. We make a similar call for moving toward distribution in our own future
direction in section 12.3.4.

The current state of Open Weerkat compares favourably to semantic wikis in terms of
their requirements. As an open hypertext system, Open Weerkat stores links distinct
from nodes, albeit with a caveat compared to an idea open hypertext system than
conceptually “within page” addressing requires embedded anchors; other wiki systems
use entirely embedded links. Our support for transclusion is also more oriented toward
practical and common use than templating for content-sharing, which they categorise as
being used “sporadically”. Finally, since we take great care to precisely define URIs for
our pages across revision history, they are “on the Semantic Web” and can be annotated
by making statements about them. Within the wiki itself, the model allows this using
.meta pages, although the current prototype does not recognize these as being related
to their parents.

Chapter 2 Literature review 28

2.5 Semantic wikis

There has been much work on attempting to extend wikis to support semantic relations;
this section touches on some of the more notable examples. There is a notable lack of con-
sistency across systems of basic features one might expect: versioning of not only node
content but semantics, even if out-of-band (not in the page’s source markup, where they
would be versioned by normal wiki features); backlinks; typed inter-node relations as
navigational hyperlinks; typed instances/relations/attributes; first-class types; import/-
export of RDF, RDFS, or OWL. In general, these systems are academic experiments
and, as such, are neither complete nor longer maintained.

2.5.1 IkeWiki

IkeWiki9[54] is a ‘complete rewrite’ in Java of MediaWiki (the non-semantic WikiWiki
system which powers Wikipedia10). It is one of the systems where types are first-class
(they take the form of nodes in the wiki) and can thus themselves be annotated and
described exactly as instances. The system can select a context-sensitive ‘view’ based on
the semantic annotations of a resource, such as a ‘taxonomy box’ for biological entities.
The domain and range of typed links can be specified, and then used in automatic
consistency verification. Link targets of an appropriate type for the domain can be
automatically suggested. Unfortunately, the reverse (suggesting the link type from the
range and domain) cannot be performed: if a user links a person with a novel, the
system does not suggest that the relation might be ‘author’ or ‘editor’. This is, however,
outside the scope of description logic-based inference. IkeWiki is still in development.

2.5.2 Makna

Makna11 allows for more flexible semantics than many of the other wikis considered
here: statements can be made both inside the page’s markup, and separately, outside it.
Because of this, it is possible to express statements about subjects other than the wiki
node URIs. The semantics can be exported (in RDF/N3), optionally including inferred,
not just explicitly provided, statements.

External ontologies can be referenced, but hyperlinks to them (e.g. in the side panel,
if a predicate from such is used) will point to the concept’s URI, rather than a node
on the wiki. While this is arguably correct behaviour, from a user perspective it is
a frequent source of 404 errors; as many concept URIs, including in the pet ontology
used in the demonstration site, do not resolve to web documents, and even the RDFS

9http://ikewiki.salzburgresearch.at/
10http://www.wikipedia.org/
11http://www.apps.ag-nbi.de/makna/

http://ikewiki.salzburgresearch.at/
http://www.wikipedia.org/
http://www.apps.ag-nbi.de/makna/

Chapter 2 Literature review 29

ontology just presents the user with a page of RDF/XML. Interestingly, this does not
hold for a link created within the body text: it takes the form of a link to a local wiki
node. This makes for a rather unhelpful disconnect between the hyperlink target of the
same semantic statement when made within the flow of prose, and its partner in the
‘properties of this page’ dialogue. If the object of the statement does not exist as a node,
yet is created via the page text, the new node appears to bear no explicit relation to the
concept in the ontology it related to in the origin page.

Features intended to mitigate Makna’s complexity include semantic markup references
during editing, and apparently using the ‘rdfs:label’ property to display predicates in a
‘friendly’ way.

2.5.3 Kaukolu Wiki

Kaukolu12’s [55] user interface, once loaded with RDF Schema declarations, can use
JavaScript to provide ‘autocompletion’ of triples. For example, having typed in a known
subject, autocompletion can provide a list of the predicates whose domain includes the
type of the subject. This is a nice way to encourage users to be consistent with the
terminology they use, and reduce the need for co-reference resolution.

Semantics are encoding in a N3-like plaintext format within the nodes, with plans to
expand this to handle a fuller set of N3, and be more tolerant of natural language
constructs. It is possible to create “semantic keywords”, which are basically more read-
able aliases for full URIs that can be determined by querying an external semantic web
service. Schema data may be obtained by importing RDFS files into nodes, but this
mechanism is currently crude, expanding the URIs fully rather than using semantic
keywords. RDF export is also possible.

2.5.4 COW

COW13[56] is an ontology editor with support for communal editing, rather than a
wiki with semantics—it has approached the combination from the other direction. Re-
sultingly, while weak as a wiki it is one of the few systems which actually uses type
information for the instances in the system: form fields are presented for attributes de-
fined in the class of the instance being edited, along with information on their expected
range.

12http://kaukoluwiki.opendfki.de/
13http://www.informatik.uni-freiburg.de/cgnm/software/cow/

http://kaukoluwiki.opendfki.de/
http://www.informatik.uni-freiburg.de/cgnm/software/cow/

Chapter 2 Literature review 30

2.5.5 OntoWiki

OntoWiki14[57] is a community-editable knowledge base: the interface is geared around
dealing with metadata rather than content. It has some interesting features for actually
using the metadata, such as displaying the locations of entities with geographic position
information on an embedded Google Maps display, and displaying those with temporal
information on a simple calendar. The wiki functionality itself supports features such
as inline editing, although the demonstration system did appear rather fragile and de-
pendant on client-side scripts. Conventional full-page editing is possible which presents
the relations as a list of textbox pairs; the right-hand textboxes may be augmented by
type-dependant “widgets”, such as a calendar for selecting date values.

The system has also accumulated a few features from ‘social’ websites, such as user
ranking of resources, and monitoring of estimated popularity by number of viewings.
These statistics do not appear to be integrated into the resource metadata as further
properties of the resource: they do not appear in the exported RDF, for example. Like
MediaWiki, each page also has an associated discussion page. This may be used to
annotate the statements themselves.

2.5.6 OpenRecord

OpenRecord15 is more of a collaborative database than a semantic wiki. Most crucially,
pages do not particularly have content in the conventional wiki sense—they have a
summary (which cannot be annotated), and a number of sections. Each section may
then contain views to the data in the system, but does not solely define the data itself;
if multiple sections (quite possibly on multiple pages) refer to the same data, then a
change to one is a change to all. There is no ‘main copy’ which the others reference;
the approach is more akin to UNIX hard links, or garbage-collected objects, than to
transclusion. Standard views include tables, lists, and graphs. Because most of the wiki
content is in a database, pages are intended to be fewer in number than a conventional
wiki, and in fact populate a sidebar for quick navigation; it is possible to navigate to a
single instance to view its details as a single page, but this displays no more detail than
the instance in the context of a table view.

These data are typed instances (by ‘category’) with loosely typed links and attributes
(it is possible to force a value into a property which does not match its defined type).
A few primitive types are supported (strings, integers, dates, etc.), and others may
be defined, as types are first-class: custom types are always assumed to be to other
instances, not literals, and such instances are generated (and hyperlinked to) based on a
string representation entered by the user when setting a value. Backreferences, or inverse

14http://3ba.se/
15http://openrecord.org/

http://3ba.se/
http://openrecord.org/

Chapter 2 Literature review 31

attributes, can be automatically created and maintained for all instance types: this is
done by setting the ‘inverse attribute’ attribute of the attribute’s instance—attributes
are also first class (e.g. attribute ‘childOf’ may have ‘inverse attribute’ of ‘parentOf’).
This introspective ability is considered one of OpenRecord’s strengths.

Conflict resolution is also handled in a novel fashion. Should multiple, conflicting, con-
current changes be made to an attribute, all of them take effect: the cardinality of all
attributes is unbounded, so both new values are added to the attribute.

It is possible to create additional views as plugins in JavaScript, but access to the system
is deliberately promoted as being rather ‘shallow’.

2.5.7 Semantic MediaWiki

Semantic MediaWiki16[1] is a MediaWiki extension (it is an add-on module, as opposed
to a fork of the MediaWiki codebase). Interestingly, it can export individual nodes as
RDF which is ‘browseable’, meaning that RDFS isDefinedBy triples are provided which
link to URLs which, when resolved, yield further RDF which defines the external, yet
related, entities.

Inline queries can be used to create nodes which display information sourced from other
nodes: the semantic information can be put to an advantage within the system itself.
The implementation approach as an extension of MediaWiki provides all of MediaWiki’s
existing and fairly widely tested features, such as discussion pages and templating. Tem-
plating can be used to provide simple macros for expressing common relations while also
displaying them in a useful manner; for example, recording an e-mail address triple, but
also displaying it as a ‘mailto’ hyperlink.

2.5.8 General observations

There are at least three ways in which a semantic wiki can potentially make use of its
type information:

• Objects have an explicit type, and would prompt instances to have all the at-
tributes and relations explicitly specified in their class.

• Objects have an explicit type, and the class would implicitly consist of the at-
tributes and relations common to all instances of it.

• Classes have explicit attributes and relations, and objects would be implicitly of
that class if they had those attributes and relations.

16http://ontoworld.org/wiki/

http://ontoworld.org/wiki/

Chapter 2 Literature review 32

However, while several of the systems supported typing of instances (usually pages),
very little was actually done with this information, such as actually applying cardinality
constraints to their attributes and relations. As such, they did not meet any of the
above forms, and type information was largely meaningless to the systems themselves
outside of the scope of literals.

Generally, the systems are very much HTML wikis with support for adding metadata
about whole pages and, in richer systems, the relations between the pages. They are
generally not hypermedia systems, and still treat non-textual content as special.

2.6 Seven issues

In his 1988 paper, Halasz identified seven issues for the next generation of hypertext
systems [58]. He then revisited these as a keynote speech for the 1991 Hypertext con-
ference. [59] We cover issues from both here, as we feel that semantic wikis are well
positioned as a technical basis from which to look back upon some of these concerns.
(We do not address Halasz’s “market” issues from the renewed set, as they fall outside
of our scope.)

The first issue identified was that of search and query of content and structure, which
we shall not expand upon in depth. Content search has been well-covered by deployed
systems such as Google, and linked data and open hypertext mean that more advanced
searching can still be addressed by external tools.

Second was composition of articles from smaller parts, which was supported by mod-
els, and partially by systems, of the time, but has since declined in the Web with
pages typically being constructed using ad-hoc server-side scripting rather than explicit
hypermedia semantics. Even in web systems performing composition from structured
components, such as content management systems, the compositional relationships are
not exposed in an explicit and generally processable manner beyond the boundary of
the server: the view to the web client is ‘flattened’. Some wiki systems offer a degree
of support for this via templating mechanisms, and in this paper we define a wiki sys-
tem with rich support for a variety of compositing mechanisms, the prototype of which
implements transclusion. We cover the possible approaches in section 7.7.6.

The third issue was that of virtual structure: implicit or generic links, and contextual
linkbases. These issues have previously been addressed in systems such as Microcosm [23]
and COHSE [41], although have not met popular use. Our prototype supports generic
linking, and the role of linkbases can theoretically be performed by sourcing link data
from an external RDF source in the model.

Issue four was computation, which is well-supported on the current Web with a wide
variety of server-side facilities such as CGI, and client-side facilities such as JavaScript,

Chapter 2 Literature review 33

hence we shall not expand upon it.

Fifth was versioning, including branching to alternate configurations. This is an area
in which wiki systems have made an advancement over the Web in general, as at least
limited versioning is part of the general wiki design, necessary to protect against ca-
sual vandalism. As a wiki, our model and prototype support this. Halasz commented
that “maybe we’ve all lived with UNIX, MS-DOS and MacOS so long we don’t know
what we’re missing”, but this environment is now beginning to change with primitive
automatic versioning systems become standard in desktop operating systems. We be-
lieve that tackling branching and merging of versions is a worthwhile goal for future
development of our system.

Issue six was collaboration, a fundamental aspect of wiki systems. Basic concurrency
control and a degree of mutual intelligibility are fundamental to wikis to meet the “web
page anybody can edit” goal. Our research in chapter 6 shows that a degree of collabora-
tion is implicit, with editors using page state to communicate intent to potential others;
a certain degree of higher-order explicit organisation can be achieved non-semantically
using templates. Systems such as Mediawiki also provide per-article talk pages, and
limited change notification support.

There is still progress to be made in this area. MediaWiki markup can escalate to con-
siderable levels of complexity for less trivial tasks, restricting some editing operations
only to more experienced users. For example, we found in chapter 6 that the use of tem-
plates could be troublesome. Modifying these templates involves even more complicated
syntax. For example, the markup to display an optional template argument ‘year’ with
a label if it exists is: {{#if:{{{year|}}}|Year: {{{year}}}|}}

There is also room for improvement in providing richer semantics for editing intentions
and discussion of pages beyond free text at article granularity. The ability to subdivide
articles into component parts is naturally helpful here, tying this to issue two. Long-
term transaction support can be added via branching versions (part of issue five) to allow
editors to work on local versions of a page when making extensive edits before merging
back their changes. This necessarily requires capable versioning support comparable to
software development version control systems, and thus relates to issue five.

Finally, Halasz’s seventh original issue was that of tailorability and extensibility: Emacs-
like scripting, schemas, templates, paths, and guided tours. Scripting of hypertext
system interfaces is, if ad-hoc, these days possible through custom javascript injection
support in popular browsers, such as the Greasemonkey system in Firefox, although it
is still an expert task to author such scripts, and the goal of novice-friendly scripting
is possibly unobtainable. Templating support, as we have mentioned, exists in some
wiki systems, although currently the mechanism for creating templates is moderately
advanced. In his revisited look at these issues, Halasz observed that paths and tours
can be provided by external services in an open hypermedia context, and we agree with

Chapter 2 Literature review 34

this assessment.

Halasz’s first renewed point was an amalgamation of his original three, which we have
addressed above. The second regarded open systems: how to decompose content into
parts, and how to communicate those parts. We look to the creation of a distributed
wiki system in future work, section 12.3.4, but some of the technologies are already in
place. In particular, RDF provides a standard format in which to exchange semantic
web data, and some current semantic wikis provide one-off import and export capability
in this format.

The third renewed point was the same as the original sixth. Point four regarded the ma-
nipulation and navigation of large hypertext structures. With the benefit of hindsight,
the Web, and large wiki installations like Wikipedia, have shown that this is not a press-
ing issue for reading hypertexts: interaction is largely initially search-oriented followed
by localised browsing, and manageable. It is possible that such tools could be useful
when editing and rearranging document collections, but the lack of prominent effort
expended towards developing such a tool would appear to indicate limited demand.

The fifth and final technical issue is scalability to large data. Halasz defined ‘very
large’ as ‘tens or thousands of thousands of documents’. For comparison, at the time
of writing, Wikipedia—a single, non-distributed collection—contains over three million
encyclopedic articles, contributing to a total of over twenty million total pages, including
administrivia. The Web, of course, greatly exceeds this, although at the cost of not
supporting features such as reverse links. While the issue addresses not just engineering
for scalable algorithms, but questions of usability, privacy, and navigation, we feel that
the success of the web and Wikipedia show that sheer number of documents is not a
problem in and as of itself.

2.7 Conclusions

Beyond a general introduction to the research areas, this chapter has covered notable
hypertext systems such as Xanadu, an early hypertext, ‘transpublishing’ system; Mi-
crocosm, an open hypermedia system; and the Web, a highly successful distributed
hypermedia system. It has covered the classic Z-based Dexter model, and the FOHM
model, which maps three subareas of hypertext (navigational, spatial, and adaptive)
to a common model. Finally, it has highlighted the current state of semantic wikis; in
particular, the active Semantic MediaWiki project, upon which the remainder of this
document will largely focus.

The next chapter looks at correlations between these areas, starting with a more formal
description of Semantic MediaWiki’s capabilities in terms of the Dexter model. It then
proceeds to discuss a broad set of standard features of hypermedia systems in terms of

Chapter 2 Literature review 35

their usefulness in a Semantic Web, and specifically semantic wiki, context.

Chapter 3

Open Hypermedia and
Semantic Wiki

3.1 Introduction

This chapter identifies correlations between the fields of Open Hypermedia and Semantic
Web, with a bias towards semantic wikis. To better specify the capabilities of a typical
semantic wiki, to demonstrate that wikis fit within the set of hypertext systems, and to
provide a grounding for further exploration, Semantic MediaWiki is expressed in terms
of the Dexter hypertext model, covered in chapter 2. In order to achieve this, first a
small modification is proposed to Dexter to allow it to model WWW-style embedded
links, where not only are anchors defined within the document, but the link itself also
forms the only outgoing anchor.

This is then followed by a discussion of key hypermedia features, and their possible
applications in terms of semantic wiki. The focus is not merely on representing hyper-
structure in terms of Semantic Web constructs, as that would merely be a trivial change
of storage detail. Instead, the intent is to preserve whatever semantic information may
lie behind the hyperstructure in such a way that it can be understood by generic seman-
tic web tools: for example, that a n-ary link relates all its participating resources in an
arbitrary RDF graph viewer.

3.2 Adapting Dexter to embedded, anonymous links

As described in Chapter 2, Grønbæk and Trigg’s extensions[34] only really deal with
embedded anchors, and treat embedding links as composition. However, a WWW-style
(and thus wiki-style) link’s FROM endpoint is defined by its location. In this section,
we present an alternative approach to modifying the Z-based Dexter model to represent

36

Chapter 3 Open Hypermedia and Semantic Wiki 37

embedded links (and their limitations) more accurately. We consider links as a superset
of atoms, in order to capture the content which forms their source anchor. Their source
content is not a base component because links cannot nest; nor can a single link’s FROM
endpoint be a sequence of disparate atoms (e.g. some text and an image).

For reference, a specifier in Dexter is defined as:

SPECIFIER
componentSpec : COMPONENT SPEC
anchorSpec : ANCHOR SPEC
presentSpec : PRESENT SPEC
direction : DIRECTION

A Dexter link is defined as:

LINK
specifiers : seq SPECIFIER

#specifiers ≥ 2

∃ s : ran specifiers · s.direction = TO

In the proposed approach, Component specifiers are redefined to have a THIS value,
which indicates a COMPONENT SPEC which specifies the component which is us-
ing the specifier. An ANCHOR SPEC is meaningless in combination with THIS .
COMPONENT SPEC OTHER maps to the Dexter given set COMPONENT SPEC .
An alternative would be to include a more complicated condition in LINK ADDS be-
low, which requires that there exists a specifier which resolves to the component whose
compBase is actually that link (or a LINK whose specifiers sequence contains that spec-
ifier). Unfortunately, the resolver and accessor which map specifiers to components (via
a UID) are in the scope of the PROTO HYPERTEXT , and are not accessible at this
level of the model: hypertexts reference links; links do not reference hypertexts. This
check could be performed in the storage layer operations CreateNewComponent and
ModifyComponent, but then is no longer being expressed as an invariant of the storage
model: instead, of the interfaces for modifying it.

[COMPONENT SPEC OTHER]
COMPONENT SPEC ::= THIS | spec〈〈COMPONENT SPEC OTHER〉〉

The constraints on links must be modified, such that there is one specifier of direction
FROM from the link itself, and one of direction TO. This models the simple binary
links of the Web and Wikis, although ‘fat’ links with multiple destinations (but still only

Chapter 3 Open Hypermedia and Semantic Wiki 38

a single origin) can be supported with the minor modification of changing the specifier
cardinality requirement to at least two. To do this, LINK is defined as a union of ATOM
and the new schema LINK ADDS , which describes the additional constraints.

LINK ADDS
specifiers : seq SPECIFIER

#specifiers = 2

∀ s : ran specifiers · (s.direction = FROM ∧ s.componentSpec = THIS)
∨ s.direction = TO

LINK = ATOM ∪ LINK ADDS

As indicated by THIS , the source of a link is itself; it is the ATOM part of its definition.
As a result, it should be treated as any other atom by the interface: displayed as a
component, or as part of a composite component. It is, of course, also a link which leads
from an anchor specifying exactly that atom.

We have designed these modifications so as to not disrupt the type-safety of the remain-
der of the Dexter model, and thus contain the required changes to the smallest possible
set of schemas.

3.3 Modelling Semantic MediaWiki in Dexter

In order to more formally consider the current state-of-the-art of semantic wikis (wikis
with some form of semantic web functionality) in comparison to hypermedia systems,
it is useful to express an example system in terms of the Dexter model. As covered in
section 2.5.7, Semantic MediaWiki is a well-featured semantic wiki system, building on
a widely-used ‘regular’ wiki.

The main obstacle with expressing Semantic MediaWiki in a formal hypertext model
such as Dexter is that the development approach has not been concerned with models;
instead with adding features. For example, MediaWiki allows a form of transclusion
for marked-up text portions, and one for images. However, there is no commonality
between these kinds of links—they are distinct features. While presentation hints can
be provided for images (e.g. display size, figure title), they cannot for text. In fact,
the author counts as many as six distinct types of links in the Semantic MediaWiki
system1 with no commonality beyond a source document, which is always the document
containing the link.

1Templates, external images, internal images, external URLs, inline queries, semantically-typed links

Chapter 3 Open Hypermedia and Semantic Wiki 39

3.3.1 Nodes

In Dexter terms, a node maps to a composite base component which is a sequence of
atoms (pieces of markup text) and links. As in Dexter, a component cannot contain
other components: only base components (there are no sequences of sequences).

BASE COMPONENT ::= atom〈〈ATOM 〉〉
| link〈〈LINK 〉〉
| composite〈〈BASE COMPONENT 〉〉

NODE = BASE COMPONENT

MediaWiki automatically provides a limited set of named anchors into the node, based on
the headings in the markup; Dexter covers named component anchors in the component
information:

COMP INFO
attributes : ATTRIBUTE 7→ VALUE
anchors : seq ANCHOR (Anchors within this component)
presentSpec : PRESENT SPEC

#anchors =| first (ran anchors) |

Some kinds of link can use this as a within-component specification for their destination
endpoint; it is the only kind of such specification supported (i.e. no character ranges).

3.3.2 Internal node links

Ordinary MediaWiki node links (both inter-node and—rarely—intra-node) are a narrow
subset of Dexter links. Crucially, they are not first class: they are anonymous and
embedded. They always have precisely two endpoints, with fixed directionalities: one,
the FROM end, is the location of the link definition in the markup of a node, which
forms a source anchor and endpoint; the other (TO) is explicitly specified. A method
for expressing such links through minimal modifications to Dexter has been presented in
section 3.2. Both component and within-component specification (componentSpec and
anchorSpec) are always to a specific UID: a node title for the former, and an automatic,
named anchor, if specified, for the latter. These endpoint specifiers are anonymous and
thus cannot be shared, although two links may specify equivalent destinations.

Chapter 3 Open Hypermedia and Semantic Wiki 40

3.3.3 Templates

MediaWiki supports templating, which is a macroing system which allows some of the
behaviour of transclusion and computed documents. The most basic case is to simply
include a target, ‘template’ node into the current node. While this may appear similar to
a transclusive/automatic link, Semantic MediaWiki, in its default configuration, brings
in an important distinction: if the included node makes some statement ‘hasColour red’,
then this relation applies to the including node. The ‘this node’ context of inline queries
is likewise affected. Resultingly, MediaWiki templates do not fit well as links, and are
better considered as an editing convenience implemented as a preprocessing step.

Templating may also involve macro variable substitution and, with extensions, even
expression evaluation and branching. This may have fit the ‘computation specifcation’
of a ComponentLocationSpecifier, as described in [34], but would require that template
inclusion/evaluation were a form of linking.

3.3.4 Images

Internal image linking is in the form of a node link to a specific namespace,2 which
contains image atoms uploaded by users. It is largely the same as internal node linking,
with the addition of optional presentation hints (presentSpec), such as display size, and
caption. A full specification of the presentation hints supported, where LENGTH and
CAPTION are the given sets of pixel dimensions and image captions respectively, would
be:

[LENGTH , CAPTION]
RECTANGLE == LENGTH × LENGTH
IMAGE BOX ::= THUMBNAIL | FRAME | BORDER | NONE
IMAGE LOCATION ::= RIGHT | LEFT | CENTRE | NONE

IMAGE PSPEC
box : IMAGE BOX
location : IMAGE LOCATION
displaySize : RECTANGLE
caption : CAPTION

PRESENT SPEC == IMAGE PSPEC

2Syntactically, this is the only trigger that the link type is actually that of an image.

Chapter 3 Open Hypermedia and Semantic Wiki 41

Note, however, that this definition of PRESENT SPEC does not allow for any other
presentation hints: e.g. those on links. If PRESENT SPEC is defined as a union of
IMAGE PSPEC and other types, then, strictly, it is only this subset of hints which may
be applied to images. In MediaWiki, most link presentation is affected by the content
of the link source, and the nature of its destination.

The transclusive nature of these links is not well covered by Dexter, which expects
composition only in composite nodes, as defined by the node; considering the Image as
such a composited atom is probably the closest match for this behaviour. In this case,
the presentSpec belongs in the COMP INFO of the image atom, rather than in a link
to it.

MediaWiki also has optional support for linking to external images. Syntactically, URLs
with particular file extensions are automatically treated as WWW-style image transclu-
sion. In terms of the model, they are automatically-generated versions of the internal
image links.

3.3.5 External URLs

An external URL link is ultimately identical to a WWW hyperlink. As with internal node
links, they are embedded and anonymous; they differ in that their target is expressed
as a URL, rather than a node UID (title). They may have some display text provided,
else they will display the URL as a source anchor; ultimately, however, this is syntactic
sugar for providing the content atom component of the link in the embedded link model
presented in section 3.2.

3.3.6 Typed relations

As well as nodes having typed ‘links’ to literal values, which Semantic MediaWiki terms
‘attributes’, the system supports links to other nodes, termed ‘relations’. (In a Semantic
Web context, both of these ‘links’ are RDF statements: attribute predicates have a
range of literals, and relation predicates a range of other resources.) These links are the
sole user-typed, node-node relation in the system at present; the type of the relation is
expressed by explicitly specifying a ‘relation’ node. This node both acts as a predicate
URI for the triple, and as a navigational link in a ‘fact box’ in the interface. Other than
that, they are identical to internal node links, described above.

Because Dexter links are base components, and thus can be components with component
information, the predicate type can be expressed using the arbitrary attribute/value
pairs. Dexter does not specify the type of the members of these pairs (they are merely
members of the given sets ATTRIBUTE and VALUE), but one could conceivably reserve

Chapter 3 Open Hypermedia and Semantic Wiki 42

an attribute for ‘type of relation’, and provide a value which is a specifier for the node
being used as a predicate.

[ATTRIBUTE OTHER]
ATTRIBUTE ::= RELATION TYPE | spec〈〈ATTRIBUTE OTHER〉〉

COMP INFO
attributes : ATTRIBUTE 7→ VALUE
anchors : seq ANCHOR
presentSpec : PRESENT SPEC

#anchors =| first (ran anchors) |

(Require that any attribute specifying relation type does so as a specifier)
∀ a : ran attributes | a = RELATION TYPE ·

(∃ s : SPECIFIER · attributes(a) = s)

The rationale for using a specifier is that it semantically identifies the target (although
it may simply take the form of the node’s UID); yet it is not desirable to use a full link
as there are no meaningful endpoints. The ‘fact box’ is a feature of the interface, not of
the actual hypertext, which uses this specifier to construct an appropriate link from the
display of the predicate in the box to the (entire) node specified.

The relation indicated by MediaWiki categories is defined by a simple heuristic: nodes
in the ‘Category’ namespace are assumed to be classes. A non-category node which
is placed in a category is given a rdf:type relation (instance–class), and a category
which is placed in a category is given a rdfs:subClassOf relation (subclass–class).
Syntactic restrictions prevent it from being possible to place an non-category node in a
non-category node: the ‘place in category’ link is special-case of the untyped, inter-node
link that is triggered by the namespace of the target node being ‘Category’. Effectively,
categorisation is taken as a taxonomy, which is then expressed such in terms of classes,
where the ‘leaf’ (most-specialised) nodes are instances. In either case, these are different
syntax for creating typed links with particular predefined types.

Because Semantic MediaWiki has a one-to-one mapping between nodes and concepts in
the ontology it forms, typed links can be created from nodes to literals: the system calls
these ‘attributes’. These are akin to the arbitrary attribute/value pairs which Dexter
supports as component information on the atom, although in Semantic MediaWiki the
attributes themselves are node identifiers: again, the use of specifiers is a good semantic
match. (They cannot be modelled as links, as in the above relations, as literal values
are not valid link endpoints; synthesising an atom with that literal as content does not
encode the same information.) Semantic MediaWiki presents attributes as implicit links

Chapter 3 Open Hypermedia and Semantic Wiki 43

to the node for that attribute, which is usually itself annotated, e.g. with range infor-
mation: again, this is considered to be a feature of the interface, not of the hypertext.

3.3.7 Inline queries

Semantic MediaWiki has a simple query language3 which can be used for ‘inline’ queries4,
which are embedded in a page’s markup, executing and displaying results at that location
when the page is rendered. The query language itself is largely simplistic, with support
for selection of results by the transitive ‘category’ relation, relation values, and attribute
values. If the attribute values are of an appropriate type5, then inequalities (e.g. “greater
than 25m”) can be used as conditions. It also supports disjunctions, and specification
of additional predicates to retrieve for display.

These queries, and their results, can be embedded in nodes. This is comparable to a
compositing link to a RefSpec with a ‘computation specifier’ in [34]; in plain Dexter, it
can be thought of as a specifier where the resolver function returns a generated document
which is itself a composite of LINK s to all results. Presentation hints control the display
of the results, from inline lists, through tables, to JavaScript timelines6. It is also possible
to conditionally include text if the number of results returned is non-zero, which can be
modelled as a further clause of the computation specifier by considering such text as an
ATOM part of the generated document.

Queries are not first-class; re-use can only be achieved via the template-macroing func-
tionality. Macroing cannot be applied to the query itself, except for various ‘special’
variables, such as the UID of the including page, or the current year.

3.3.8 Summary

That it is possible to meaningfully express Semantic MediaWiki’s key features in terms
of slight modifications to the Dexter model demonstrates two key things. Firstly, that
wikis can be considered hypertext systems, even if limited ones, by virtue of their Web
heritage. The following sections of this document build on this by both considering
the possible improvements which could be made to wiki systems by strengthening their
hypermedia foundations, and by experimentally demonstrating that there is a cost to
the currently weaker features.

Secondly, it shows that there is a meaningful similarity between a set of documents
connected by typed links, and a graph of resources connected by RDF statements: in

3http://wiki.ontoworld.org/wiki/Help:Semantic_search
4http://wiki.ontoworld.org/wiki/Help:Inline_queries
5Semantic MediaWiki has an extensible measurement type system: http://wiki.ontoworld.org/

wiki/Help:Custom_units
6http://wiki.ontoworld.org/wiki/Upcoming_events

http://wiki.ontoworld.org/wiki/Help:Semantic_search
http://wiki.ontoworld.org/wiki/Help:Inline_queries
http://wiki.ontoworld.org/wiki/Help:Custom_units
http://wiki.ontoworld.org/wiki/Help:Custom_units
http://wiki.ontoworld.org/wiki/Upcoming_events

Chapter 3 Open Hypermedia and Semantic Wiki 44

fact, it is on this very similarity by which most semantic wikis operate. The remainder
of this section builds upon this comparison by considering possible semantically-useful
and valid parallels for other notable hypertext features.

3.4 Relating Open Hypermedia and Semantic Web

In the preceeding section, we suggested a parallel between the Open Hypermedia model
of a graph of nodes connected by possibly typed links, and the Semantic Web model of
a graph of resources connected by relations. Therefore, it should be possible to express
the Semantic Web in terms of, or as an extension of, Open Hypermedia. As user-
editable, WWW-level hypertext systems, semantic wikis also have similarity to this
basic structure. This section offers some consideration of potentially useful mappings
between these domains.

3.4.1 Nodes are resources

A node in Open Hypermedia is approximately a document; a Semantic Web resource,
however, is a more general concept, which can represent any kind of addressable thing,
be it abstract or concrete. As documents are a subset of concrete, conceivable things,
resources are a generalisation of nodes.

Hypermedia has oft complicated itself with the problem of addressing at the sub-node
level: e.g. a particular paragraph in a document. “The editing problem is probably the
major limitation of the Microcosm model [regarding scalability].”[60, §7.2.1] Resources,
however, are atomic; it is not possible for a triple to refer to anything smaller than
an entire resource, because it is simply an opaque URI. If you wish to express such
semantics, you must explicitly declare that the resource is some manner of composition of
other, smaller resources. One cannot express “the second paragraph of this document”;
instead, “the document consists of a sequence of paragraphs: #1, #2, #3; we refer to
#2”.

Edit-time transclusion within the scope of a single wiki (specifically, within the scope of
a single domain of editing privileges) offers a similar solution. Rather than attempting to
reliably address a sub-node range, the range is split into a new node which is transcluded
in place, without affecting the ability to edit the original node as a whole. This new node
is now a first-class entity, and thus addressable without the need for sub-node specifiers.

Let us say that there is a node for the Perl programming language: it exists both as
the concept of this language, and as some text describing the language. Within this is
a section describing Perl’s Unicode support, which one wishes to address (possibly to
specify that Perl’s Unicode support is immature, as opposed to specifying that Perl is

Chapter 3 Open Hypermedia and Semantic Wiki 45

A1

>>
>>

>>
>>

B1

��������

??��������

��
>>

>>
>>

>>
//___ B3

A2

��������
B2

(a) N-ary hypermedia link

A1 //

>>
>>

>>
>>

��
>>

>>
>>

>>
''OOOOOOO B1

B3

A2 //

??������������������

77ooooooo
B2

(b) Set of triples

Figure 3.1: Links with multiple source and destination anchors. The dashed lines
show the changes needed to add the extra target ‘B3’.

immature). Rather than having to specify this by fragile means, such as an offset into
the node structure, the section could be promoted to a named node. This named node
can be transcluded back into its original position; by also presenting this transclusion
at edit time, minimal disruption has been caused to the process of editing the Perl node
as a whole.

It should be noted that navigational links, from spans of just a few words, are unlikely
to justify such an approach. In these cases, embedded links are probably a better
approach to ensuring that the link anchor is visible, and thus considered, when editing
the document.

“In any system which uses embedded mark-up within the document to mark
the position of anchors, then this will rarely be a problem since, in general,
as the document is edited the mark-up will move around with the object
which it is marking.”[60, §7.2.1]

Moreau and Hall[38] describe a ‘compilation’ function, and its ‘decompilation’ inverse
(formalisations of the ‘joiner’ and ‘splitter’ tools of Brown and Brown[61]), which provide
a mechanism to convert freely between embedded and non-embedded links. They use
this to prove that the distinction has no bearing on the expressiveness of the underlying
hypermedia model; hence, as Brown and Brown found through an experimental imple-
mentation, “the Joiner and Splitter can be used to combine many of the advantages of
separate and embedded mark-up”[61, §8] without penalty.

3.4.2 Links are triples

A link in OH is some relation between at least two nodes (or sub-node parts, as covered).
The nature of this relation is conventionally only weakly specified: it exists for naviga-
tional, or possibly ‘loose’ classification (spatial hypermedia), purposes. Conversely, the
links between Semantic Web resources are triples, which have a completely explicit type
predicate, and exactly two endpoints.

Chapter 3 Open Hypermedia and Semantic Wiki 46

RubberDuck
colour

''OOOOOOOOOOO

Lemon
colour

// Yellow

(a) Independent links

RubberDuck
_ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _ _Lemon

TemporaryClass
Yellow

colour
++WWWWW

(b) Linking from a common class

Figure 3.2: Representing multiple link targets as a temporary class

In a system with four resources/nodes, ‘A1’, ‘A2’, ‘B1’ and ‘B2’, Open Hypermedia
can represent the case where a single link exists from either A1 or A2 to both B1 and
B2: navigationally, the user can move from A1 to B1 and B2, and from A2 to B1 and
B2. This is depicted in figure 3.1a. Because Semantic Web has a simpler connector,
the triple, it has to use more of these fundamental units in order to express the same
connectivity: one triple for the A1/B1 relation, one for the A1/B2 relation, one for the
A2/B1 relation, and so on: it is necessary to assert the cross product of the endpoints,
as shown in figure 3.1b. Unlike the link, these triples are not a single entity: if a fifth
resource/node, ‘B3’, were to be added, the OH link could easily be modified to also direct
all A to B; for the Semantic Web, this higher-level abstraction does not exist, and more
independent triples must be added. (It is possible to reify an application-specific higher-
level abstraction, but this will not be understood as entailing the individual statements
by generic RDF tools.)

A concrete example of multiple source anchors given in [34] is that of a generic link
from either the text “hypertext” or “hypermedia” to some pages about hypermedia. In
this case, it is considered that both hypertext and hypermedia are the same concept,
so a better knowledge model would be to express this equivalence, and then just link
from one of the pair. (In this specific case, expressing hypertext as a specialisation of
hypermedia, and then linking from hypermedia, would probably best model the correct
semantics.)

If it were desirable to draw a distinction between multiple sources of this nature not
connected by some transitive relation, one approach is to create a new class of which
both are members, and then link from that class. While this class is transient for the
purpose of representing the link, if it is semantically sensible to link from multiple sources
to the same (set of) targets, then there is probably some correlation between the sources
which also makes placing them in an explicit class sensible.

Figure 3.2a demonstrates this: the apparently disassociated documents about rubber
ducks and lemons share a link to the colour yellow. This link can instead be expressed
as in figure 3.2b: the class containing rubber ducks and lemons is related to the colour
yellow. It then becomes apparent that this class could possibly be made explicit as the
class of yellow things, suggesting other suitable source anchors/class members.

Chapter 3 Open Hypermedia and Semantic Wiki 47

Source f () // Targets
(a) A computed link

f ()
export
results

��Source

targetFunction ;;w
w

w
w

w
+3 Targets

(b) Relations to the results of a query

Figure 3.3: Computed links vs. query results

3.4.3 Computed documents; computed and functional links

Some hypermedia models cover ‘computed’ documents, where the content is generated
upon request: WWW CGI scripts are an example. One of the main uses for such on the
web is document search (even if for documents about products); others include minor
customisation which do not affect the hyperstructure (e.g. purely stylistic user profiles),
and remote procedure calls (e.g. most ‘web applications’). The latter are outside the
scope of a knowledge base, and arguably outside the scope of a hypertext, using it only
as an interface layer to some other system.

Document search, however, effectively returns an ordered set of endpoints for a given
query (presented as links from the computed document). The actual information content
here is similar to computed links (where the targets are determined at the time at which
the link is followed), and to functional links (a generalisation where link endpoints from
either direction are an arbitrary function of hypermedia system state) which perform
search. Figure 3.3a shows a functional link, where the set of targets depends on the
function f ().

The RDF model does not, however, allow for anything but completely static relations.
Even if such queries are expressed in RDF (e.g. a representation of SPARQL), it is not
possible to declare the object of a triple as the result of such in a way which generic
RDF tools will understand. Instead, any kind of computed link must be ‘exported’ into
static triples; it may be possible to retain the dynamic nature of computed/functional
links if these exported triples are only accessed via some kind of accessor interface, such
as a SPARQL endpoint which generates them on-the-fly. Figure 3.3b shows this: a
relation to the function URI (displayed, again, as f ()) refers to the function itself, not
to its results. The fictional relation ‘targetFunction’ indicates here the function used to
generate link targets from the source resource (although it should be noted that this is
akin to embedded, rather than first-class, linking). In order to relate the source with
the targets, the results must be converted into static triples.

Ashman and Verbyla [62] suggest that functional links could be used to group types
of links—the one link provides endpoints which represent all connections of this type.
While this may initially seem appealing, the resultant semantics are likely not what
are intended: if every foaf:mailbox predicate for a set of people and mailboxes were
handled by one link, then the meaning would be that each person has each mailbox due

Chapter 3 Open Hypermedia and Semantic Wiki 48

proglang:Perl
term

// “Perl”

Multiparadigmatic

mentions
iiSSSSSSSSSSSSSS

(representation
uses term)

66mmmmmmm

Figure 3.4: Example of Weerkat-style generic links

to the cross-product effect discussed above.

3.4.4 Generic links

Generic links automatically link from source tokens (e.g. particular words). Early
versions of Weerkat, described in section 2.4.1.3, had a primitive implementation of this
which would apply a (strictly navigational) link from a word to a concept in a provided
ontology if the concept had a ‘term’ property matching that word as an xsd:string

literal. RDF does not allow a more tool-agnostic approach, as literals cannot be used as
subjects in triples; however, the Weerkat approach could be improved by also explicitly
stating that a relation (e.g. ‘mentions’) exists between the node containing the term
and the concept to which the term belongs.

Figure 3.4 graphs the triples in an example case where the token ‘Perl’ is linked to the
resource ‘proglang:perl’. The ‘term’ relation is part of the generic link and, in Weerkat,
originates from the Wiki ontology. The resource ‘Multiparadigmatic’, a description of
languages supporting more than one programming paradigm, contains the term, and
thus a suitable ‘mentions’ triple is constructed by the system.

Microcosm [23] also defines ‘local’ links [22], which are generic links scoped to a particular
set of documents. This effectively provides much the same control as namespacing on
the term: for example, specifying the link only applies to ‘apple’ in the context of
documents about fruit, without actually having to use the term ‘fruit:apple’. Again,
this is not expressible in RDF without tool-specific semantics.

It is interesting to compare scoping of generic link terms to sets of documents, an explicit
form of disambiguation, to more recent attempts to disambiguate terms (under the name
of ‘tags’) by attempting to implicitly find such document sets [63, 64].

3.4.5 Non-embedded, first-class hyperlinks

As we covered above, hypermedia links can be considered to map fairly directly to
Semantic Web triples. In open hypermedia, such links are always first-class: they
are named objects. In the Semantic Web, one can make statements about triples by
reifying them [65, §7.3], although this technically does not specify an identity for the

Chapter 3 Open Hypermedia and Semantic Wiki 49

triple [3, §4.3]. Such open hypermedia links are also stored external to the documents,
in linkbases: databases of links. In the Semantic Web, arbitrary collections of triples
may be gathered from any source: the canonical non-embedded source is the triple store:
a database of triples.

It is important to note that an n-ary link expressed as a set of triples cannot be reified
in this manner as a single entity; rather, each triple gains its own, distinct identity. The
implications for this, and possible resolutions (including reifying the set as a higher-level
construct with a different vocabulary), are discussed in the following minor section, as
they affect adaptive hypermedia.

3.4.6 Contextual/adaptive alternation and level-of-detail

Alternations based on context, detail, and such are facets of browsing a hypertext, not
of the hypertext itself—the data model only expresses the metadata needed to make
the alternations. Reification of triples allows expression of detail levels, prerequisites,
temporal constraints, and such to apply to both concepts and links, but specialist tool
support would be needed to make use of this information.

It is not clear that such features have any real meaning in a knowledge context. The fact
that a link or resource should only be shown at higher levels of detail may imply that
it is less significant, but this is not necessarily pertinent to reasoning over it. It may
provide a way to reduce the knowledge base down to a simpler set to avoid excessive
computational complexity, but visual importance and logical importance may not be
related, and the latter is more likely to be dependant on the specific goal of the reasoner
than to the triple or concept’s overall role within the ontology.

For example, reducing taxonomic detail (“Harry likes cheese”; “Harry likes organic
cheese”) is unlikely to be useful, as the less-detailed information can be inferred from
the more-detailed information as needed. Reducing non-taxonomic detail, such as trivia
(“Harry likes cheese”, important to the example ontology’s domain; “Harry is in IAM”,
irrelevant), cannot realistically be done: the significance of a piece of information is
highly dependent on the query. Omitting ‘detailed’ (low-relevance to ontology) state-
ments such as “Harry is in IAM” is counterproductive if the query is to find people in
ECS research groups who like cheese.

Prerequisites are primarily navigational and have limited reasoning meaning: if one
cannot read about ‘objects in Perl’ without having read ‘references in Perl’, it follows
that Perl objects are in some way more specialised or complicated than, or dependant
upon, Perl references, but the nature of this relation is not explicit. Conversely, certain
semantic relations may reliably indicate that prerequisite knowledge is, if not essential, at
least useful, to understanding the description of a resource. In particular, specialisation
(‘red wine is a subclass of wine’; one should read about wines in general before specific

Chapter 3 Open Hypermedia and Semantic Wiki 50

wine types) and composition (‘wheels are parts of cars’; one must understand wheels
before they can understand cars) suggest sensible prior reading. Care must be taken
with such automatic suggestion, as it lacks the subjective judgement of a skilled author.
If the class of red wines were to be defined, using OWL, to be a subclass of the restriction
of wines which were fermented with grape skins intact, then ‘fermentation with skins’
is applicable, but ‘restriction’ is not, if only because it can be assumed as common
knowledge.

Adaptive hypermedia exposes a weakness in the approach of converting n-ary links to
a cross-product of triples. For ordinary links, being able to provide multiple sources
and targets is ultimately an organisational convenience: there is arguably no semantic
distinction between a link from ‘A’ to ‘B’ and ‘C’, and a pair of links from ‘A’ which lead
to ‘B’ and ‘C’ respectively. In either case, ‘A’ is related to ‘B’ and ‘C’; for editing, these
relations can be grouped back together into whichever possible n-ary link representing
the same information is the most useful representation.

However, adaptive links may have subtler semantics, if the set of endpoints is an alter-
nation. In this case, a link from ‘A’ to ‘B’ and ‘C’ will actually only have the semantics
of a link from ‘A’ to ‘B’ or ‘A’ to ‘C’; not both at once. It could be possible to ex-
press this as a relation between ‘A’ and the blank RDF alternation {B, C}, but this is
not particularly useful representation for reasoners, as RDF Schema defines the various
RDF containers as semantically identical7. These constructs only semantically define
membership in the collection: the distinction between bags, sequences, and alternations
is intended for humans. If one accepts that adaptive hypermedia information is for the
benefit of presentation alone, then it should suffice to simply provide a representation
(reification) of the higher-level n-ary link in some more suitable, but less generic, vocab-
ulary. This makes explicit the desired n-ary link which can be formed from the triples,
and gives it identity (i.e. makes it first-class). As such, it can be annotated as an adap-
tive alternation, and the specific presenting software can understand that only one of its
possible triples should result in a navigational link at a time.

3.4.7 Transclusion

Since semantic wikis build semantic relations from hypermedia relations, we must now
consider if transclusion has a useful semantic parallel. In metadata alone, transclusion-
like constructs have no additional meaning. In OWL, import-by-reference statements
(owl:imports) are an organisational convenience, to allow practical separation of on-
tologies, and any dependencies, into separate documents. Importing another OWL doc-
ument effectively includes its definitions within the scope of the importing ontology: no
separation is made. (RDF Schema, upon which OWL builds, also defines rdfs:seeAlso,

7“The formal semantics of all three classes of container are identical”.[6]

Chapter 3 Open Hypermedia and Semantic Wiki 51

but this merely indicates another resource (not necessarily resolvable) which might in-
clude further metadata about the subject resource: it is more of a ‘related link’.)

In semantic wikis, we must consider the semantic meaning of representations which
transclude statements about the resources they represent. Let us take the simple example
of transcluding an abstract into a page about a particular E-Print:

MyEPrint abstract MyEPrintAbstract .

abstract a TransclusiveRelation .

MyEPrintAbstract a Abstract .

The ‘TransclusiveRelation’ type here indicates that the relation ‘abstract’ should tran-
sclude its object’s representation into the subject’s. This does not imply that transitive
relations apply across the relation; it does not follow that MyEPrint is a member of
the class Abstract. It would be correct, in this case, to say that MyEPrintAbstract is a
part of MyEPrint, because this example uses representations which map to meaningful
resources: there is such as thing as the abstract of this EPrint, such that one may make
statements about it.

This part-of relation does not hold in cases where the transcluded representation is not of
a meaningful resource: in such cases, the only sensible relation between the two resources
would be a generic ‘representation includes’. Consider, for example, a node about about
a particular country, which transcludes a general information panel, ‘CountryPanel’:

include a TransclusiveRelation .

Brazil include CountryPanel .

Clearly, ‘CountryPanel’ is not a part of Brazil. Because transclusion operates on repre-
sentations, cases such as the abstract only indicate meronymy (part-of relations) because
‘abstract’ is also applicable to the resource. It would be more correct to say that ‘ab-
stract’ is both a transclusive relation and a specialisation of a part-of relation, whereas
‘include’ is only the former.

Semantic MediaWiki’s ‘semantic’ templates, although strictly a macroing system, rather
than transclusive, effectively act as role-propagating links; that is, a node ‘A’ including
template ‘B’ with statement ‘colour red’ will be interpreted as ‘A colour red’. To cover
this use of ‘semantic’ transclusion, let us add two more statements:

include a RolePropagator.

CountryPanel a Country .

The type ‘RolePropagator’ is taken to mean a relation along which other roles may be in-
ferred: if ‘Brazil include CountryGeneral’, and ‘CountryGeneral a Country’, then ‘Brazil

Chapter 3 Open Hypermedia and Semantic Wiki 52

a Country’, as any relation of ‘CountryGeneral’ may propagate across the ‘include’ re-
lation. This models how templating works in Semantic MediaWiki, where this pattern
is used8, extending from widespread templating of infoboxes on Wikipedia. OWL 1.19

aims to include property chain (or role) inclusion axioms for representing this kind of
property, although these allow specific relations to propagate, rather than all. This
behaviour can be reproduced in existing versions by various alternate methods. [66]

This is not, however, good ontology modelling. It clouds the resource/representation
distinction, and does not make proper use of classification: there is great temptation to
include other common country statements in ‘CountryPanel’, rather than the ‘Country’
class. The statement that the country panel is, itself, a country, is nonsensical, and
only makes sense in its correctly-transcluded context. Parameterised templates are used
with this pattern to both assert and display other properties, such as the country’s
capital city, via the transcluded resource. A better approach would be to simply assert
these statements on the country resource (possibly with editing help, as described in
section 4.7), and then transclude a template whose only role is to typeset the information
panel, using only the URI of the transcluder as a parameter. It may even be desirable to
be able to indicate that resources of certain classes should automatically have a particular
information panel transcluded into their representations. This approach emphasises the
use of correct semantics, and using these to inform useful display, rather than ‘hĳacking’
useful display to try to add semantics.

Hence, it would appear that transclusion of itself should not affect the relations between
resources. While a useful tool for building representations, in cases where meronymy
also applies to the resources being described or represented, it is possible to find a more
specific relation between the resources (abstract of, ingredient of, city of) which is more
accurately responsible for the part-of relationship. Conversely, in systems such as seman-
tic wikis with tight resource/representation correlations, transclusion as meronymy can
be meaningfully applied to representations where it does not make sense for resources:
the text of CountryPanel may be part-of the text of Brazil, but the CountryPanel itself
is not part of Brazil itself.

With regard to the hypermedia, rather than inference, effects of transclusion: Medi-
aWiki also supports template ‘substitution’, which actually imports the template, with
parameter substitution performed (with some caveats), into the source text of the in-
cluding node. It is important to note that the relationship between the including and
included nodes is lost, and that the benefits of re-use (such as storage efficiency and later
corrections) are not available. The information regarding the origin of the text is also
lost without manual documentation effort, including any parameters required for the
more complicated templates. Substitution, aside from some technical workarounds, is

8This particular example is a simplified form of http://ontoworld.org/wiki/Template:Infobox_
Country.

9http://www.w3.org/Submission/owl11-overview/

http://ontoworld.org/wiki/Template:Infobox_Country
http://ontoworld.org/wiki/Template:Infobox_Country
http://www.w3.org/Submission/owl11-overview/

Chapter 3 Open Hypermedia and Semantic Wiki 53

largely used to provide time-stamping by using a ‘current time’ global parameter inside
the template. This could be better implemented by extending the implementation idea
of ‘hot’ and ‘warm’ links [32] (transclusive links which are cached and refreshed auto-
matically and manually respectively) to a ‘cold’ link, which takes a copy of the content,
and never updates outside of editing operations, but remains a link—this is at least
self-documenting, and easier to modify later. Within the scope of a wiki system, it may
be possible to avoid copying the content, and instead reference a specific version of the
content.

3.5 Conclusions

This chapter has looked at how Open Hypermedia and Semantic Web relate, initially via
the Dexter model, and suggested areas in which overlap may be possible. The following
chapter now looks at how these overlaps may be beneficial, and may lead to a new class
of system: the “open semantic hyperwiki”.

Chapter 4

Open Semantic Hyperwiki

4.1 Introduction

This chapter describes specific examples of how hypermedia features could be applied to
semantic wikis, with an emphasis on improvements over existing practice on Wikipedia,
and their semantic parallels in Semantic MediaWiki. Given this focus, consideration
is given not only of model improvements, but also improvements of the user interface.
The result of applying these improvements should be a semantic wiki which can also
be classified as an open hypermedia system: dubbed a “open semantic hyperwiki”. Not
only must it demonstrate typed links such that its node structure can be mapped to a
useful RDF graph, which provides for data interoperability, but first-class linking, and
reasonable hypermedia capabilities.

4.2 Improved transclusion

Transclusion, as arbitrary embedding of content by reference, is a general solution to
needs for both content re-use and aggregation, in addition to its originally envisaged
role as a mechanism for creating, and correctly attributing the origins of, derivative
works [20].

4.2.1 Content re-use

There are naturally cases where a knowledge base divided into pages for suitably granular
presentation will have sections of text which are applicable to more than one page. For
a specific case on Wikipedia, take the pages “List of James Bond henchmen in The

54

Chapter 4 Open Semantic Hyperwiki 55

Figure 4.1: Annotated sample of differences between Jaws texts. Note the additional
hyperlink on the left below the horizontal line, and the extra prose on the right.

Spy Who Loved Me”1, and “List of James Bond henchmen in Moonraker”2, depicted in
figure 4.1. Because the character of ‘Jaws’ appears in both of these films, and because
the pages require some actual content regarding the henchmen, rather than just links to
further details, both pages include information on Jaws. This is clearly redundant, and
comparison of the pages and their histories shows manual effort being used to attempt
to synchronise the sections.

Instead, the section on Jaws could be shared between the pages using transclusion.
Either one page could simply transclude the other’s section, or a page dedicated to Jaws
could host the section. It is also possible to consider this section a first-class content
object, which is only intended to be viewed when transcluded into the context of another
page.

While Wikipedia (MediaWiki) has a macroing system which can provide transclusion-
like behaviour, it is generally not used outside of the roles its design and documentation
has focused upon: simple macros to simplify some aspects of markup, and the inclusion of
special, if widely-used, annotation ‘boxouts’. Only entire pages can be transcluded, thus
necessitating the first-class approach. However, editing composite pages is an awkward

1http://en.wikipedia.org/w/index.php?title=List_of_James_Bond_henchmen_in_The_Spy_
Who_Loved_Me&oldid=155628451

2http://en.wikipedia.org/w/index.php?title=List_of_James_Bond_henchmen_in_
Moonraker&oldid=154876215

http://en.wikipedia.org/w/index.php?title=List_of_James_Bond_henchmen_in_The_Spy_Who_Loved_Me&oldid=155628451
http://en.wikipedia.org/w/index.php?title=List_of_James_Bond_henchmen_in_The_Spy_Who_Loved_Me&oldid=155628451
http://en.wikipedia.org/w/index.php?title=List_of_James_Bond_henchmen_in_Moonraker&oldid=154876215
http://en.wikipedia.org/w/index.php?title=List_of_James_Bond_henchmen_in_Moonraker&oldid=154876215

Chapter 4 Open Semantic Hyperwiki 56

and complicated affair, where each component part must be managed in isolation. There
is no navigational device presented from the transluding page to the transcluded one,
requiring the user to manually open the latter for editing. When editing, transclusions
merely appear as ‘{{target page}}’: one cannot edit the transcluded section ‘in situ’,
with the context of the transcluding page visible.

4.2.2 General-purpose aggregation

Transclusion provides arbitrary composition without the need for other specialised con-
structs; especially in combination with link endpoints which perform document search
to select targets to transclude. Let us say that you wished to build a list of abstracts of
papers relating to topics you are interested in, which have been recently added to the
wiki, and which you have not yet read. The papers are recorded as nodes in a wiki, and
their abstracts are also nodes which are transcluded in via an ‘abstract’ relationship, as
with the example in section 3.4.7. They also have ‘topic’ relationships to nodes for the
topics to which they relate. Nodes are related to meta-nodes by ‘meta’. A meta-node
for the ‘Literary Machines’ node describes the node in the same way that the ‘Literary
Machines’ node describes the publication Literary Machines. For this example, these
meta-nodes describe the creation date of a node via a ‘creation’ date literal.

A query similar to that below (in pseudo-SPARQL, omitting namespacing) could return
a list of nodes to transclude to generate the required result, where <reader> is a query
parameter resolving to the node representing the current user:

SELECT ?abstract {

<reader> interestedin ?topic .

?paper topic ?topic ;

abstract ?abstract ;

meta ?meta .

?meta creation ?date

} ORDER BY DESC(?date) LIMIT 10

A more advanced version may also include patterns to ensure that ‘?date’ is newer
than the last access time from <reader> for the node which uses the query, although
this would rely upon per-user node access time information being available; maintaining
such data would not be scalable. A more computationally feasible solution might be to
require that ‘<reader> hasread ?paper’ is not known, although this technically breaks
the open world assumption.

Semantic MediaWiki already allows, and suggests, operations of this kind via its ‘inline
query’ mechanism, but the results of such queries are always presented as links, which

Chapter 4 Open Semantic Hyperwiki 57

is not conductive to producing an overview of the documents found. Even if it per-
mitted MediaWiki-style transclusion, the limitation of only transcluding whole pages is
problematic. While pages could be composites of a summary and their detailed con-
tent, as with the papers example above, this again introduces the content re-use editing
problems.

4.2.3 Editing solution

To alleviate the problem of using MediaWiki-style transclusion for page composition and
section re-use—fragmentation of editing into isolated parts—we propose a technique of
‘edit-time transclusion’, where transcluded text is both displayed and modifiable at the
point of editing. If it is possible to edit each of the components in the context of the
entire page, then the cost of requiring any transcluded section to be a first-class entity
is reduced: the section continues to be editable in its original context. This ability to
subdivide, or ‘cut’, pages into compositions of named regions, combined with ‘all pages
are writable’ approach of wikis, effectively allows transclusion of arbitrary parts of page,
by ‘cutting’ it at either end of the desired range. It may be desirable to make some of
this subdivision implicit: if a page contains section headings, then it can be modelled
as a composite of these sections, such that they provide a level of sub-page transclusion
without explicit cuts.

As mentioned in section 3.4.7, ‘cold’ transclusion would help to reduce the maintenance
burden of non-updating, ‘substituted’ templates, by not discarding the relation between
the copied template body and its source and parameters. Because substitution effectively
copies and pastes the processed template into the node, the results are editable, although
modifications do not propagate back. Allowing ‘hot’ transclusion to also expand at edit-
time increases consistency with this mechanism.

4.3 Any-anchor link editing

In MediaWiki, as with wiki systems in general, links are embedded and web-style. Even
though the links exist within the domain of the wiki system, and there may be a ‘back-
links’ feature, they are subject to web-style directionality limitations, and may only be
edited as part of the node in which they are embedded. Semantic MediaWiki builds
upon these links to form semantic statements: a relationship between two nodes is an
embedded link in the subject node.

In some cases, it may be more suitable to embed a relationship link in the object node.
Rather than triples of the form ‘node relation target’, the form ‘source relation

node’ better suits cases where it is natural to assert that many resources relate to a
given resource. For example, it is more natural to assert in a page about Perl that awk

Chapter 4 Open Semantic Hyperwiki 58

inspired and sed inspired it, than to spread this information across the ‘awk’ and
‘sed’ pages (namely, that they inspired Perl). Whichever direction is expressed, it is
a natural extension of backlinks to use OWL inverse property information to display
any appropriate link in the other direction with the node. However, both of these
directionalities are just views upon the underlying hypertext and RDF model: a source
page/subject resource, a target/object, and an arc between them.

If placing a link ‘in’ a node’s source is viewed as merely a metaphor of the user interface,
then mapping back from the hypertext to the node source will automatically indicate
the presence of the link from either of its ends. This is functionally identical to the
process of applying links from a linkbase in Open Hypermedia; crucially, however, it
is being applied at edit-time when the hyperstructure is being flattened into a single
node’s source.

As a result, the user does not have to think about where a link may be stored: if they
can see it, they can edit it, even if it was originally created by adding it to the source
of the node at the other end. Whether editing ‘Perl’ or ‘awk’, the ‘inspired’ relation
is visible and editable. Indeed, Brown and Brown found that the distinction of where
links truly reside is not helpful: “it helps, however, if the machinations of the [link
embedding/separating tools] are disguised from the user”[61].

4.3.1 First-class links

A link being edited from both ends in this fashion is potentially subject to edit conflicts.
Handling this both requires that all links are first-class (such that conflicts can be identi-
fied as they are for nodes), and that an implementation can cope with the possibility that
a single editing session may cause multiple conflicts (which is also a possible outcome of
modifying edit-time transclusions). No known wiki system has these capabilities.

Given that the first-class object of a wiki system is the node, first-class links may there-
fore themselves be the endpoints of other links. While this presents a mechanism for
meta-annotation, such annotations do not fit well within the RDF abstract graph model,
which does not grant statements identity: this is left as application-specific knowledge.
Meta-annotations could allow links to be owned by, and visible to, only particular users,
allowing them to form their own, private, trails over the data.

4.4 Generic links

Early wiki systems, including the initial WikiBase system described in section 2.4.1.1,
featured a crude form of generic links, where words capitalised in ‘CamelCase’ were links
to the pages of the same name. However, this feature has been omitted from more recent

Chapter 4 Open Semantic Hyperwiki 59

designs, including MediaWiki. As a result, users must manually mark up terms which
should link to articles on that topic each time that they occur. Simple generic links
could automate much of this process (ideally with some of the same style constraints as
practiced by users, such as only marking the first occurrence) without the former need
for unnaturally-capitalised page titles. For a wiki with the wide domain of Wikipedia,
local links would allow generic linking for ambiguous terms, and could be scoped by
existing node classifications, such as the category system. The term ‘ontology’ used in
pages in the category of ‘computing’ may have a different link target to when it is used
in pages of category ‘philosophy’.

4.5 Level of detail

Often, it is desirable to accompany a link to a page with a short summary of that page’s
topic. In particular, Wikipedia has many cases where articles include a summary of
another article, along with a “main article” link. The ‘London’ page3, for example,
has many sections which consist primarily of summaries of more detailed pages, such
as ‘Education in London’. If the main article’s summary changes—possibly because its
subject changes—this change must be replicated manually out to any page which also
summarises it.

Transclusion, as covered earlier in this chapter, provides a solution to re-use, but also
requires that some named subset of the page exists to transclude. In this case, rather
than an abstract, or other introductory component of the detailed page, what is desired
is a low detail version of the entire page. Providing a standard mapping between rep-
resentations at different detail levels, e.g. via a lessDetailedVersion relation, allows
arbitrary pages to be summarised without knowledge of which sections, if any, they may
have which are suitable for the task. Transclusion also allows sharing of text between
detail levels.

4.6 Interoperability

Wikis are web applications, and thus are not truly interface agnostic. While the web may
once have been designed as a set of open interchange formats and protocols, forming
an “information bus” [2] supported by a range of client and server implementations,
‘web applications’ tend to use it as a glorified thin-client system: the actual information
being transmitted is just an interface for a client which actually operates on the web
server. Proper separation of interface would allow for alternate clients to be created; for
example, rich clients which run entirely on the local machine.

3http://en.wikipedia.org/w/index.php?title=London&oldid=155695080

http://en.wikipedia.org/w/index.php?title=London&oldid=155695080

Chapter 4 Open Semantic Hyperwiki 60

Abstraction of data sources is also an area of potential improvement. Most wikis rely on
their own, specific datastore, and do not themselves access external resources (although
they may generate interface-level links to them). However, one of the great perceived
strengths of Web 2 and the Semantic Web is the idea of combining data from disparate
sources, and it is unlikely that the manually-activated and unscoped import/export
mechanisms offered by current wikis will be sufficient to realistically share information
(RDF statements, therefore links) between knowledge bases. Some of the technologies
developed in the field of blogging, such as ‘TrackBack’4, are of interest here, e.g. for
detecting incoming links despite the unidirectional nature of the underlying Web. This
is an area for future research.

4.7 Instance property editing

Wikipedia is a rich resource of potentially semantic information on some topics: for
example, cities. There is a template which can be used on a page for a city which
will generate a summary box containing such information as the region, population,
and mayor. When users have provided this kind of structured information on Semantic
MediaWiki, they have again used templates, but now with explicit predicates.5 However,
the task of the template is now not so much a matter of presentational consistency, as
it is suggesting which predicates apply to instances of the class of cities. If such a class
were to be appropriately described, then the system could provide better encouragement
and assistance to users seeking to add or modify instances of it.

For example, let us say that the class of cities is modified to cover instances gaining
the new property of settlement date. With Semantic MediaWiki, the template would
have to be updated to support this, and it would be necessary for a user to know of the
addition in order to provide that parameter to the template when using it. Conversely, if
the system knows that instances of the class can, or must, have a settlement date,6 then
users editing the instances of cities—for whatever reason—can be prompted to provide
this missing information. Because the system is dealing directly with predicates, rather
than being indirected through a text-substitution template, it can potentially display
any missing data as form fields, and use type information to provide appropriate rich
controls: for example, if the range of ‘settlement date’ is a date, it can provide a calendar.

The template’s role can then be relegated to being purely presentational: the semantics
are present because the system knows that it should encourage users to provide them for
this class. All the template is required to do is access them by inline query, and display
them in a suitable box.

4http://www.movabletype.org/docs/mttrackback.html
5http://ontoworld.org/wiki/Help:Semantic_templates
6The simplest expression of this is probably using OWL cardinality constraints.

http://www.movabletype.org/docs/mttrackback.html
http://ontoworld.org/wiki/Help:Semantic_templates

Chapter 4 Open Semantic Hyperwiki 61

While not a research project, the ‘Semantic Forms’ extension to Semantic MediaWiki7

covers similar ground. It allows forms to be defined for classes of resource which can be
used to edit the properties of instances. These forms, however, are not declared in terms
of the properties applicable to a class, but instead based on special template syntax.

4.8 Conclusions

There is a general ideal around these specific improvements: that semantic and hyper-
media features should be useful not only once the information exists, but during the
process of creating that information. Ideas such as edit-time transclusion, and edit-time
link application, help reduce the cognitive overhead of using such features by only con-
cerning the user with the final, presented model of nodes with information; not the
implementation details of the hypertext/RDF graph structure.

The following chapter confirms that there is scope for worthwhile efficiency gains by
experimentally studying large-scale Wikipedia editing behaviour. The hypothesis that
substantial effort is being expended on hyperstructure editing is tested: if a significant
proportion of edits are of a hypertext nature, then enriching the hypertext nature of
wikis should prove beneficial.

7http://www.mediawiki.org/wiki/Extension:Semantic_Forms

http://www.mediawiki.org/wiki/Extension:Semantic_Forms

Chapter 5

Experiment I: Macro-scale

5.1 Introduction

This chapter presents an experiment carried out to test the hypothesis that potentially-
automated hyperstructure modification formed a substantial degree of total editing effort
on large-scale wiki systems. Given this, it therefore follows that improvements to the
hypermedia featureset available have great potential to improve the utility of these
resources—a significant component of their existence is their interlinked nature—and to
reduce the workload required to author such.

This work has been published in the proceedings of SWKM 2008 [67].

5.2 Hypothesis

We carried out an experiment to estimate the proportion of effort expended maintaining
the infrastructure around data, rather than the data itself, on a weak hypertext wiki
system. We define a ‘weak’ hypertext system here as one whose feature set is limited to
embedded, unidirectional, binary links, as with the World Wide Web. Our hypothesis is
that the manual editing of link structure, of a type which richer hypertext features could
automate, will show to be a significant overhead versus changes to the text content.

This experiment also seeks to partially recreate a related, informal experiment, discussed
in an essay by Swartz [68].

62

Chapter 5 Experiment I: Macro-scale 63

Downloaded dump
bzcat

// Trim to articles
gzip

// Trimmed
zcat

// Random subset
gzip

// SubsetBC zcat

GF Nearby revision comparison

��

BC
GF

WikiMarkup parsing

��

BC
GF
��

BC
GF
�� ��

Abuse?

��

Content?BC
GF
��

Templates?BC
GF
��

Categories?BC
GF
��

Links?BC
GF
��

Categorisation // Aggregation // Statistics

Figure 5.1: Data flow of Wikipedia experiment

5.3 Dataset

We chose English Wikipedia1 as the experimental dataset, because it has both a con-
siderably large and varied set of documents, and a complete history of the editing
processes—performed by a wide range of Web users—between their first and current
versions2. The wiki community keep the dataset fairly well inter-linked and categorised
for cross-reference, but they do this via the cumulative efforts of a large body of part-time
editors. At the time of writing, Wikipedia contains 3.5 million self-described “content
pages” and lists 14 million registered users over its lifespan.3 In comparison, popular4

wiki hosting site Wikia counts 4 million content pages and 2 million registered users,
but these figures are split over 165 thousand hosted wikis, the general theme of which
are domain-specific encyclopedic content.5 For example, the featured ‘Memory Alpha’
Wikia-hosted wiki (33 thousand content pages, 370 thousand registered users) is an
in-depth encyclopedia for the fictional Star Trek universe. As well as being statisti-
cally significant, demonstrating possible improvement of English Wikipedia is socially
significant, as it is a widely-used and active resource.

It is important to stress the size of the English Wikipedia dataset. Wikipedia make
available ‘dumps’ of their database in an ad-hoc XML format; because this study is
interested in the progression of page contents across revisions, it was necessary to use
the largest of these dumps, containing both page full-text and history (unfortunately, also
non-encyclopædic pages, such as discussions and user pages). This dump is provided
compressed using the highly space-efficient (although time-complex) bzip2 algorithm;
even then, it is 84.6GB. The total size of the XML file is estimated to be in the region
of two terabytes.

1http://en.wikipedia.org/
2MediaWiki, unlike many wikis, never deletes old revisions of a page.
3http://en.wikipedia.org/wiki/Special:Statistics
4Wikia’s Alexa rank is 201 at the time of writing.
5Datasheet available at http://www.wikia.com/Press

http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Special:Statistics
http://www.wikia.com/Press

Chapter 5 Experiment I: Macro-scale 64

5.4 Procedure

Figure 5.1 shows the simplified data flow of the processing of the dump performed for
the experiment.

First, we trimmed down the dataset to just those pages which are encyclopædic articles,
as these are the pages of greatest significance to the Wikipedia project’s goals, and thus
the most important to study. Otherwise, the dataset would include a lot of ‘noise’ in
the form of discussion and user pages, which are likely to have different editing patterns,
and be less connected to the hyperstructure. The most practical way to do this was
to remove any page placed in a namespace. On English Wikipedia, this also has the
effect of removing other page types, such as media and image descriptions, help pages
copied from MetaWiki, front-page portal components, and templates. As this stage
also required decompressing the data, it ran over the course of several days on a multi-
processor server.

We took a random subset of the data for processing. Samples of 0.04% and 0.01% of
pages (approximately: see the description of the subset tool below; actual page counts
14,215 and 3,589 respectively) were selected, yielding a compressed dataset which would
fit on a CD-ROM, and could be processed in a reasonable timeframe. Further iterations
of the experiment may study larger subsets of the data.

We performed categorisation on the revisions, into several edit types which would be
automatically distinguished. In particular, a simple equality comparison between a re-
vision, and the revision two edits previous, can detect the most common (anti-)abuse
modification: the rollback, or revert (unfortunately, MediaWiki does not record such
operations semantically). A sequence of reverts6 is usually indicative of an ‘edit war’,
where two users continually undo each-others changes in favour of their own. Page
blanking was also easy to detect, but identifying more complicated forms of vandalism
(e.g. misinformation, spam) was not feasible—if reliable, automatic detection were pos-
sible, they would not be present in the data, as Wikipedia could prevent such changes
from being applied. Identifying abuse (and abuse management) of the simpler types is
important, as otherwise they would appear as very large changes.

In order to detect changes in the text content, templates used, MediaWiki categories,
and links from a page, it was necessary to attempt to parse the MediaWiki markup
format. Such ‘wikitext’, as it is known, is not a formally defined language: there is no
grammar for it, and it does not appear likely that an unambiguous grammar actually
exists. MediaWiki does not have a parser in the same way as processing tools such
as compilers and XML libraries; instead it just has a long and complicated set of text
substitution procedures which convert parts of ‘wikitext’ into display-oriented HTML.
These substitutions often interact in a ill-defined manner, generally resulting in either

6e.g. http://en.wikipedia.org/w/index.php?title=Anarchism&diff=next&oldid=320139

http://en.wikipedia.org/w/index.php?title=Anarchism&diff=next&oldid=320139

Chapter 5 Experiment I: Macro-scale 65

more special-case substitutions, or as being defined as a new, hybrid, feature, which
editors then use. Because of these problems, and the lack of abstraction in MediaWiki’s
‘parser’, as much as the programming language boundary, a ‘scraping’ parser was created
which attempted to approximate partial processing of the wikitext format and return
mostly correct results. This parser is a single-pass state machine (42 states) with a few
additional side-effects. This yields excellent performance: testing showed that the time
spent parsing is dominated by the time performing decompression.

To determine if an edit included a significant (‘major’) change to the text content,
we required a difference metric between the plaintext of the revisions. This metric
was then compared to a threshold to classify edits as being content changes or not (in
particular, the imperfect parser generates ‘noise’ from some non-content changes, as
it cannot correctly remove all the markup). The default threshold was chosen as 5%:
sentences in the English language are generally around twenty words in length, so this
considers anything up to changing one word in each sentence as non-major (minor).
MediaWiki also allows registered users to explicitly state than an edit is minor; this flag
was respected where present.

We chose an approximation of Levenshtein distance[69], as it is a simple measure of
insertions, deletions, and substitutions, fitting the kind of edit operations performed on
the wiki. However, the algorithm for computing Levenshtein itself was far too time-
complex, even with aggressive optimisation, taking two minutes on a tiny test set of
just a few thousand revisions of a single page (before trimming away the identical parts
at either end of both strings to take advantage of edit locality, this took 45 minutes).
The problem was that the matrix-based approach is O(n ×m), where n and m are the
string lengths, in all cases: for n and m in the region of 16,000 characters, as found on
many revisions, merely iterating through all 256 million matrix cells was prohibitively
expensive.

Instead, we developed a new approach to computing such a distance, taking advantage
of the domain-specific knowledge that the two strings being compared are likely very
similar save for ‘local’ edits: the difference is likely to be a new paragraph, or a removed
sentence, or some changed punctuation. Instead of efficient search within the space
of editing operations, as Levenshtein, it is based on the idea of “sliding windows”: a
pass is made over both strings in parallel; when characters begin to differ, a look-back
‘window’ is opened between the point at which differences began, and continues until
similarity is again found between these windows. At this point, the position through the
strings resynchronises, the distance is increased by the offset required, and the windows
are again ‘closed’. When the end of either string is reached by the far edge of the
window, the algorithm can terminate, as any remaining characters in the other string
must be unmatched and thus add to the distance. As a result, the algorithm scales with
regard to the shorter of the two strings, which is helpful when revisions may add whole
paragraphs of new text to the end. To reduce inaccuracy in certain cases, the algorithm

Chapter 5 Experiment I: Macro-scale 66

Algorithm 1 ‘Sliding window’ string distance metric
function String-Distance(A, B)

proc ← 0 . No. of chars. of string processed
procstr ← neither . Last string aligned upon
dist ← 0 . Difference accumulator

5: nearA← farA← A . Near and far pointers
nearB ← farB ← B
Let endA be the beyond-last character of buffer A, and endB beyond B
function Scan(near , far)

for scan ← near to before far do
10: if Chars. at scan and far same then return scan

return false
while farA 6= endA ∧ farB 6= endB do

synfarA← Scan(nearA, farA)
synfarB ← Scan(nearB, farB)

15: if synfarA ∨ synfarB then . Missed alignment
if synfarA is further into A than synfarB is into B then

farA← synfarA
else

farB ← synfarB
20: else if synfarA then farA← synfarA

else if synfarB then farB ← synfarB
if Chars. at farA and farB same then

enA← Min(nearA, A + proc − 1) . Aligned; calc. nears after proc. point
enB ← Min(nearB, B + proc − 1)

25: unA = positive dist. from enA to farA . Unaligned lengths
unB = positive dist. from enB to farB
function Align(un, far , buffer , other)

distance ← distance + un
proc = far ’s distance into buffer

30: if procstr = other then proc ← proc + 1
procstr ← buffer

if unA > unB then
Align(unA, farA, A, B)

else
35: Align(unB, farB, B, A)

if farA = endA then . Ending
distance ← distance+ distance between farB and endB

else if farA = endA then
distance ← distance+ distance between farA and endA

40: else . Advanced with closed window
nearA← farA← farA + 1
nearB ← farB ← farB + 1
proc ← proc + 1

else . Not aligned; widen windows
45: if farA 6= endA then farA← farA + 1

if farB 6= endB then farB ← farB + 1
return dist

Chapter 5 Experiment I: Macro-scale 67

maintains a ‘processed point’ cursor, to avoid double-counting of overlapping insertions
and deletions. Pseudocode is presented as algorithm 1, which works on a pair of string
buffers, and upstr.c in the tool source contains a C implementation. This approach
is still O(n × m) worst-case, but is O(n) (where n is the shorter string) for identical
strings, and degrades smoothly as contiguous differences increase in size: instead of two
minutes, the tiny test set was compared in a little over ten seconds.

Unfortunately, changes such as ‘ABCF’ to ‘ADCDBCF’ can return overestimates, as the
localisation which explicitly prevents full lookback (and keeps computational cost below
O(n2)) causes the ‘C’ in ‘BCF’ to match with the ‘C’ in ‘DCD’: ‘ADC’ is considered
a substitution of ‘ABC’ before the algorithm can realise that ‘BC’ is still intact in the
string, and ‘DCD’ is merely an insertion. As a result, the later ‘B’ is considered an
insertion, as it no longer matches anything, and the distance is overestimated by one.
Synthetic tests showed this overestimation to be minor; tests against Levenshtein on a
tiny subset of Wikipedia data (a node’s first few hundred revisions, thus under heavy
editing) show it to be larger, with errors in the tens, and a peak error of over two-
hundred. The reason for such large errors is unclear, as the resynchronisation approach
should also keep error localised, but it does not greatly affect the result for the purpose
of minor/major determination: the majority of changes were correctly classified.

Identifying changes to links, etc. was significantly simpler, and merely required compar-
ing the sets of links identified by the parser across two revisions. These categorisations
yielded simple information on which kinds of changes were made by each revision, and
removed much of the ‘bulk’ of the dataset (the revision texts); as a result, simple scripts
could then handle the data to aggregate it into various groupings in memory, so as to
produce graph data and statistics for analysis. Gnuplot7 was used to plot the graph
data into graphics as part of the build process for this thesis.

We identified the following non-mutually-exclusive groupings to usefully categorise edits:

Revert Edit which simply undoes a previous edit.

Content Major (nontrivial) edit of the page content.

Minor Minor (trivial) edit of the page content.

Category Edit to the categories of a page.

List of Edit to a page which is an index to other pages.

Indexing Edit to categories or listings, possibly both.

Template Edit to the templates used by a page.

Page link Edit to an internal page link.
7http://www.gnuplot.info/

http://www.gnuplot.info/

Chapter 5 Experiment I: Macro-scale 68

URL link Edit to a WWW URL link; usually external.

Links Edit to page or URL links.

Link only As ‘links’, but excluding major edits.

Hyperstructure Any hypermedia change: indexing, linking, or template.

We expand upon the definition and significance of these groups as needed in section 5.6.

5.5 Tools developed

To process the sizable dataset, we created a set of small, robust, stream-based tools in
C. Stream-based processing was a necessity, as manipulating the entire data in memory
at once was simply infeasible; instead, the tools are intended to be combined arbitrarily
using pipes. We used standard compression tools to de- and re-compress the data for
storage on disk, else the verbosity of the XML format caused processing to be heavily
I/O-bound.8 The open source Libxml29 library was used to parse and regenerate the
XML via its SAX interface. A selection of the more notable tools:

dumptitles Converts a MediaWiki XML dump (henceforth, “MWXML”) into a plain,
newline-separated, list of page titles. Useful for diagnostics, e.g. confirming that
the random subset contains an appropriate range of pages.

discardnonart Reads in MWXML, and outputs MWXML sans any pages which are
in a namespace; pedantically, due to the poor semantics of MWXML, those with
colons in the title. This implements the “trim to articles” step of figure 5.1.

randomsubset Reads and writes MWXML, preserving a random subset of the input
pages. In order for this to be O(1) in memory consumption, this does not strictly
provide a given proportion of the input; instead, the control is the probability of
including a given page in the output. As a result, asking for 50% of the input
may actually yield anywhere between none and all of the pages: it is just far more
likely that the output will be around 50% of the input.10

categorise Reads MWXML and categorises the revisions, outputting results to a simple
XML format.

cataggr A Perl script which processes the categorisation XML to produce final statis-
tical results and graph data. By this point, the data are small enough that a SAX
parser is used to build a custom in-memory document tree, such that manipulation
is easier.

8Specifically, GNU Zip for intermediate; bzip2, as originally used by Wikipedia, made processing
heavily CPU-bound.

9http://xmlsoft.org/

http://xmlsoft.org/

Chapter 5 Experiment I: Macro-scale 69

Edit type Proportion
Categories 8.71%
Lists 1.97%
Overhead 10.56%

(a) 0.01% subset

Edit type Proportion
Categories 8.75%
Lists 3.72%
Overhead 12.34%

(b) 0.04% subset

Table 5.1: Proportions of edits related to index management

The tools are available under the open source MIT license, and can be retrieved from
http://users.ecs.soton.ac.uk/prb/phd/wikipedia/ to recreate the experiment.

5.6 Results

Because of the known error margin of the approximation of Levenshtein distance, we
computed results from both genuine and approximated distances on the 0.01% subset,
so as to discover and illustrate the effects of approximation; the computational cost dif-
ference between the algorithms was significant: two-and-a-half hours for genuine, eight
minutes for approximated. Results were then generated from the more statistically sig-
nificant 0.04% subset (27 hours). This latter subset contained some pages on contentious
topics, which had seen large numbers of revisions as a result.

5.6.1 Index management

Table 5.1 shows the proportions of edits in categories pertaining to index management.
“Categories” are changes to the categories in which a page was placed. “Lists” are any
change to any ‘List of’ page; these pages serve as manually-maintained indices to other
pages. “Overhead” are changes which fall into either of these categories: because they
are not mutually exclusive (lists may be categorised), it is not a sum of the other two
values. Because these metrics do not consider the change in ‘content’ magnitude of a
change, they are unaffected by the choice of string distance algorithm.

The ten percent overhead shows a strong case for the need for stronger semantics and
querying on Wikipedia; this is one of the key goals, and expected benefits, of the Se-
mantic MediaWiki project. While virtually every ‘list of’ node could be replaced with
a query on appropriate attributes, the gain in category efficiency is harder to measure.
Any semantic wiki must still be provided with categorisation metadata such that the
type of pages can be used to answer such queries. However, some improvement is to

10A better algorithm, which is O(1) with regards to total data size, but O(n) with regards to subset
size, is to store a buffer of up to n pages, and probabilistically replace them with different pages as they
are encountered. However, even this would be prohibitively memory intensive on statistically significant
subset sizes, as each page may have thousands of revisions, each with thousands of bytes of text, all of
which must be copied into the buffer.

http://users.ecs.soton.ac.uk/prb/phd/wikipedia/

Chapter 5 Experiment I: Macro-scale 70

Edit type Proportion
Links 49.60%
Links only 35.53%
Hyperstructure 61.65%
Content 17.81%
Edit type Ratio over content
Links 2.79
Links only 2.00
Hyperstructure 3.46

(a) 0.01% subset, Levenshtein

Edit type Proportion
Links 49.60%
Links only 23.36%
Hyperstructure 61.65%
Content 35.60%
Edit type Ratio over content
Links 1.39
Links only 0.71
Hyperstructure 1.73

(b) 0.01% subset, Approximated

Edit type Proportion
Links 49.56%
Links only 25.24%
Hyperstructure 61.90%
Content 35.99%
Edit type Ratio over content
Links 1.38
Links only 0.70
Hyperstructure 1.72

(c) 0.04% subset, Approximated

Table 5.2: Proportions of edits related to link management

be expected, as there are current Wikipedia categories which could be inferred: either
because they are a union of other categories (e.g. ‘Free software’ and ‘Operating sys-
tems’ cover the existing category ‘Free software operating systems’) or because they are
implied by a more specialised category, and no longer need to be explicitly applied to a
page.

The increase in list overhead seen in the larger subset is likely a result of having a more
representative proportion of ‘List of’ pages. Otherwise, the results are largely consistent
across sample sizes.

5.6.2 Link management

Table 5.2 shows categories related to link management. “Links” refers to edits which
changed either page-to-page or page-to-URL links. “Links only” refers to such edits
excluding those edits which also constituted a ‘major’ content change: they are edits
concerned only with links and other structure. “Hyperstructure” is the category of edits
which changed any of the navigational capabilities of the wiki: either categories, ‘List
of’ pages, links, or templates. “Content” is simply the category of ‘major’ edits.

The overestimating effect of the approximate string distance algorithm can be seen as a
greater proportion of edits being considered ‘major’, with a knock-on effect on reducing

Chapter 5 Experiment I: Macro-scale 71

Category Registered Unregistered Total
List of 1,146 453 1,599
Revert 4,069 679 4,748
Category 6,121 954 7,075
URL link 5,548 2,977 8,525
Indexing 7,174 1,397 8,571
Template 7,992 1,330 9,322
Content 10,275 4,182 14,457
Minor 13,776 9,961 23,737
Link only 20,969 7,877 28,846
Page link 27,205 8,871 36,076
Links 29,671 10,606 40,277
Hyperstructure 38,358 11,701 50,059
Total 57,463 23,733 81,196

Table 5.3: Categorisation of edits for 0.01% subset, Levenshtein

the ratios of edits over content edits. However, the results are consistent between the
0.01% subset with the approximated string distance, and the sample set four times
the size. As a result, it would appear that the smaller size of the sample set has not
introduced significant error in this case, and it is reasonable to assume that a Levenshtein
distance comparison of the larger dataset would yield similar results to the 0.01% subset.
Therefore, further discussion will focus on the 0.01% subset with Levenshtein distance
results.

These figures show the significance of hyperstructure to Wikipedia, to a surprising de-
gree. While we expected that link editing would prove a substantial proportion of edits
compared to content, we did not anticipate that twice as many edits change links alone
than those that change content. Most link changes were page links—those to other pages
on the wiki, or metawiki—as opposed to URL links to arbitrary webpages (in some cases,
pages on the wiki with special arguments). 36,076 edits modified the former, but only
8,525 the latter.

With such a proportion of editing effort being expended on modifying links on Wikipedia,
there is a clear need to improve this process. Introducing richer hypermedia features
to wikis, such as generic links, should prove one possible improvement. A generic link
can specify that a page’s title should link to that page, rather than requiring users
to manually annotate it: some early wiki systems offered this capability, but only for
page titles which were written in the unnatural ‘CamelCase’ capitalisation. Advanced
examples such as local links, present in Microcosm [22, 23], can specify scope limits on
the matching. This would help with ambiguous terms on Wikipedia, such as ‘Interval’,
which should be linked to a specific meaning, such as ‘Interval (music)’.

Chapter 5 Experiment I: Macro-scale 72

100

101

102

103

104

105

101 102 103

Number
of users

Edit count, ±5

All users
Registered

Unregistered

Figure 5.2: User distribution over total number of edits made; 0.04% subset

5.6.3 Overall editing distribution

Table 5.3 shows the categorisation of all edits in the 0.01% dataset, using Levenshtein
for string distance, for registered and unregistered users. Note that the edit categories
are not mutually exclusive, thus will not sum to the total number of edits by that class
of user. “Minor” is the category of edits which did not appear to change anything
substantial: either the information extracted from the markup remains the same, and
the plaintext very similar; or a registered user annotated the edit as minor. Notably, over
5% of edits are reverts: edits completely rolling back the previous edit; this implies that
a further 5% of edits are being reverted (presumably as they are deemed unsuitable).11

A substantial amount of effort is being expended merely keeping Wikipedia ‘stationary’.

Figure 5.2 demonstrates the distribution of users over the total number of edits they
have made, in the vein of the Swartz study [68]. There is a sharp falloff of number of
users as the number of edits increases (note the logarithmic scale on both axes): by far,
most users only ever make very few edits, whether registered or not. Unsurprisingly,
registered users tend to make more edits overall, and unregistered users are dominant
at the scale of fewer than ten edits.

Figure 5.3 breaks the low-edit end of this distribution down by basic categories. It is
interesting to note that, other than being in close proximity (e.g. “content” and “page
link”), the lines do not have any definitive overlaps: the breakdown of edits is consistent
regardless of the number of edits the user has made. Users who have made 70 edits have

11Actual figures may vary in either direction: this does not detect rollbacks to versions earlier than
the immediately preceding version, and ‘edit wars’ of consecutive rollbacks will be entirely included in
the first 5%, not belonging in the latter.

Chapter 5 Experiment I: Macro-scale 73

101

102

103

104

105

10 20 30 40 50 60 70 80 90

Number
of users

Edit count, ±5

Content
Page link×

×

×
× ×

×
× × ×

×

×
URL link

+

+

+
+ +

+
+ + +

+

+
Template4

4
4

4 4
4

4 4 4
4

4
Category3

3

3

3
3

3
3

3 3
3

3
Revert
List of2

2
2

2
2 2

2
2 2 2

2

Figure 5.3: User distribution over total number of edits made, by category; 0.04%
subset

100

101

102

103

104

105

1000 2000 3000 4000 5000 6000 7000

Number
of edits

Edit magnitude, ±50

All users
Registered

Unregistered
All, approx.

Figure 5.4: Edit distribution over magnitude of edit; 0.01% subset

Chapter 5 Experiment I: Macro-scale 74

made edits in the same relative proportions (i.e., more “revert” than “list of”) as those
who have only made five.

Figure 5.4 shows how the magnitude of edits breaks down by the number of edits of
that magnitude, again in the vein of Swartz [68]. Because this is clearly sensitive to the
string distancing algorithm, the 0.01% subset was used, with a focus on Levenshtein: the
approximate distance for all users is shown as a sparsely dotted line with a consistent
overestimate. These results are largely unsurprising: registered users make larger edits,
and most edits are small, with the count rapidly falling off as magnitude increases.

5.6.4 Limitations of detection

There are, unfortunately, several kinds of ‘overhead’ costs which simply cannot be de-
tected in a computationally feasible manner by this approach. For example, use of the
template substitution mechanism discussed in section 3.4.7 is not semantically recorded
by MediaWiki, and is thus largely indistinguishable from the addition of a paragraph
of wikitext. As a result, it is not then possible to evaluate the cost of maintaining or
documenting these substitutions once the link to the original template has been lost.

It is also not computationally feasible to detect the pattern of a user performing the
same fix on multiple pages, which would identify the cost of inadequate, or underused,
transclusion. This would detect the “main article” problem described in section 4.5. The
‘London’ page12, for example, has many sections which consist primarily of summaries
of more detailed pages, such as ‘Education in London’. However, without some form
of transclusion or composition to share text, if the main article’s summary changes—
possibly because its subject changes—this change must be replicated manually out to
any page which also summarises it. A transclusion mechanism would allow a single
summary of the subject to be shared by all pages which reference it, including the main
article on the subject, if desired.

For example, the ‘Education in London’ page may begin with a summary of its topic,
highlighting the most notable institutions and successful research areas. The article
on ‘London’ may then, within its ‘Education’ section, transclude this summary from
the ‘Education in London’ page. Should the summary be updated, perhaps because
a University gains significant notability in a new research area, this change would be
automatically reflected in the ‘London’ page, as it is using the same text.

While MediaWiki’s templates do function as transclusion, they are not employed for this
role: common usage and development effort focus on their use as preprocessing macros.

12http://en.wikipedia.org/w/index.php?title=London&oldid=155695080

http://en.wikipedia.org/w/index.php?title=London&oldid=155695080

Chapter 5 Experiment I: Macro-scale 75

5.7 Conclusions

The experiment consisted of the non-exclusive classification of edits made throughout the
history of Wikipedia, a large and public wiki system. Classifications included both the
areas of “text editing” (assumed to primarily be maintaining the information content of
Wikipedia: its encyclopædic articles), and “link editing” (maintaining the navigational
structure of the content). The hypothesis, that link editing formed a substantial propor-
tion of total editing effort, which may potentially be automated, was supported by the
results. Twice as many edits changed links alone, not affecting the article text. Edits
which maintained manual indexes of pages constituted approximately a tenth of total
edits.

The next chapter follows up with a more detailed, small-scale experiment, to better
understand the patterns of real-world wiki editing.

Chapter 6

Experiment II: Micro-scale

6.1 Introduction

We have shown, in chapter 5, that scope exists for hypermedia-based improvements
to wiki editing, as suggested in chapter 4. To better understand the relative useful-
ness of these improvements, formal study must be made of current editing practices on
large-scale wiki systems. This is a form of knowledge elicitation task, and thus has no
particular hypothesis to test. However, the domain of possible actions, and the steps
entailed in performing them, are already known as aspects of the software.

The objective of this experiment is to identify the mental processes behind wiki editing:
information on the tasks editors set themselves, and how their actions are used to achieve
them. This will then be used to prioritise efforts to develop hypermedia features to assist
with these tasks.

This work has been published in combination with the previous experiment as a chapter
of [70].

6.2 Procedure

The experiment consisted of two main parts: a week of data collection while the partic-
ipant used Wikipedia, or a functionally similar system, normally, followed by a meeting
of less than an hour, covering a pair of protocol analysis sessions [71, 72]. A small ques-
tionnaire preceded the week of collection to record the prior experience of the subject,
as well as obtaining informed consent to participate.

The first protocol analysis was an off-line review using logged editing information from
Wikipedia. Off-line study is necessary in order to work with real-world problems in
a real-world environment: the reduced accuracy of participant recall for the reasoning

76

Chapter 6 Experiment II: Micro-scale 77

behind decisions and actions is balanced against the validity of those actions. Wikipedia
helps provide partial compensation here by encouraging the participant to record a short
motivation for any action, which may prompt their memory.

The second protocol analysis supplemented this with an on-line self-report session in a
high-fidelity simulated environment (another MediaWiki install with a tiny sample of
Wikipedia’s content), and a set of synthetic problems, presented in a randomised order.
This then trades validity of the actions for the benefits of immediate, more accurate,
feedback regarding the participant’s thought processes. The investigator is also present
at the time of the decision to observe any other details of the process of which the
participant does not make explicit note.

Information was retrieved from the Wikipedia database about the participant’s editing
within the span of the study: which pages were edited, and how the source text changed.
This information was publicly available as part of normal Wikipedia activity. It was not,
however, directly analysed: instead, it provided material for the off-line review. The data
collected were anonymised transcripts of audio recordings from this, and the on-line self-
report, for verbal protocol analysis. Both off-line and on-line review were limited to a
maximum of a half-hour session to keep the total meeting time under an hour and avoid
fatigue.

Participants were taken from geographically close wiki editors, as a practical limitation
of the in-person nature of the data collection. We sought people who already had some
experience with wikis, so as to capture the editing process, rather than the initial user
interface experiences of a beginner. While this limited the set of potential candidates,
the method of analysis is not statistical, and can work at small sample sizes [73].

The questionnaire and synthetic task scripts are presented in full in appendix A. The
tasks were designed around the knowledge elicitation goal, to attempt to capture the
user’s reasoning, and also to solicit their opinions on the perceived effort required for
each task. The range of tasks were also designed to exercise areas potentially subject to
improvement through richer hypertext functionality.

Edit description of same villain in two movies. Discovers how the user handles
having to update a section of text which is used by two articles. The history of
the node shows rough synchronisation by manual copying, but is desynchronised
at the point captured for the synthetic environment. Transclusion could be used
to share this text.

Add fact to specific article, and to summary in general article. A similar case
to the above, but this time with a level-of-detail angle. Because the latter is
summary of the former article, there is less scope for text to be shared outright.
The domain for this task is the London Underground. Adaptation and transclusion
could form a solution.

Chapter 6 Experiment II: Micro-scale 78

Refine links pointing to the disambiguation node for ‘shelf ’. Requires the abil-
ity to traverse (or edit, but MediaWiki does not support this) links in the reverse
direction. The ability to edit links from any of their endpoints, which is facilitated
by first-class links, could help with this.

Create page summarising two other articles about type of train. Requires ag-
gregation of summaries, which are suggested to be taken from the pages’ introduc-
tory overview. This again touches on the issues of synchronising shared content,
and also the task of synchronising which trains are on the list with which trains
have articles to be summarised. Transclusion of query-endpoint fat links could
achieve this.

Add links where appropriate to plain text of ‘cake’ article. Although the task
is synthetic, this attempts to capture the reasoning behind which words in an
article are hyperlinked. This then informs where use of generic links may, or may
not, be appropriate.

Add fact to infobox of ‘Belgium’ article. Tests resource property editing, which is
hidden within template code. Provides information on how users approach what
is abstractly a very simple operation. Richer support for semantics, such as forms
to edit known class properties, could improve this.

All of the tasks were created from content taken from Wikipedia, for authenticity of the
simulated environment. Minimal errors and omissions were introduced where necessary
to set up the required problem. The ordering of the tasks was randomised for each
participant (and preserved in these results) and, time permitting, they were prompted
to perform all of them.

Figure 6.1 shows the front page of the simulated environment for the on-line section
of the experiment. Note the small “What links here” link in the toolbox, which has
been highlighted for this screenshot. Following it is how one can reveal backlinks for the
current page as a list in Mediawiki.

Figure 6.2 provides a glimpse at the complexity of the Belgium infobox task. The top-left
window shows part of the infobox as displayed on the page; the complete box is several
full screens high. The top-right window shows the source as seen when editing the page
the infobox is used on. Note that in this (real-world) case the ordering of the elements
in the source does not match the ordering of their display, as they are arguments to a
template which will then substitute them into a display form. The bottom-left window
is also a view of editing, showing the area below the page source, where Mediawiki
displays a list of templates used by the page. For this article there are twenty-six items
in this list. The bottom-right window shows part of the result of following one of these
links: the template page, which includes some documentation. This documentation is
managed manually and in this (again, real-world) case is incomplete; we show the part

Chapter 6 Experiment II: Micro-scale 79

Figure 6.1: Fakepedia: a hi-fidelity Wikipedia simulation

Figure 6.2: Infobox editing in Fakepedia

Chapter 6 Experiment II: Micro-scale 80

of the page where the required template parameter is listed as existing, but there is no
further information on it provided.

6.3 Results

Six subjects participated, with a range of experience levels from casual editors with
only passing knowledge of the wiki system’s complicated markup, to experience with
administrative tasks. All participants considered themselves to make fewer than ten
major edits a week, and only participants five and six considered themselves in the 10–
30 band of overall edits per week. Participant ID one is not used as a participant had to
cancel after being allocated an ID. We begin with a summary of the recorded behaviours
of each editor, then proceed to cross-reference these.

6.3.1 Participant two

6.3.1.1 Off-line review

The participant considered themselves only experienced with basic markup of the sys-
tem, and to make fewer than ten edits a week. They were multi-lingual, and found
information for some articles in their native language version of Wikipedia which was
absent in the English version. They had some real-world association to the articles:
their place of study, and home town. Because of the cultural and language differences,
rather than a straight translation, they effectively re-constructed the article: “I pick
some useful things and translate them here; [I] also search on [the] web”. The partici-
pant also found a ‘citation needed’ template which had been left by a previous editor,
which triggered them to find and add an appropriate reference.

As part of the editing to an article about a town, the participant rewrote a section about
the airport to be part of a section hierarchy on transportation, leaving blank subsections
for ‘Highway’ and ‘Port’. They clarified that their intent was that they, or some other
author, may fill in those sections later: the structure has deliberately been left without
content to act as a prompt for further development.

In general, the participant edited articles in topics they had familiarity with, and mostly
made text and within-node structural (section) changes. They added text from their
own knowledge where they felt that articles were lacking in content, especially compared
to other language versions, supported by references found via web search.

Chapter 6 Experiment II: Micro-scale 81

6.3.1.2 On-line self-report

The participant was not familiar enough with the wiki system to know how to handle
reverse-traversal of links, but when presented with a page with an ambiguous link was
able to correct it.

For hyperlinking terms in the ‘cake’ article, the participant’s criteria for linking a term
was “noun, or some other concept; maybe not very common, for example”. They chose
not to link what they considered basic terms such as “flour” and “vegetable oil”, but
would, after researching the meaning, for less familiar ones such as “crystallised fruit”.

To create the summary of country variations of a type of train, the participant said
they would read the pages they were summarising, and gain sufficient understanding
of the common ground to write a definition “in [their] own words” for the introduction
to the summary. They would then create a section for each country, with a paragraph
summary, and possibly any applicable tables and lists. They would not re-use the
summary text from the specific train page itself, because they would want less confusing,
shorter terminology in the summary.

For the film villain, because the information being added is simple, they would just add
it to both articles in which that villain is mentioned. If the edit were more involved,
they would only edit one, and link the other article to the information.

The participant was not able to complete the infobox task due to inexperience; they
said they normally stick to “very simple methods”. They did not entirely understand
the London Underground task and would share the information between the pages by
linking from the simple to the detailed article.

6.3.2 Participant three

6.3.2.1 Off-line review

The participant edited an article about a story which they had been talking to somebody
about, and had looked up in Wikipedia to help explain the plot. They noticed that it
contained some incorrect information, and removed it. Because the incorrect information
is “a widely-believed but incorrect fact”, they edited the talk page “because someone will
just come and put it back again otherwise”. They did not consider the misconception
important enough to warrant a mention in the article itself.

The participant also corrected some broken table markup, which again they encountered
while looking up information. “Neither time I particularly went out to go and edit
something; it’s just that I happened to come across it.” Unfamiliar with the table
markup, the participant looked at adjacent rows in the table, and used a little trial-and-
error with previewing, to determine how to correct the broken one.

Chapter 6 Experiment II: Micro-scale 82

6.3.2.2 On-line self-report

The participant was not familiar with infoboxes, but realised that the template parame-
ters were being converted into display text supplied from somewhere else, and discovered
the list of templates in use shown below the edit area. This led them to the documenta-
tion, where they found the correct template parameter (which uses different terminology
to the display text), and copy-and-pasted it into the article. They guessed that display
ordering was defined by the template, so placed it within the source next to similar
parameters “to make it easier for other people to edit”. To format the date, they looked
at other dates being used as values within the infobox template.

For the ‘villain’ task, the participant noticed that the villain’s description was not quite
the same in both film articles, and reasoned that it “must have been copied and pasted
once before, so if I want to edit it I’ll have to edit both unless [the identical lead-in] is
a template”. As it was not, they decided to edit both. They contemplated separating
out the villain into a third node, but didn’t know how to achieve that in MediaWiki.

Ambiguous links were corrected using the wiki’s backlinking feature, although the par-
ticipant had to consult the help to work out how to make a link have a different target
from the text being linked. They used the unvisited colour of the link as an initial
indication that the markup had worked and changed the target.

When adding, for the detailed article, that the London Underground was one of the
oldest metros in the world, they left the edit as major as they’d “added a new fact,
which might be under debate”. They made the same decision for the general article,
Transport in London, adding the fact to the Underground section.

The participant used a dangling link to create a new page for the summary of train
types, and looked at other pages to see how they began for comparison. They copied
summary text from one of the trains, then edited it down to also apply to the description
of the other type. Each type was put as a list item under a subheading; they looked
at another article to see how to create subheadings. The participant also then decided
to add an image from one of the train types, and updated the caption to fit within the
new context. Once saved, they used the backlinks feature to test that each of the types
of train they were linking to also linked back to the new summary article.

Adding hyperlinks to ‘cake’, they linked nouns, and searched for more complicated
phrases to find the best article that existed, ensuring that the links had valid targets.
For example, there was no “sweetening agent” page, so the participant instead linked to
“sweet”, which does list appropriate information, found via the previous, related noun,
“sugar”. For “binding agent”, they could not find a suitable node through searching,
so did not link it. Adjacent in the text were some example agents which they did link,
commenting that “we should probably link the first one right through, but not bother
linking it anywhere else in the document”. One of the agents was “starch”, and to link

Chapter 6 Experiment II: Micro-scale 83

to the specific use of starch in food, the participant created a link to a section within an
article; they had to do this by looking at an example they come across, as they could
not find out how from the help.

They did not link “fats” because it was “so general”, instead opting to link specific fats
such as “butter”, “shortening”, and “margarine”, certain that each would have a node.
Simple concepts like “water” and “fruit juice” were not linked either, although “milk”
was, reasoning that someone making a cake may wish to find out what kind of milk
would be appropriate. They linked “marzipan” without testing that the node exists, as
“if it doesn’t...that should be a [dangling] link so that people can [add it]”.

They considered the edit major, although it didn’t add any new information, because
“the point of a minor edit is something where it’s so obviously right that it’s not worth
highlighting”; in this case, another editor may wish to see if there are any more links
which are appropriate.

6.3.3 Participant four

6.3.3.1 Off-line review

The participant added an photograph of a notable person which they had taken. They
took the photo with the deliberate intention of using it for the person’s Wikipedia article.
To get the markup for adding an image, they used an existing image in the article and
changed the filename to the photo they had uploaded.

The participant reverted some vandalism using the special ‘undo’ feature available from
page histories. They used this feature over simply editing out the vandalism (which was
a one word addition) because it was quicker. They also added the vandalism warning
template to the editor’s talk page, found via the history. In one case, they found the
vandalism because they were looking up a person who just appeared on the news.

The participant created some redirects from acronyms to an article, “because some peo-
ple might try and look [it] up like that”. They “have to look up [the redirect markup]
every time”, which they did by finding an example. Sometimes they search for instruc-
tions, but consider either approach time-consuming.

They added a “recently died” template to a person’s article having seen the announce-
ment on the news, because they had seen this done before. Again, they copied the
template from another example article they found, changing fields they recognized by
value: the name and date.

The participant also improved indexing of information: adding an article to a disam-
biguation page when they couldn’t find it via said page; and adding an article to a
category it had been omitted from, having seen that category used elsewhere for the

Chapter 6 Experiment II: Micro-scale 84

same class of items. They removed a link to a page from a template because the link
was dangling, reasoning that there “probably used to be a page for this”, and that they
did not have the knowledge to (re)create it. They added references to another editor’s
unreferenced text, where the article had references which covered the claims, but which
were not cited in-place in the article text.

Many of their edits were simply straightforward text or markup corrections for a wide
range of articles.

6.3.3.2 On-line self-report

To add the date of EU membership in the ‘Belgium’ task, the participant looked through
the template for a suitable parameter. They found ‘established event1’ and ‘estab-
lished event2’, and reasoned that creating a third event would work, which it did. As
they noted when shown that the template has a separate parameter for EU membership,
this would not be picked up by systems extracting semantics from infoboxes.

In the ‘cake’ task, the participant chose nouns which were cake ingredients, because that
seemed consistent with the rest of the page. They chose primarily simpler terms which
they felt were most likely to exist, omitted compounds such as “sweetening agent”. They
would check the links and remove any which were dangling if expending more time on
the task.

The participant had no difficulty with the Shelf task and made quick use of the system’s
backlinks feature to find pages to correct.

The participant created a summary page with a bulleted list item for each of the train
types, using text copied and pasted from the specific train types. If later changes to
this shared text were needed, the participant said that both would have to be edited,
although there may be a need for the copied text to be different, because of the different
context. For adding new train types, they suggested using categories, although this
lacks descriptions for each of the category items in the category page. They contemplated
using templates to share text, but “it would be quite complex, and [it] is really confusing
when you go to a page to edit it and the text you want to edit isn’t actually in the page
because it’s somewhere in a template, but you don’t know which template it’s in”.

The participant made two straightforward edits for the villains articles, adding the fact
into the flow of the text in both. They hypothesised that the pages differed from where
some people edited just one of the copies.

For the London Underground, the participant also added the starting date to the infobox,
using the template documentation, found from the listed of in-use templates when editing
the page. They edited the same information into the general article’s section on the
Underground.

Chapter 6 Experiment II: Micro-scale 85

6.3.3.3 Remarks

This participant was more familiar with the tools and processes on Wikipedia, but did
not consider themselves adept at ‘advanced’ wikitext. Despite this, they show evidence of
succeeding at some more complex tasks, such as creating redirects, and using templates.

6.3.4 Participant five

6.3.4.1 Off-line review

This participant edited a different MediaWiki-based wiki, although the domain was still
a communal information resource.

They took an image which had been left plainly at the bottom of the article and added
the markup to float as a thumbnail in boxout with a caption. They know the template
invocation from experience, but originally learnt it from ‘cheat sheet’ documentation.

They also updated the image used for the site’s logo, as the design changed. They chose
to use the ‘upload a new version’ feature of the wiki, rather than uploading each version
as a separate image, because they are conceptually all the same image.

The participant decided that one of the articles needed an image, so searched the web
for an appropriate one.

In general, they corrected text, and in some cases made a few sequential edits where
errors were not caught by previewing. They created some new pages by creating dangling
links to them, then following those links. There were some more advanced operations,
such as adjusting the structure of the table, but these were ultimately a case of changing
markup the participant was familiar with.

6.3.4.2 On-line self-report

The participant made a straightforward addition of the fact to both articles for the
London Underground task, finding an appropriate subsection for the detailed one.

They chose ‘cake’ terms that they didn’t know, such as “buttercream”. They would also
check that the targets of any links existed.

For the trains, they created a mock summary text, with links to the specific countries
of train. If they were more confident with the subject area, they would create new,
separate text for the summary article than for the summaries in each specific train
article; they would not share the summary text. They also suggested categories as a

Chapter 6 Experiment II: Micro-scale 86

possible approach to handling future additions of types of train, although they would
have to look up how from a past instance where they had done so.

The participant added the Belgium EU membership using ‘established event3’, after
finding nothing else suitable, as for participant four. They followed the example of other
dates in the infobox for formatting the value.

For the villain, the participant would split the villain’s section out into a new article, and
use the ‘main article’ approach seen elsewhere on Wikipedia by looking at an example.
Text which is specific to that villain’s role in that film would be left in the section
within the film’s article, but everything else would be moved into the villain’s article.
There would not be any explicit reference from one film to others that also have the
same villain; this would be left to be implicit via the villain’s article. However, the
participant would also look for examples of other films which have shared characters.

After some initial uncertainty, the participant decided that they could resolve the am-
biguous Shelf links by copy-pasting the correct link targets into pages found by using
the system’s backlinks feature.

6.3.4.3 Remarks

The participant administered the MediaWiki-based system their off-line review was
based upon edits of, and thus was experienced with the MediaWiki software, and the
social processes of that specific wiki. The on-line report involved Wikipedia’s policies,
with which they were less experienced, hence the need to look for examples despite being
comfortable with the technology.

6.3.5 Participant six

6.3.5.1 Off-line review

This participant also migrated some information from a non-English Wikipedia article,
about which the participant was “very knowledgeable”, to its English Wikipedia equiv-
alent. The English version was of poor quality and wrong, so they used a modified
translation of the non-English version, and added a few links to articles they knew to
exist because they had seen links to them elsewhere.

They also added some information, corrected language mistakes, and turned a term that
they knew was an article title into a link, to some articles. The articles are on subjects
they are interested in, and one was a correction made to an article about a television
series while looking up information about an episode.

Chapter 6 Experiment II: Micro-scale 87

6.3.5.2 On-line self-report

To create the train summary, the participant looked fruitlessly for the UI to create a
new page (there is no such dedication functionality, although the search box can be used
for this), before editing the browser address bar. They created headings for each type
of train, and copied in the first paragraphs, and one image from each. Above this, they
created a summary heading with some new, general text. After a preview, they note
to create links to the train types, and also copy in the ‘see also’ and ‘external links’
sections from the specific trains, renamed to be scoped by the type of train. However,
they would probably write the summaries from scratch in a real situation, and not use
the same text; if corrections were then needed, they would just have to be made in both
places.

They immediately commented that the villain appearing in both films was not merged
into a single article. They would do this, moving the text away from the films, and
replacing it with, and leaving behind any, paragraphs specific to their appearance in
that film.

For the London Underground, they would put the starting year in the infobox, but
cannot think of a template keyword to use. They link the year when they write it
“because on Wikipedia many people do that”. They were initially reluctant to add the
fact to the more general article until they spotted the section within it relating to the
underground.

The participant describes the ‘cake’ task’s problem as “there will either be loads of links
or none, because all the things can be really linked to”. They pick the most uncommon
things, skipping over terms people “should know”, such as “flour” and “sweetening
agent”, as they links would “be too much for reading the text”. Instead they pick
what they consider ambiguous: “buttercream”; “marzipan”; “piped borders”. They
link to “special occasions”, but not to the examples of special occasions listed after
(e.g. “weddings”), because they consider that clause parenthetical, and wouldn’t link to
things in parentheses.

They attempt to add the EU membership date to ‘Belgium’ by finding a suitable place in
the markup and adding a parameter ‘eu membership start date’. They do not realise
that templates work on a fixed set of parameters, of which this is not one, and spend
a while attempting to adjust the syntax when it has no effect. They expected adding
things to infoboxes to be as easy as adding them to tables. The participant used the
system’s backlinks feature to find pages pointing to the Shelf disambiguation page, and
fixed one of them. They opened the page for the expected specific type of Shelf in a
separate browser tab so that they could ensure they were linking to the appropriate
meaning.

Chapter 6 Experiment II: Micro-scale 88

6.3.6 Participant seven

6.3.6.1 Off-line review

The participant made two large groupings of edits: a continuation of some previously-
started work on an article about a section of railway which they were preparing in a
personal sandbox under their user account’s namespace, and a cleanup of a series of
computer games.

The railway article contains a diagram of the rail network for this section of track, which
is constructed out of a grid of icons using templates. With this, the participant adds
some text, and references taken from web searches. The text contains a ‘citation needed’
claim, as the participant knew the fact but couldn’t find satisfactorily specific citations
for it, so they decided to “get the gist in” and let someone else fix it.

They found out how to construct the rail network diagrams by spotting other diagrams
in rail articles and looking at how they were constructed. They then searched for the
templates used to find the documentation, which includes a catalogue of icons. The
participant constructs the diagrams within a sandbox because they do not want to leave
‘public’ nodes in a half-finished or broken state. The preview feature is unsuitable
because the diagram templates are very complex and time-consuming to slowly build
up; if they make a mistake, they want to have an edit history available to be able to roll
back, else they have effectively lost their work as an incomprehensible mess.

Once it is in a “reasonable” state, the participant moves the sandbox article to its
intended page about the railway station. First they prepare the links to the target page.
They find articles which should be linking to it by physical properties—for a rail network,
this is adjacent stations—and make all the link names consistent, as dangling links can
often suffer from co-reference problems in naming. They then view the backlinks of the
still-non-existent target page to ensure that all pages they expect to be linking inwards
are now doing so. Finally, they copy-and-paste the sandbox to the target, and set the
sandbox pages to redirect to the new, ‘public’ page.

For another railway section, the participant had some information left over in their
prepared notes while writing about the station which they could not work into the text
of the article. Rather than leave these notes unused as a local file on their computer,
they put them on the discussion page for the article, with sources, so that other editors
may use them if they see fit.

The participant also found some historical pictures of a railway while browsing, and
wondered if Wikipedia would have any. They discovered that Wikipedia did not, so
added the pictures, and a reference.

The other major set of edits, about twenty in number, affected a series of computer

Chapter 6 Experiment II: Micro-scale 89

games. There was one article for the series overall, and one article for the second game
in the series; the participant felt that the first game should also be split out, the third
was not yet up to quality—it should be copy-edited before it is moved—and that the
fourth game’s section was too small. First, the participant added a template proposing
to split the series article apart. They found the template via cheat-sheet documentation,
which they access via a shortcut term in the search box. They added the reasoning for
the proposed split to the talk page, and received positive feedback from a previous editor,
identified from the page history, not user profile.

The participant added an ‘in use’ template, seen in the documentation, to the series,
which acts as an advisory lock to warn other editors that their changes may be lost in
conflicts, and to avoid editing now. They cut down the second game’s section within the
series article because it already had an article. They then factored out the first game
to a separate article, created by following a dangling link, although they changed plan
slightly during the process: rather than avoiding an existing disambiguation page, they
replaced it with this article and added the template for ‘for less common meaning X’
to the top. This did lose the very short history of the new first game article up to that
point, because only administrators can move pages while preserving or merging histories.
They also moved out categories and external links to the game-specific articles. After a
lot of adjustments, they removed the ‘in use’ and ‘split apart’ templates.

In the process, they converted an external link to an internal link about the same piece
of software, because they had “seen it done elsewhere as well”, and prefer this because it
will link to more encyclopædic information than the software’s website. They also linked
the word “parody”, because “not everyone might know what a parody is”, although they
“try not to overdo it” with such links.

The participant also tended to use the random article feature, and generally copy-edited
articles to be more encyclopædic. They removed an unreferenced section which had gone
undefended for a period of months.

6.3.6.2 On-line self-report

The disambiguation was much the same ‘find backlinks; determine meaning; edit link’
process as for other participants, but the participant did observe that they normally edit
Wikipedia with an extension which provides on-hover previews of page targets, useful
for checking that the new link target is appropriate.

To create the summary of trains, the participant started with links back to the specific
articles, using the ‘main article’ template, tested with a preview. They added the section
headings and looked in the articles for text to use, but did not find the introduction
suitable, instead using a later section on the history of the train instead. When saving
the edit, the participant would include links in the edit comment for the benefit of the

Chapter 6 Experiment II: Micro-scale 90

page history. They would save this “rough cut”, then go back to copy-edit once the
structure is in place. In a real situation, they might improve the train articles first,
rather than have to propagate back the improvements. A ‘see also’ link would help keep
people aware of where summaries are shared, but once to four or five countries of train,
the participant suggests a navigation box, as it is more visible.

The participant added the London Underground fact to both articles, and in the detailed
one duplicated the fact in the appropriate history section. They took care to mark the
claim as needing citation, and would have provided their source if making this edit in
the real system. They considered the edits major because they added information in a
prominent location.

For ‘Belgium’, the participant looked up the template documentation and found the
parameter to use, but initially failed to make the date appear because they accidentally
applied it to another template nested inside the infobox template. The template syntax
was not indented.

To add links to ‘cake’, the participant opens a browser tab for searching, to “check
these things actually do exist first. Before I even preview I’ll go and check that.”
They would not rely on the colouration of links to indicate if they are dangling, as this
“gets annoying” and hides that non-dangling links might still be disambiguation pages
or redirects. However, on their normal Wikipedia setup, they might use their hover-
preview to test. They link “flour” and contemplate “sweetening agent” and “binding
agent”, but note that there are “an awful lot of things I could link to here...but we’re
going to overload the user with information here, I’m just going to link to some of
the ingredients”. They link “just a few of the most important ones”, such as “sugar”,
skipping over non-primary ingredients, and also note that they would cut down the
text of this intro. “Yeast” and “dough” are linked because they are “slightly unusual”,
and there should be lots of encyclopædic information about them; “baking powder” is
considered “less exciting”. The participant would make another pass, and possible add
another few links, in a real case. They would ensure that they only link a term on the
first instance.

When looking at the films in which the villain appears, the participant notices that the
text is identical, and that the duplicated content is “unfortunate”. Because of the small
change required by the task, and the difficulty of refactoring, they would just make the
change in two places, but then suggest on the talk page to perform a split, much like
for the game series in their off-line review. They stress the necessity of the talk page
announcement: “because this is quite a large change to make, people are going to get
upset if you’re not careful”.

Chapter 6 Experiment II: Micro-scale 91

6.3.6.3 Remarks

The participant considered themselves extensively familiar with the MediaWiki software,
and clearly demonstrates a high level of experience with Wikipedia practices. They
remarked that, especially after the mistake with ‘Belgium’, templates are “nasty”, and
the Wikipedia syntax in general is painful. They have to create workflow within their
browser with multiple tabs because Wikipedia provides no support for it, even though
they are often editing multiple things at once, moving content between them. The hover
previews are one way in which they try to improve this.

6.4 Conclusions

6.4.1 Common observations

Behaviour 2 3 4 5 6 7
Same villain in two movies
Edited both X X X
(Would) split X X X
Specific and general London Underground
Edit detailed X
Edit both X X X X X
Edit infobox X
Disambiguate Shelf links
Found backlinks X X X X X
Corrected target X X X X X X
Summarise two types of train
Rewrite in own words X X X
Copy existing text X X X
Create category X X
Add links to cake introduction
Nouns, uncommon X X X X X
Nouns, ingredients X X
Explicitly first only X X
Check existence X X X X
Add fact to infobox for Belgium
Added fact X X X X
Established event instead X X
Date format used by example X X
Used template documentation X X

Table 6.1: Summary of participant behaviours for tasks on Wikipedia

We set out to determine the goals editors set themselves, and how they act to achieve
them. To recap, table 6.1 groups the general approaches against each participant.1

1“Explicitly first only” for the cake links indicates that the participant made note that they were
only linking the first occurrence of words, but no participant linked a word multiple times.

Chapter 6 Experiment II: Micro-scale 92

Several of the participants edited articles to correct errors they encountered while fol-
lowing a primary goal of looking up some information. While this is not particularly
surprising for cases of simple, non-content corrections, such as markup or typographical
errors, it is counterintuitive that people who are looking up information, and thus are
presumably not experts in that field, will make more significant edits, such as finding
and providing references. However, some participants looked up articles on subjects
about which they are knowledgeable, either as a reference, or out of curiosity as to what
information Wikipedia would have.

There are three ways shown that editors will select images to add to an article. They may
deliberately seek to create them with the intent to then add them to Wikipedia, as with
participant four’s photograph. They may discover them while browsing on unrelated
tasks, then decide to add them to Wikipedia, as with the pictures found by participant
seven. Or, they may be editing an article, decide that it needs illustration, and search
for suitable images, as with participant five. There is therefore a range of premeditation
to major edits such as this; an extreme case for textual editing is the railway work
described by participant seven, with preparation of an entire node in a semi-private area
of the wiki, and with a local collection of resources.

Learning by example is a common practice to all of the participants, even those who are
also adept at using the documentation. Editors often tried to keep their articles, and
meta-activities such as edit comments, consistent with those of other editors. They were
actively aware that other editors were at work, and in cases implicitly delegated tasks
to whichever editor is inclined to address any outstanding issues, by leaving incomplete
sections, dangling links, or marker templates (such as ‘citation needed’). Dangling links
also provided a common mechanism to create new pages, as the wiki has no explicit UI
feature to do this.

Even relatively advanced features which do not offer additional capabilities over simpler
ones, such as the ‘undo’ links in the history, may be used if they save the editor time.

In the tasks where participants were asked to share text between articles, most of them
decided that they would use different text on the different articles, because of the differ-
ent contexts. For the specific article/general overview case, they edited the information
into the existing contexts with no outward consideration of synchronising the summaries.
For the trains, several explicitly stated that different text was needed. Hence, there are
cases where what is abstractly the same semantic information in multiple places may
still not be sharable, because of differing presentation needs. Conversely, the ‘villain’
task shows that sharing is suitable in some situations, where there is a larger, mostly
self-contained section of content. This task also highlights the need for better knowl-
edge modelling on Wikipedia, as the current articles do not clearly divide the concepts
of actors, characters, and films.

Templates were generally troublesome, even to the more experienced editors. While

Chapter 6 Experiment II: Micro-scale 93

they would technically permit content sharing, as one participant observed, this has the
detrimental property of “hiding” away the text while editing, requiring the editor to
follow a possible chain of templates to find where the text they wish to change actually
exists. Infobox templates made what should be a simple task of adding a statement about
a property of a resource a complicated procedure which some participants could not
complete without prompting. While Wikipedia, and hence the synthetic environment,
currently runs on a non-semantic wiki, we must stress the risks in not breaking away from
this templating-for-properties paradigm as one moves on to systems such as Semantic
MediaWiki.

The general problem is that templates on Wikipedia, due to their macro limitations, are
presentational, not declarative. We have covered this problem with regard to straight-
forward properties in section 3.4.7, but the rail network diagram activities of participant
seven highlight this as a more general problem. The complexity of these templates stems
from their need to specify exact layout and rendering of arbitrarily complex graphs, here
composited from tiled images, when the actual semantic content is a relatively straight-
forward set of connections. In this case, simple text display of the relation data is
insufficient: there is a more complex transform required to generate appropriate pre-
sentation. Other example problem domains are molecular diagrams and family trees.
Wikipedia currently primarily uses manually-created images for the former, and the
community are investigating approaches to entering and displaying the latter,2 but all
are presentational. Solving this in the general case may be impractical without pro-
viding the facility to define Turing-complete transforms, which then introduces security
and performance problems.

Both in the ‘cake’ task, and in general editing behaviour, all participants felt that things
that exist should generally be linked, but that there is a optimal link density to maintain.
The threshold to which they would link terms varies significantly between participants,
from most of the nouns, to just a few phrases (nouns and noun phrases being those most
likely to be article titles). They also prioritised links differently: some chose the simpler
terms; others the more obscure terms. All participants only linked a single instance of
each term, and several commented explicitly on this decision.

6.4.2 Implications

We now consider how these observations apply to our proposed hypertext system, to
determine the desired ordering of feature importance.

We should note the importance of keeping two common wiki features, despite our push
towards stronger hypertext. First, the editors made use of ‘broken’ hyperstructure, such
as empty sections and dangling links, so we should not attempt to prevent this, as many

2http://en.wikipedia.org/w/index.php?title=Wikipedia:Family_trees&oldid=212894318

http://en.wikipedia.org/w/index.php?title=Wikipedia:Family_trees&oldid=212894318

Chapter 6 Experiment II: Micro-scale 94

classic hypertext systems did. This is somewhat of a unique point of wikis, in that
their mutable nature means that navigating to a non-existent target can have useful
behaviour: creating the node. Second, the editors often learn by example, so must be
able to view the source of pages to see how some construct is achieved, even if they
are not permitted to modify the source. Some wikis entangle the source view with the
editing operation such that this is not possible, which then deprives the editors of this
valuable source of real-world example usage.

These incomplete states are being used as a form of passive communication between
editors. The message is implicit and, interestingly, the recipient is often simply the
next editor to encounter the page who has the motivation and experience to act upon
it. Because these incomplete states are co-ordination between editing users, they are
potentially of no interest to reading users. However, the complexity with hiding them
from non-editors is that, on a normal wiki, every user is potentially an editor, even if
not logged in. While users which have not created accounts are potentially less likely
to undertake major editing tasks (see section 5.6.3), this is heuristic at best, and may
discourage editors from getting involved if only because they are not aware of the in-
complete changes. The current approach of using different styles of link—by colour,
in MediaWiki—has the advantage of leaving the decision, if also workload, of ignoring
dangling links to the user.

The ability to edit links from any of their anchors is a relatively simple step from first-
class linking, but we did not reveal any compelling evidence that there is a pressing
need for this. All the participants, once they had found the functionality in the user
interface, were able to use the wiki backlinks tool to find the endpoint at which the
link was embedded, and correct it there. This capability may yet prove useful as wikis
transition towards semantic links, as many semantic relations are meaningful in either
direction (i.e. many properties have inverses), but is not currently a priority.

Level of detail, part of adaptation, may not be as useful as one may theoretically suppose.
Abstractly, it would seem sensible that a low-detail version of a page could be used as a
summary about that page when linking to it from elsewhere, as with the specific/general
task. However, we have found that the surrounding context affects, if not the semantics
of the content, the appropriate wording, such that these summaries are not particularly
re-usable.

This also affects the use of transclusion with fat and computed links for aggregation.
The most obvious application of this functionality in our synthetic tests would be the
types of train, aggregating the low-detail summaries of each train type into a general
page on the subject. However, this is also the case where we have identified that context
affects the re-usability of the content.

Transclusive re-use of content in general, however, has useful cases. Content which is
sufficiently self-contained, not a summary in the context of another page, is a potential

Chapter 6 Experiment II: Micro-scale 95

candidate for sharing.

Edit-time transclusion solves one of the problems identified by a participant: templates
hide the text away. This opacity then greatly limits the usefulness of templates for re-use.
As such, we consider the transparency that would be afforded by edit-time transclusion
worth prototyping.

The template mechanism also greatly overcomplicates property editing. Instance prop-
erty editing based on class descriptions, as described in section 4.7, would provide a
much cleaner interface to this. We consider this feature highly important due to the sig-
nificant problems with the current approach, but note that non-research implementation
work in this area is already underway in the Semantic Forms extension: see section 4.7.

The linking of terms, as stressed in the ‘cake’ task, is effectively a manual form of generic
linking. Outside of the synthetic tasks, this was a common ‘minor edit’ behaviour, and
as such there should be enough benefit from automating it that we consider this a strong
priority to develop. However, we must be aware that the task is not as trivial as pattern
matching. Editors have varying heuristics to determine if a ‘manual’ generic link should
be applied to a given instance of a term, and while the lack of such variation in a
deterministic algorithm may improve consistency, we must ensure that the link density
is kept manageable by some comparable means. At least one restriction is reasonably
clear: only one instance of a term per document should be linked.

The next chapter presents a model for a class of system, an open semantic hyperwiki,
which we feel combines the benefits of open hypermedia, semantic web, and semantic
wiki. It supports the features we have identified here as being of particular importance
to improving the wiki editing experience.

Chapter 7

Model

7.1 Introduction

In this chapter, we present a model for Open Weekat, a system of the ‘open semantic
hyperwiki’ type. It draws from both past hypermedia models, and the informal model
of modern semantic wiki systems. In particular, we preserve the notion that wiki nodes
(or ‘components’ in Dexter parlance) are parallel to semantic web resources. Because
these resources are atomic (RDF cannot perform within-component addressing on them,
as that is only meaningful for a representation of a resource), we have carefully designed
our wiki model to not rely on link endpoint specifications which go beyond what can
be reasonably expressed in application-generic RDF. Anything about which one wishes
to make statements, or to which one wishes to link, must have a unique identity in the
form of an URI, rather than some form of (URI, within) pairing.

Node title
DOM tree text node
→ native transclusion

DOM element
element contents

attribute "value"

transclude
oo_ _ _ _ _

link
//

Figure 7.1: Weerkat model diagram legend

96

Chapter 7 Model 97

7.2 Core type: the node

7.2.1 Components of a node

Figure 7.1 shows the components of a node in the Weerkat model. (We use this dia-
gram format, which is inspired by UML class diagrams, to depict example hypertexts
throughout this document.)

Every node has a title which serves as an identifier. These identifiers may act as nested
namespaces, depicted here with full stops ‘.’. This is useful for creating identities for
content which nominally belongs within another node.

Node content is either a DOM tree of wiki markup, or an atomic object (e.g. an image
binary). A notable element in the DOM tree is the ‘native transclusion’, which indicates
that another node’s content should be inserted into the tree at that point. This is
necessary to support the linking behaviour described below, and is distinct from user-
facing transclusion using normal links (which will be covered in section 7.7.4).

The bottom of the format shows the attribute-value pairs for the node. The domain of
attributes is other nodes, and the domain of values are literals and other nodes. These
are effectively very primitive semi-embedded, typed links, and are used to provide a base
representation from which to describe first-class links. By ‘semi-embedded’, we mean
that such annotations are not separable, uniquely identifiable objects as a true first-
class link would be; however, they are not part of the data stream of the node content,
and thus can be used even with unmodifiable or opaque binary formats. In particular,
in future they should allow ‘embedded’ anchors to be specified for images, despite the
potential use of image file formats which do not store marked regions or intrinsically
support arbitrary metadata.

7.2.2 Embedded anchors and linking

Figure 7.2 shows user-level linking. As presented to the user in an example plaintext
markup, the source for the Phil node would be:

I would call [link type=Likes to=Perl Perl] an [em elegant]

language.

We use edit-time transclusion to present the user with the familiar and direct model
of embedded linking, but map this into an open hypermedia model. The link element,
when written, separates out the link text as a separate, ‘anchor’ node, and is replaced
with native transclusion. A first-class link is then created from the anchor node to the

Chapter 7 Model 98

Phil
I would call
→ Phil.anchor.1
an

em
elegant

language.

//___
Phil.anchor.1

Perl

Perl
(interesting facts)

syntax elegant

Phil.link.Perl.1
type Likes
source Phil.anchor.1
target Perl

oo

Figure 7.2: Weerkat model linking

link target. The identity if this link is largely arbitrary, so long as it is unique, although
it may become misleading if its targets are later changed.

Native transclusion is here an optimisation for creating a named, empty anchor in the
DOM, then maintaining a link which transcludes in the node of the same name. It is
also considered meronymous: a link involving an anchor is considered to relate the node
to which that anchor belongs. Because native transclusion is entirely implicit, only the
owning node can natively transclude its anchors.

When editing the node again, the anchor is transcluded back into the node, and converted
into a link element with targets derived from links affecting the anchor node. (Depending
on the exact markup language used to express the DOM for editing, this may require
multiple, nested link elements.)

This guarantees that each anchor has a full identity (a node title) in the system. It does
not, however, immediately provide a solution to ‘the editing problem’—a longstanding
issue in hypertext research[60], where changes to a document invalidate external pointers
into that document. The anchor names are not here used in the plaintext markup, so
ambiguity can arise when they are edited. It should thus be possible to specify the
anchor name (as a member of the Node.anchors namespace) for complicated edits:

I would call [link anchor=1 type=Likes to=Scheme Scheme] an [em

elegant] language.

A graphical editor could treat the link elements as objects in the document content
which store hidden anchor identities, providing this in all cases.

Note that the link’s properties in figure 7.2 are stored as attributes. Theoretically, in
the RDF presentation described in the following section, an attribute-value pair (source,

Chapter 7 Model 99

Phil.anchor.1) in the node Phil.link.Perl.1 is identical to a link of type source from the
link to the anchor. However, such an approach would become infinitely recursive, as the
source link’s source could again be described in terms of links. The attribute-value pairs
thus provide a base case with which we can record basic properties needed to describe
first-class links.

7.3 Identity, meta-nodes, and RDF

It is a design goal of the Open Weerkat wiki model that the hyperstructure of the wiki
is isomorphic to a useful RDF graph, in much the same vein as existing semantic wikis
(e.g. Semantic MediaWiki [1].) That is, typed links between pages are expressible as
an RDF statement relating the pages, and attributes on a page are statements relating
that page to the associated value. The link in figure 7.2 should be presented (via RDF
export, a SPARQL endpoint, or such) as the triple (Phil, Likes, Perl), with appropriate
URIs. (Note that the anchor is not the subject—we follow the native transclusion back
into the owning Phil node.) The attribute of the Perl node in the same figure should be
presented as the triple (Perl, syntax, elegant).

For this, we grant each node a URI, namespaced within the wiki. However, ‘the node
Perl’ and ‘Perl the programming language’ are separate resources. For example, the node
Perl may have an URI of http://wiki.example.org/node/Perl. Yet a typed link from
Perl is clearly a statement about Perl itself, not a node about Perl. The statements are
about the associated resource http://wiki.example.org/resource/Perl. (This may
be owl:sameAs some external URI representing Perl.)

In order to describe the node itself (for example, to express that a node is in need of copy-
editing), a Perl.meta node represents the URI http://wiki.example.org/nodes/Perl.
This meta node itself has an URI http://wiki.example.org/nodes/Perl.meta, and
could theoretically have a ‘meta meta’ node. Effectively, there is an ‘offset’ of naming,
where the wiki identifier Perl is referring to Perl itself semantically, and the Perl node
navigationally; the identifier Perl.meta is referring to the Perl node semantically, and the
Perl meta-node navigationally.

7.4 Representations

Each node URI should have a representation predicate which specifies a retrievable URL
for a representation. (We do not claim to have any authority to provide a representation
of Perl itself, merely our node about Perl.) For example, (wiki:node/Perl, representation,
http://wiki.example.org/content/Perl.html). There may be more than one, in
which case each should have a different MIME type. Multiple representations are derived

http://wiki.example.org/node/Perl
http://wiki.example.org/resource/Perl
http://wiki.example.org/nodes/Perl
http://wiki.example.org/nodes/Perl.meta
http://wiki.example.org/content/Perl.html

Chapter 7 Model 100

from the content: for example, rendering a DOM tree of markup to an XHTML fragment.
Hence, the range of MIME types is a feature of the rendering components available in
the wiki software to convert from the node’s content.

Should an HTTP client request the wiki:node/Perl resource itself, HTTP content
negotiation should be used to redirect to the best-matching representation. In the spirit
of the ‘303 convention’ described in section 2.2.5.1, if the HTTP client requests RDF,
they should be redirected to data about the requested URI: i.e. one meta-level higher.
This inconsistency is unfortunately a result of the way the convention assumes that all
use of RDF must necessarily be ‘meta’ in nature, but we have considered it preferable to
be consistent with convention than to unexpectedly return data, not metadata, RDF in
what is now an ambiguous case. Clients which wish to actually request the Perl node’s
content itself in an RDF format, should such exist, must find the correct URI for it (e.g.
http://wiki.example.org/content/Perl.ttl) via the representation statements.

Requests to resource URIs (e.g. wiki:resource/Perl) are only meaningful in terms of
the 303 convention, redirecting RDF requests to data about wiki:node/Perl. There are
no representations available in the wiki for these base resources—only for nodes about
them—so any non-RDF type must therefore must be ‘Not Found’.

7.5 Versioning

7.5.1 Sessions

Nodes are versioned in their entirety: both content and attributes. Because links are
simply nodes with particular attributes, links are also versioned. Edit-time transclusion,
and the ‘compilation’ of links into embedded representations for editing, make it neces-
sary to support the user modifying multiple nodes with one editing session, unlike most
wikis. We shall not dwell on these points, as editing sessions covering multiple resources
are common to source code version control systems, and have been previously covered
in hypertext research.[74, 75, 76]

7.5.2 Revision identity

We must give consideration to the identity of versions, or ‘revisions’ of a node. We
wish to support navigational linking (including transclusion) to old versions of a node.
However, we must also consider our semantic/navigational offset: we may wish to write
version 3 of the Perl node, but we do not mean to assert things about a third revision of
Perl itself. Likewise, a typed link to version 3 of the Perl node is not a statement about
version 3 of Perl: it is a statement about Perl which happens to be directed to a third
revision of some content about it.

http://wiki.example.org/content/Perl.ttl

Chapter 7 Model 101

Node title Content (navigational) URI Represents (semantic)
Perl Text about Perl Perl Perl itself
Perl3 v3 of text about Perl Perl Perl itself
Perl.meta Text about text about Perl Perl/meta Text about Perl
Perl.meta4 v4 of text about text about Perl Perl/meta Text about Perl
Perl3.meta Text about v3 of text about Perl Perl;3/meta v3 of text about Perl
Perl3.meta4 v4 of text about v3 of text about Perl Perl;3/meta v3 of text about Perl

Table 7.1: Weerkat model version identifiers

We desire three properties from a system of generating identities for old versions:

Semantic consistency. Considers the version of the content about a resource irrele-
vant to its semantic identity. All revisions of the Perl node are still about the same
Perl.

Navigational identity. Each revision of a node (including meta-nodes) should have
distinct identity within the wiki, so that it may be linked to. Intuitively, despite
the above, version 3 of the Perl node is Perl3, not Perl.meta3.

Semantic identity. Each revision of a node (including meta-nodes) should have a dis-
tinct URI, such that people may make statements about them. (Perl3.meta, writ-
tenBy, Phil) should express that Phil wrote version 3 of the content for the Perl
node.

We can achieve this by allowing version number specification both on the node and any
meta-levels, and dropping the version specification of the last component to generate the
RDF URI. Table 7.1 demonstrates this using an example syntax of subscripted numbers
to indicate versioning. Should somebody wish to make statements about version 4 of the
text about version 3 of the text about Perl, they could use the URI Perl;3/meta;4/meta.
This is consistent with the ‘node is resource itself; meta-node is node’ approach to
converting typed links into statements. Additionally, we have no need to attempt to
express that Perl and Perl3 are the same semantic resource, as this mechanism allocates
them the same URI.

It should be stressed that namespacing components of the node identifier cannot have
versions attached, as any versioned namespace content does not affect the node content.
For example, Languages2.Perl3 is not a valid identifier, and would be isomorphic to
Languages.Perl3 if it were.

7.5.3 Mutability of links

Clearly, as nodes, it is very trivial to version links if the user chooses to edit them
directly: say, changing their type. However, they suffer much the same problem as the
embedded anchors when being edited from their ‘compiled’ representation in a node. If

Chapter 7 Model 102

Template.GoodNode
This node is featured in
topic

param
topic

in particular because of
its

param
virtue

Figure 7.3: Exemplary parametric node

the user changes the target of an apparently embedded link from Perl to Scheme, is it
still the same first-class link?

We believe that the best-defined behaviour in this case is to consider such a change the
creation of a new link, and the cessation of participation in the old link. This necessarily
means that a new version of the old link is created which no longer references the node.
(In the interests of cleanup, if the link only has one other source or target, and has no
content associated with it, it should be deleted entirely.)

This does not mean that it is impossible to change the targets of a link: such an action
is possible by editing the link’s node directly. Instead, we treat changing the targets of
what is conceptually the same link, or relation, to be a minority case, with the most
prominent mechanism for changing the links between pages instead creating conceptually
new relationships.

7.6 Parametric nodes

7.6.1 Node identity

MediaWiki’s form of transclusion, ‘templates’, also provides for arguments to be passed
to the template, which can then be substituted in. This is in keeping with the general
MediaWiki paradigm that templates are solely for macro processing of pages.

We propose a generalisation, whereby pages may be instantiated with arbitrary key/-
value pairs. The range of our links are node identifiers, so we consider these parameters
as part of the identity of an instantiation in a (likely infinite) multi-dimensional space of
instances. Figure 7.4 shows a subset of the instance space for a node, figure 7.3, which
has parameters topic and virtue. There is assumed to be an instance at any value of
these parameters, although evidently all such instances are ‘virtual’, with their content
generated from evaluating the parametric Template.GoodNode node.

Chapter 7 Model 103

_
virtue

//�

topic

��

Template.GoodNode
{topic→science,

virtue→citations}

Template.GoodNode
{topic→science,

virtue→grammar}

Template.GoodNode
{topic→art,

virtue→citations}

Template.GoodNode
{topic→art,

virtue→grammar}

Figure 7.4: Instance-space of a parametric node

It may initially seem appealing to model links to instances instead as a (identifier ,

parameters) pair. However, remember that our model of linking is designed such that
endpoints consist solely of an identifier, so as to map neatly with the Semantic Web model
that any resource worth making statements about should have identity. As such, param-
eters would need to be applied to the link as a whole but, even with node-namespacing
of the parameters, this causes problems should a link have two endpoints to the same
node. For example, a link with two endpoints to Template.Delete, with different reason
values. Granting instances in-system identity is useful, as it encapsulates all necessary
context into one handle.

To guarantee that all isomorphic instantiations of a page use the same identifier, param-
eters must be sorted by key in the identifier. For example, Locked {reason→vandalism,
duration→3} and Locked {duration→3, reason→vandalism} refer to the same state of the
node, yet are distinct identifiers. By mandating sorted parameters, the ambiguity is re-
solved, and only the latter is permissible. Note that this is orthogonal to user interface
concerns—the restriction is upon the identity used by links to refer to ‘this instance of
this node with these parameters’, not upon the display of these parameters when editing
such a link. As with revision specifiers, parameters upon namespace components of the
identifier are meaningless and forbidden.

Within the node’s content, parameters may be used to fill in placeholders in the DOM
tree. These placeholders may have default value should the parameter not be provided;
and the default-default parameter is to flag an error. For example, a parameter may be
used to fill in a word or two of text, or as the target of a link. User interface operations
upon Foo {bar→baz}’s content, such as viewing the history, and editing, should map
through to Foo, as the instance has no content of its own to operate upon.

Because we model parameterised nodes as a (possibly infinite) set of static objects with
first-class identity which are simply instantiations of a general node, identifiers which
do not map to a valid instantiation of a node could be considered non-existent targets.

Chapter 7 Model 104

Template.Discussions
type discussion
source param(node).meta
target Discuss.param(node)

Figure 7.5: A parametric, functional link

For example, an identifier which specifies a parameter which does not exist.

7.6.2 Resource identity

We must consider whether such instances are separate Semantic Web resources to each-
other, and to the parametric node from which their content is derived. As with version
specifiers, parameters affect the content of a node, not the resource which it describes.
Because the Perl node represents Perl itself, it follows that Perl {bar→baz} still represents
Perl. However, as with version specifiers, these node instances still have distinct identity
as nodes. As Perl.meta represents the Perl node, so does Perl {bar→baz}.meta represent
the Perl {bar→baz} node. Therefore, we can form a URI for a parametric node instance
in exactly the same way we form URIs for specific revisions, defined in section 7.5.2. In
brief, the final set of parameters are dropped.

RDF expressions of the hyperstructure should specify that parametric node instances,
where used, are derivations of other nodes. For example, (Perl {bar→baz}.meta, in-
stanceOfTemplate, Perl.meta) (remember that we are making a statement about the Perl
nodes, not about Perl). This is distinct from being the instance of an OWL class.

7.6.3 Parametric links

If we also allow parameter values to substitute into the attributes of a node, we can
create parametric links. Figure 7.5 shows such an example which links all meta-nodes
to discussion nodes. For example, a value of Perl for node would link Perl.meta to
Discuss.Perl.

These are different from generic links in that they are matching on node titles, not terms
within the node content. However, if there were a function contains(t) which evaluated
to the set of nodes containing the term t in their content, then a parametric link with
source contains(term) and target term would be a generic link for any term term.

7.6.4 Eager vs. lazy evaluation

The infinite space of non-link parametric node instances can be considered to not exist
until they are specified as a link target, as their existence or non-existence in the ab-

Chapter 7 Model 105

Template.FancyLink
type Link
source param(from)
target param(to)
decoration fancy

Figure 7.6: Free-variable parametric link

sence of explicit reference is irrelevant. However, parametric node instances which are
links have the ability to affect parts of the hyperdocument outside of their own content
and relations: this is the nature of first-class links. Hence we must consider whether
parametric node instantiation, at least for link nodes, is eager (all possible instances are
considered to always exist) or lazy (instances only exist if they are explicitly referred
to).

As well as the previous examples, figure 7.6 highlights a case where this distinction is
particularly significant. With lazy evaluation, this template could be used as a macro,
in a ‘classical’ wiki style, to create links. One would have to create links to instances
of this link, which would then cause that particular instance to exist and take effect,
linking its from and to parameters.

An eager approach to evaluation would, however, treat parametric links as free-variable
rules to satisfy. All possible values of from and to would be matched, and linked between.
In this case, every node in the hyperdocument would be linked to every other node.

Logically, eager evaluation is more consistent, and potentially more useful: free-variable
links are of little utility if one has to explicitly provide them with possible values. It
has been previously covered, in the context of transcluding Wikipedia-style templates in
section 3.4.7, that using macro facilities to express common semantics is poor modelling.
It would be better to manually link the nodes, with a type of FancyLink which is then
defined to be fancy. If there were some content provided by the Template.FancyLink tem-
plate, it could still be used, but would simply display this content rather than actually
functioning as a link. This is similar to the suggested use of ‘infoboxes’ to only query
and display, rather than assert, properties of a resource in section 3.4.7.

While is is conventional on wikis to permit links to non-existent nodes, eager evaluation
of parametric links must constrain itself to nodes which exist, else the set of possible
parameter values will likely be infinite.

Chapter 7 Model 106

7.7 Expressing features

7.7.1 First-class, n-ary links

As shown in section 7.2.2, links are also nodes, which provides them with first-class
identity. If a node has at least one source and target, it is a link.

Multiple link targets, for a navigational link, should be presented as a ‘fat link’ that
the user may choose from. Transclusive and adaptive links modify this behaviour, as
described in the respective sections below.

When expressing a link as an RDF relation between nodes, the cross-product of all
sources and targets should be taken, as RDF statements may only have one subject and
one object. For example, a link with sources (A, B) and targets (C, D) of type t should
be expressed as a set of RDF statements ((A, t, C), (A, t, D), (B, t, C), (B, t, D)). This
is the same approach that has been suggested for converting XLink links, which are an
mechanism for describing n-ary hyperlinks in XML, into RDF statements [77].

Because links are a specialisation of nodes, and can be edited directly, it is possible for
authors to create links which do not have any targets. We allow these links to exist as
part of the ‘work in progress’ state of authoring, but they should not be displayed when
navigating the wiki. Links without sources also clearly do not have any nodes upon
which they would appear.

Conversely, wiki conventions state that, while we can detect ‘dangling’ links (those
which point to non-existent resources), we should still display them. Navigating to a
node which does not exist generally prompts the UI to encourage the user to create it.
This is used, again, as part of the authoring process—creating links to nodes which the
author intends to create later, as shown by experimentation in section 6.4.2.

7.7.2 Adaptive hypermedia

The standard wiki model deliberately tightly-couples content and identity in the form
of nodes, as this is convenient for the majority case of writing about distinct resources.
This coupling is also present in our model for the same reasons.

As such, we specify an alternateNode predicate, whose object is another node which
represents a resource which is owl:sameAs the resource of this node. This allows there
to be multiple nodes, with distinct node IDs, which can offer significantly differing
representations of the same resource. For example, there may be an ordinary Perl node,
and a Perl.simplified node. By allowing these as distinct nodes, rather than multiple
representations of Perl alone, the former may relate to the latter: e.g. to transclude it.

Chapter 7 Model 107

Each node on may also be annotated with whatever alternation metadata is needed: for
example, language.

As one of these alternation data, we suggest detailLevel. For level-of-detail alternation, it
is necessary to express detail levels in some usefully consistent manner. Given the task
domain is to construct documents, it is likely more useful to indicate absolute, rather
than relative, detail levels: a sentence, a paragraph, a section, a whole page. Such
values can also be automatically computed from the node content, avoiding the need to
manually specify them. ‘Detail’ is orthogonal to the complexity of a node (e.g. its use
of domain-specific terminology).

If a link target is a node with alternatives, then all of the alternatives are considered to
be targets of the link when navigating. If a link’s type is a subclass of the alternation
type, then only one of its targets, rather than all as a ‘fat link’, should be selected. We
do not currently specify the criteria for this alternation, or how custom criteria may be
specified.

7.7.3 Generic and functional links

The source and target predicates have a range of node identifiers, which makes them
suitable for ordinary, static links. However, they are not sufficient to represent generic
and, more generally, functional links.

For these, we specify sourceQuery and targetQuery predicates. Their range is that of
literal embedded queries, which provide link endpoints. These allow for computed links,
although, to avoid interdependencies, the results of a link with an endpoint query cannot
be found as the results of another query.

Queries may include content matching, such that they may act as generic links. Local
generic links may be expressed as queries with both by-content and by-metadata criteria,
such that the latter constrains the set of nodes to be matched by the former.

Functional links are possible to some extent by the use of parametric nodes which are
links with free variables. Section 7.6.3 covers some simple examples.

7.7.4 Transclusion

A link is transclusive if its type is a specialisation of transclusion. A transclusive link
replaces the display of its source anchor contents with its target contents. As discussed in
section 3.4.7, and unlike the ‘native transclusion’ in section 7.2.1, user-level transclusive
links do not imply a part-of relation.

Transclusive links with multiple targets which are not also adaptive must composite all
targets into one sequence, although the ordering for this is currently unspecified.

Chapter 7 Model 108

Edit-time transclusion is user-interface specific, although quite similar to the issues al-
ready covered in section 7.2.2 with the native transclusion performed by embedded
anchors. For a simple, text serialisation interface, such as a web form, it is possible to
serialise the transcluded content in-place with a small amount of surrounding markup; if
the returned text differs, this is an edit of the transcluded node. Again, richer, graphical
editors can replace this markup with subtler cues.

‘Cold’ transclusion, again described in section 3.4.7, is served by being able to address
a specific version of a node to link to. While a link to Perl will always navigate to the
newest version of the node, a link to Perl3 will always remain a link to that specific
version, regardless of future edits to the node.

7.7.5 Templating

Templating can be achieved through the use of parametric nodes and transclusion. Sim-
ple macroing functionality, as in contemporary wiki systems, is possible by transcluding
a particular instance of a parametric node which specifies the desired parameter values.

It should be stressed that parametric nodes are not, however, a macro preprocessing
system. As covered in section 7.6.4, parametric links are eagerly evaluated: i.e. they
are treated as rules, rather than macros which must be manually ‘activated’ by using
them in combination with an existing node. In general, use of macroing for linking and
relations is discouraged, as it is better expressed through classes of relation.

7.7.6 Composition

The range of features in the model provide at least three distinct ways to achieve com-
position. Figures 7.8 through 7.10 depict these, with some of the previously discussed
minutiae of linking omitted for clarity. Figure 7.7 shows the desired result of the com-
position.

The parametric node approach provides composition by means of substituting the pa-
rameter value into the parametric node’s content. For compositions where, as with the
example, small pieces of content are being composed in the context of some encompass-
ing content, this is the cleanest approach. Note that parameter passing is by value, and
that the content being passed does not have distinct identity. A variation of this for
cases where sharing is desired would be to specify a link target as a parameter, thus
effectively substituting a specified node and achieving pass-by-reference.

Figure 7.9 shows that a document may use multiple transclusive links to compose mul-
tiple nodes into its own content. (For simplicity of the diagrams, the links are shown
embedded here, but would have first-class representations as discussed in section 7.2.2.)

Chapter 7 Model 109

This approach is useful for cases where the content being composed consists of larger,
shared nodes. It is possible to interleave the transcluded content with content within
the Haskell node itself. This approach is not particularly suitable where content must
be included in groups, as with the example. The related contents are not kept together,
as with parametric nodes, and can only be edited together when they are already used
together (via edit-time transclusion).

Finally, figure 7.10 shows a composite, or ‘fat’, link approach. This is largely similar
to the composite document approach, and edit-time link compiling would cause both to
appear very similar, with the distinction that this approach only allows one type (that
of the link). The multiple targets of this link could be provided by some form of query,
allowing for composition of dynamically-calculated sets of nodes. At present, however,
ordering is not specified for the targets of a fat link.

In terms of the semantics of inter-node relations, none of these approaches is particularly
meaningful, as they are all content operations: that is to say, none of them say anything
about Haskell. It is perceived as a strength of the model that there is more than one
way to achieve composition, as all are well-defined, and offer greater user flexibility to
choose the most appropriate approach for each specific case.

7.8 Conclusions

We can summarise and formalise the classes and predicates covered in this section as a
small ontology, summarised in the class diagram in figure 7.11. Appendix C expresses
the ontology in more detail, using the Terse RDF Triple Language (Turtle)1. Our model
has be designed to consist of a very small and clean set of types, with expressive power
resulting from combination of features. For example, a parametric link is literally a node
which is both parametric and a link.

In the next chapter, we discuss how this model can be realised, in particular in terms
of an existing, modular wiki system. We give particular attention to the efficient imple-
mentation of the rich link endpoint types we have covered here.

1http://www.dajobe.org/2004/01/turtle/

http://www.dajobe.org/2004/01/turtle/

Chapter 7 Model 110

Haskell
A functional language
with lazy evaluation

Figure 7.7: Desired composition

Haskell
(embedded link) //___

FuncTempl {eval→lazy}
A functional language
with

param
eval

evaluation

Figure 7.8: Composition by parametric node

Haskell
(embedded link 1)
lazy
(embedded link 2)

//___

''OOOOOO

FuncTempl.Pre
A functional language
with

FuncTempl.Post
evaluation

Figure 7.9: Composite document

Haskell
(embedded anchor) ________

FuncTempl.Haskell
(multiple targets)

ssg g g g g g g g g g g g

wwo o o o o o

��
�
�
�

A functional language with lazy evaluation

Figure 7.10: Composite (‘fat’) link

Node

Link
|

4

Alternation
GF

BC4

Transclusion
ED

@A4

Figure 7.11: Open semantic hyperwiki model ontology

Chapter 8

System design

8.1 Introduction

We present in this chapter the existing wiki system, Weerkat, upon which we plan to
base implementation of the model in prototype form. This is followed by a description
of, and solution to, the issues with adding first-class links while remaining within the
embedded-link paradigm of the web and wikis, and mechanisms for implementing the
more advanced endpoint types in an efficient manner. Finally, we cover the changes to
Weerkat which will be required to improve it into an open semantic hyperwiki.

This allows us to demonstrate the extent and depth of changes involved, even for a
system designed with independent modules for flexibility. It is because of the wide scope
of changes that we did not develop our prototype as an extension for the established
Mediawiki system.

8.2 Existing technology

Weerkat [44] is a highly modular and extensible wiki system designed for research into the
possible interactions between wiki technology and other fields. Figure 8.1 shows the high-
level modules in the design. Each of these modules is defined by an abstract interface
such that it can be chained and composited with other implementations. In particular,
the rendering module used by the system, which is responsible for converting abstract
node contents into concrete, displayable content, is the ChainRenderer implementation.
This implementation does no rendering itself, but instead links together a sequence of
renderers, much like UNIX-style pipes, or Microcosm filters [22].

The existing Weerkat system has trivial support for generic linking from terms to re-
sources in an ontology browser, which is provided by a pair of ‘semantic linking’ render-
ers. The chaining approach means that neither of these has to be specific to the details

111

Chapter 8 System design 112

Database, flat
files, etc.

User identification
and authorisation

Authorised UID

��

//
I/O

oo Conflict resolver

Suggested
resolution

vvNode storage

Node
source

//

��

I/O

OO

Wiki core

Interface
context

OO

Conflicting
sources

HH

Specifier;
source

oo

A.S.T.

��

Node
source

��

Renderer

XHTML
fragment

OO

A.S.T.

��

Markup parser

Abstract
syntax tree

ii

Semantic linking

Lower-level
A.S.T.

//

_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

(additional
renderers)

A.S.T. with
XHTML

// Core markup

XHTML

hh

Figure 8.1: Legacy Weerkat high-level design

of the output format (XHTML). The first is responsible for generic linking, and adds
abstract links from terms it identifies to resources. The second then converts any links
to resources, including those which users may have explicitly defined, to abstract links
into the ontology browser. It is then the responsibility of a later renderer, XHTMLFinal,
to convert this simplified, ‘core’ markup into XHTML. It is trivial to add more func-
tionality into the node content by inserting additional renderers into the chain, which
perform similar partial conversions.

It should be stressed that the legacy Weerkat system is not a ‘semantic wiki’ in the
modern sense, as the wiki structure itself does not define the ontology.

8.3 Link embedding

The linking model of legacy Weerkat is embedded, and roughly web-style. The new
model is much richer, with first-class, separate links. One of the largest changes to be
made to the system is to add support for this new model.

The model uses first-class links; however, the user interface will present these links as
embedded for editing, and must embed them for XHTML output. Hence, we must

Chapter 8 System design 113

Scheme is a [link type=Paradigm to=Functional functional] language.

||yy
yy

yy
yy

separate
��

==
==

==
==

==
==

==

Scheme
Scheme is a
→ Scheme.Anchors.0
language.

Scheme.Anchors.0
functional

store
��

Links.Scheme.Paradigm.0
source Scheme.Anchors.0
type Paradigm
target Functional

yysssssssssssssssssssssss

cache

��
�
�
�
�
�
�

Node store
Scheme

Scheme.Anchors.0
Links.Scheme.Paradigm.0

retrieve
��

((RRRRRRRRRRRRRRRRRRRRRR

Triple store (abbrv.)
(L.S.P.0, source, Scheme.Anchors.0)

(L.S.P.0, type, Paradigm)
(L.S.P.0, target, Functional)

(Scheme, Paradigm, Functional)

match
��
�
�
�
�

Scheme
Scheme.Anchors.0

Links.Scheme.Paradigm.0

Scheme is a [link type=Paradigm to=Functional functional] language.
((

QQQQQQQQQQQQ xx

embed

qqqqqqqqqqqqq

Figure 8.2: Separation and embedding of a simple node’s source

transform links between these two forms, as suggested in Moreau and Hall, and Brown
and Brown [38, 61]. Figure 8.2 shows an overview of the process for the following
example.

Unfortunately, the ‘compile’ and ‘decompile’ terminology, for combining a linkbase and
set of documents into a set of documents with embedded links and back, is at odds with
the ‘compilation’ terminology in computer programming, and the process of converting
embedded-markup source code into a set of abstract structures. To avoid potential
linguistic confusion from ‘compiling’ a node structure into node source, we instead use
the more direct terms ‘embed’ and ‘separate’.

8.3.1 Separation

Let us take an example node which the user is submitting to the system, Scheme, with
the following markup as content:

Scheme is a [link type=Paradigm to=Functional functional] language.

Chapter 8 System design 114

This must be converted into a structure as described in section 7.2.2, with the node text,
the subordinate embedded anchor, and a link.

The embedded link must be replaced in the Scheme DOM with a native transclusion to
an embedded anchor, which we shall generate an new identifier for: Scheme.Anchors.0.
If the markup were to specify an anchor identifier, that would be used instead, under
the Scheme.Anchors namespace. This may specify a previously-existing named anchor,
in which case a new revision of it is created.

We must check to see if the type of the link is a subtype of the wiki-specified Transclusion
type. If not, then the content of the anchor is the content of the embedded link: the text
functional in this case. Otherwise, the content of the anchor is irrelevant, as it will be
replaced by the transcluded content.1 However, if the user has provided a non-empty
body to the link element, this should be set as the new source text of the target node,
complete with necessary recursive separation. If there are multiple target nodes, this
behaviour would be ambiguous, so should be forbidden.

The link from the anchor to the embedded link target (or targets) must now be made
first-class. It will have no content (unless it is a new revision of a link to which a
user has added such), and types and endpoints as specified by the attributes of the
DOM node. If the DOM node specifies no sources, the embedded anchor is a source.
Likewise, the targets default to the anchor unless specified otherwise. This allows for
both any-endpoint link editing, and the embedding of links with computed endpoints.

As no identifier has been specified in this example, we first attempt to identify it as an
unmodified link: if there is a link whose set of types exactly matches the set of types
in link DOM element attributes, and which matches with a source endpoint, and whose
type and target endpoint sets match exactly with the link element attributes, we need
perform no more action here. Else, we consider this a new link and generate an identifier:
Links.Scheme.Paradigm.0. Whereas anchors are namespaced under the node they belong
to, links are globally namespaced, as they can potentially exist without any particular
‘owning’ node.

The inclusion of link properties (which may be changed) in the identifier is a compromise
to allow for human-readable identification of simple, web-style links, which are ordinarily
‘changed’ by being replaced (see chapter 7.5.3). For more complicated first-class links,
whose sources and targets are more likely to change while conceptually remaining the
same relation, users would be better to create links whose identifier does not encode this
information. Note that use of the Links namespace is an organisational convenience: the
system detects links by their type.

1Strictly, in a system permitting dangling links, this may be useful as a fallback. However, we have
judged the edit-time transclusion feature, which occupies the same syntactic niche, more valuable.

Chapter 8 System design 115

Scheme is a functional
language.

(a) Scheme

functional

Related:
Paradigm: Functional

(b) Scheme.Anchors.0

Related:
source: Scheme.Anchors.0
type: Paradigm
target: Functional
(c) Links.Scheme.Functional.0

Figure 8.3: Viewing links which apply to the whole node

The link is created with no content, but attributes which specify the source, type, and
target endpoints. These are taken from attributes of the link DOM element, and an
implicit source endpoint of the node in which it was embedded.

We have now separated the embedded link and created (or updated) three nodes, which
should be stored as their DOM and attributes. For performance in link matching, the
attributes of each node should also be expressed as RDF (see section 7.3) and cached
in a triplestore. This includes any relations implied by static-endpoint links, so that
query-endpoint links may operate upon them. We should also perform cleanup. Any
node in the Scheme.Anchor namespace which is no longer referenced should be deleted.
If this then results in links with no valid source endpoints and no content (i.e. no user
has treated them as first-class), those links should also be removed. Note that these
conditions will not be met by removing an embedded form of a computed endpoint link,
or a target-side link, from the document source. For example, a generic link from the
word ‘Scheme’ may become embedded during compilation, but removing it and saving
the document will not delete the link.

8.3.2 Embedding

We now consider the problem of embedding these structures back to a text string of
node source markup.

Serialising the node we are viewing is a relatively straightforward operation, and details
are left to the markup implementation in use, as with parsing. Native transclusions are
recursively inlined, although we shall first have to potentially wrap them in additional
DOM elements. (It should be noted that a native transclusion which does not end up so
wrapped will be folded back into the node’s main content during the separation process.)

We must also find which links must be embedded into the node. We call this process
‘link matching’ and, as it is quite involved, describe it in the next section. Links which
match below the level of the node being displayed are inserted as DOM link elements.
Links which match the node being displayed are to be shown as separate navigation, as
they apply to the visible document as a whole.

Figure 8.3 shows the effects of these rules, with DOM links highlighted by underlines,
as in a contemporary user interface. Note that the link on the word ‘functional’ is

Chapter 8 System design 116

in-line when viewed in the context of the surrounding document in (a), but migrates
to document-level navigation when the anchor is viewed alone in (b). Likewise, the
attributes of the link node are considered document-level when it is viewed in (c).

8.4 Link matching

To determine which links should be applied to a node (including embedded anchors), we
must find those which have an endpoint which ‘matches’. Links may match on either
source or target endpoints, so as to allow any-anchor link editing, although the user
may wish to embed only outgoing links in some cases, and the normal display of a node
will likely only use this information as an out-of-document ‘incoming links’ sidebar. For
these cases, it is sufficient merely to neglect to match the case where the node being
viewed matches a target endpoint, or handle these results separately.

8.4.1 Static endpoints

The simple case is to find links which have a literal endpoint which is the current node.
Assuming suitable prefixes and subtype inference, we can find such links with a set of
simple SPARQL queries:

1. SELECT ?l WHERE { ?l rdf:type link . ?l w:source node:Scheme . }

2. SELECT ?l WHERE { ?l rdf:type link . ?l w:source node:Scheme_5 . }

3. SELECT ?l WHERE { ?l rdf:type link . ?l w:target node:Scheme . }

4. SELECT ?l WHERE { ?l rdf:type link . ?l w:target node:Scheme_5 . }

The first two queries find links where this node is a source; the latter two, where it is a
target. We must also find links from or to the specific version of the current node, which
is provided by queries two and four.

8.4.2 Computed endpoints

We consider any endpoint which is not static to be ‘computed’. This includes by-query,
generic, parametric, and functional endpoints.

8.4.2.1 Query

Query endpoints are handled as SPARQL queries, where the union of all values of
the selected variables is the set of matched pages. For example, a query endpoint of

Chapter 8 System design 117

SELECT ?n WHERE { ?n node:Paradigm node:Functional . } would link from or to
all functional programming languages. This kind of endpoint can be tested for a specific
node via a SPARQL term constraint:

SELECT ?n WHERE { ?n node:Paradigm node:Functional .

FILTER (?n = node:Scheme) }

If multiple variables are selected, the filter should combine each with the logical or
operator, so as to retrieve any logically-sound solution to the query, even if some of the
variables involved are not the node we are interested in linking with.

8.4.2.2 Generic

Generic endpoints can be implemented as a filtering step on query endpoints.2 We
define a postcondition CONTAINS (?n, "term") to filter the solutions by those where
the node n contains the given term. This postcondition can be implemented efficiently
by means of a lexicon cache, from each term used by any generic link, to a set of the
nodes using that term. Changes to generic links add or remove items from the lexicon,
and changes to any node update the sets for any terms they share with the lexicon. If
CONTAINS is used alone, n is implied to be the universal set of nodes, so matching is a
simple lexicon lookup.

To be useful for generic linking, CONTAINS implies an anchor at the point of the term when
it is used as a source endpoint. For example, CONTAINS (?n, "Scheme") matches the
Scheme node, but should link not from the entire node, but from the text “Scheme”
within it. For user interface reasons, it is desirable to restrict this only to the first
occurrence of the term for non-transclusive links, so that the embedded-link document is
not peppered with repeated links. For transclusive links, however, it is more consistent
and useful to match all occurrences. While transclusive generic links are a slightly
unusual concept, it is possible that users will find innovative applications for them. For
example, if it is not possible to filter document sources at a node store level for some
reason, a generic, transclusive link could be used to censor certain profane terms.

Multiple CONTAINS constraints can be allowed, which require that a node contains all of
the terms. Any of the terms are candidates for implicit anchors: i.e. whichever occurs
first will be linked, or all will be replaced by transclusion.

2An alternative approach may be to assert triples of the form (Scheme, containsTerm, term), but this
would put a great load on the triplestore for each content edit.

Chapter 8 System design 118

8.4.2.3 Parametric

We can use SPARQL variables for parametric links. Every SPARQL variable is bound
to the parameter element in the node’s DOM tree with the same name: variables and
parameters are considered to be in the same namespace. This allows the content to
reflect the query result which matched this link. If the query allows OPTIONAL clauses
which can result in unbound variables, then they could potentially have values provided
by defaults from the parameter definitions in the DOM. Default values are meaningless
for parameters which appear as compulsory variables in the query, as the query engine
will either provide values, or will not match the link.

Parametric links may have interdependent sources and targets, in which case they are
simple functional links (the source can be a function of the target, and the target an
inverse function of the source). Link matching is performed pairwise for all source and
target combinations. For example, consider a link with these endpoints:

source: SELECT ?thing WHERE { ?thing node:Colour node:Red . }

target: SELECT ?image WHERE { ?image node:Depicts ?thing . }

target: SELECT ?image WHERE { ?image node:Describes ?thing . }

This would create links from all nodes about things which are red, to all nodes which
depict or describe or those red things. To perform this match, we union each pair of the
clauses into a larger query:

SELECT ?thing, ?image WHERE { ?thing node:Colour node:Red .

?image node:Depicts ?thing .

FILTER (?thing = node:Scheme

|| ?image = node:Scheme) }

A similar query would also be performed for Describes. Note that we may receive values
for the variables used as source or target which are not the current node if it matches
in the opposite direction. We must still check that any given result for the endpoint
direction we are interested in actually binds the variable to the current node. In this
example, current node Scheme is not Red, so the query will not match, and no link will
be created.

The pairwise matching is to be consistent with the RDF representation presented in
section 7.3, and the ‘or’ nature of matching with static endpoints: a link must only
match the current node to be used, and other endpoints may be dangling. An alternative
approach would be to create a ‘grand union’ of all sources and targets, such that all are
required to be satisfied. Neither approach is more expressive at an overall level: with
a pairwise approach, a single target endpoint can include multiple WHERE constraints

Chapter 8 System design 119

to require that all are matched; with a union approach, independent targets can be
achieved through use of multiple links (although they would no longer share the same
identity). The union approach is more consistent with regard to the interdependence of
variables; with the pairwise approach, one matching pair of source/target endpoints may
have a different variable binding for a variable of the same name to another. However,
it loses the RDF and static endpoint consistency. Ultimately, the decision is whether
the set of targets is a function of the set of sources (and vica-versa with the inverse),
or if it is the mapping of a function over each source. In lieu of strong use cases for
n-ary, interdependent, parametric links (most are better modelled as separate links), we
choose the former for its greater consistency, and ability for a single link to provide both
behaviours.

8.4.2.4 Functional

We also give consideration to arbitrarily-functional links. These are computationally
expensive to match in reverse (i.e. for target-end linking and backlinks) unless the
functions have inverses. We do not currently propose the ability for users to write their
own Turing-complete functions, as the complexity and performance implications are
widespread.

However, we can potentially provide a small library of ‘safe’ functions: those with guar-
anteed characteristics, such as prompt termination. One such example which would be
of use is a ‘concatenate’ function:

source: SELECT ?n WHERE { ?n rdf:type node:ProgrammingLanguage . }

target: CONCAT("Discuss.", ?n)

This would be a link from any programming language to a namespaced node for dis-
cussing it.3 However, it highlights the reversibility problem: the inverse of CONCAT has
multiple solutions. For example, “ABC” could have been the result of CONCAT (“A”,
“BC”), CONCAT (“AB”, “C”), or a permutation with blank strings. Hence, while it is
easy to match the source, and then determine the target from this, it is not practical to
start with the target and determine the source.

We suggest that any endpoint which is an arbitrary function of others in this manner
must therefore only ever be derived. Matching is performed against all other endpoints,
and then the functional endpoints are calculated based on the results. A link from
CONCAT(?n, ".meta") to CONTAINS(?n, "lambda") would only ever match as a
backlink: showing that any node containing ‘lambda’ would have been linked from its
meta-node, without actually showing that link on the meta-node itself. A link with only
arbitrarily functional endpoints will never match and is effectively inert.

3Although it would be better yet to have an explicit ‘prepend namespace’ function, to avoid the
details of namespace syntax, and its escape if necessary.

Chapter 8 System design 120

8.5 Required modifications

8.5.1 Initial

We first seek to qualify as an open hypermedia system—to support first-class links—
and then to continue to enrich the feature-set, following the priorities discovered from
experiment in section 6.4.2. The ‘semantic linking’ components of the legacy Weerkat
system should be discarded, as they are not useful toward this goal.

Our absolute first step, therefore, must be to make the link embedding and splitting
changes in the preceding section. Embedding and splitting, along with native transclu-
sion, is specific to the DOM used by the wiki to represent nodes. This DOM is the
abstraction the system works around, thus such behaviour belongs in the core of the
system. Link matching, however, is expandable depending on the link endpoint types
we wish to support. Initially, static, literal endpoints will suffice, but the experiment
shows that support for generic linking will be an important development. Link matching
should therefore be provided by a component, which dispatches to sub-components and
unions the results, as for the rendering system.

We must also modify the node store to include attributes along with the content, and
add a component for attribute caching and very simple (subtype) reasoning: this can
ultimately be implemented in terms of a triple store. The node store also requires
changes to store nodes as DOM trees, not markup strings, and the markup parser must
add an inverse transform: serialising a tree into markup. These are important because
of the node structure rewriting required in the wiki core to support first-class links, and
also allow for better markup independence.

Non-native transclusion can be realised as another component in the rendering chain.
Edit-time transclusion requires changes to the wiki core again to insert and detect
changes to the transcluded source. Otherwise, adding support should be largely straight-
forward once the previous groundwork on linking has been completed.

Instance property editing is purely a user interface feature. The previous changes already
provide the infrastructure to handle node attributes and relational links, so the UI must
use these features to identify candidate properties by domain and generate suitable form
controls based on their ranges. Provided form values can simply be set as attributes
of the node, rather than requiring generation of node content in the form of relational
links.

In summary, this initial work amounts to modification of the wiki core, node storage
interface and implementation, and markup interface and implementation; the addition
of a new component type for link matching; and a new rendering component.

Chapter 8 System design 121

8.5.2 Future

Implementing additional link matching sub-components will provide the more advanced
linking mechanisms, as described in section 8.4. To allow for the implicit source anchor of
generic links, the link matching component will need to be able to specify modifications
to the node DOM.

To grant appropriate client and user interface abstraction, rather than the current pro-
grammatic API binding, we seek to leverage a Semantic Web parallel of the World Wide
Web ‘information bus’: a data bus. As this is decidedly a future goal, the design is
currently still very high-level, but it should be possible to interact between the user
interface and wiki system via HTTP. Our work on identifiers in chapter 7 should allow
even special operations such as archived version retrieval to be performed as semanti-
cally reasonable GET requests with content negotiation; modification could be performed
over PUT. The node attribute cache could be exposed as SPARQL endpoint. These two
channels would then allow standard access and modification to the content and metadata
held by the wiki. The web user interface then becomes a front-end for this data bus: to
emulate a contemporary wiki, the web user interface would be configured to work (only)
with the wiki system on the same server. However, we also open the possibility that
some other web system may interoperate with the wiki, which should prove highly useful
for the future goal of improving the wiki to work as a distributed system. It would also
permit a thick-client user interface, a ‘wiki browser’, which could avoid the problems
caused by having to edit wiki nodes in a serialised form due to the limitations of the
simple text fields of web forms.

There are many other improvements of varying complexity which could be made to
the system, but we must be careful to keep scope manageable. The modular nature of
Weerkat allows many of these to be cleanly added as additional or replacement com-
ponents at a later time. For example, the current conflict resolver is very crude, and
should be replaced with one which automatically merges conflicting edits as much as
possible, in the same way as modern version control systems.

8.6 Conclusions

In this chapter, we have shown our plan for the embedding and separating of first-class
links into and from nodes in terms of the model defined in the previous chapter. An
important part of this is the process of ‘link matching’, or determining if a separate, first-
class link has the current node as an endpoint. We then showed that SPARQL queries,
with a custom filter function operating on hashed map lookups for generic linking, could
be used to perform this matching, including a pragmatic, best-effort approach to fully-
functional endpoints.

Chapter 8 System design 122

The Weerkat system we have described was designed to be modular, extensible, and
suited to experimental work in the field of wikis, and we feel that this will prove a
useful starting point for this more advanced prototype. Hence, we have described which
components of the system need to be modified and added to in order for the system to
qualify as what we consider an open semantic hyperwiki.

The next chapter covers the details of our implementation of these ideas, the resulting
prototype system, and the challenges we faced during the process.

Chapter 9

System implementation

9.1 Introduction

We now describe our experience implementing the model as modifications to the Weerkat
system, as described in the previous chapter.

The system was developed and hosted on a 1.8GHz Celeron laptop acting as a low-
power server, hosting a mod perl and Apache environment. While performance could
be sluggish, it was usable. Additional illustrations of example use of the system can be
found in chapter 10.

9.2 System changes

We introduced the existing system in chapter 8: a wiki with a highly modular design,
but still of a web-based hypertext design with embedded links.

9.2.1 SEML library

As link separation and embedding, and edit-time transclusion, required the system to
manipulate document structure that will be presented for an editing view, we needed a
mark-up parsing module which could also serialise structures back to text. Our support
for multiple link types and such also required multi-value attributes, whereas the existing
document tree abstraction expected only XML-style single values. Hence, we first wrote
a new parser library for an improved version of the mark-up language used by Weerkat,
S-Expression Mark-up Language (SEML), to support the multiple attribute values and
improved escaping semantics.

123

Chapter 9 System implementation 124

The syntax is a consistent tree structure, in contrast to the chaotic mixture of symbols
used by conventional wikimarkup. It is historically derived from a combination of LISP
S-expressions and XML, although its current state is not a subset of either. SEML
marks out elements with square brackets, selected for the relatively rare use in written
prose, and to avoid confusion with XML. Immediately within an element may exist
any number of attributes, followed by content, and finally an optional guard before the
element closes.

As an example, [link to=Perl type="Written in" type=Inspired\ by Pathologi-

cally Eclectic Rubbish Lister|link] is the syntax for a link element with attributes
to with a value of Perl, and type with the values Written in and Inspired by, and the content
“Pathologically Eclectic Rubbish Lister”. Note that we support both quoting and UNIX-
style backslash-escaping: this is applied universally, and technically element names may
also contain arbitrary characters. Unicode escapes are possible via Perl-style escapes,
by name, octal, or hexadecimal value. Attributes are separated from content by the
first whitespace-separated token which is not a value attribute, or this distinction can
be made explicitly with an unescaped pipe character, which allows allows the element
content to contain leading whitespace. Finally, we have demonstrated here the optional
‘guard’, which is intended to offer XML’s advantage of explicit closing tags to help ensure
correctly matched element start and end points, without the verbosity of forcing its use
in every case. As this example does not have complicated content with nested elements,
its use here is for demonstrative purposes only.

The SEML library also supports autoparagraphing, or implicit para elements, through
the use of LATEX or classic wiki markup-style blank line separation. It also makes the
same inline (‘text-level’) vs. block-level element distinction as HTML: only text-level
elements can exist within an paragraph, whereas block-level elements split (automatic)
paragraphs. This helps to build a document tree which is reasonably compatible with
the XHTML DOM.

SEML uses a hand-crafted lexer and parser, which can be found in the Weerkat source.
Appendix D shows the state diagram. Originally, SEML was to include namespacing, but
this was removed soon after integration with Open Weerkat as it introduced considerable
complexity for no concrete gains.

9.2.2 DOM-oriented refactoring

The first change to Weerkat itself was one of the most extensive: to re-factor the system
so that the content of node revisions was a DOM tree, not a string of markup. Classic
Weerkat already used a DOM abstraction, so as to be markup-agnostic, but node storage
was, like conventional wikis, in text markup form. Because its HTML-style embedded
links were dealt with during the rendering step, parsing wasn’t performed until relatively

Chapter 9 System implementation 125

late into handling a request, with the wiki core operating in terms of raw markup text.

9.2.2.1 Storage

First the Revision class, which represents a single revision of a node, was changed to
contain an AnnotatedTree instead of a string as its document content. The Flatfile im-
plementation of the NodeStore abstract base class was largely rewritten to deal with this
change. As a result, we have now pushed the system to the other extreme: it does not
deal with markup at all except for as needed format for editing. Apart from theoreti-
cally allowing truly interchangable markup languages on the same document body, this
also changes performance characteristics of the wiki to optimise toward readers, rather
than writers. Caching aside (which we currently do not implement, although it is low-
hanging fruit for future optimisation), we avoid a parsing stage for every read, whereas
most conventional wikis effectively perform multiple substitution passes over the docu-
ment, transforming it into the required output without an intermediate representation,
using regular expressions. We trade this for a serialisation stage to user-facing markup
for every edit, which is a cheaper operation, and a one-off parse when the change is
submitted.

We also improved the storage layout so that arbitrary page titles are supported without
lossage through an URI-encoding mechanism. Nodes exist as directories, under which
lie revisions as files. The URI-encoding is deliberately slightly overeager so as to reserve
a set of valid filenames which node titles will never use.

Node-granularity locks are implemented using the POSIX O EXCL mechanism to safely
serialise concurrent access: it guarantees atomicity of lockfile creation, although pending
processes are forced to busy-wait. The store passes back an object which captures the
context required to later clean up the lockfile upon its destruction, following the RAII
(Resource Allocation Is Initialisation) paradigm: this is possible because Perl’s reference-
counting garbage collector still allows for deterministic object destruction. The core
avoids deadlock by always claiming and releasing locks in an ordered fashion: node
titles provide a straightforward strict total ordering.

We felt that the use of an full relational database was unnecessary, as the only index the
filestore requires is (node, revision) to a binary blob (the serialised Revision object, which
itself subdivides into the document content and attributes), and modern filesystems are
designed for efficient name to datastream mappings.

9.2.2.2 Processing

The MarkupParser implementation was updated to use the new SEML library, and the
interface updated to support serialisation. To allow the SEML library to preserve some

Chapter 9 System implementation 126

Figure 9.1: SEML-based attribute editing, and tabular display

of the syntactic choices made in writing the node source, document trees are allowed to
contain markup-specific presentation hints. These are a largely unavoidable wrinkle in
the ideal of interchangable markup if we are to avoid entirely normalising node sources,
and instead allow users to maintain the flexibility of choosing between representations
such as "Semantic Web" vs. Semantic\ Web.

We also renewed the element types we support to allow for the changes to links, and
removal of Classic Weerkat’s limited semantic features. Currently we provide a small set
of useful document elements: paragraphs, headings, emphasis, and such, which loosely
follow XHTML. The final set is presented in appendix E. The MarkupParser is now
responsible for ensuring that the parsed DOM contains only valid, defined elements,
whereas previously the markup-centric core left the task of ‘cleaning’ the output to the
renderer.

Once the XHTMLFinal renderer (so named as it is intended to be the last item in a
potential chain of renderers) was updated to allow for this new set, we were again able
to view and edit pages to test the success of our refactoring efforts.

9.2.3 Node attributes

9.2.3.1 Representation

Because the original system operated largely within XHTML assumptions, the Annotat-
edTree class used for internal DOM representation only supported XML-style single-value
attributes. However, our model required multiple values, so that a node which is a link
may have many target endpoints. Therefore we modified our implementation and ex-
panded the API accordingly; the legacy, single-value methods operate on the first value
only.

We expanded the WebCGI user interface to have a very simple SEML-based attribute
editor. The attributes of the node were serialised as if they were the attributes of an

Chapter 9 System implementation 127

element, and likewise parsed back. While this was originally intended as a stopgap for
debugging, it was later employed as the ‘Other’ box to allow for attributes unknown to
instance property editing. We also added a view-time table to display a node’s attributes,
which were hyperlinked by the UI code to the node of the same name. Figure 9.1 shows
the attribute editing box below the main page content in the left window (which we
have here temporarily reduced in height), and the display table in the right. Note that
the attribute Paradigm has been given multiple values.

For storing the attributes in the Flatfile implementation, we used the Redland RDF1

library’s ‘hashes’ backend, with BerkeleyDB persistence. The lightweight database files
are stored using some of the aformentioned reserved names in the file organisation. This
also provided us with an internal SPARQL implementation, which would be required
for link matching; a query() method was added to the NodeStore interface to access it.

9.2.3.2 Versioning

The version separator we use for our URIs is the semicolon. According to RFC3986 [78]
(and particularly clear in previous RFC2396 [79]), this is the parameter separator, and
shouldn’t have any unwanted effects on URI equivalence, relative paths, or such. We
are effectively adding some extra information to the path element, which is a reasonable
description of a version field. Because ‘;’ is reserved for this purpose, it is URI escaped
if in a title. This behaviour is also consistent with ISO9660’s handling of file versions.

9.2.4 Link matching

We added the LinkMatcher base class, as described in the plan in section 8.4, and a
Static implementation which matched literal endpoints by performing the queries for
source and target attributes.

9.2.4.1 Visualisation

To debug the matches, we dumped them to a table the web view, which eventually
evolved into a table of immediate node relations. This has a column for the three
RDF components, and either the object or subject will be the current node (the actual
information provided to the user interface is in the form of directional typed arcs between
the current node and another). A fourth column, added later, names the link responsible
for the arc. While this was never a formally planned aspect of the system, it was left in
due to its use in development, and proved to be particularly appreciated by users in our
experiments in chapter 11.

1http://librdf.org/

http://librdf.org/

Chapter 9 System implementation 128

Figure 9.2: Prototype relations table

Figure 9.2 shows the final relations table for an example node from section 10.2. The
first line shows that the link COMP3004.GenLinkCG is responsible for the OpenGL node
linking to this page, COMP3004. The second shows an outgoing transclusive link from
this page to OpenGL.compile, a fragment of shared content.

9.2.4.2 Versioning

The system does not yet match versioned links, due to versioned predicates: the state-
ment (MyLink1, type1, Link1) is not detected by the matcher because it currently does
not allow for the versioned variant of the type or Link URIs. This is because we currently
work upon the internal URIs, rather than the external RDF representation defined in
section 7.3. Similarly, the source and target predicates are not recognized in their ver-
sioned forms.

There are two potential short-term workarounds for this issue; for the requirements of
our prototype and evaluation, we have not yet pursued either of these.

Unversioned predicates and duck-typed links. Do not add a version specifier
to the predicate of an attribute nor require that a node is explicitly of Link type to act
as a link. At this point, we had not assessed the wider implications this may have on
the system.

Unversioned known system URIs. Do not use versioned URIs for the resources
special to the wiki, such as source and Link. This has the problem of making such URIs
special, exceptional cases, complicating the uniformity of the system.

Chapter 9 System implementation 129

9.2.5 First-class linking and transclusion

9.2.5.1 Link embedding

We added a new retrieve() method to the wiki core for use by the view() and edit()
methods, which the user interface uses to get a rendered and source representation of a
node respectively. Previously these methods retrieved the node source/tree directly from
the node store. The retrieve method performs link embedding, as defined in section 8.3.
We first changed view() to use the new retrieval routine, which allowed us to test it
with a manually-created first-class link. Once edit() was changed over as well, this link
appeared in the node source; this change was also needed for edit-time tranclusion.

Algorithm 2 shows the final algorithm, with support for transclusion and generic linking.
We cover the processTreeWords method in section 9.2.6.2, and the query methods in
section 9.2.5.3. In general, the procedure is to walk the document tree, replacing anchor
elements with link elements (or the functionally identical trans) containing the target
content, and with attributes derived from the link arcs.

9.2.5.2 Link separation

The original modify() method, which the user interface calls to submit changed source
back to the system for conflict checking and storage, was written with the standard wiki
expectation that the change would only involve a single node. Link and transclusion
embedding breaks this expectation. Hence, we first modified the method to first batch
up a set of changes (initially consisting only of the node submitted), acquire locks on each
in order (to avoid deadlock), then store (commit) them all as one. Should any change
in the set trigger a conflict, no storage is performed, and the modify routine returns the
conflict information as before. This is not strictly atomic, as there is no way for a failed
store() to roll back any previous stores; however, storage failures are at least bug/fault
conditions, not possible rejections. We soon after resolved this with a new storemulti()
method in the NodeStore base class, which uses a non-atomic implementation in terms
of store() by default, but can be overridden for storage backends capable of transactions.

For our prototype, we have not updated the ConflictResolver class to be aware of multiple-
change edits. This means that the system’s handling of edit conflicts is currently subop-
timal, as it ignores the ability to localise conflict problems to specific links or transcluded
sections.

Algorithm 3 shows the final modify routine, with transclusion and generic linking sup-
port. We focus on the separation algorithm, and pass over the details of conflict detection
and actual storage management. At a high level, the method walks the element tree,
converting link and trans elements into anchors, while preserving their content and links

Chapter 9 System implementation 130

Algorithm 2 Final core retrieve method
function Retrieve(title, reduce) . reduce: generate only static link attributes, for
rendering; else preserve queries, for editing

revision ← nodestore.Retrieve(title) . Fetch from storage
if revision = null then return null . No such revision
procedure MatchToAttrs(elem, match) . Add attributes to element based

on match, also build arcs
5: role, linknode ← details of match

link ← nodestore.Retrieve(linknode)
outmatches ← linkmatcher .MatchOutward(inverse role, link)
for all outmatches do add each type, target pair to arcs for role
if elem = null then return . Building arcs only

10: Set id on elem from linknode
Copy types to elem from link
if reduce then Set inverse attribute of role (to/from) from outmatches
else Copy to, from, toq and fromq from link, translating from source, etc.

procedure Embed(tree) . Embed transcluded content, natively and otherwise
15: if tree is an anchor element then

anchorid ← tree.attribute[id]
Convert tree to empty link element
anchor , matches, arcs ← Retrieve(title+anchor+anchorid)
for all matches match do

20: if nodestore.QueryIsA(match node, Transclusion) then
link ← nodestore.Retrieve(match node)
elem ← Retrieve(link target) . Recursive transclusion fetch
Convert elem to trans element
Add elem to document as sibling of tree

25: else elem ← tree
MatchToAttrs(elem, match) . Add attributes to selected element
Remove self from from attributes
elem.attribute[aid]← anchorid . Preserve anchor ID

if All matches were transclusive then Remove tree from the document
30: else Copy anchor children into tree

for all child nodes do Embed(child) . Recurse down tree
Embed(revision.content) . Embed the revision fetched
matches ← linkmatcher .Match(title)
for all matches match do

MatchToAttrs(null, match) . Add arcs from node-level matches
35: if match has text then . Is it a generic link?

ProcessTreeWords(revision.content) lambda(word)
if word = match text and first occurrence then

elem ← new link element
MatchToAttrs(elem, match)

40: Add word as child of elem; set aid attribute to
return (replace word with) elem

Filter arc names and remove duplicates
return revision, matches, in and outbound arcs

Chapter 9 System implementation 131

Algorithm 3 Final core modify method
function Modify(title, newrevision)

Parse newrevision.content using markupparser
changes[title]← newrevision . Title-to-content map of changes
procedure Separate(tree, septitle) . septitle used to generate IDs

5: if tree is a link element then aid ← tree.attribute[aid] or find new free ID
if aid is (implicit generic link) then

Remove tree from document, promoting children to siblings
if aid is valid then

oldlink ← nodestore.Retrieve(tree.attribute[id])
10: linkname ← find new free ID unless id saved

Prepare new node with oldlink’s content
types ← tree.attributes.[type]
Copy tree to attributes etc. to new node target attributes; also types
if not nodestore.QuerySubClassOf(types, Link) then Add Link type

15: changes[linkname]← new link node
istrans ← nodestore.QuerySubClassOf(types, Transclusion)
if istrans then bodyname ← target attribute
else bodyname ← anchor name
if not (istrans and tree empty of content) then

20: Prepare new node with old anchor’s attributes, if any
Copy tree children into new anchor content
Separate(each child, bodyname) . Separate nested anchors
Add new node to changes

if istrans and anchor does not exist then
25: Add empty anchor to changes

Change tree element into an anchor; save id
for all child nodes do Separate(child, septitle) . Recurse down tree

Separate(newrevision.content, title)
for all changes change do Check user has permission to make change

30: for all Sort(changes) change do Claim NodeStore lock for change
Check for conflicts and unlock/return resolution if any
nodestore.StoreMulti(changes); unlock; return success

attributes as further changes to other nodes. Note that we keep the content of link
elements, but replace their attributes with those of the embedded link, while conversely
preserving the attributes of anchor and transcluded nodes, replacing their content with
that which was embedded. Line 24 deals with the requirement that for a link to match,
its endpoints must exist, and a new and embedded transclusive link would otherwise not
create its anchor in that document, as the transclusion code instead redirects changes
to its target.

With the old embedded linking support removed from the XHTMLFinal renderer, we
now had a system with working first-class links.

Chapter 9 System implementation 132

9.2.5.3 Subclass inference and transclusion

Because our model uses Transclusion as a subtype of Link, we needed very simple subClas-
sOf inference. Technically, we use wk:subClassOf, due to the implicit namespace of all
node names in the system, but this is considered to be the same as its RDFS namesake.

We first built a simple abstract representation of SPARQL queries, and updated the
LinkMatcher and NodeStore to use it, so that queries could be programatically con-
structed and manipulated rather than using string operations. In future, this should
prove useful when combined with a suitable parser for handling our extensions such as
CONTAINS in combination with arbitrary queries, as described in section 8.4.2.2.

Following this, we added queryIsA() and querySubClassOf() methods to the NodeStore,
which test if an instance and a class are of a given class, respectively. They have
base implementations which work in terms of simple queries which do not require the
underlying triplestore to perform inference. As shown in pseudocode in algorithm 4, the
former is implemented in terms of the latter, which is effectively a breadth-first search.

Algorithm 4 NodeStore base Is-A and SubClass-Of query
function queryIsA(resource, class) . Is resource a class?

types ← map . Find explicit types
lambda(binding) binding[t] . Unwrap query result
Query(resource, type, ?t)

5: return querySubClassOf(types, class)
function querySubClassOf(types, class) . Is one of types a subclass of class?

while types non-empty do
if types contains class then

return true
5: types ← map . Find immediate subtypes

lambda(type) map
lambda(binding) binding[t] . Unwrap again
Query(type, subClassOf, ?t)

types
10: return false . Ran out of types: cannot be of class

It was at this point that the link responsible for an arc matching was reported by the
core node retrieval and view methods for debugging, which added the ‘via’ column
to the relations table. With this, we were able to determine that Link subtypes were
now matching correctly as links. Transclusion followed quite simply due to previous
separation/embed work in retrieve() and modify().

Chapter 9 System implementation 133

9.2.6 Generic linking

9.2.6.1 Word dictionary

To implement generic linking, we began by implementing a simple general purpose Dic-
tionary class in terms of tied Perl hashes: a simple persistent word-to-object mapping,
again backed by BerkeleyDB and POSIX file locks. We extended the NodeStore API
again to include a searchWord() method which returns the set of nodes containing a
given word, and provided a Flatfile implementation using the new dictionary class.

This does come at a cost: initially the Flatfile would, upon storage, first scrub the dictio-
nary of words from the previous version of the node, affecting speed. Later we changed
this to store versioned node URIs, instead slowly growing the dictionary as a storage
cost, although currently computational scalability of multiple dictionary values for the
same key is linear. Theoretically, this permits versioned searching to be implemented at
a later date.

9.2.6.2 Tree text map

To populate the dictionary with words when nodes are saved, we wrote a utility function
to walk document trees and perform operations upon them: processTreeWords. Strictly,
we call a provided closure upon each word, and the return value of the closure can be
used to specify a replacement, which will be useful later. If the replacement is in the
middle of a DOM text node, it is split and the preceding and following text become
siblings of the replacement. Functional programmers may recognise this as being a
specialised form of the map function of some languages, which operates on lists.

9.2.6.3 Generic LinkMatcher

Until this point, the embedding and separation code was not strictly using the link
matcher fully: upon a match, the routines would directly use the to attribute of the
link. To rectify this, we added a matchOutward() method, which asks the LinkMatcher
implementation “given this link, where does it point?” As with match(), this takes an
arc role bitmask, and matches include direction information, so it can also return the
link’s source endpoints. In addition, link matches were expanded to specify the text
they matched upon, if generic.

For efficient matching of generic links, we wanted to create indexes from words to links
which involve them. There is one Dictionary for words used in source arcs, and one
for target arcs. For example, a generic link named ExampleLink with a sourceQuery of
CONTAINS(‘Perl’) would be present in the source-role index as a mapping from Perl

to ExampleLink.

Chapter 9 System implementation 134

To create these, we added a postStoreHook() method to the LinkMatcher class, which
the Generic implementation uses to spot CONTAINS query endpoints and add them to the
appropriate index. This does unfortunately affect one of the properties of the Weerkat
system: until this point, it was largely possible to change the components loaded on a
system at any time. The requirement to build an index upon storage hooks, however,
currently requires that for the generic link matcher to function correctly, it must have
been in use continually for the whole lifespan of the wiki content. This problem is
not insurmountable, and could be resolved by performing a full index rebuild when the
generic link matcher is (re)added to the configuration.

When the wiki core queries the generic link matcher for links for a document, it must
first fetch it (conversely, the static link matcher works entirely on the RDF metadata),
and then use the text tree map routine to check each word against the word-to-link index
for the queried endpoint role. This means that the per-display cost of generic links is
proportional to the length of the document, but this optimisation only works for links
whose queries are purely CONTAINS. Fully functional links would have to each be tested,
causing the system to scale with the number of links with query endpoints. Outward
matching scales with the number of query endpoints on the link being considered, as it
is simply a searchWord() call on the node store to look up nodes containing the word
queried for.

To place links in the document where generic links match, we needed to create tem-
porary anchors to work as link endpoints. This was facilitated by our earlier text tree
manipulation routine (section 9.2.6.2), by providing it with a closure which replaced the
first instance of the word with a new sub-tree representing a link anchor, and from then
on acted as a no-op.

We gave these anchors an identifier of ‘_’, to allow link separation algorithm know that
they are implicit, and not to store them back into the document. This is currently quite
aggressive, and the system ignores all changes to generic links via their endpoints. Once
done, generic links began to function in the system.

Once we had updated the retrieve() and modify() algorithms to use matchOutward(),
generic links also functioned backwards.

9.2.7 Instance property editing

To implement instance property editing, we first defined the information that the user
interface required to provide an appropriate form; given a node of type T :

• The suggested predicates of that type, i.e. (?predicate, domain, T).

• The range of each predicate P, i.e. (P, range, ?range).

Chapter 9 System implementation 135

Figure 9.3: Prototype instance property editing, and matching view

We added a properties() method to the Wiki core which would provide this information
for a given node. (Note that our simple queryIsA() subtype inferencing is unsuitable to
use here, so subclasses will only work if the underlying triplestore provides inference.
We could resolve this by exposing and using the internal entire class set involved as part
of the queryIsA() algorithm, at a performance penalty.)

We updated the editing user interface page to use this method, and generate a table
of form fields as a result. Attributes are mapped into this form by preference, and
remainders use the existing SEML-serialised ‘Other’ box. Upon form submission, the
two sets are merged: there are no conflicts because we allow multiple values.

Figure 9.3 shows this using a reduced form of the attributes for Belgium. Note that
the page view, right, contains a mixture of the ‘suggested’ and ‘other’ attributes in the
editing display, left: the distinction exists only when editing.

9.2.8 Usability tweaks

9.2.8.1 Cross-link highlighting

The relations table contains a ‘via’ column which names the link responsible for the
relation, and link anchors in the document have a title XHTML attribute which does
the same, which appears as a tooltip in most browsers. To strengthen the reporting
of this relation, we added a JavaScript-based cross-highlighting cue. The XHTMLFinal
renderer adds URI-encoded, namespaced CSS classes to each XHTML (embedded) link
encoding the Weerkat (first-class) link responsible. Mouse enter/exit events which call
highlight/dehighlight functions add and remove a ‘highlight’ CSS class to all document

Chapter 9 System implementation 136

Figure 9.4: Prototype link cross-highlighting

Figure 9.5: Markup quick-reference at the bottom of an edit page

elements with the given link class respectively. This is shown in figure 9.4, along with
the link tooltip and browser status line. The highlighting appears the same should the
user instead hover over the row in the relations table.

9.2.8.2 Arc filtering

The final evolutionary step of the relations table was to filter and sort the arcs which
it displays. We remove the anchor-specific part of the node identifier for source arcs,
to better emulate our intended RDF model, and make backlinks more readable: this
changes ‘Phil.anchor.1 Link Perl’ to ‘Phil Link Perl’.

The embedding process which generates arcs is subject to creating duplicates due to its
recursive nature and the way it derives arcs both from links and node-level attributes.
Hence, we filter these out, as they do not convey any useful information. The user
interface also applies by-role and alphabetical sorting to the table.

Chapter 9 System implementation 137

Figure 9.6: Demonstration of preview limitations in Open Weerkat

9.2.8.3 Markup quick-reference

Weerkat features a small paragraph below the editing controls which summarises the
syntax and vocabulary needed to write wiki nodes. Given the importance of learning by
example identified in our experiment in chapter 11, we updated this to reflect the revised
SEML syntax, new element set, and new capabilities of Open Weerkat. It conveys a
core subset of the markup, and is shown in figure 9.5.

9.2.8.4 Base types

Prior to our experiment setup, and of general use to any Open Weerkat install, we
populated the wiki with node content for the system types, such as Link. These nodes
can be found in appendix F.

9.3 Technical challenges

9.3.1 Preview

Due to time constraints, the current preview mechanism is largely unchanged from the
original wiki design. The user interface takes the submitted page source, and manually
runs it through the markup parser and rendering pipeline. This is no longer sufficient
for two reasons: first, pages need to go through the separation and embedding stages to
be correctly transformed for rendering. The preview partially works as-is because the
previously embedded content is preserved unchanged, but new embeds such as in-line

Chapter 9 System implementation 138

transclusion will not take effect. Second, edits are no longer guaranteed to only affect
the node being edited.

The first problem is demonstrated in figure 9.6. The new page, top-left, is written to
transclude some content from an existing page, bottom-left. However, this text does
not appear in the preview, top-right, since the preview does not run through the full
embedding and separation process. After saving, the view then performs all the correct
transformations and the page appears as intended, bottom-right.

This latter problem can quickly become very complicated when the user has made
changes within in-line transclusions: it is necessary to overlay an entire transient change-
set over the current node store state for the embed/separate routines to work with. It
may be wise to postpone working on this issue until versioning-related future work has
been considered, as better changeset support would help immensely here, effectively
treating the preview as a private branch.

There are also implementation quirks with preview and instance property editing, be-
cause the preview stage does not transfer the whole type information across, and the
user interface cannot query the Wiki core for it again, as it may have changed. This
manifests as a harmless loss of range type hints, and could be solved by preserving the
state in hidden form fields.

9.3.2 Limits of XHTML and linear markup

An obvious limitation of XHTML affecting the system is that XHTML links can only
have one target endpoint. It is impossible to represent fat or nested links, and they
can only be made navigable by laying application-specific user interface on top. Even
without XHTML serialisation, we also do not support overlapping links at all due to the
tree structure of the document representation.

Linear serialisations of the model, such as XHTML or editable text markup, have dif-
ficulty gracefully handling multiple separate links matching on the same endpoint. To
avoid duplicating the anchor or transcluded content, and thus both significant confu-
sion and the risk of conflicts with the edit itself, all links must be merged into a single
element. It is not acceptable to nest them, as this is ambiguous with the case where an
anchor or transcluded node itself contains a link spanning the entire document. Hence,
it is necessary to keep separate within the same link element the type and endpoint in-
formation for more than one link. The current syntax does not permit this, and allowing
it would add significant additional user-facing complexity while using text markup for
editing.

Multiple source anchors matching the same anchor of mixed transclusive and non-
transclusive types are also a problem, if somewhat of a pathological case.

Chapter 9 System implementation 139

GerrardsLaw
As the version tends to∞,
→ GerrardsLaw.anchor.1

//___

GerrardsLaw.anchor.1
the useful feature set tends
to ∅

BC
GF
��

��
�
�
�

Cynicism
. . .

GerrardsLaw.Corollary
the pointless chrome tends
to ∞

Figure 9.7: Example of regular and transclusive link sharing source anchor

StaticGF

BC
oo

Triple storeoo

Link dictionaryGF
BC

ooLink Genericoo Word dictionaryoo

Revision retrieve()oo Filesoo

Revision // store()
BC

OO

BC

EDoo

BC

EDoo

BC

EDoo

Wiki core LinkMatcher NodeStore Persistence

Figure 9.8: Data flow complexity introduced by Generic linking

Consider figure 9.7, in which the anchor in GerrardsLaw is linked non-transclusively to
Cynicism, and transclusively to GerrardsLaw.Corollary. (For conciseness, we do not show
the intermediate first-class links in this diagram; the anchor is, of course, transcluded
natively.) There is no correct way to display this document as a linear sequence: if
displaying ‘featureset’ clause, the transclusion has not been correctly represented; if
displaying the ‘chrome’ clause, the regular link has not.

The conclusion we would draw from this is that links should not be able to share source
anchors, at least if of mixed transclusive type; while this constraint is specific to an
endpoint’s role, the same can be said of navigability and content replacement. This
does not prevent fat links, as we still allow multiple targets on the same link.

9.3.3 Generic linking

Generic linking, and functional links in general, add a lot of complexity to the system,
and this complexity is not easily localised into a single module. Support for it is required

Chapter 9 System implementation 140

Figure 9.9: Attempted transclusion of a region spanning tree branches

in the core embed/separate methods, to handle implicit anchors; in the storage layer, to
maintain a word dictionary (although this is a requirement shared with full-text search),
and to maintain indexes for efficient lookup of relevant links (implemented as a hook in
the LinkMatcher); in the link match type, to preserve the information of which content
matched upon; and finally the actual link matching implementation itself. Figure 9.8
shows how the generic link matcher fits into the system data flow for storing, retrieving,
and matching nodes and links. If the system is to support generic linking at all, the
maintenance cost of its complexity must be paid even when not working on the relevant
LinkMatcher, and likewise the performance costs are paid without a global configuration
flag to disable them. As noted in section 9.2.6.3, the generic link matcher can also not
be easily ‘hotplugged’ into a wiki without a setup stage to build initial indexes.

Implementing generic links has raised considerable scalability concerns. Generic links
use a word-to-link index to aid scalability. Arbitrary functional links cannot use this,
beyond a simple set listing which links are functional: every link in this set must be
tested for matches upon every retrieval and modification. This problem is not easily
resolved with view caching, and in fact the existence of functional links greatly affects
the usefulness of caching in general: cache validity is affected should either a node change,
or a link affecting that node changes. Functional links greatly complicate the task of
determining which node caches should be invalidated when the link is changed, and can
create interdependencies between nodes where changing one should also invalidate the
cache of others.

9.3.4 Arbitary tranclusion

The tree structure of documents forbids links which overlap or span different elements,
and this includes transclusions. However, as we were to discover when participants tried
it in our experiments in chapter 11, there are use cases for, for example, transcluding
out the last sentence of one paragraph, and the first of the next. Figure 9.9 illustrates

Chapter 9 System implementation 141

this problem: on the left, the attempted separation of sections of adjacent paragraphs
by inserting the transclusive link markup (highlighted); on the right, the result, with
error that a paragraph break could not be implied inside the element.

We consider an initial approach to this problem based around ‘sticky elements’ in the
concluding remarks of section 11.4.3, given the context of our experiment. In short,
when an edit-time transclusion splits a block-level element such as a paragraph, the
system must preserve somewhere the information that when transcluded back, the con-
tent should merge back into that element at that edge, rather than form a child tree.
However, this is a complex problem, especially when the two edges of the transclusion
are at different tree depths, and when it is reused across dissimilar documents, so future
development is needed.

9.4 Availability

Open Weerkat is licensed under the GNU Affero General Public License version 3, with
some components under the 3-clause BSD license, and can be downloaded, with source
code, from https://forge.ecs.soton.ac.uk/projects/weerkat/.

The source distribution includes an installation script which will copy the required Perl
modules and web pages to a given prefix. A sample Apache configuration for correct
mod perl configuration, and use of virtual hosting, is also provided.

Due to the widespread nature of the changes required, the test suite has lagged behind
development, and many of the tests no longer use correct API or are even applicable.
For this reason, it is omitted from the current distribution.

9.5 Conclusions

As noted, the hardware platform for Open Weerkat development and evaluation was
significantly underpowered by modern standards. We feel that proper hosting would
help improve performance to within responsive levels. The larger performance spikes
are because of a lot of ‘low-hanging fruit’ optimisation which has been omitted for now
in the interests of first making the system function correctly under the time constraints.
For example, after separation, we push out changes to every link, every anchor, and
every transclusion, without checking to see if they have actually changed, which also
wastes space and creates versioning noise.

We again restate the maintenance costs of generic linking, as support for it was one of
the most complicated tasks involved in implementation, and the resulting concern about
the practicality of arbitrary functional links in a wiki context.

https://forge.ecs.soton.ac.uk/projects/weerkat/

Chapter 9 System implementation 142

On a software engineering note, we found refactoring the system to allow for these
changes—in particular the type of node content changing from a string to a DOM
object—to be remarkably awkward because of the use of a dynamically-typed language.
This is true of all popular web development ‘scripting’ languages, such as Perl, PHP, and
Ruby, by definition, but highlights the utility of a ‘stricter’ language as projects grow.
Many of the early system bugs could have been automatically detected by simplistic
static typechecking, which was simply not available. Unfortunately, stricter alternatives
such as Java and C# have their own type system, deployment, and modelling issues;
Perl’s multiparadigmatic approach was invaluable for blending an object-oriented overall
system structure with functional programming tools such as our text tree map function.

Chapter 10

Applications

10.1 Introduction

In this chapter, we present some hypothetical use-cases of the system in greater de-
tail. We do not expand upon use in encyclopædic contexts, as we feel that these have
been adequately covered by the preceding chapters as our main focus: in particular our
comparisons with and experimental studies concerning Wikipedia.

10.2 Enterprise knowledge: University course notes

Wikis have been used to allow undergraduate students to collaborate on notes and advice
for their courses. At Southampton, we have historically used ‘classic’ wiki software, such
as UseMod and MediaWiki for this purpose. Weerkat’s features offer some advantages
over these systems, enabled by its first-class linking capability.

The principle type of data in the wiki is the course. Courses have some common at-
tributes, such as a set of lecturers who run the course, and a year and semester in which
they are run. By defining these attributes with appropriate domains and ranges, we can
then use Instance Property Editing to encourage and assist in providing this metadata
for courses with consistent predicates.

Figure 10.1 demonstrates this in the prototype system. In the left window, we have
defined a LecturedBy node, which we shall use as an attribute key. We have simply
created this node and set two attributes: Course and Lecturer do not, in fact, even exist
for this example. In the right window, we show an editing view of the COMP3004 node,
which has been defined in a previous edit to be of type Course. (For technical reasons,
the prototype cannot act upon changing type information within the same edit.) As a
result, the system now prompts this second editor with possible attributes with a domain
of Course: namely, our LecturedBy node, and the expected range.

143

Chapter 10 Applications 144

Figure 10.1: Course Notes: Instance Property Editing

Figure 10.2: Course Notes: Generic Linking

Courses have canonical identifiers in the form of course codes, which are suitable for
use in node titles and URIs. However, they also have plain text names, and quite often
these names are subject to a degree of inconsistency through everyday conversational
permutation. For example, COMP3004 is known as ‘Comp. Graphics’, ‘Introduction
to Computer Graphics’, and ‘Principles of Computer Graphics’. Generic links provide
a way to link from these disparate strings to the single identifier throughout the entire
wiki. This is easier than creating individual links as desired from occurrences of the
title, as it avoids the need for the user to first find or recall the opaque course code: a
single mapping is created in the system from the human name to the node title.

In the Open Weerkat prototype, we created a generic link for the compound word
“CompGraphics”, as content search is currently single-word. This is shown in the left
window in figure 10.2. Again, all we have done is create a node and set some attributes.

Chapter 10 Applications 145

Figure 10.3: Course Notes: Transclusion

Because these are system attributes, our prototype installation has them defined with
domains and ranges, which means that editing them is assisted by Instance Property
Editing for nodes of type Link.

In the right window we can see the OpenGL node, which talks about the COMP3004
course using this informal term. The generic link matches the text and causes it to be
linked to the course page, as can be seen in the relations table.

Several courses overlap in the technologies they cover in their syllabus and coursework.
For example, both ‘Database Systems’ and ‘e-Business Techniques’ involve using the
MySQL database; both ‘Principles of Computer Graphics’ and ‘Interactive Entertain-
ment Systems’ involving using OpenGL with GLUT; and many involve the process of
uploading and setting permissions on files uploaded to the student’s personal webspace.
In the standard wiki, this has lead to a degree of redundancy, as it is undesirable to
completely indirect the instructions fully. The node regarding the shared technology
is oft highly detailed and extensive in task coverage—for example, the OpenGL node
covers topics from getting OpenGL example programmes to compile, through principles
and basic operation, to lists of online resources and gotchas—which results in links to it
thus being surrounded by an ad-hoc simplification of the pertinent task to avoid sending
the user to a node which will likely just overwhelm them. Instead, Weerkat allows for
transclusion to share this simplification between every course that needs it by creating
it as a node itself, possibly also used by the fully-detailed OpenGL instructions. The

Chapter 10 Applications 146

OpenGL node can continue to contain sections on many tasks, but each section can in
fact be a transclusion of a node on how to, for example, compile an OpenGL programme.
This section can then be broken down into a simple command list/reference, and then
the explanatory prose covering the principles and caveats involved. The former can be
transcluded into course pages as a summary on how to get started.

Figure 10.3 shows transclusion being used to share brief instructions for compiling
GLUT programmes being shared between two pages. The text was original written
in the OpenGL page, and placed in the body of a trans element with a target of
OpenGL.compile. The top-left window shows the node being viewed, where the effect of
this element is invisible; the top-right shows it being edited, where in-line transclusion
shows both the content and the transclusive link responsible for its presence.

The bottom-left window shows the OpenGL.compile node which was created as a result
of ‘pushing out’ the content as a transclusion target. It is by giving this shared text a full
node identity that we are able to transclude it into the COMP3004 node, bottom-right.
We simply wrote the link markup without any content ([trans to=OpenGL.compile

type=Transclusion]) to create the link. Users now editing the COMP3004 page will
find that the shared content appears in its source, just as for the OpenGL page, and that
it can be edited from either.

10.3 Software development: SDL documentation

The development and documentation of software often requires a structured but flexible
knowledge repository, and wikis have been used for this task. We focus here on the
Simple Directmedia Layer’s hypertext documentation project, the SDL Doc Wiki1.

Documentation wikis are an interesting variation because there is an external organi-
sation source: the source code of the program or library already has strong structure,
authoritative domain experts in the form of the developers, and in some cases embed-
ded documentation. The SDL Doc Wiki follows this by giving each function in the
SDL API its own wiki node. On top of this, they add manual indices with fairly strong
categorisation: lists of functions pertaining to audio, to video, etc.

Function documentation often contains self-contained code samples with enough sur-
rounding context to explain the function’s role, and in some cases to compile as a com-
plete program. This naturally leads to a degree of duplication: SDL SetVideoMode is
demonstrated not only in its own page, but in SDL VideoModeOK with a different exam-
ple. The page for SDL UnlockSurface does not show an example, instead directing the
reader to its complement, SDL LockSurface. Transclusion could allow these examples

1http://www.libsdl.org/cgi/docwiki.cgi

http://www.libsdl.org/cgi/docwiki.cgi

Chapter 10 Applications 147

to be shared amongst the applicable pages, and promoting them to nodes in their own
right also allows a given example to be linked to in, for example, a mailing list discussion.

Functions have common properties, as can be seen from the consistent structure of
their nodes. In particular, most function pages have a ‘requirements’ section at the
bottom containing an table with the header to include to declare the function, the
API version in which it was introduced, and the required library file to link against.
These properties could be handled via node attributes and instance property editing,
encouraging their presence for all nodes, and also making the information available in a
machine-processable form.

Finally, function names are reliably unique identifiers (they should never need context to
disambiguate, at least in a C API with no namespacing), and it is quite likely that a user
may wish to view documentation for functions which are referenced in the description
or examples of others. This makes them strong candidates for generic linking, although
we note that ‘all substrings of a certain form to the node with that string as a title’ is
closer to the ‘classic’ wiki CamelCase form of generic linking that the explicit-link form
in our prototype. As it stands, either each function would need its own generic link
from its name to its node (which is clearly an undesirably nontrivial manual process),
or the prototype would need to be expanded to implement parametric links as per the
model. It would then be possible to specify a link from CONTAINS(?n) to ?n. (Of nodes
containing the word ?n, link to ?n.) A more advanced case may wish to pattern-match
?n to ensure it is an SDL ... function as an addition filter.

10.4 Community: Tropes in media

TVTropes2 is a communal-effort website documenting the use of literary devices and
conventions in films, books, games, and other media. Each trope has a node with a
description and a list of examples in works; each work has a node with a description and
a list of the tropes it demonstrates.

Once based on PmWiki, they now run on a system so heavily modified that it is effec-
tively bespoke. While it has domain-specific features, the core of the wiki functionality
is effectively a ‘classic’ wiki with untyped, embedded links. In particular, unlike Me-
diaWiki, but like early wikis like MoinMoin, it performs CamelCase-style generic title
linking.

The TVTropes system does have limited support for node types: nodes can be specified
to be one of an enumeration of types such as ‘work’, ‘trope’, or ‘contributor’. They
also have an ‘index’ system, which allows a node to be placed in an arbitrary number of
sequences of nodes; these sequences are used in a manner similar to Wikipedia categories.

2http://tvtropes.org/

http://tvtropes.org/

Chapter 10 Applications 148

Figure 10.4: TVTropes: a work and a trope in their system

Figure 10.5: TVTropes: a work and a trope in Open Weerkat

Chapter 10 Applications 149

While the index system is technologically comparable to Memex trails, most are sorted
alphabetically, and thus are not intended to be read in sequence as a narrative.

The TVTropes community are effectively developing a folksonomy through their organ-
isational efforts, although their system has limited capability to model this. In prose,
they define sub- and super-trope relations, as well as tropes which are similar, contrast-
ing, and inverse. The relations between works and tropes can also be fairly rich, again
in prose. They comment upon whether a work ‘plays a trope straight’ (uses it conven-
tionally), or deviates somehow: it may ‘avert’ it (simply not use a trope which would be
expected), ‘subvert’ it (build audience expectation, but ultimately do something differ-
ent), ‘defy’ it (make a point of not following a trope), ‘invert’ it (do the exact opposite),
and so forth. There may be categorisation of examples within a trope node, but this is
rather ad-hoc, and depends on the use of plain-text headings. A common grouping is
works by media (e.g. literature, film, live-action TV), but some pages may be grouped
by specialisations of the trope (e.g. ‘Living Toys’ adds an outer categorisation of good
toys vs. evil), and others unsorted entirely (at least until an editor is inclined to change
this).

Figure 10.4 shows the game Nethack (left) and the trope ‘The Devteam Thinks Of
Everything’ (right; herein ‘Devteam’ for brevity) in the TVTropes system. Note that
that Nethack uses the Devteam trope is recorded twice in the wiki: once in each node.
Worse still, list items are often expanded to clarify the example, or expand upon how the
work and trope relate. The details of the case where the player is called ‘Maud’ while
reading a cursed scroll of amnesia show the overlap and inconsistency this can lead to.
There is no automatic assistance to synchronise examples between works and tropes: it
is common for a work to list a trope without being listed as an example on the trope’s
node, or vica-versa.

The limitations of a classic, embedded links wiki mean that this is the only practical
way to model their data. Figure 10.5 shows a mapping of a subset of the Nethack
example to our prototype system. Because first-class links allow for easy bidirectional
navigation, the relations table automatically ‘fills in the gaps’ between works and tropes.
Typed links using the informal TVTropes ontology allow the relations table to be more
informative, and also keep the data machine-processable. We show one of our link types
in a small window bottom-right. Note that it is a subclass of the Link type, allowing
it to be used as the type of links without the system also implying an explicit type of
Link. Once more, this is simply a new node with an attribute, subClassOf, set. Typed
links could also be used to explicitly relate tropes which each-other, such as inverses.

We have chosen here to use an organisation where one type of node—works—holds the
example prose, while the other—tropes—is covered by the relations table. However,
should an example of a work using a trope be particularly noteworthy or merit extended
discussion, it can be shared between the two contexts using transclusion. This allows the

Chapter 10 Applications 150

node prose to be reduced to just the examples which are most informative or interesting
without compromising on recording all the work/trope relations.

The TVTropes system uses CamelCase-style generic title linking, which can be repro-
duced with our prototype but, as with the SDL function case, only by creating a generic
link for each title. Given the different body structure of TVTropes articles to the en-
cyclopedic style which informed our ‘only link first instance’ approach, we may also
need to reconsider the matching algorithm for this context. Because the text is not a
continuous prose, but a list, it can be useful for titles to be repeatedly linked wherever
they appear. This can be achieved by modifying the GenericLinkMatcher module, and
could even become a configuration option. It is also worth considering that these links
would increase ‘noise’ in the relations table, by populating it with additional untyped
links amongst the work/trope relations.

Works have common properties, such as media, publisher, genre, and year, but such
information is not always present on TVTropes pages as it does not aim to be an artistic
database. Instance property editing would help with capturing this information for
other purposes—for example, TVTropes does implicitly contain the media of each work
by virtue of the subheading categorisation within each trope page—but currently the
prototype has no mechanism for such automatic reordering of relations or compositions
based on related metadata.

10.5 Conclusions

We have listed here a small set of hypothetical, non-encyclopædic use cases grounded
in real-world systems, along with explanation and exploration of how Weerkat’s current
feature set can be used to help these organisations manage their knowledge stores.

In contrast to this expert use of the system, the next chapter revisits the micro-scale
wiki experiment to assess how effectively untrained users new to the software can use it
to complete tasks.

Chapter 11

Experiment III: Evaluation

11.1 Introduction

An experiment was carried out to evaluate the effects of redesigning the wiki concept in
terms of open semantic hypermedia on its core usability and expressiveness.

Our hypothesis was that, generally, task performance would improve; we cover the
specifics in the following section. We also anticipated that the additional syntactic
complexity would prove to be a minor but pervasive impediment.

11.2 Procedure

To allow a direct comparison against a regular wiki system, we based our procedure
tightly upon that of the self-report section of Experiment II, described in chapter 6.
The same environment was recreated in the Weerkat system as closely as possible, given
that its significantly different markup and architecture made this a manual process.

We shall now recap the participant tasks, along with the expected changes to the par-
ticipant’s solution when faced with the new system capabilities.

Edit description of same villain in two movies. The text is clearly duplicated, al-
though not quite consistent. We expected participants to tackle to this redundancy
with transclusion of the content from a new node dedicated to the villain.

Add fact to specific article, and to summary in general article. This task cov-
ers level-of-detail with information redundancy; given our earlier results, we thus
didn’t expect Weerkat to trigger different behaviour to MediaWiki. Participant
preference for context-specific text would render transclusion unsuitable. The do-
main is the London Underground.

151

Chapter 11 Experiment III: Evaluation 152

Refine links pointing to the disambiguation node for ‘shelf ’. WithMediaWiki,
this task involved finding the backlinking (reverse link navigation) capability, then
finding and editing the embedded links. Weerkat makes these reverse links more
prominent, but also increases the verbosity of embedded links; we expected partic-
ipants following this approach to offset initial success from the former by increased
difficulty due to the latter. A faster and easier, yet more advanced, approach is
possible by directly editing the link—accessible from the relations table—rather
than finding its embedded version.

Create page summarising two other articles about type of train. As an aggre-
gation of summaries task, transclusion again surfaces as a possibly useful tool; how-
ever, our previous experiment led us to hypothesise that the context-dependent
nature of summaries may lead participants not to use it. The domain is a kind of
train called ‘multiple units’ across different countries.

Add links where appropriate to plain text of ‘cake’ article. Generic links are a
potential solution to this task, although the isolated nature of the tasks does not
particularly encourage it. This task does test straightforward inline link creation,
which we expected to be slightly hampered by the more complicated syntax.

Add fact to attributes of ‘Belgium’ article. As opposed to the MediaWiki info-
box, we used the attributes of the article. Because appropriate Instance Property
Editing metadata was provided for the attribute in question (the date of EU mem-
bership), the system provided a form field to prompt for it. Hence, we expected
this task to prove relatively straightforward. As a minor complication, the inves-
tigator stated the date in prose format (“25th March 1957”), to see if the system
adequately prompted the participant to use the desired YYYY-MM-DD format.

The script and questionnaire for this experiment are provided in appendix B. In particu-
lar, each session began with the investigator showing a quick demonstration of first-class
links and their embedded forms, transclusion, and generic linking. The pages for these
demonstrations were linked from the Homepage. Since there was no week of editing to
discuss, the total session was limited to the same half-hour span as the on-line reporting
of the previous experiment.

Figure 11.1 shows the homepage of the prototype system configured for the experiment,
for comparison with the Mediawiki system in figure 6.1. Figures 11.2, 11.3, and 11.4
show the pages used for the demonstration given by the investigator. The first showed
a first-class link with no embedded form, and that it appears in the Relations table in
both directions. The second demonstrated transclusion, including edit-time transclusion
allowing the content to be edited in-place, and that this change would then affect the
transcluded Demo.Four page. The third demonstration showed generic linking, including
that the generic link appeared in the source of the page so that the reason that the word
is linked can be seen.

Chapter 11 Experiment III: Evaluation 153

Figure 11.1: Open Weerkat prototype set up for experiment

Figure 11.2: Open Weerkat first-class link demonstration

Chapter 11 Experiment III: Evaluation 154

Figure 11.3: Open Weerkat transclusion demonstration

Figure 11.4: Open Weerkat generic link demonstration

Chapter 11 Experiment III: Evaluation 155

Figure 11.5: Full IPE listing for Belgium page

For a sense of scale, figure 11.5 shows, split across two panes, the full vertical height
of the Instance Property Editing table for the Belgium article. Note the blank field for
EUAccession, the hyperlinked Date range type next to it, and that some attributes have
multiple values, and thus rows.

11.3 Results

Results are presented in the order in which the interviews were performed as for exper-
iment II. Where participant IDs overlap with the previous experiment, the participant
is the same (and has consented to being identified as such). While this does imply a de-
gree of ordering bias, it is worth remembering that the previous experiment deliberately
involved participants which had been selected to be experienced with the system, which
is itself widely used. Even if they had been exposed to Weerkat first within the context
of these experiments, they have all used MediaWiki previously.

All of the participants were familiar with Wikipedia disambiguation pages.

Chapter 11 Experiment III: Evaluation 156

11.3.1 Participant nine

For the ‘villains’ task, the participant noted immediately that the character description
was duplicated, but “slightly different” in each. They initially suspect that there may
be sharing, yet “the transclusion isn’t quite the same as I saw before”. Looking at
the source, they determine that they’d have to change it in both, but “in a Wikipedia
sense. . . there’d be a separate page on it and I’d. . . add it to the main article”. After
clarifying that this was a real example from Wikipedia, the participant studied the nodes
serving as an example of transclusion. They stated that they were “not sure where is
best to put the information to transclude it from. . . whether to have another page that
I put that information in, and transclude it into both, or whether to have it one of
these and then transclude it to the other”. After noticing that the transclusion example
transcludes the whole page, they decide upon the former approach: a separate page.
They create a dangling transclusive link with content of the single sentence stating the
fact they have been asked to add, and expect that “possibly it will fill it in, if I understand
the linking”. They edit it again to “see if the link has updated in the source”, and note
that the link has gained some IDs. The participant puts an empty-body transclusion
in the other node, “to see if that transcludes it across”, or if it “sets [the shared node]
as empty”. The system does the former “which [was] what [they were] hoping, but not
necessarily expecting. . . excellent, made some sense, excellent”.

The participant again planned to use a dangling link, this time from the homepage, to
create the new page for general Multiple Units. They decided to “see what happens if I
don’t put any text in; see if it reuses the name of the link”. The prototype system does
not, so they noted that they “have an invisible link”, and edit it to have text. After
studying the specific train articles, they decide to “transclude the first paragraph”, and
do so by editing the pages to make those paragraphs the body of a transclusive link to
new pages. They added a brief introduction and a pair of headings to their general page
using the markup quick reference, questioning the use of the “standard formatting”,
rather than a more conventional wiki syntax.

While transcluding, they observed that they found it strange that they were specifying
the target with the to attributed, when “mentally I’m transcluding from at the moment,
because I’m not putting any content here”. At one point they wished to cancel an edit,
but it was pointed out that the browser back function works for this (the interface also
provides a link back to the view, although it is not labelled ‘cancel’).

They were ultimately successful after correcting a misremembered target page name.
While doing so they noted that the relations table showed the target even though it
did not exist, and that the system prompted to create it when clicked: “that’s good”.
They decided to actually change the name they gave to the transcluded paragraph, and
realised that this left an orphan copy of the content with the old name. Should the
summary need to be changed, the participant recognised that the modification could be

Chapter 11 Experiment III: Evaluation 157

made in the new, general page, and made a test edit to confirm this. They commented
that they “like the fact that the text is in both, but if I change it in one, then it knows
where it got that from so it goes back and changes it”.

For the ‘Belgium’ task, the participant immediately edited the page and noted the “nice
little editing area for that, but I don’t know how to add one”. They commented on
the attribute format in the ‘other’ box, but “don’t understand why they’re there rather
than in this attributes list”, and quickly determine that the node source contains only
the content. Shortly after, they noted the existing field, and decide to look at the rest
of the list for a formatting cue. Having found one, they also noted the link after the
field (the type), and followed it, finding that it confirms the format they now intended
to use. Having saved, they curiously click on the new date value in the attributes table,
and discovered that the page for that date doesn’t yet exist. Despite having completed
the task, they expressed interest in “what the list of other things at the bottom is for”,
and moved the date out of the table and into the other box, “to see whether that then
fills [the form field] in, or whether it just sits there”. They noted that it had, indeed,
migrated back to the table. After prompting to try looking at the attribute node, they
note the domain and range, and ask themself if Country is defined: “Country’s just a
description I guess”. The investigator pointed out that Belgium had a type, and this
matched the domain; attributes which don’t match up this way end up in the ‘other’
box. The participant understood and commented that they “like that”.

The participant found the pages with ambiguous links immediately through the relations
table, went to one, searched for ‘Shelf’, and read the surrounding text for context. After
looking at the page for the suspected kind of shelf to confirm that it was the correct
disambiguation, they edited the ambiguous node and, despite commenting on the “lots
of links”, found and corrected the link quite quickly. They checked that the link target
was now correct by following it, then used the relations table to get back from the specific
shelf type to Shelf, following a link in reverse. On the Shelf page, they then checked that
the previously ambiguous node is no longer listed as an incoming link. They perform
the same process for the other ambiguous page: for this instance, the text of the link to
the correct type of Shelf is different from the page name. They noted the page name for
the correctly disambiguated shelf in the browser status bar, as the relations table was
scrolled offscreen at the time.

Asked about their reaction when editing the first, larger, page, they comment that “it
was quite difficult, and there were a lot of links, and because they’re quite big they
take up a lot of space, so as you’re scanning it it then interrupts where you are in
the text, because you have to scan through the link, and then carry on with reading
the text. . . there was one bit. . . a big section where there were lots of links, one after
another, and it was quite difficult to read that”. Prompted for another way to tackle the
problem, they “guess [they] could have gone to the. . . node page that exists in-between”;
after asking themself how to get there, they checked the relations table. Knowing that

Chapter 11 Experiment III: Evaluation 158

the target text takes you to that page, they tried “this via part”, and note “there’s
the source, and the target, I could have changed it there. That makes sense.” They
commented that they had forgotten about this by the time they reached this task, and
that while “it does make a bit more sense to—makes it simpler to find what you’re
changing there”, “I now have to remember to come down and look at the relations table
to find that link, whereas I’m looking at it here [in the body text] and my instinct is to
work on this bit, to make the change.” They suggested an “edit version” of the page,
where the link in the body text “gave me a link to the page and a link to the link. . . it
might keep that in my mind to be able to go to that link in-between”. They concluded
that they may remember in future, but the feature is out of the normal workflow. When
the tooltip that shows the name of the link while hovering over an anchor was pointed
out to them, which they had triggered several times so far, they stated that they “hadn’t
noticed it; don’t normally get one; hadn’t really looked at it or read what it was”.

For the London Underground, the participant added the fact to the history section, then
used the relations table to navigate to Transport in London, because they’d “used it a
few times [and] now I know it’s there”. It was “only a guess” that the pages may be
linked, and they correctly determined that the link was from Transport in London to
London Underground. They compared the summaries in the two articles to see if they
were the same, and concluded otherwise. They decide to use transclusion to share the
sentence containing the fact, but are “troubled a little bit” that they’re “transcluding a
sentence of text, and that that will create a node in-between and [they] need to name
that node”; that “conceptually it seems weird having a whole page essentially just for
this one sentence of text”. They deliberately left content in both new transclusive links
to see what happened, hypothesising correctly that the latter save would update the
former. They noted that this case has caused a slight grammatical problem: they’ve
actually shared a clause, and it has a capital letter because it is the start of the sentence
in one page, which is incorrect in the other.

While adding links to the Cake article, the participant wondered aloud if they kept
needing to specify the link type, then noted that the markup summary tells them that
they did not. They noted that the example given there ([link to=Target link text])
is “slightly confusing”, as the word ‘link’ is used both as the element name and some
example anchor text. They also commented on the colouration of links; specifically that
the relations table does not follow the red-for-dangling convention of the body text,
which was explained as a technical limitation.

After prompting, the participant could not think of another way to add all the links,
having done them manually; after asking if they’d consider generic links, the investigator
recovered the example. The participant asked if the CONTAINS query was the only one
available, and if you can only use text, not regular expressions or such. They also asked
if this capability was planned to be expanded, before suggesting “a simplified version
where you just, rather than having a sourceQuery, it’ just contains=, and then you put

Chapter 11 Experiment III: Evaluation 159

your word in, and then tell it what to replace that with”. They questioned the scope of
generic links, guessing correctly that they affect all pages.

They then wanted to create a generic link, and pondered how. Choosing to create one
for the word ‘food’, they looked back at the example and noted “it’s just a node with
some attributes, so I could edit the cake page and do all that inline I guess”. While
navigating between pages for the task and examples, they commented that the relations
table is faster than the body text because it’s a alphabetically-sorted list, rather than
prose. They attempted to create the generic link inline as planned, but had problems
because of the difference between attribute names for nodes and for inlined links. They
also considered it a “strange thing” that they were supplying both a CONTAINS clause
and some content: “I don’t know whether to put that still within the link, or outside of
the link, or what”. The system created nested links as a result, having both a generic
link and a literal anchor. The participant noted the duplication in the relations table,
and also the version subscript for one of them, but was unsure why: they guessed that
the word ‘food’ might have been recursively replaced with links. They concluded that
generic links are “a little bit tricky because, if you can’t add them in the page—they’re
a useful extra, administrative tool—I guess you could let users have them but don’t tell
them much about it; it should be a very advanced feature that someone should sit there
with. . . a generic link interface that they can add a bunch to”.

After the investigator stated that they created their generic link example as a standalone
page (rather than inline), the participant wanted to try the same. They created a new
page via the address bar again, and entered the attributes to create a link from the world
and to the Transport in London page as a test, initially omitting the type. They asked if
they have to tell it that the node is a link; why the system did not know. “What would
have a source and a target that isn’t a link? I think that makes sense.” They noted
on the Cake page that only one of the ands had become a link “because it’s following
the Wikipedia sense of only defining it the first time, which is sensible, otherwise you’d
have ands all over the place”. They followed it to Transport in London and check that
that had many incoming links in the relations table. They temporarily experimented
with removing the type again, which triggered a bug in the prototype causing the link
to affect the page body but not show in the relations table. Finally, they noted that
Transport in London links to itself now, which “made sense” because it contained the
word and.

11.3.2 Participant eight

The participant added the fact about being the oldest metro “directly” into the Lon-
don Underground article, and then went back to the homepage and used the relations
table there to navigate to the Transport in London article. Having found the appropri-
ate section there, they commented that they “were not sure exactly how to do it but

Chapter 11 Experiment III: Evaluation 160

[they’d]. . . transcribe the content into here”, and asked if that was possible. Told that
transclusion was only possible for whole nodes, and they they would have to break up
the content, they proceeded to do so with minor guidance.

For the Multiple Units task, the participant was initially unsure how to create a new
page, and decides to do so by editing the URL in the browser address bar. After being
directed to the markup quick-reference to answer their question about headings, they
add such for the two countries. They created ‘main article’ links under these headings,
copying one to create the other. The syntactic error caused by a typo (“unexpected
space in the value of. . . ”) was found and corrected quickly.

For the disambiguation task, the participant spotted, under the outgoing links, that the
relations table also showed incoming links, and opened the offending articles in browser
tabs. For the smaller article, they search in page to find the context, copy the correct
type of Shelf’s article name from the address bar having opened it in a tab, and attempt
to search in page in the edit view. The browser used for the test does not, however,
support searching within text areas, so they find the link manually and correct the to
attribute, after confirming that this was the correct and sole change required. They then
confirm this by hovering over the view of the saved page and seeing the link target in the
browser status bar. They do the same for the larger article, about an albatross, although
with slightly more difficulty because upon editing they “can’t remember exactly where
[the link anchor] is”.

While the system was saving the larger Shelf change, the participant inquired if there
was “a typically better way of doing that”, as their reaction to the edit view of the large
node was “argh, words”. The investigator confirmed that there was another way, and
the participant guessed that “if it’s a first-class link, could I have gone to that node
and edited the link?” Asked how they would find the node for the link, they initially
consider from the large, albatross article, before wondering if it would be reachable from
the Shelf page, which was confirmed as correct.

The participant immediately edits the Belgium article, expecting to see the infobox in
the source of the page. They note that there are attributes at the bottom of the edit
page, and an ‘other’ box which does not have the same content as the table. They
ask themself “is this [the attribute to add] already in the table”, but quickly decide “it
doesn’t seem to be”, and spend quite some time scanning up and down the page. After
prompting that the list is sorted alphabetically, the participant realised that there was
a blank row for the attribute, and entered the value. They asked “is there any easier
way to add other attributes. . . because that’s what I was looking for originally; I didn’t
realise that this was already in the table”, and it was explained that there’s no way to
add rows to the table, but the ‘other’ box accepts attributes using the markup syntax.
The participant questioned if “it gets this list from the type or something”, and was
shown an attribute node, with domain and range; they correctly “assume. . . every page

Chapter 11 Experiment III: Evaluation 161

just has a default type attribute, and it’s value is then used to populate the rest of these
attributes”.

As before, the policy for links on the Cake article followed was “nouns, mostly”. The
participant asked of links “if I don’t put text, will it just use the name of the article. . . or
is that just required?”. After linking some nouns manually, they were prompted to
think of any other approaches, and quickly considered the “magic word” demo (generic
linking). They ask if there’s a way of making them, or if they have to create a node,
and do the latter, naming it Food.GenericLink. They fill in the attributes, save, and plan
to look at the Food page to see incoming links to tell if it worked. Looking at the Cake
article, however, distracts them as they had already manually linked the word “food”,
and the system had put a link within a link. Because the prototype handles overlapping
links poorly, they decide to “get rid of that whole thing [nested link markup] and just
put the word ‘food’ in”, which replaces it with just the generically-linked version, as
expected.

The participant spots the duplicated henchman in the film articles, and decides to create
a separate page for him, possibly transclude it back. They ask if they have to create a
“particular kind” of page to use as a transclusion, and add a heading and the required
content to the new page. Upon prompting, they state they would copy-paste some
content from the other articles in a real situation, and ask if they could transclude just
“particular portions” of a page. Being told that they cannot, they remove the heading
from their page, and decide to transclude it (containing only the new fact) into the other
two pages.

As final commentary, the participant suggested that the system could do with some
“nice interface”, like source highlighting. They suggested that when you hover over a
link, “some ability to edit in place”, while still in the page view. This was triggered by
the editing the larger of the shelf pages: “when you have just like bam! loads of text
it’s difficult for people to pick out the syntax”. Finally, they note that they had studied
a hypertext course last year, and consider that before that they didn’t know that links
could exist outside of a document (first-class): it’s not a feature people are aware of.

11.3.3 Participant ten

Participant ten started on the ‘cake’ task, and used the quick reference to link nouns.
They stated that without it they’d “have been a bit lost I think: I’m not an expert
at wikis”, and commented on how Wikipedia allows links to have the same target and
text. When prompted to consider other approaches, they suggested using an editor
with regular expressions, or a small script, to process a list of words: it was “definitely
a mechanical process”. After redemonstrating generic links, they decided that they
wouldn’t want to create a link for each word, and noted that generic links would affect

Chapter 11 Experiment III: Evaluation 162

every article, not just this one. While making straightforward text edits for the London
Underground task, they comment that generic links “surely won’t work with everything,
because it’ll depend on context. . . sometimes you’ll want 1863 to point to the year 1863,
and sometimes it’ll just be a count of something”.

For the train task, they used the ‘go to’ box to create a new page, which they populated
with a link to each country. They spent some time looking over the two pages to try to
understand the domain, and commented that “this is getting fairly ugly, syntactically”.
Prompted not to worry about quality of writing, they copied and pasted a sentence from
each country. Asked what would happen if one then needed a correction, they start “it
would have been nice if I could have. . . ” before remembering transclusion. With a recap
of the demonstration, they understand that you would break out the shared part into a
separate document, and then correctly surmise that you would transclude this into the
general page.

The participant handled the shelf disambiguation task using the relations table, finding
the links quite quickly and editing in place. They attempted to search-in-page on the
larger ambiguous node, but again the browser does not support this. Although having
completed the task, they comment that they’re “slightly tired of doing it this way, so I’m
going to check more carefully that there isn’t a better way to do it”. The investigator
suggests ‘disambiguating’ the Homepage’s link to the Shelf page, if the participant wants
to try something. They clicked the word ‘Link’ in the relations table, but are surprised
and confused by the result. Asked what they think they’ve found, they’re not sure, but
guess that it may be “links between links”. Having been explained that this is the type
of links, the participant determined that this was not what they wanted, backed up, and
tried the ‘via’ column instead, which took them to the desired link. They clicked the
target Shelf, but because they were viewing, this returned them to the Shelf page. They
also clicked the predicate target, but realised that that took them to a page “telling me
what a target is”. Finally they attempted to edit the link, changing the target, and
confirm that this has worked by looking at the now ‘disambiguated’ Homepage.

For the ‘Belgium’ task, the participant immediately edited the page and skimmed up
and down the editing form. They experimentally clicked on an attribute, but found an
undocumented one. They asked if they needed to “create an attribute of ‘EU Member-
ship Date’, that things can use in general? Because there doesn’t seem to be any way
to just add something to that table. And that would make sense, because you’re going
to want to be able to use it for other countries as well.” At this point, they noted the
‘other’ box, and added the fact as AccessionDate="25 March 1957", having noticed
that the motto attribute value used quotes.

After clarifying that the system had not made it sufficiently clear, the investigator
pointed out the EUAccessionDate attribute in the table, and asked if the participant
wanted to know why some were in the table, and some in the ‘other’ box. The participant

Chapter 11 Experiment III: Evaluation 163

did, and observed that “surely you’re going to want to use ‘Demonym’ for every country”,
an attribute which, for the test data, was not given domain metadata. They then
proceeded to add this domain and range metadata to Demonym such that it would appear
in the table, although they initially expected “an interface for it”, and momentarily were
unsure about its type. Editing Belgium again, they note that there is now a form field for
it, “and it’s filled it in, and it should be removed from [the other section] I’m guessing—
very neat!”

The participant spotted the duplicated character between the films, and decided that
“he needs his own article really”. Having determined that the two articles are not “word-
for-word the same”, they state that they would difference and merge the two in a real
wiki, but for now assume that they’d done that and cut one of the sections, replacing it
with the henchman’s name. They then pasted this into a new page, Jaws, the henchman.
They look back at the transclusion demonstration as a reminder, and note that “they all
had IDs, but I’m guessing that was added after”. After initially missing the type, and
triggering a bug which hides the heading, they succeeded. They were surprised to see
the content back in the page source when editing, but considered it “neat”, and would
have done the other page the same way.

Overall, they commented that the system was “fairly easy to use once I’d got into it”.

11.3.4 Participant three

This participant was more knowledgeable about hypertext systems, and noted some
points during the demonstration before the investigator could: the directionality of the
links, that the embedded and first-class representations are of the same link so changes
‘propagate’ between them, and that edit-time transclusion changes are pushed back to
the original, which was “very nice”.

First was the henchmen task. They noted the text differed beyond the first paragraph,
and determined that it wasn’t “cleverly transcluded or anything, just part of this node,
so I’d have to change it in two places”. Using the quick reference, they surrounded a
section of text as the body of a transclusive link, and noted that this section had “links in
already, which have anchor IDs, but I’m assuming that if I leave them there the system
will fix them, cause they’re now part of the new node”. They saved this change, noting
that it should look the same, but now the section of text was a separate node. Finding
their new node in the relations table, they visited it and checked it contained the text.
They then approximated merging the text from the other film into their henchman node,
deleted it from the film, and checked that the links in the description still worked. They
created an empty transclusion in the other film, expecting “the system [to] put in the
rest of the text for me”. Noticing that below their shared section one film’s page had
some additional prose about the character which they preferred, they edited the film and

Chapter 11 Experiment III: Evaluation 164

moved it into the transcluded section, which “should edit the transclusion and therefore
it’ll edit the other node as well”. They reloaded the other film and the henchman node
to confirm; it’s “got everything. So that’s exactly what I’d have wanted. It’s got the
text in both.” They also clarified that they only share a subset of all the text about
the henchman between the two films because the remaining text appeared to be talking
specifically about their appearance in each film.

The participant made straightforward links to cake ingredients, using the quick reference
to spot how to link to a page with a space in the title. They noted that they “can’t
use wiki text like I’m used to where I just put square brackets” (the MediaWiki link-
to-anchor-text shortcut), or at least that the quick reference didn’t show how. They
considered if there were “any other links I’d do anything interesting with”, but decided
not. Prompted to consider generic links, the raised the issue of scoping: “ ‘sweetening
agent’, it’s pretty obvious that if you write those words, it means exactly that. I mean
sugar you could generically link, but then it can mean other things.” Generic links
hadn’t occurred to them because they hadn’t used them, but they decided that they
could have “easily” done so in “lots of these cases”, so tried one. They looked at the
example node for generic linking, and noted the instance property mechanism: “there’s
a list of attributes where it knows what I think I want, and an other box where I can
type markup”. While changing an ordinary literal link for sugar, in its embedded form,
to a generic link to it, they noticed that the first-class view of the generic link has a
target, whereas the embedded markup uses to. They paused to consider if that meant
sourceQuery was right, and the investigator pointed out that the inline form is fromq.
Again, creating a generic link inline linked it twice, which the participant noted. They
viewed the link, and noted that it had a source and a sourceQuery: “so it’s created a
link that is both generic and specific”, which was correct. They removed the source,
and tried to return to the Cake article, but realised that you can’t click on a CONTAINS

query in the relations table, so went via the Homepage. This fixed the link, and they
noted the subscript ‘2’ in the relations table, correctly identifying it as the version. They
then decided to add more instances of the word “sugar” to the text, “to see what would
happen, because obviously the real cake node with all the text in would have it in”; they
capitalised one.

This revealed a bug with the prototype, which incorrectly triggered the generic linking
twice because it did not correctly identify that it had already linked to “sugar” due
to the capitalisation change, yet still case-insensitively applied both instances of the
link to the first instance of the word. Combined with the previous problem of a mixed
generic/specific link, this caused some confusion as the participant tried to help spot
the bug, and the investigator moved on to the next task.

The participant again chose transclusion to create a generic summary about the train
articles. They used a dangling link from the Homepage to create their new page, to
which they added headings and some basic text. They revisited the transclusion demo

Chapter 11 Experiment III: Evaluation 165

for a reminder, and noted again that they’re going to need to make the summary of
each country’s trains a node itself, which will need a name. While looking at one of
the country-specific nodes, they realized that “the text of this means it can’t just be
transcluded directly because it talks about the contents of the page”. They started
to break off two sentences either side of the troublesome self-reference as MultipleU-
nitsOfIreland.Summary.1 and MultipleUnitsOfIreland.Summary.2, using the namespacing,
before realising that they didn’t want the second of these for the summary. Saving,
they noted that it “should look exactly like it does now—and it does, but I can see the
transclusion at the bottom in the relations”.

For the other country, they wanted the last part of the introductory paragraph, and
the following paragraph, so constructed a transclusive link spanning the line break.
The system complained (this breaks the tree model), and the participant “was worried
something like that would happen”: they removed the error from the markup, and put
explicit paragraphing inside the transclusion. This caused ‘deep paragraphing’ errors,
as they’d created a paragraph in the middle of an automatic paragraph, which caused
confusion. After some contemplation, they went to the transcluded node via the relations
table, and cleaned that up to be just two paragraphs. They then used the history to
revert the country-specific node to before they made this change, then added an empty
transclusion to the corrected summary. The paragraph split was lost, but the text
was intact, so the participant finishes off transcluding the summaries into the general
trains page. Asked about if somebody needs to make a correction to the summary, the
participant notes that “they can edit it wherever they see it, and it will change in both,
and when they edit any node, they’ll see that it’s a transclusion and that will make them
aware that it will change in other places. So they can go to the transclusion and follow
the relations to find out where it’s gonna change if that’s going to be a problem.”

Upon seeing the Belgium node, the participant noticed the attribute and asked themself
if they were “properties of Belgium, or the properties of the node Belgium”. They de-
cided that they were the former, as “if this were a link, they’d be properties of the link”;
because nodes and links are different objects, “that’s fine, it is actually conceptually log-
ical. Which is nice.” They edited the page and noticed the repeated attribute Language,
and that “I want to add another one, obviously those boxes are all already there” (and
full). They spotted the existing field for the fact to add and entered the date, having
spotted the format in other date fields. Viewing the saved page, and wondering how
the system knew which attributes to show, they clicked EUAccession in the attributes
table. The participant determined that “it knows it’s a property because it has a domain
and a range. That’s interesting.” They noted that the date value was a link to a node
that doesn’t exist, “but it knows [that] is a date, because that’s specified in the node
EUAccession, which is very neat”. They expected Belgium to have a class of some kind
defining the attributes, and looked at Country, its type, but this only contained a short
text about countries. With prompting, they realised that attributes are found by their

Chapter 11 Experiment III: Evaluation 166

domain, and experimented with this by changing the domain of EUAccession to another
value. At first they didn’t expect this to work: “presumably it won’t let me because
things are using it”. Upon editing, they see that it has moved out of the table, into
‘other’, “because these are things that it doesn’t have by virtue of its class, they’re just
other properties that anything can have. That’s very interesting. That’s cool.”

The participant again considers transclusion for the London Underground task, because
“the text in Transport in London is really summarising the other node, so it could do that
by transclusions if it were the right thing to do in each context”. They transclude out
the sentence from London Underground about the newly-added fact, and add an empty
transclusion to the other page. They shared just this single sentence “because the text
of the other page is already a better summary in [its] context”.

The shorter of the ambiguous Shelf pages is found and corrected as with the other
participants, edited inline after using the relations table. The participant got the page
name for the specific shelf type from the browser address bar while hovering over a link
to it. Upon seeing the larger article, they attempted to find where the link to shelf
is in the prose by using the relations table cross-highlighting, but it didn’t not fit on
the screen at the same time as the right paragraph. They clicked to edit the page and
noted that “this is rather complicated—it’s just occurred to me I could probably looked
at the link itself, couldn’t I”. They found it in the relations table, and edited it, also
considering that “this is only a specific link: [it’s] only got that one anchor, so it can’t
have changed it anywhere else”. Clicking the source afterwards did not take them back
to the previously-ambiguous article as planned, however: they realised that it showed
them just the contents of the anchor within that article, so they used the browser back
button instead. They checked that the text was the same, but the link was now correct
in the relations table and browser status bar when hovering. Finally they looked at the
relations table on Shelf to confirm that it no longer had incoming links.

As concluding remarks, they wondered if there was a way to have partial paragraphs
to solve the transclusion-across-boundaries issue: “it’s a problem with transclusion as
because you’re often trying to address across the boundaries of elements, but it would
be really annoying to have two separate transclusions just because they’re in two para-
graphs”. They found the system “awesome: I love the fact that you can create relations
just by writing text in, and that you can give something a property just by creating
a node which describes that class”. They contemplated whether there’s a hierarchy of
typing, so that one could specify a EuropeanCountry, and it would have subclass-specific
properties, and inheritance: “the expressivity of the linking structure implies to me that
it would work if I knew how, because it can do every other thing”.

Chapter 11 Experiment III: Evaluation 167

11.3.5 Participant four

During the generic link demonstration, participant four realised that if you were to
remove the embedded form of a generic link, but leave the actual word in place, the link
would come back.

The linked the word “food” from the Cake article because of the bidirectional linking
provided by the relations table: “that means that when you get food, you’ll be able to see
cake as well, so that’s potentially useful”. After prompting, they may have considered
generic linking as something that “would work too”.

They created the general train article by creating a dangling link from one of the specific
trains, to which they then added some lead-in prose, and headings by copy-and-pasting
them. They looked for transclusion information in the markup quick reference, but
resorted to the demonstration pages instead, copying the link markup. The participant
was going to make up an ID, but as this was a new link they were prompted that the
system will do this automatically if the ID is simply omitted, to avoid problems. They
are stalled for a while looking back at the demonstration: “so potentially I’m not exactly
sure how I control the link on [the transclusion target node], it looks like it just puts the
text in”. They determine that “maybe I want a separate node that’s just for the [shared]
text”. Uncertain from which end to ‘start’ the transclusion, they put empty transclusion
markup to a dangling common endpoint in both the general and country-specific nodes
“so that they basically share content”, possibly expecting an error. Specifying anchor
IDs by copying link markup caused the system to become slightly confused. They
spotted the link to their shared node in the relation table, and followed it, cutting
and pasting from the other articles into the common one. The participant then asked
which order to save pages in, and was reminded of the demonstration that transclusions
‘push through’ changes. This mattered because they had left the word “something” in
the body of their transclusive links from copying from the demonstration page. They
decided to save the merged text first, which caused it to become overwritten when they
saved a “something”, because “it pushed them through”. After some conflict resolution,
however, they re-saved their merged text, and reloaded the other pages, noting that “it’s
pulled that information back in; I think the two original pages look identical to how they
were”. Should someone need to make a correction, the participant said that they should
look at the transclusion link and make an edit there.

Faced with the Belgium task, the participant declared that “I’m not familiar with how
this works so I’m just going to edit, jump in, and copy the markup”. Looking at the
input boxes, they commented that “this is different to Wikipedia; this is interesting”.
They quickly spotted that there was already a textbox for the desired field, and that
other dates had the ISO format, so entered the value. They also noticed that the word
‘Date’ was a link: “I’ll have a quick look at that but I suspect this will. . . so it tells me
how to format it, good. Then I’m confident that it’s correct.”

Chapter 11 Experiment III: Evaluation 168

After checking the London Underground page for “anything weird like transclusions”,
the participant added the fact as text to both nodes. They had contemplated using
transclusion for a while, but the markup was no longer in the clipboard, nor was it in
the quick reference.

They likewise made the change to the henchman in two films by editing both pages. The
participant stated that if they “were to be more of a curator”, they would have pulled
out content that’s the same; “the Wikipedia way to do that would be to write a bot”.
They noted that the text was “identical in parts”, so one could “write a little script
that went through all the nodes and found similar text”. Asked to expand on that,
they suggested “a helper application that presented me with a gazetteer that I could
choose from”. It would perform fuzzy text matching, and as an example it might report
“ ‘I found five Jawses, do you want to. . . transclude into a separate node and combine
them?’ And then I would be like ‘yes’ for these two, and then ‘no’ for the film ‘Jaws’ ”.
In this case, they or their tool would “curate” a piece of text about the henchman Jaws
in general as its own node, then transclude that into both films.

The participant used the relations table to get to the ambiguous shelf nodes, and also
to get the names of the different shelf types. They made inline edits, and tested success
using the relations table: “presumably, if I go back to the shelf page. . . then the relations
will have disappeared hopefully; so there’s only out relations, and in relations are the
Homepage, so that’s good”. When asked for their reaction to the source of the larger
of the pages, the participant said “there was a lot of text, and the markup for each link
is—really it’s quite verbose. . . in MediaWiki, if for example the link name is the same as
the text you can—all you have to do is put some brackets around it. . . and so that, you
can actually read that inline”. Their suggestion for another way to make the changes
would be for search-in-page to work for editing.

11.3.5.1 Remarks

This participant made an interesting suggestion about generalising the problem of there
being duplicated content on the wiki at all via ‘fuzzy’ techniques to try to identify it, so
that it can then be unified by the provided hypertext structures. Such functionality is
outside of our scope, but a possible future research area for ‘tidying’ large-scale wikis.

11.3.6 Participant eleven

The participant used the quick reference to link a few nouns in the cake article, testing
using preview after the first to check they were doing it correctly. Unwilling to mechan-
ically link the whole paragraph, they were prompted to consider an alternate approach,
and tried generic linking. They first looked in the quick reference then, finding it omit-

Chapter 11 Experiment III: Evaluation 169

ting this, at the demonstration pages, where they copied the embedded form of the
generic link.

There was some confusion about the target of the generic link, which seemed to be
based on uncertainty on where the link’s embedded form should be added: “How do I
know where it’s going to? Cause don’t you want the other page, say Food, to be the
page that adds to this page?” When editing the article to add the generic link, they
commented upon the system-added identifiers for their existing regular link, but then
replaced this with a pasted generic link for which they provided an explicit ID. They
initially also replaced the content word with the copy-pasted example, but spotted this
mistake in preview. However, upon saving, the link vanished, as they had not removed
the special reserved anchor ID the system uses to mark temporary generic link anchors.
They initially suspected that the problem was that the target node did not exist until
this was pointed out to them as a quirk of the system. Upon retrying, this time removing
the IDs “because presumably it makes one”, and commenting upon how that would be
more consistent, the link worked.

After editing the Shelf disambiguation page to note that the links there “look correct”,
the participant used the relations table to find the shorter, river article. They determined
the correct target from context, then copied the embedded form of the link from the Shelf
source into the river page. Commenting on how that was “presumably the traditional
way of doing it”, they theorise that “there is a slightly easier way of doing that, because
that’s just a link, with an ID, which I can go and edit”. They clicked the link name
in the relation table for the other ambiguous link, wondering where it would go to,
then the article itself for the context to determine the target. Editing the first-class
representation of the link, they paste the correctly disambiguated node identifier into
the attribute table, having copied it from the address bar. They click the link source,
“hoping to get back to the page from there, because ti said source”, but this takes them
to the anchor alone. The participant realises “there’s no way of getting back from that
anchor to the page itself”, but expected to be able to because “surely the anchor has a
relation to the page”. Having got back via the specific Shelf type, they did state of first
class linking that they “liked that feature”.

With the villains task, the participant identified that the common section had been
copy-pasted, and that there were differences which would have to be resolved. They
decided “to include that, because it’s the same article on both pages”, but needed to be
directed to the transclusion example to remember how. They cut the section out of one
article and pasted it into a new page, created by editing the address bar. The participant
copied and pasted the link from the example nodes, removing the IDs, and saved after
preview didn’t work. To add the transclusion to the second film, they re-edited the
first, but observed that “the transclusion now includes all of that [content], so it’s not
as easy to copy the link”, although it would work. They commented on race conditions,
and were told that the system performs locking to detect them. Finally, they changed a

Chapter 11 Experiment III: Evaluation 170

required fact in the shared character article, then checked that this change was reflected
in both films.

The participant assumed, for the Belgium infobox task, that “attributes, presumably, are
just triples, included from somewhere”. They saw the attributes form in the edit view,
and wondered how to add a row, assuming that they had to use the ‘Others’ box. They
added ‘EUAccessionDate’, using a date format they had seen in one of the other values,
and saved. Noting the alphabetical sorting of attributes, they found their addition, and
commented that “that was fairly easy; painless”. The investigator commented on the
table/‘Other’ distinction, and that the participant had previously used the table to edit
the attributes of one of the Shelf links. Asked if they knew where there was a distinction,
the participant guessed that the table attributes were “links, that are put in somewhere
else, between pages and things, like on the Albatross (Shelf task) page. . . so you’ve got a
root node relation or something, [and] you can presumably put these in somewhere else.”
Prompted to look at one, they noted that “it’s an attribute; how do you create one?”,
to which the investigator showed that it was a regular node and, after some confusion,
the type/domain matching.

For summarising the Multiple Units, they postponed immediately creating the general
node, as they said “we want to create some form of relation between these things; see
you’ve made me think in terms of your wiki now as to what you would do, because
obviously you do want some relations between these things”. They looked at the Shelf
page for inspiration, because “it has all the links”. Eventually they create a new page,
MultipleUnits, which links to both specialisation pages, and look at the relations table.
They refresh the specialisation pages and look at their relations tables, noting “we now
have a relation”.

To add the summaries of the specialisations, they ask if they can transclude part of
a page. Told otherwise, they are reminded that they did effectively do that for the
villians task. They remembered that they had split off the shared subsection, about a
character, into an article, but questioned why you would want to do that in this case;
“can’t you have subaddressing”? “You would have to create a page that was just a
summary of [the specialisation] page, and then include it in this page and the [general]
page; and that sounds like a lot of work”. The participant went on to explain that
they wanted sub-component addressing because “clearly on these pages you’ve got this
first introduction paragraph before the first title and most Wikipedia pages have these”,
and they wanted to “transclude that exact section” without having to think up a name
for a new nodes, create it, copy-and-paste the content, save, edit the other page to
remove the content, and set up the transclusive link. They followed this process for
one of the specialisations, and the investigator prompted them to think of a way to
avoid the explicit page creation and copying. After guesses at using generic linking,
or sub-component addressing by section heading, the participant was shown that the
transcluded node can be created by the ‘push changes’ effect of edit-time transclusion.

Chapter 11 Experiment III: Evaluation 171

They commented that “you’ve done it backwards. . . you’ve created the page by telling
it ‘this is the content to be on that page”’, and that they had meant something like
that by naming a section. The participant reasoned about the Semantic Web meaning
of links in terms of triples, but there were terminological difficulties, for example with
‘id’ in the XML within-component sense.

They added the fact about the London Underground directly to both that and the
Transport In London articles, but consider that “it’s a fact, so technically it should go in
an infobox”; also because it is not subject to change. They would have liked to have been
able to transclude or share the attribute value between the pages. They also decided to go
ahead and unify the summary text between the articles using transclusion “backwards”,
as they had been shown in the previous task. When creating the transclusive link in
the section node, they deliberately provided the node’s content to see how the system
would handle a new anchor with new content for an existing transclusive link, and found
that it overwrote. They initially suspect that the other text was lost, but look at the
history for the transcluded node and find it intact, from which they retrieve and merge
it. While not an edit conflict (there was no concurrent editing), they point out that two
editors here could have inadvertently specified the same link target and “been editing
the same page but there’s no warning about that”. (This is a risk which only exists at
link creation, and is at least partially because in-lined content loses derived-from version
information in the current text serialisation.)

Concluding, the participant stated that they “like the system: in terms of those people
who are thinking semantically about things it’s a very good way to see a wiki going”.
They felt that the wiki would help for a project they work on, as the contributors
“constantly edit our wiki pages and try to organise the wiki and I have a feeling that
some of these things would help us out greatly because it would get rid of a whole lot
of these duplication of data”. “Because templates are all well and good but they’re not
brilliant for just being able to say “include this here include that there”, which this
seems to be better at doing that”. They also liked having “all the relations between
everything”, and that links were first-class, “because then you can re-use them, and I
liked that as well”; a “nice piece of work”.

11.3.7 Participant seven

Participant seven grasped immediately that “links are pages as well” during the demo,
and described first-class link nodes in terms of intermediate database tables for many-
to-many relationships. They also recognised during the transclusion demo that editing
the inlined version would affect the transcluded page.

The participant was familiar with disambiguation pages, and looked for a “what links
here” feature, as with MediaWiki, before spotting the relations table. They appreciated

Chapter 11 Experiment III: Evaluation 172

that the relations table cross-highlighting worked in both directions. They looked at
the ambiguous ‘river’ page, and copied the link text, not target, from the Shelf page for
the type of shelf it should link to. The participant found the link manually within the
river page after finding that the browser would not search within text boxes, and pasted
the link text as the destination. They were concerned about whitespace, noting that
it appeared to be used as a delimiter, but took no action about this at first. However,
they were also confused by the markup for the link type and text, Type=Link Shelf,
and changed Shelf there “for good measure”. Because the markup was now of the form
[link to=Shelf, West Yorkshire type=...], the system interpreted it as a default-
type link to a node Shelf, (note trailing comma) with a link text of “West Yorkshire. . . ”,
which was not the intended effect. The participant determined that they needed to
quote the attribute value, and sought an example (they did not notice the quick reference
throughout the experiment, possibly because of their Wikipedia experience, which uses
this space for copyright notices). They left the type and tried again, creating a link
to the incorrect but intended target Shelf, West Yorkshire; they also tried momentarily
changing the type to this value. Prompted to consider what they had copied, the
participant realised that the target page title was not the link text from the Shelf page,
and corrected their mistake. In the process, they “got” the markup, and realised that
the Shelf at the end of the element was the link text, not part of the previous attribute
(type), so left it alone. After previewing, and testing the link destination, this was saved
as correct. They noted that it showed in the relations table outgoing, “which is nice”,
and hypothesised and confirmed that it was now no longer an incoming relation on the
Shelf page.

Moving on to the next ambiguous page, the participant lamented the absence of an “edit
section” feature, made a mental note of roughly where the ambiguous link was in the
text, and reluctantly went to edit the whole page. Frustrated at the browser’s inability
to search in textboxes, the investigator prompted the participant to consider if finding
the link there was necessary. The participant decided to be “stubborn and determined”
and found the embedded link by comparing to the view of the page in another tab, and
updated it. After this, they contemplated that links are bidirectional, and that “there’s
a link in the middle” which they could have edited, but it “didn’t occur to [them] at the
time”. They wondered how to get at the “link in the middle”, as clicking the endpoints
in the text takes them to the target page, before considering the relations table. The
participant clicked the word ‘Link’ in the table, which was the type, and was confused to
encounter documentation about links: “I was hoping to see some page names”. Backing
up, they eliminated the columns for the source and target, and quizzically tried the
“via” column, which yielded the expected result. They determined that they could see
a source and target, and could have edited this instead.

Looking at the two films with the shared villain, the participant checked for “templates
or anything going on, because that might be a way to reuse [text], because I don’t

Chapter 11 Experiment III: Evaluation 173

really want to edit two things, to add the same information in”. Although not quite the
same, they contemplated creating a new page for the villain, although they wouldn’t
necessarily do that on Wikipedia. Here, however, they were “bold” and created the new
page by editing the browser address bar “because that’s how some other wikis work”,
having not seen a “new page” button. They moved the section from one film, leaving
the character heading on the original page, because it “doesn’t really make sense” on
the character’s own page, before changing their mind. The participant suggested “a nice
thing to have” would be to replace the HTML-style [heading level=2] markup with
nested headings with implicit level, so that transcluded pages would get appropriately
sub-levelled headings by context—“that would be quite cool”. Momentarily distracted
by the idea of generically-linking the shared character’s name, the participant sought
the transclusion example and copied the embedded link into one of the film pages. They
“[didn’t] want to specify what the text of that [target page] is”, and tried leaving the
link element empty, in the “hope it doesn’t delete it all”. Having asked if they could just
ignore the IDs, they were told to remove them: “I wasn’t sure what to do about those”.
(Previous participants had already shown that this creates confusing hyperstructure,
and the investigator was wary of running out of time.) Despite some minor formatting
losses (bug), the transclusion worked, and that participant was “pleased with that”.
They edited the film page again to copy their link to the other, suspecting that “the
text is going to be enormous in here now”. It was, and they “[could] see how it could
be useful to edit in place. . . as a convenience”, but found the whole of the character
page being transcluded to be overwhelming, and “kind of [wished] that [they’d] copied
and pasted that sort-of ‘raw link’ that [they] had before [the body was inlined]”. They
instead took the head of the link, leaving the body, and copied that to the other film,
replacing the text there (they would have merged in a real scenario), which worked.

Faced with the Multiple Units task, the participant created a new page with a heading
for each country specialisation, and looked for suitable summary text. They noted
that “normally when I’m doing summary paragraphs they wouldn’t be identical to the
paragraphs from the page; so I could use transclusion here, because I’m copy and pasting,
but I’d normally try and keep the text more succinct in the summary pages, in which case
because the text is different I can’t use transclusion”. This given, they copy-and-pasted
some text from each specialisation, and saved to checkpoint their progress before setting
up links. They momentarily contemplated putting the links in the headings, but “that
could get interesting, because it’s already in a tag” (element), which was “daunting”.
They found a link from Shelf to base theirs upon, “because I can remember that I used a
link, and it didn’t have the same text on it”; while they felt they understood it, re-using
an example was easier. For the link to the second specialisation, they tried leaving the
link element body empty, to see if the system would imply the target’s title as anchor
text. When this failed, they correctly assumed that the system interpreted it as a link
[anchor] with no text, “which is not particularly useful”; “probably not something you’d
normally want”. They did not notice that it had still affected the relations table until

Chapter 11 Experiment III: Evaluation 174

prompted. After correcting the link, they were happy to confirm their hypothesis that
refreshing the specialisation pages now showed the incoming links: “it’s a bit like ‘What
Links Here’ in Wikipedia, but on the same page”.

For the Belgium attributes task, the participant remembered that they had seen an
attributes field that they previously mistook for an edit comment field. Looking at the
table and ‘other’ box, they determine that attributes “look like they’re sort-of real things
as well”, before finding that the required attribute was in the table with a blank value,
“which [was] good”. They started typing the date value in the (incorrect) format spoken
by the investigator, before considering that they should find out the desired format, and
uncertainly clicking the ‘Date’ (attribute range) link next to the field. This documented
the desired format, which they considered “excellent”. With the page saved, they ex-
perimented with clicking the value, giving the page about that day: “excellent”. They
also noted that the link colour hinting for page existence was wrong in the attributes
table, a known limitation.

Previously confused by apparent attribute values without keys when editing, the par-
ticipant looked again, and eventually determined that they were multiple values: “a bit
more formatting and I would have got that”. They contemplated how to add another
value, as there was no ‘add’ button, and they did not suspect that comma-separation
would work, before trying the ‘Other’ box, not expecting the merge to work. They were
surprised when this succeeded. Prompted to explore why some attributes were in the
table, and others not, which the participant was initially curious about, they clicked
another attribute key. Reading it, they stated that it was not a “regular page” (en-
cyclopædic article), and understood the domain and range predicates. Reminded that
Belgium had a type of Country, the domain here, they worked out how the system per-
forms the mapping to suggest attributes. They “might have expected” to see, on the
Country page, a list of the properties mapped this way “because this is almost like a
template for what would go in your infobox for a country”.

The participant edited both the LondonUnderground and TransportInLondon articles to
add the required fact. The investigator stating that they had copy-pasted text for the
audio recording, the participant explained that they “can’t give [that fact] it’s own
article, because it’s a single statement”.

For the ‘cake’ task, the participant immediately thought of generic linking, although this
because they wanted to try something they had been shown but hadn’t yet used. Initially
they were going to link “sweetening agent”, “because that’s a very sort of scientific thing
isn’t it”, but the investigator intervened to observe that only single words work for now
to save time. They instead created a page for Gluten, and edited at the generic linking
example. Instance-property editing was unhelpful here: the participant was hoping
to get a box with all of the attributes, which they could copy, then paste into a newly
created link. However, because the attributes were in a table, this wasn’t easily possible.

Chapter 11 Experiment III: Evaluation 175

They created a new GlutenLink page, and first set up the type as Link, after which they
previewed. This somewhat unexpectedly provided the instance-property editing form
for their link (“lovely”) into which they copied the attributes from the example. They
noted that the example link had content text—“why would you put text on a link?”—
but determined that they did not need to reproduce that. Refreshing the Cake article,
they saw that their generic link had worked, and was in the relations table.; they intuited
after a little initial surprise that the subscript ‘2’ indicated the version.

In conclusion, the participant “liked the ideas of the being able to edit templates (tran-
scluded pages) inline”, but felt that it needed to be optional, or only “if it’s more than
five words or something”, “because when I did the [villain] thing it put the whole [tran-
scluded article] in the article I was trying to edit”. They didn’t want this because it
was “too much” text, and they wanted “to see the article I’m editing, I don’t want to
necessarily see entire other articles if I’ve transcluded them”. Although the view con-
tained this text, and the article previously contained it, “while [they were] editing it
[they] think that just got inconvenient at the time”.

They liked being able to see outgoing links on the current page in the relations table,
and also that they didn’t have to click “What Links Here” to see incoming ones: seeing
both directions together “in a table is quite useful”. However, the current table is “a
bit raw at the moment because these links are all very cryptic underscore 2 things” that
the participant suspected would confuse users.

Finally, they liked the instance property editing: “it was nice to be able to just in-
stantly see what I had to type in. . . it was all there, it knew it was a Country: I could
just go straight in and edit it, and not have to go fishing about and reading template
documentation that’s just plain text, which is what Wikipedia would be”.

11.4 Conclusions

11.4.1 Common observations

As with table 6.1, table 11.1 groups the general approaches against each participant.

Participants were generally positive about the system and willing to explore its function-
ality. They demonstrated some of the same usage patterns as we discovered in chapter 6.
Most significantly, they still learnt by example, seeking previously encountered uses of a
feature to derive from in favour of writing markup from documentation. Some partici-
pants made use of the quick markup reference under the page for this purpose, as it took
the form of self-describing examples. Participants still previewed intermediate stages of
page creation, and this stresses that the preview feature, which is no longer completely

Chapter 11 Experiment III: Evaluation 176

Behaviour 9 8 10 3 4 11 7
Same villain in two movies
Edit both X
Transclude section X X X X X
Transclude just fact X
Specific and general London Underground
Edit both X X X X
Transclude section X
Transclude just fact X X X
Disambiguate Shelf links
Found backlinks via relations table X X X X X X X
Edited embedded form of link X X X X X X X
Edited first-class form of link unprompted X X X
Considered first-class link as alternate approach X X X
Summarise two types of train
Transclude parts X X X X
Copy parts X X X
Add links to cake introduction
Tried/wanted empty, default-text links X X X X X
Considered generic linking unprompted X
Considered generic linking as alternate approach X X X
Rejected generic linking as unsuitable X
Tried to create generic link embedded X X X
Corrected embedded generic link to work X X
Created generic link in first-class form X X X
Add fact to infobox for Belgium
Added fact X X X X X X X
‘Other’ box instead of IPE X X
Sought to add row to IPE table X X X X
Date format used by example X X X X X
Date format used by range documentation X X X
Explored range/domain of attributes X X X X X
Non-task specific
Used markup quick-reference unprompted X X X X
Complications from link IDs in source X X X

Table 11.1: Summary of participant behaviours for tasks on Weerkat

functional in the prototype after the extensive changes required, is important, even if it
is not novel.

The relations table was frequently used, and participant reaction to it was positive. It
expedited navigation when the desired target was already known, which may be at-
tributable to its increased link density and alphabetical, rather than prose, ordering.
Participants also seemed confident in their understanding of the hyperstructure pre-
sented by the table, and all understood the cross-highlighting between table rows and
link anchors in the content. Its primary problems are that it cannot cross-reference if
the anchor and the table do not fit within the browser window without scrolling, and

Chapter 11 Experiment III: Evaluation 177

that the columns other than source and target are not sufficiently intuitive. Even par-
ticipants seeking to reach a first-class link could be led astray by the column full of the
repeated text ‘Link’, which is actually showing the types of each link. There is also a
navigational issue in that there is no easy way to get from an anchor to its parent page,
which means following the source attribute of a first-class link is currently of limited use.
The tooltip when hovering over an anchor, stating the link ID responsible, was largely
ignored, and could not be used to reach the first-class link anyway, as tooltips are not
interactive. This made it largely useless.

The heavier link markup required by the system to track versions of links over time
and properly synchronise anchors, with identifiers, was somewhat problematic. While
it did not entirely obstruct any participant, it did increase the ‘bulk’ of page sources,
which hindered the task of scanning through them, and was occasionally confusing. A
recurring problem is that users copy embedded links as part of the process of creating
new markup by deriving from previous examples. Identifiers complicate this process, as
they must be removed to create new links, else the results can be highly confusing: the
participant instead changes the previous link, and may assert duplicated anchor IDs.
Some participants wanted per-section operations, such as sub-component addressing by
section boundaries, and Mediawiki style section editing: the latter would partially help
by restricting the scope of source to seek through when finding an embedded link.

While first-class linking does not come naturally to all participants, once intending to
make use of it, everybody was able to modify a link in its first-class form to point to a
different target. To some extent, we expect this to be a simple inertia/experience issue:
first-class links are virtually non-existent in current popular, public hypertext systems,
and greater exposure to the feature should naturally lead to its increased use.

Transclusion saw use by every participant, and some realised that the edit-time ‘push
back’ effect meant it could be used to ‘mark out’ sections of a page by splitting them
into separate, transcluded nodes. Response to content-sharing was generally positive,
although the approach of creating the transcluded page manually could become cum-
bersome. Shorter content fragments were more disputed: while one participant created
a shared page consisting of a single sentence, others were uncomfortable with the idea
of creating pages which were not standalone to some degree. In some cases, smaller
fragments caused problems by spanning branches of the document tree, which did not
fit into the hierarchical DOM used for node content.

The instance property editing mechanism works, and was also viewed positively by par-
ticipants. However, it does not distinguish empty fields well enough, as some participants
missed them amongst the populated ones. A contributory factor could be because the
editing view of attributes is similar to the normal view, except that the latter naturally
does not show missing attributes. Participants wanted to be able to add rows to the
table, although some determined that this could be done indirectly via the ‘Other’ box.

Chapter 11 Experiment III: Evaluation 178

An unexpected cost of the IPE interface is that is complicates the derivative editing
process: attributes which are in a table are very awkward to copy into a new node.

Generic linking was more problematic. The natural approach for most participants
to create a new link is to write it inline, as is the model for HTML-derived systems
(like Wikis). However, this does not work very well for generic links: conceptually,
they cannot be placed somewhere in a document, as their endpoints are determined
dynamically. In the case of this system, this caused problems where hybrid links were
created with both generic and literal endpoints: this is very confusing when the literal
endpoint splits out as an anchor subnode, and the generic link creates virtual anchors
to match upon content. When participants created generic links directly as first-class
entities, they worked as expected. The concise, element-style vs. extended, predicate-
style terminology for link attributes was also problematic here, as participants had to
map between the dissimilar sourceQuery and fromq.

11.4.2 Comparisons to Mediawiki

Compared to Experiment II, participant performance has improved. Every participant
was able to complete every task, and what problems were encountered were either due to
exploratory use of advanced features, or bugs caused by the immaturity of the prototype.
We were surprised to note the extended use of transclusion, beyond that suggested by
the previous study.

11.4.2.1 Shared villain (Jaws)

As a large, potentially standalone section used by two articles, we expected transclusion
to be a natural solution, and participants used it. With Mediawiki, this was not a
practical solution, as it would have involved creating the character as a template, also
concealing it from the edit views of the film pages.

11.4.2.2 General and specific (London Underground)

We did not expect the system to perform significantly differently here, as participants for
Experiment II largely agreed that the different contexts required different texts. While
some held this for our system, others did indeed use transclusion for information-sharing
between the pages.

Chapter 11 Experiment III: Evaluation 179

11.4.2.3 Disambiguation links (Shelf)

The simple user interface improvement easily facilitated by first-class links—the relations
table—was a huge boon here. With Mediawiki, some participants struggled to find the
articles, needing to activate a “What Links Here” feature in the side panel. In Open
Weerkat, every single participant was able to rapidly find them.

In addition, some participants were able to improve their performance further, by real-
ising that they could edit the first-class links directly, and avoid the need to find their
embedded versions, which can be time-consuming. We believe that this could be a signif-
icant advantage to the ‘many small edits’ ‘fiddler’ wiki editors identified in Experiment
I who perform this kind of maintenance task, as their less-casual role should make them
more inclined to discover and use this capability.

Conversely, the increased verbosity of the link markup did slightly impede participants
seeking through the markup to find the embedded link.

11.4.2.4 Summarise specialisations (Multiple Units)

Again, we were not expecting significant changes, as our previous study suggested that
that the differing contexts would proscribe content sharing. Most participants, however,
did seek to use a summary shared between the overview and specific pages. In addition,
the relations table was again useful, as the act of linking from the overview to each
specialisation also effectively navigationally related each specialisation: they each gained
a backlink to the overview, allowing it to work as a hub. In Mediawiki, this kind of
organisation requires the explicit use of categories.

11.4.2.5 Link prose (Cake)

Simple link creation is more complicated in Open Weerkat than Mediawiki, and this
was encountered throughout the tasks, mostly when deriving links from examples and
having to strip out superfluous attributes. Links created ‘from scratch’ were not so
much complex as verbose. This task particularly highlighted the problem of requiring
an explicit target and anchor text, requiring participants to duplicate words from the
original plaintext.

Some participants were able to use generic links for this task, but within a single article
this did not save labour: the process for creating a generic link is more involved, not
least as there is no special case for creating a link for a given word to the node of the
same name, with an autogenerated link name. It is a limitation of the experiment that
we did not discount this against the link not needing to be explicitly created on other

Chapter 11 Experiment III: Evaluation 180

pages, but some participants were concerned about this (currently) boundless scope and
how it may affect pages other than the one they sought to change.

11.4.2.6 Add attribute (Belgium)

Instance property editing proved here to be a substantial improvement over the Wiki-
pedia infobox templating approach. Again, while some participants were unable to
complete this under Mediawiki, all of them could under Open Weerkat. In addition, all
participants added the date value in the correct format, despite having the fact presented
to them in conversational speech. Some participants were even able to determine how
to define new attributes which would appear in the suggested list.

11.4.3 Implications

A major limitation of the prototype system is that it has a web-based user interface,
which is constrained to the capabilities of an HTML text area. This means that pages
must serialise down to a string of plain text for editing, and that all context about each
element to be preserved must be part of it, regardless of the importance of its visibility
to the user. A WYSIWYG interface—either thick client, or some form of ‘rich’ web
page—could help greatly by concealing details such as link identifiers by default as ‘rich
objects’ in the page source. It may even be possible to match this up more closely with
the reading view of the page, thus helping to avoid the disorientation of switching to edit
mode: compared to desktop word processing, this is currently a strange interface relic
of wikis, which this study and system has highlighted because of the increased markup
verbosity.

We can make some improvements to markup usability even without such major changes.
The Link type is just noise and, given that it conveys no semantics and it or a subtype
are an implicitly-added requirement of all links, it can be stripped from serialisations
without significant consequence. We persist link identifiers so that we can version links
with semantic accuracy: so that we track ‘the same link’ over time. While this is
theoretically good, we have found that the cost of tracking identifiers is high, and they
could be dropped. Instead, the system would need to identify links which matched the
base version of the page, and whose endpoints are now missing from the derived one.

Participants attempted or desired to use the historical wiki shortcut of a link containing
just a page title to use it both as target and anchor text: we should better support
this pattern. While it removes some semantic flexibility, links with empty anchors or no
targets are slightly obscure edge cases, and implying one from the other during creation
would allow for this shorthand. Care should be taken to not modify links with query-
targets, but no literal targets, however.

Chapter 11 Experiment III: Evaluation 181

Query-target, or more specifically in this prototype, generic links were, however, highly
problematic. Participants required guidance to both consider and to succeed using
them, and we must consider that a real-world situation, without the appeal of novelty,
reduced consequence environment, and experimental incentive to be persevere more,
they would be less appealing. Given that is is largely impossible to correctly create a
generic link inline, it may be best to outright not support this approach. Combined with
the implementation complexity costs, query-based links may not be suitable for general
use, and best left as a special-case, expert-only feature.

The problem of instance property editing complicating first-class link copying could
be resolved by providing an explicit node-copy feature. While it is tempting to also
consider this derivative in a versioning context, it is worth remembering that the new
node is only related to the old by the rather arbitrary connection that the user found
it first as an example. Instance property editing in general would benefit from user
interface improvements which allow the table to be dynamically expanded, as well as
the aforementioned highlighting of blank, suggested fields.

The next version of the model should give greater consideration to the subdivision of
pages into sections (for simplicity, the current model does not). An initial approach
could be to consider each section to be natively transcluded into the page, as with
anchors, which allows for each to have a full identity. This then leads to, as with
‘pushing out’ transcluded regions, a form of effective sub-component addressing, without
needing to subdivide URIs. By giving sections a heading attribute, we can automatically
generate headings to the appropriate nesting level depending on context, as alluded to
by participant seven.

Transclusion itself was largely successful, but for the desire to share regions spanning
multiple DOM branches. This is a complicated problem, as such regions must be sepa-
rated out into standalone nodes, which then get transcluded back in at the point of an
anchor in the DOM. An initial approach may be to mark these cut regions as ‘sticky’,
such that they attempt to reattach to adjacent DOM branches, but complexity can rise
very quickly, especially if the region also begins and ends at dissimilar tree depths.

Overall, we have demonstrated that the system successfully implements useful hypertext
functionality which can be used by untrained, if adept with wiki systems in general, users.
In the final chapter, we look to how to next develop the Weerkat model and system to
help further its benefits and mitigate its costs.

Chapter 12

Conclusions and future work

12.1 Introduction

In this work, we have studied notable hypertext and semantic wiki systems in chapter 2,
and sought usefully meaningful overlap between the two fields in chapter 3. This led to
a set of proposed improvements in chapter 4 which could be applied to semantic wikis
to enrich their utility and reduce the cost of hyperstructure maintenance. To show the
scope for improvement, we performed a macro-scale experiment in chapter 5, and then
prioritised the possible improvements with a micro-scale experiment in chapter 6.

We have, from this experimental work, devised a model which encapsulates the function-
ality of open hypermedia in a semantic wiki context in chapter 7. In chapters 8 and 9 we
have addressed the implementation practicalities of, and reported upon our experience
with, building on this work to create a prototype system by which the claimed benefits
of hypertext can be tested. As a concrete example of its use, we applied this prototype
to real-world use-cases brought up in the introduction in chapter 10.

Finally, we tested the system with untrained users in chapter 11, and concluded that
the system had advantages over conventional, web-style hypertext, wiki systems.

12.2 Conclusions

12.2.1 Wiki editing patterns

We have performed, presented in chapters 5 and 6, a pair of studies on the real-world
patterns of editing on popular wiki site Wikipedia.

The first experiment was a large-scale quantitative analysis of the evolution of a subset
of pages over time in terms of the kind of edits made, classified by specially-developed

182

Chapter 12 Conclusions and future work 183

software. In particular, we assessed which edits affected the text content of nodes, and
which affected the navigational linking (links, categorisation, and such). We found that
twice as many edits only changed links than changed content and that approximately one
edit in ten was maintaining indexes of pages. This demonstrated that significant effort
is being spent on maintaining the hyperstructure, and in ways which can potentially be
improved by richer hypertext support.

The second experiment was a complimentary small-scale qualitative analysis of the ob-
served editing patterns of a set of Wikipedia contributors. We captured both unguided,
‘natural’ editing that the participants made during a period on the live Wikipedia sys-
tem, and a more detailed analysis of their interactions with a set of synthetic tasks on
a high-fidelity simulation of the site. This was used to inform our design process with
regards to which potential hypermedia features we could most expect to yield observ-
able benefits, and also to ensure that our work was well-grounded in real practices. In
particular, our attention was drawn to the important of learning-by-example; implicit
collaboration by deliberately leaving articles in a strictly inconsistent state, knowing
that another, more knowledgeable, editor would complete them; and the importance
and distinguishing effect of context with regards to what can be semantically considered
the same text. We also gathered information on how words are linked to their epony-
mous articles in Wikipedia practice: there was a consensus amongst participants that
such links should generally exist, but only once per term, and that there was an optimal
link density to achieve in readable body text.

From this, we were able to assess the requirements of a richer hypermedia wiki: that per-
mitting ‘broken’ hyperstructure, such as dangling links, is important; that level-of-detail
adaptation is likely to be negatively affected by the need to tailor text to its context;
that transclusion is likewise affected in some cases, but still useful for sharing larger,
more stand-alone, sections; that the existing mechanism for ‘semantic’ information in
Wikipedia, the infobox, as scraped by DBpedia [80], is significantly complicated; and
that the heuristics for determining if there should be a ‘generic’ link from an term to its
article vary between editors but do have some common constraints.

12.2.2 Implementation of hypertext in wikis

We have shown that hypertext features can be combined with the semantic wiki paradigm
by defining a unified model in chapter 7. This model defines what we term an ‘open
semantic hyperwiki’: a wiki where every link has a first-class identity as a node, and
where every node is a semantic web resource. From these basic building blocks one can
build n-ary links and transclusions. We define an RDF mapping of the model, suitable
for use in the world of Linked Data, including support for distinguishing between the
subject topic of a node, and the identity of the node and its content itself. The model
also supports multiple representations of a node—that is, a variety of different data

Chapter 12 Conclusions and future work 184

formats for what is conceptually the same content—and defines semantics for referring
to versions of the node through its history that are consistent with the separation of
node identity from that of their subjects. Finally, it supports parametric nodes via an
‘instance space’ approach, which allows for parametric links, and is expandable up to
fully generic and functional links.

We have also worked through an implementation strategy for this model, described in
chapter 8, with an eye toward efficient and flexible implementation. Further, we have
demonstrated that the model is practical to implement by beginning to do so with a
prototype which covers many of the most challenging aspects of the system, including
the edit-time presentation of transclusion, and bidirectional support for generic links.

Chapter 9 covers our experience in detail; of particular note is the cost of generic linking
to a modularised and efficient design. Generic links necessarily involve several other-
wise disjoint areas of the system, and this maintenance cost is also met by an increased
computational burden, even with careful use of indexes and caching. We believe that it
would be possible to implement fully-functional linking, as it is a relatively small devel-
opmental step for the prototype (requiring the definition of additional link matchers),
but we have reservations about the computational complexity and scalability costs.

12.2.3 Utility of hypertext in wikis

In chapter 11, we have experimentally compared our system against the previous user
experiences with Mediawiki. This allows us to address the hypothesis of the thesis: that
these hypertext features assist users in managing knowledge collections in wiki systems.
We believe we have found considerable support for this hypothesis from the improved
user task performance observed, and have also collected useful data to guide future
research in the area.

In particular, despite our earlier study suggesting that contextual adaptations would
impair the ability to re-use content in multiple nodes, participants made widespread
use of transclusion. We also discovered the limitations of our simple, logical DOM-tree-
merging implementation as users attempted more complicated re-use; we know now to
focus on the complex problems of supporting regions which span branches of adjacent
trees without containing any common roots.

The ‘relations table’, made trivial to implement by the use of first-class links, and
originally introduced to the prototype as a debugging aid for such, proved a popular
way to navigate the typed graph of data of which the wiki comprised. First-class links
themselves were also useful directly to some participants, as they were able to use them to
perform certain kinds of wiki maintenance tasks without the costly process of locating
the embedded form of the link within a large document. Conversely, along with its
implementation issues, we found generic linking, when presented as such, to be hard to

Chapter 12 Conclusions and future work 185

use. In particular, the flexible and orthogonal model led to users creating complicated,
hybrid links with a mixture of literal and generic endpoints by accident.

Finally, informed by this experiment, chapter 10 provides real-world examples where
this model and system can be applied. We cover a range of domains: beyond the
general encyclopædic context drawn from Wikipedia, we address enterprise knowledge
management, software development documentation, and community systems. Each is
presented with a mapping of how the current document set can be represented in the
system, and how this can assist users over the conventional wikis currently employed.

12.3 Future work

From the conclusions of Experiment III, we know that there are usability problems with
the existing generic linking which must be resolved. On a non-research, engineering
note, we also realise that importance of updating the preview feature to function cor-
rectly for real-world deployment; and that ideally the system should be equipped with
a WYSIWYG interface.

12.3.1 RDF mapping

While our model defines an RDF mapping in section 7.3, we do not currently export
this. Evidently, to be good Semantic Web citizens, the implementation needs to be im-
proved to make our data available as designed. A simple RDF export is conventional for
semantic wikis, with a SPARQL endpoint also being a desirable publication mechanism.

Our work on explicitly defining representations behind identifiers in section 7.4 means
that the system can also work as part of the web of linked data, as our resources are
retrievable with appropriate metadata available. In addition, our XHTML serialiser is
currently stripping out type information when creating hyperlinks for display, but this
behaviour could be adapted and improved to instead generate XHTML+RDFa (inline
RDF annotation, covered in section 2.2.5.2), preserving our link typing information for
other systems to consume directly from the output web pages.

12.3.2 Other media types

Weerkat is currently a text-only hypermedia system, in that each node is expected to
contain a tree which the implemented renderer will transform into XHTML. This is not,
however, a hard invariant of the system, and node content could potentially be of some
other type, such as an image.

Chapter 12 Conclusions and future work 186

The main consideration for such types is the need for embedded anchors, which in the
text case are supported intrinsically in the DOM, so as to alleviate the editing problem.
For arbitrary types that cannot be reasonably expected to be edited the wiki itself or
some a Weerkat-aware editor, the anchors cannot be part of the actual content stream
and shown as explicit markers to the user. In this case, the anchor details must be
stored alongside the content, in the same manner as which we store node attributes.
This allows us to have anchors in the node while supporting arbitrary existing content
formats, but comes at the cost of making it less obvious to the user where those anchors
are while manipulating the content.

12.3.3 Advanced versioning

The current Weerkat versioning model is the simple, linear one common to wiki systems.
We feel that adopting a more advanced versioning model, adapting lessons and designs
from software development version control tools such as Subversion1 and Git2, may offer
advantages to users. At a high level, these models work on the basis that every version
of a document is a derivative of some other (or others), which can be expressed as a
semantic relationship recording its evolution over time. This is capable of capturing
more complicated progressions such as pages being split apart, which is of particular
concern in a system which encourages such behaviour for the purposes of transclusion.

As a participant in Experiment II observed, support for branching and merging opera-
tions would be appealing to users making non-trivial changes to pages, where they may
wish to keep a “local branch” of a node they are working on so that they may save in-
complete or inconsistent states as checkpoints without disrupting the public view. More
generally, support for explicitly-managed changesets would allow users to prepare more
complex multi-page edits and ensure that they are all published as an atomic operation.
A user may even wish to have their changeset applied to their view of the system: for
it to contain a new link node, and see the effects of that link when browsing the wiki,
effectively a simplistic adaptive hypermedia “lens”. This functionality is quite compa-
rable to the technical requirement to correctly implement preview, which requires that
potentially multiple node changes (especially to links) are overlaid upon the node storage
when embedding and rendering the page.

12.3.4 Distributed model

The fundamental model of the World Wide Web is distributed, in that there is no central
index or repository that one must register with to be “on the web” above the Internet
level. Web applications generally do not share this decentralisation, by nature of their

1http://subversion.apache.org/
2http://git-scm.com/

http://subversion.apache.org/
http://git-scm.com/

Chapter 12 Conclusions and future work 187

implementation as a single program install on a single domain: you cannot add pages
to Wikipedia by hosting them on your own server. Some wiki systems have recognized
this problem with support ‘interwiki’ links, which are effectively namespace macros to
point to URIs on other wikis, but this is no tighter a coupling between the documents
than a web-style link.

We feel that it may be worth reinvestigating research into distributed hypertext systems
and considering their application to bidirectional cross-node relationships in wiki sys-
tems. The HyperG project [25] developed a flooding algorithm for a similar purpose [81].
The “Web 2.0” community have developed a potential solution to distributed web au-
thentication in the form of the OpenID protocol [82], which has seen adoption by major
websites such as LiveJournal. Weerkat already inherits from its previous design itera-
tion a strong separation between the data interface—the API of wiki operations upon
nodes—and the user interface, analogous to the “data bus” of the pre-web-applications
World Wide Web [2]. Exposing this data interface may allow a preferred, or even thick-
client application, user interface to transition smoothly to other wiki installs without
needing to direct the user’s web browser to a different site.

Ideally, such a system should come close to realising the dreams of systems such as
Xanadu [20], in that anybody who can publish on the web (or, more accurately, host
a Weerkat install on the web), can become part of the global hyperdocument, freely
transcluding from and creating semantic relationships between arbitrary pages on dif-
ferent servers, complete with bidirectional navigation. In this case, a user who creates a
Weerkat install containing links between nodes in other Weerkat installs has effectively
created an open hypermedia linkbase.

Appendix A

Experiment II resources

A.1 Script: Off-line review

This sub-session should be kept to under twenty minutes, to avoid participant fatigue,
and thus discomfort and poor recall.

• Hello. Thanks for agreeing to participate in this study.

– Would you like to look over the information letter again?

– Feel free to keep that copy.

• What is the account name you have been using for this study over the past week?
(Go to contributions thereof.)

• Are there any particular edits that you feel deserve particular attention? (This is
picking out what the ‘expert’ considers important.)

• For this, and any other edits until out of time (prefer major edits, and seek par-
ticipant guidance to those they took longest on):

– What did you change? (Trigger participant to bring edit back into memory:
call up differences from system.)

– Why did you change it?

∗ What was wrong with it before?
∗ Why this page in particular?
∗ Why this change? (e.g. this new text)

– If not simple text changes...

– How did you go about changing it?

∗ Did you visit other pages?

188

Appendix A Experiment II resources 189

∗ Did you use any tools? (e.g. backlinks)

– Could you have done it another way?

∗ Why did you choose this way?
∗ What would have made <other way> a better choice?

• Thanks. Would you like to take a short break before the next part?

A.2 Script: On-line self-report

This sub-session should be kept to under twenty minutes, to avoid participant fatigue,
and thus discomfort and poor recall. The tasks should be randomly ordered for each
participant.

• Now I am going to ask you to speak aloud about your thought processes while
performing some observed editing tasks.

• We are using a small copy of some of Wikipedia with some errors and omissions
introduced.

• Your changes are not going to be applied to real Wikipedia, so do not worry about
having to write well and cite references.

• Tasks:

1. Here are two pages about villains in two bond films: ‘List of James Bond
henchmen in The Spy Who Loved Me’ and the same with ‘Moonraker’. Please
show me how you’d go about adding that Jaws’ teeth are metallic. (Content
re-use.)

2. Here is the page about ‘London Underground’. Nobody has written that the
Underground is the oldest metro in the world, starting in 1863. Show me how
you’d add this information. (Level of Detail.)

– This information is probably notable enough to go on the ‘Transport in
London’ page’s summary about the Underground, too.

3. Here is the disambiguation node for ‘Shelf’. Show me how you’d fix any links
to it to point to the specific type of shelf the article means. (Any-anchor link
editing.)

– Remember that the ‘what links here’ tool shows which pages link to the
current page.

4. Create a page about ‘Multiple units’, which are self-powered train cars, in-
cluding the short descriptions of ‘Multiple Units of Ireland’ and ‘Elektrichka’.
(Aggregation.)

Appendix A Experiment II resources 190

– What if someone then needs to correct something in this summary?
– What if someone adds another page about country-specific multiple units?

5. Here is the introductory paragraph of the ‘Cake’ article, with links removed.
Add links to the text where you feel is appropriate. (Generic linking.)

6. This is the node for ‘Belgium’. Please add its date of EU membership, the
25th of March 1957, to the infobox. (Property editing.)

• Thank you. The transcript of this experiment will be anonymised.

– Do you have any final comments about your experience of performing the
tasks?

– Would you like to see results when available?

– Would you prefer a cinema, or an Amazon UK, voucher?

A.3 Questionnaire

Approximate wiki edits per week (circle): Less than 10 - 10–30 - 30–50 - More than 50

Of which are major (circle): Less than 10 - 10–30 - 30–50 - More than 50

Experience with MediaWiki (tick): O Basic wikitext (e.g. titles)
O Advanced wikitext (e.g. templates)
O Page tools (e.g. ‘what links here’)
O Administration (e.g. page moves; deletes)

Investigator use only

Participant ID:

Appendix B

Experiment III resources

B.1 Script: On-line self-report

This session should be kept to under an hour, to avoid participant fatigue, and thus dis-
comfort and poor feedback. The tasks should be randomly ordered for each participant.

• Hello. Thanks for agreeing to participate in this study.

– Would you like to look over the information letter again?

– Feel free to keep that copy.

• I am now going to show you a wiki system with some unusual features.

– (Demonstrate and explain first-class nature of a link.)

– (Demonstrate and explain transclusion.)

– (Demonstrate and explain generic linking.)

• Now I am going to ask you to speak aloud about your thought processes while
performing some observed editing tasks.

• We are using a Wikipedia-like set of pages, with some errors and omissions intro-
duced.

• Your changes are not going to be permanent, so do not worry about having to
write well and cite references.

• Tasks:

1. Here are two pages about villains in two bond films: ‘List of James Bond
henchmen in The Spy Who Loved Me’ and the same with ‘Moonraker’. Please
show me how you’d go about adding that Jaws’ teeth are metallic. (Content
re-use.)

191

Appendix B Experiment III resources 192

2. Here is the page about ‘London Underground’. Nobody has written that the
Underground is the oldest metro in the world, starting in 1863. Show me how
you’d add this information. (Level of Detail.)

– This information is probably notable enough to go on the ‘Transport in
London’ page’s summary about the Underground, too.

3. Here is the disambiguation node for ‘Shelf’. Show me how you’d fix any links
to it to point to the specific type of shelf the article means. (Any-anchor link
editing.)

– Remember that the ‘Relations’ table at the bottom shows which other
pages link to the current page.

4. Create a page about ‘Multiple units’, which are self-powered train cars, in-
cluding the short descriptions of ‘Multiple Units of Ireland’ and ‘Elektrichka’.
(Aggregation.)

– What if someone then needs to correct something in this summary?
– What if someone adds another page about country-specific multiple units?

5. Here is the introductory paragraph of the ‘Cake’ article, with links removed.
Add links to the text where you feel is appropriate. (Generic linking.)

6. This is the node for ‘Belgium’. Please add its date of EU membership, the
25th of March 1957, to the attributes box. (Property editing.)

• Thank you. The transcript of this experiment will be anonymised.

– Do you have any final comments about your experience of performing the
tasks?

– Or of the system in general?

– Would you like to see results when available?

B.2 Questionnaire

Did you participate in the
previous MediaWiki experiment? O Yes

O No
Experience with wikis (tick): O Basic wikitext (e.g. titles)

O Advanced wikitext (e.g. templates)
O Page tools (e.g. ‘what links here’)
O Administration (e.g. page moves; deletes)

Participant ID: (Investigator use only)

Appendix C

Model ontology in Turtle

This is the ontology from section 7.8, presented in Turtle. It assumes that wk is a
namespace for the Weerkat model, and rdf and rdfs are RDF and RDFS respectively.

We do not constrain the values of wk:Detail, as they are somewhat specific to the imple-
mentation of the model, and the domain to which it will be applied. A likely possibility
for a textual system is an enumerated class, with instances such as ‘sentence’, ‘para-
graph’, ‘section’, and ‘chapter’.

wk:Node a rdfs:Class .

wk:alternateNode a rdf:Property ;

rdfs:domain wk:Node ;

rdfs:range wk:Node .

wk:detailLevel a rdf:Property ;

rdfs:domain wk:Node ;

rdfs:range wk:Detail .

wk:Detail a rdfs:Class .

wk:versionOf a rdf:Property ;

rdfs:domain wk:Node ;

rdfs:range wk:Node .

wk:obsoletedBy a rdf:Property ;

rdfs:domain wk:Node ;

rdfs:range wk:Node .

193

Appendix C Model ontology in Turtle 194

wk:representation a rdf:Property ;

rdfs:domain wk:Node ;

rdfs:range xsd:anyURI .

wk:parametricInstanceOf a rdf:Property ;

rdfs:domain wk:Node ;

rdfs:range wk:Node .

wk:Link a rdfs:Class ;

rdfs:subClassOf wk:Node .

wk:source a rdfs:Property ;

rdfs:domain wk:Link ;

rdfs:range wk:Node .

wk:target a rdfs:Property ;

rdfs:domain wk:Link ;

rdfs:range wk:Node .

wk:sourceQuery a rdfs:Property ;

rdfs:domain wk:Link ;

rdfs:range rdfs:Literal .

wk:targetQuery a rdfs:Property ;

rdfs:domain wk:Link ;

rdfs:range rdfs:Literal .

wk:linkType a rdfs:Property ;

rdfs:domain wk:Node ;

rdfs:range wk:Node .

wk:Alternation a rdfs:Class ;

rdfs:subClassOf wk:Link .

wk:Transclusion a rdfs:Class ;

rdfs:subClassOf wk:Link .

Appendix D

SEML parser state diagram

Figure D.1 shows the state transitions for the core of the SEML parser, starting at
IN CONTENT, which matches to SEML::Reader::read raw() in the source. In practice,
this is wrapped by a read() method which adds support for auto-paragraphing, system
elements (such as future !verbatim support), and full guard validation. The lexer also
performs escaping during tokenisation, so the appearance of syntactic tokens such as
brackets here indicates that they are unescaped: escaped ones are passed as character
tokens (‘char ’). Whitespace (‘wsp’) excludes newlines (any line-ending format), which
are represented as ‘\n’.

Study of the source code is also advised to fully understand the parser, as some states rely
upon minor side-effects for efficiency and conciseness, and this diagram does not show
event emission. In particular, transitions marked with the symbol ‘R’, here meaning
‘reparse’, cause the token to be re-evaluated in the context of the new state via a tail-
recursive call (we have implied some here where the implementation actually accumulates
internal state instead). Termination is controlled by an end-of-stream token from the
lexer.

Not shown is the ELEM ERR state, which absorbs all undefined transitions, and at-
tempts recovery by discarding tokens until it encounters an element end (‘]’), at which
point it transitions back to IN CONTENT. The similar state, ATTR ERR, is shown due
to its reduced scope. It discards everything up to the next attribute or content gap,
and tries to continue from there. (Strictly speaking, tokens representing lexing errors,
such as unknown escapes, are discarded, generate error events, then parsing resumes
uninterrupted. This prevents them from truncating following content.)

195

Appendix D SEML parser state diagram 196

POSSIBLE PARA

\n

��

ε

��

VALIDATE GUARD

char
��

]
ss

IN CONTENT [//

|
33

\n

OO

], =, ",
wsp,
char

44 IN ELEM

charR
��

ATTR OR CONTENT

=

��

char
��

εR

OO

ACC ELEM NAME\n,
wspoo

|,] SSSSSSSS

iiSSSSSSSSSSSS char
��

GOT ATTR KEY

charR
��

"
TTTTT

**TTTTTTTTTTTTTTTTTT

ε // ATTR ERR

wsp TTTTTTTTTTT

jjTTTTTTTTTTT
ε

��

ACC ATTR VAL

char

XX

wsp

::

|,
]R

::

εjjjjj

44jjjjjjjjjjjjjjjjjjj

ACC ATTR VAL QUOTED

wsp, char,
[,], |,
=, \n

WW

" jjjjjjjjjjj

ttjjjjjjjjjjjj

ε

OO

ACC ATTR VAL DONE

wsp

XX

ε

::

Figure D.1: SEML parser state diagram

Appendix E

Open Weerkat entity types

E.1 Current

E.1.1 node

The root entity for a node. Has no attributes.

E.1.2 link

A link which has been embedded into a document at this endpoint. The children of this
element are the content of the anchor it matched at this endpoint or, for transclusive
links, the content of the target node.

Note that these elements are never stored: they exist only for editing and display. The
core embed/separate routines convert between these and anchor elements.

id Node for the first-class representation of this link.

aid Number of the anchor this link attaches to in the document in which it has been
embedded.

to A literal destination endpoint of the link; maps to target node attribute.

from A literal source endpoint; maps to source.

toq A query destination endpoint; maps to targetQuery.

fromq A query source endpoint; maps to sourceQuery.

type Type(s) of the link node.

197

Appendix E Open Weerkat entity types 198

E.1.3 trans

As link, except that the XHTML render does not convert them into hyperlinks. Theoret-
ically these also allow the separation algorithm to detect changes between transclusive
and regular link types which can be a subtle but dangerous editing error.

E.1.4 anchor

The storage representation of a anchor point in a node, used for native transclusion.
Does not have any content, as the embed/separate routines should replace these with
link or trans elements for editing or display.

id Leaf-name of the node; interpreted under a namespace of parent note.anchor.

E.1.5 heading

A HTML-style standalone heading.

level Depth of the heading in the document structure; comparable to HTML’s ‘H1’,
‘H2’ etc. numbering.

E.1.6 em, strong, para, quote, q

These elements function as defined in XHTML; ‘para’ is the name for HTML’s ‘p’
element, and ‘quote’ for ‘blockquote’.

E.1.7 err

An error in the the document markup. The content is the error message.

E.2 Future

E.2.1 section

A logical subdivision of the document, which should replace heading. This content of
the element would be the entire section, and a heading of appropriate depth would be
automatically generated for it from the section’s title.

title Title of the (sub)section.

Appendix F

Open Weerkat base nodes

This appendix lists the default set of ‘core’ nodes used with the Open Weerkat prototype.
They are shown as rendered, for readability; underlining is used to show where links have
been embedded.

F.1 Node

This is the type of Nodes in the system. When using nodes as link targets, just give
their title.

F.2 Link

This is the type of ordinary links.

Links can specify endpoints in two ways: literal endpoints with source and target at-
tributes (which are ‘from’ and ‘to’ in the markup); and query endpoints with sourceQuery
and targetQuery attributes (‘fromq’ and ‘toq’ in the markup).

Links of the subtype Transclusion will transclude their targets over the top of their
source anchors. This even works during editing, and you can use it to seamlessly change
a node and any other nodes it transcludes in one go. Query-based translcusive links are
currently not supported as they introduce a lot of very nasty problems and capabilities.

Links that appear in nodes while you are editing will gain “aid” and “id” attributes. The
“aid” is the identifier of the anchor, namespaced by the node it belongs to. For example,
an aid of 1 here refers to Link.anchor.1. If the aid is “_”, the anchor is a special virtual
anchor for a query endpoint, and you can’t actually change it—it’s just there so you can
see which link is affecting that part of the document. id is the full name of the Link

199

Appendix F Open Weerkat base nodes 200

which that anchor is acting as an endpoint for. By and large, you should just leave these
attributes alone.

Currently, “fat” links—those with multiple targets—are not well supported due to the
limitations of HTML. You will likely find that only one target works when clicked.

F.3 Transclusion

This is the magic type for transclusive links.

subClassOf Link

F.4 Query

This is the type of link queries.

Currently, the only query construct you can use is CONTAINS(). It will match against
a single, quoted word: sourceQuery=CONTAINS(‘ontology’) will act as an anchor for
occurrences of the word “ontology”.

F.5 source, target

This is the type for a literal link (“from”/“to”) endpoint.

domain Link

range Node

F.6 sourceQuery, targetQuery

This is the type for a query link (“from”/“to”) endpoint.

domain Link

range Query

Bibliography

[1] M. Krötzsch, D. Vrandečić, and M. Völkel, “Wikipedia and the semantic web -
the missing links,” in Proceedings of the WikiMania2005, 2005. Online at http:

//www.aifb.uni-karlsruhe.de/WBS/mak/pub/wikimania.pdf.

[2] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-Wide Web: The
Information Universe,” Electronic Networking: Research, Applications and Policy,
vol. 1, no. 2, pp. 74–82, 1992.

[3] F. Manola and E. Miller, “RDF Primer,” tech. rep., W3C, Feb 2004.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific Amer-
ican, vol. 285, pp. 28–37, May 2001.

[5] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl.
Acquis., vol. 5, no. 2, pp. 199–220, 1993.

[6] D. Brickley and R. Guha, “RDF Vocabulary Description Language 1.0: RDF
Schema,” tech. rep., W3C, Feb 2004.

[7] D. L. McGuinness and F. van Harmelen, “OWL Web Ontology Language
Overview,” tech. rep., W3C, Feb 2004.

[8] S. Harris and N. Gibbins, “3store: Efficient Bulk RDF Storage,” in 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03), pp. 1–15, 2003.

[9] S. Harris, N. Lamb, and N. Shadbolt, “4store: The Design and Implementation of
a Clustered RDF Store,” in 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009), pp. 94–109, Oct 2009.

[10] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for RDF,” tech.
rep., W3C, Jan 2008.

[11] T. Berners-Lee, “Linked Data—Design Issues,” Jul 2006. Online at http://www.

w3.org/DesignIssues/LinkedData.html.

[12] L. Sauermann, R. Cyganiak, and M. Völkel, “Cool URIs for the Semantic Web,”
Tech. Rep. TM-07-01, DFKI, Feb 2007.

201

http://www.aifb.uni-karlsruhe.de/WBS/mak/pub/wikimania.pdf
http://www.aifb.uni-karlsruhe.de/WBS/mak/pub/wikimania.pdf
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

BIBLIOGRAPHY 202

[13] D. Connolly and I. Hickson, “An Entity Header for Linked Resources.” Ex-
pired IETF document draft-connolly-link-header-01. Online at http://www.w3.

org/Protocols/9707-link-header.html., Apr 1999.

[14] M. Nottingham, “HTTP Header Linking.” Expired IETF document draft-
nottingham-http-link-header-00. Online at http://www.mnot.net/drafts/

draft-nottingham-http-link-header-00.txt., Jun 2006.

[15] P. Stickler, “The URI Query Agent Model.” Online at http://sw.nokia.com/

uriqa/URIQA.html.

[16] B. Adida and M. Birbeck, “RDFa Primer,” tech. rep., W3C, Oct 2008.

[17] W. B. Rayward, “Visions of Xanadu: Paul Otlet (1868–1944) and Hypertext,”
Journal of the American Society for Information Science, vol. 45, pp. 235–250,
May 1994.

[18] P. Otlet, “The science of bibliography and documentation,” 1903. In The interna-
tional organization and dissemination of knowledge: Selected essays of Paul Otlet,
(W. B. Raynard, trans. and ed.), Elsevier, 1990.

[19] V. Bush, “As We May Think,” The Atlantic Monthly, vol. 176, pp. 101–108, Jul
1945.

[20] T. Nelson, Literary Machines. Sausalito, California: Mindful Press, 93.1 ed., 1993.

[21] S. R. Newcomb, N. A. Kipp, and V. T. Newcomb, “The “HyTime”:
hypermedia/time-based document structuring language,” Commun. ACM, vol. 34,
no. 11, pp. 67–83, 1991.

[22] H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins, “Towards an integrated in-
formation environment with open hypermedia systems,” in ECHT ’92: Proceedings
of the ACM conference on Hypertext, (New York, NY, USA), pp. 181–190, ACM
Press, 1992.

[23] A. M. Fountain, W. Hall, I. Heath, and H. Davis, “MICROCOSM: An open
model for hypermedia with dynamic linking,” in European Conference on Hypertext,
pp. 298–311, 1990.

[24] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,
A. Lerer, and D. Sheets, “Tabulator: Exploring and Analyzing linked data on the
Semantic Web,” in Proceedings of the 3rd Int. Semantic Web User Interaction, 2006.

[25] K. Andrews, F. Kappe, and H. Maurer, “Serving information to the Web with
Hyper-G,” in Proceedings of the Third International World-Wide Web conference
on Technology, tools and applications, (New York, NY, USA), pp. 919–926, Elsevier
North-Holland, Inc., 1995.

http://www.w3.org/Protocols/9707-link-header.html
http://www.w3.org/Protocols/9707-link-header.html
http://www.mnot.net/drafts/draft-nottingham-http-link-header-00.txt
http://www.mnot.net/drafts/draft-nottingham-http-link-header-00.txt
http://sw.nokia.com/uriqa/URIQA.html
http://sw.nokia.com/uriqa/URIQA.html

BIBLIOGRAPHY 203

[26] D. T. Michaelides, D. E. Millard, M. J. Weal, and D. C. De Roure, “Auld Leaky:
A Contextual Open Hypermedia Link Server,” in The 7th Workshop on Open Hy-
permedia Systems, (Aarhus, Denmark), 2001.

[27] C. Bailey, W. Hall, D.Millard, and M. Weal, “Towards Open Adaptive Hyper-
media,” in 2nd International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, 2002.

[28] D. Millard, H. Davis, M. Weal, K. Aben, and P. D. Bra, “AHA! meets Auld Linky:
integrating designed and free-form hypertext systems,” in HYPERTEXT ’03: Pro-
ceedings of the fourteenth ACM conference on Hypertext and hypermedia, (New
York, NY, USA), pp. 161–169, ACM Press, 2003.

[29] R. Furuta and P. D. Stotts, HYPERTEXT: state of the art, ch. 22, pp. 205–213.
Intellect Limited, 1990.

[30] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret, “The World-
Wide Web,” Commun. ACM, vol. 37, no. 8, pp. 76–82, 1994.

[31] T. Berners-Lee, “Cool URIs don’t change.” Online at http://www.w3.org/

Provider/Style/URI, 1998.

[32] M. Bieber, F. Vitali, H. Ashman, V. Balasubramanian, and H. Oinas-Kukkonen,
“Fourth generation hypermedia: some missing links for the World Wide Web,” Int.
J. Hum.-Comput. Stud., vol. 47, no. 1, pp. 31–65, 1997.

[33] F. Halasz and M. Schwartz, “The Dexter hypertext reference model,” Communica-
tions of the ACM, vol. 37, no. 2, pp. 30–39, 1994.

[34] K. Grønbæk and R. H. Trigg, “Toward a Dexter-based model for open hypermedia:
unifying embedded references and link objects,” in HYPERTEXT ’96: Proceedings
of the the seventh ACM conference on Hypertext, (New York, NY, USA), pp. 149–
160, ACM Press, 1996.

[35] M. d’Inverno, M. Priestley, and M. Luck, “A Formal Framework for Hypertext
Systems,” IEE Proceedings - Software Engineering, vol. 144, no. 3, pp. 175–184,
1997.

[36] H. C. Davis, D. E. Millard, S. Reich, N. Bouvin, K. Grønbæk, P. J. Nürnberg,
L. Sloth, U. K. Wiil, and K. Anderson, “Interoperability between hypermedia sys-
tems: the standardisation work of the OHSWG,” in Proceedings of the tenth ACM
Conference on Hypertext and hypermedia : returning to our diverse roots: returning
to our diverse roots, HYPERTEXT ’99, (New York, NY, USA), pp. 201–202, ACM,
1999.

[37] D. E. Millard, L. Moreau, H. C. Davis, and S. Reich, “FOHM: a fundamental open
hypertext model for investigating interoperability between hypertext domains,” in

http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI

BIBLIOGRAPHY 204

HYPERTEXT ’00: Proceedings of the eleventh ACM on Hypertext and hypermedia,
(New York, NY, USA), pp. 93–102, ACM Press, 2000.

[38] L. Moreau and W. Hall, “On the Expressiveness of Links in Hypertext Systems,”
The Computer Journal, vol. 41, no. 7, pp. 459–473, 1998.

[39] S. DeRose, E. Maler, and D. Orchard, “XML Linking Language (XLink) Version
1.0,” tech. rep., W3C, Jun 2001.

[40] B. Halsey and K. M. Anderson, “XLink and Open Hypermedia Systems: A Prelim-
inary Investigation,” in HYPERTEXT ’00: Proceedings of the the Eleventh ACM
conference on Hypertext and Hypermedia, (New York, NY, USA), pp. 212–213,
ACM Press, 2000.

[41] L. Carr, W. Hall, S. Bechhofer, and C. Goble, “Conceptual Linking: Ontology-based
Open Hypermedia,” in WWW ’01: Proceedings of the 10th international conference
on World Wide Web, (New York, NY, USA), pp. 334–342, ACM, 2001.

[42] M. Dzbor, J. Domingue, and E. Motta, “Magpie—Towards a Semantic Web
Browser,” in The SemanticWeb - ISWC 2003, vol. 2870 of Lecture Notes in Com-
puter Science, pp. 690–705, Springer Berlin / Heidelberg, 2003.

[43] S. Buckingham Shum, E. Motta, and J. Domingue, “ScholOnto: An Ontology-
Based Digital Library Server for Research Documents and Discourse,” International
Journal on Digital Libraries, vol. 3, pp. 237–248, 2000.

[44] P. Boulain, M. Parker, D. Millard, and G. Wills, “Weerkat: An extensible semantic
wiki,” in Proceedings of 8th Annual Conference on WWW Applications, (Bloem-
fontein, Free State Province, South Africa), 2006.

[45] A. Désilets, S. Paquet, and N. Vinson, “Are Wikis Usable?,” in The 2005 Interna-
tional Symposium on Wikis, (San Diego, California, USA), Oct 2005.

[46] M. Gaved, T. Heath, and M. Eisenstadt, “Wikis of Locality: Insights from the Open
Guides,” in WikiSym ’06, 2006.

[47] F. Ortega and J. M. Gonzalez-Barahona, “Quantitative Analysis of the Wikipedia
Community of Users,” in WikiSym ’07, 2007.

[48] D. Wilkinson and B. Huberman, “Cooperation and Quality in Wikipedia,” in Wik-
iSym ’07, 2007.

[49] B. T. Adler, L. de Alfaro, I. Pye, and V. Raman, “Measuring Author Contributions
to the Wikipedia,” in WikiSym ’08, 2008.

[50] U. Brandes, P. Kenis, J. Lerner, and D. van Raaĳ, “Network Analysis of Collabo-
ration Structure in Wikipedia,” in 18th International World Wide Web Conference
(WWW2009), April 2009.

BIBLIOGRAPHY 205

[51] B. Suh, G. Convertino, E. H. Chi, and P. Pirolli, “The Singularity is Not Near:
Slowing Growth of Wikipedia,” in WikiSym ’09, 2009.

[52] P. K.-F. Fong and R. P. Biuk-Aghai, “What Did They Do? Deriving High-Level
Edit Histories in Wikis,” in WikiSym ’10, 2010.

[53] R. Tolksdorf and E. P. B. Simperl, “Towards Wikis as Semantic Hypermedia,” in
WikiSym ’06, 2006.

[54] S. Schaffert, “IkeWiki: A Semantic Wiki for Collaborative Knowledge Manage-
ment,” in 15th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, (Manchester, UK), pp. 388–396, Jun 2006.

[55] M. Kiesel, “Kaukolu: Hub of the Semantic Corporate Intranet,” in First Workshop
on Semantic Wikis: From Wiki to Semantic, (Budva, Montenrego), pp. 31–42, Jun
2006.

[56] J. Fischer, Z. Gantner, S. Rendle, M. Stritt, and L. S. Thieme, “Ideas and Improve-
ments for Semantic Wikis,” Lecture Notes in Computer Science, vol. 4011/2006,
pp. 650–663, 2006.

[57] M. Hepp, D. Bachlechner, and K. Siorpaes, “OntoWiki: Community-driven Ontol-
ogy Engineering and Ontology Usage based on Wikis,” in Proceedings of the 2005
International Symposium on Wikis, Oct 2005.

[58] F. G. Halasz, “Reflections on NoteCards: seven issues for the next generation of
hypermedia systems,” Commun. ACM, vol. 31, no. 7, pp. 836–852, 1988.

[59] F. Halasz, ““Seven Issues” Revisited.” Keynote Address, Hypertext ’91 Conference,
Dec 1991. Online at http://www2.parc.com/spl/projects/halasz-keynote/.

[60] H. Davis, Data Integrity Problems in an Open Hypermedia Link Service. PhD thesis,
ECS, University of Southampton, 1995.

[61] P. J. Brown and H. Brown, “Embedded or separate hypertext mark-up: is it an
issue?,” Electronic Publishing, vol. 8, pp. 1–13, 1995.

[62] H. Ashman and J. Verbyla, “Dynamic link management via the functional model
of the link,” in In Proceedings of Basque International Workshop on Information
Technology, (Biarritz, France), 1994.

[63] P. Mika, “Ontologies are us: A unified model of social networks and semantics,” in
4th International Semantic Web Conference, 2005.

[64] X. Wu, L. Zhang, and Y. Yu, “Exploring social annotations for the semantic web,”
in WWW ’06: Proceedings of the 15th international conference on World Wide
Web, (New York, NY, USA), pp. 417–426, ACM Press, 2006.

http://www2.parc.com/spl/projects/halasz-keynote/

BIBLIOGRAPHY 206

[65] D. Beckett, “RDF/XML Syntax Specification (Revised),” tech. rep., W3C, Feb
2004.

[66] J. Seidenberg and A. Rector, “Representing Transitive Propagation in OWL,” in
25th International Conference on Conceptual Modeling, 2006.

[67] P. Boulain, N. Shadbolt, and N. Gibbins, “Hyperstructure maintenance costs
in large-scale wikis,” in Social Web and Knowledge Management (P. Dolog,
M. Krötzsch, S. Schaffert, and D. Vrandečić, eds.), vol. 356, (Beĳing, China), CEUR
Workshop Proceedings, April 2008. ISSN 1613-0073. Online at http://sunsite.

informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-356/paper4.pdf.

[68] A. Swartz, “Who Writes Wikipedia?.” Online at http://www.aaronsw.com/

weblog/whowriteswikipedia, Sep 2006.

[69] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and
Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb 1966.

[70] P. Boulain, N. Shadbolt, and N. Gibbins, Weaving Services and People on the World
Wide Web, ch. 16: Studies on Editing Patterns in Large-scale Wikis, pp. 325–349.
Springer, 2009.

[71] L. Bainbridge, “Verbal protocol analysis,” in Evaluation of human work (J. R.
Wilson and E. N. Corlett, eds.), ch. 7, Taylor & Francis Ltd, 1990.

[72] N. Shadbolt and M. Burton, “Knowledge elicitation,” in Evaluation of human work
(J. R. Wilson and E. N. Corlett, eds.), ch. 13, Taylor & Francis Ltd, 1990.

[73] N. S. Borenstein, Programming as if People Mattered, ch. 19. Princeton University
Press, 1991.

[74] F. Vitali, “Versioning hypermedia,” ACM Comput. Surv., vol. 31, no. 4es, p. 24,
1999.

[75] K. Østerbye, “Structural and cognitive problems in providing version control for
hypertext,” in ECHT ’92: Proceedings of the ACM conference on Hypertext, (New
York, NY, USA), pp. 33–42, ACM, 1992.

[76] A. Dattolo and V. Loia, “Collaborative version control in an agent-based hypertext
environment,” Information Systems, vol. 21, no. 2, pp. 127–145, 1996.

[77] R. Daniel, Jr., “Harvesting RDF Statements from XLinks.” W3C Note, Sep 2000.
Online at http://www.w3.org/TR/xlink2rdf/.

[78] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” Jan 2005. IETF RFC 3986.

[79] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifiers (URI):
Generic Syntax,” Aug 1998. IETF RFC 2396.

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-356/paper4.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-356/paper4.pdf
http://www.aaronsw.com/weblog/whowriteswikipedia
http://www.aaronsw.com/weblog/whowriteswikipedia
http://www.w3.org/TR/xlink2rdf/

BIBLIOGRAPHY 207

[80] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives, “DBpedia: A Nucleus
for a Web of Open Data,” in In 6th Int’l Semantic Web Conference, Busan, Korea,
pp. 11–15, Springer, 2007.

[81] F. Kappe, “A Scalable Architecture for Maintaining Referential Integrity in Dis-
tributed Information Systems,” Journal of Universal Computer Science, vol. 1,
no. 2, pp. 84–104, 1995.

[82] D. Recordon and B. Fitzpatrick, “OpenID Authentication 1.1,” tech. rep.,
OpenID Foundation, May 2006. Online at http://openid.net/specs/

openid-authentication-1_1.html.

http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-1_1.html

