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Joint Decision-Directed Channel and Noise-Variance
Estimation for MIMO OFDM/SDMA Systems Based

on Expectation-Conditional Maximization
Jiankang Zhang, Student Member, IEEE, Lajos Hanzo, Fellow, IEEE, and Xiaomin Mu

Abstract—A joint channel impulse response (CIR) and
noise-variance estimation scheme is proposed for multiuser
multiple-input–multiple-output (MIMO) orthogonal frequency-
division multiplexing/space-division multiple access (OFDM/
SDMA) systems, which is based on the expectation-conditional
maximization (ECM) algorithm. Multiple users communicating
over fading channels exhibiting a range of different characteristics
are considered in this paper. Channel estimation becomes quite
challenging in this scenario since an increased number of indepen-
dent transmitter–receiver links having different statistical charac-
teristics have to be simultaneously estimated for each subcarrier.
To cope with this scenario, we design an ECM-based joint CIR
and noise-variance estimator for multiuser MIMO OFDM/SDMA
systems, which is capable of simultaneously estimating diverse
CIRs and noise variance. Furthermore, we propose a forward er-
ror code (FEC)-aided decision-directed channel estimation scheme
based on the ECM algorithm, which further improves the ECM
algorithm by exploiting the error correction capability of an FEC
decoder for iteratively exchanging information between the de-
coder and the ECM algorithm.

Index Terms—Channel estimation, expectation-conditional
maximization (ECM), multiple-input–multiple-output (MIMO),
orthogonal frequency-division multiplexing (OFDM), space-
division multiple access (SDMA).

I. INTRODUCTION

O RTHOGONAL frequency-division multiplexing (OFDM)
[1] constitutes a promising technique of combating the

detrimental effects of multipath-induced delay spread in high-
data-rate transmission. In recent years, various smart antenna
designs have attracted substantial research interests because
they are capable of mitigating the deleterious effects of multi-
path fading on the desired signal and of suppressing the inter-
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fering signals, thereby increasing the achievable performance
of wireless systems [2]. Specifically, smart antenna-assisted
space-division multiple access (SDMA) is capable of achieving
high spectral efficiency by supporting multiplicity of users
within the same frequency band and facilitating the separation
of their signals based on their unique user-specific channels.

As a beneficial combination, OFDM/SDMA systems have
attracted substantial interests [1]–[4]. Typical OFDM/SDMA
systems employ an array of antennas at the base station (BS),
which detects the received signal of multiple single-antenna-
aided user terminals. As a result, a substantially improved
system capacity is achieved despite employing low-complexity
user terminals [2], [5]. However, the performance of these
systems is critically dependent on the precision of the channel
knowledge. Furthermore, while exploiting the joint benefits
of OFDM and SDMA, their combination faces new chal-
lenges because a significantly increased number of independent
transmitter–receiver channel links have to be estimated simul-
taneously for each subcarrier, whereas the interfering signals of
the other transmitters have to be suppressed [3].

Over the past decade, intensive research efforts have been
devoted to developing effective approaches for both channel
estimation and symbol detection in transmitter- and/or receiver-
diversity-aided systems. For example, [6]–[8] proposed
optimal training sequence design and optimal pilot tone allo-
cation using the mean-square error (MSE) metric for channel
estimation in multiple-input–multiple-output (MIMO) OFDM
systems. Barhumi et al. [7] demonstrated that the optimal
pilot sequences should have equi-powered, equi-spaced, and
phase shift orthogonal pilots, whereas Zhang et al. [8] dis-
cussed the corresponding necessary conditions for correlated
fading channels. Li et al. [9] developed a channel estimator
by exploiting the time- and frequency-domain correlations of
the channel impulse response (CIR) and Frequency-Domain
CHannel Transfer Function (FD-CHTF), respectively, which
was further simplified and enhanced in [6], [10], and [11].
As the affordable hardware capacity is increasing, it becomes
more feasible to implement iterative receivers allowing for
substantial improvements of the physical layer functions. The
iterative expectation–maximization (EM) algorithm [12] and
the various derivatives of this algorithm have been shown to
strike an attractive tradeoff between the performance attained
and the complexity imposed.

A classic EM-based channel estimation algorithm and
the so-called space-alternating generalized EM-based channel
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Fig. 1. Block diagram of a multiuser MIMO SDMA/OFDM UL system.

estimation algorithm were designed in [13] for OFDM systems
invoking transmitter diversity, and their convergence rates were
compared. In [14], the so-called unbiased EM and the unbiased
expectation-conditional maximization channel estimator were
designed by exploiting the similarity between the families
of EM-type CIR estimators and least-square (LS) estimators.
The authors of [15] derived an EM algorithm using low-rank
approximation to avoid inverting large matrices, which substan-
tially reduced the receiver’s complexity. Choi [16] developed a
robust EM-based channel estimation method that was applica-
ble to diverse MIMO systems and operating without requiring
the probability density function (pdf) of the channel parameters.

The channel estimation techniques found in the open lit-
erature were typically developed under the assumption that
all the channels are statistically similar to each other: either
time invariant or time variant and either Rayleigh or Rician
fading. First, instead of considering a whole range of vehicular
velocities, i.e., Doppler frequencies, we considered the two ex-
treme scenarios of static and uncorrelated fading, which model
stationary and high-speed scenarios. However, in practical
multiuser systems, the channel of each mobile station (MS) is
different and independent of that of the others. More specifi-
cally, the following scenario may be encountered in multiuser
systems: 1) Some of them are stationary MSs, whereas the
others may be roaming. 2) The Doppler shift is also different
for the different MSs since the velocity is different for the
different MSs. 3) Line-of-sight communication links may exist
between some of the MSs and the BS, whereas this may
not be the case for other MSs. 4) Even if all the MSs are
stationary, the surroundings of the MSs may vary, which will
also result in different channels. Hence, we solve the open
problem of jointly estimating the channels of both stationary
and roaming OFDM/SDMA users having time-invariant and
time-variant channels with different fading characteristics, re-
spectively. By exploiting the statistical characteristics of the
different channel types, we design an expectation-conditional
maximization (ECM)-based joint CIR and noise-variance es-
timator for multiuser MIMO OFDM/SDMA systems, which
is capable of simultaneously estimating the diverse CIRs and
the noise variance. Furthermore, we design a forward error
code (FEC)-aided decision-directed (FEC-A-DD) estimation
technique based on the ECM algorithm, which further improves
the ECM-based channel estimation by exploiting the error cor-

rection capability of an FEC decoder for iteratively exchanging
information between the decoder and the ECM algorithm.

The rest of this paper is organized as follows: The classic
system model of multiuser MIMO OFDM/SDMA is described
in Section II. A brief review of the ECM algorithm is provided
in the first part of Section III, and then the proposed ECM-based
joint CIR and noise-variance estimation scheme proposed for
a multiuser MIMO OFDM/SDMA system is elaborated in the
second part of Section III. Furthermore, we proposed an FEC-
A-DD channel estimation scheme based on the ECM algorithm
in the third part of Section III. The computational complexity
and the Cramer–Rao lower bound (CRLB) of CIR estimation is
discussed in Section IV. Our computer simulation results and
discussions are presented in Section V, and our conclusions are
provided in Section VI.

II. SYSTEM MODEL

The detailed schematic of the FEC-coded multiuser MIMO
OFDM/SDMA UpLink (UL) system considered in this paper
is shown in Fig. 1. The OFDM/SDMA system considered
supports U UL users simultaneously transmitting to the BS.
Each of the users has a single antenna, whereas the BS has
an array of Q antennas. It is assumed that a time-division
multiple-access protocol manages the division of the available
time-domain (TD) resources into OFDM/SDMA time slots.
The U MSs simultaneously transmit their streams of OFDM-
modulated symbols to the SDMA BSs. The respective UL
streams are separated by the BS upon exploiting their unique
user-specific “spatial signature” [2], [5].

A. Transmitter of the Multiuser MIMO
OFDM/SDMA UL System

The left part of Fig. 1 illustrates the transmitter of a multiuser
MIMO SDMA/OFDM system. All of the U users transmit
independent data streams, which are denoted by bu, u =
1, 2, . . . , U . Each user u employs OFDM modulation having
N subcarriers and a cyclic prefix (CP) of length Ncp. The
information block bu is first encoded by a user-specific FEC
encoder and interleaved by the interleaver. The information
bits output by the interleaver are grouped into J-bit symbols
and mapped to a stream of modulated data symbols, each
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forming a complex number. The value of J is determined by
the modulation scheme used. For example, we have J = 2
for 4-quadratic-amplitude modulation (4-QAM) and J = 4 for
16-QAM. The modulated data X̃u[k], k = 1, 2, . . . ,K are then
serial-to-parallel converted, and the frequency-domain (FD)
pilots are embedded into certain subcarriers. The parallel modu-
lated data (including the pilots) are further processed by inverse
fast Fourier transform (FFT) to form a set of OFDM symbols.
The basedband TD model of the nth sample of the mth OFDM
symbol of user u can be formulated as

xu[m,n] =
1
N

N∑
i=1

Xu[m, i]ej2πknts/T (1)

where ts is the OFDM sampling interval, and Ts = Nts is
the time duration of an OFDM symbol without the CP. After
concatenating the CP of Ncp samples, the TD signal data are
transmitted through a multipath fading channel and contami-
nated by the receiver’s additive white Gaussian noise (AWGN).

B. Channel Model

We assume that the MIMO channel link between the MS
and BS antennas is subject to independent multipath Rayleigh
fading or multipath Rician fading and is spatially uncorrelated
with each other, whereas hu

q (t; τ) denotes the CIR between the
uth UL user’s antenna and the qth antenna at the BS, which is a
function of the delay τ at time instant t. The CIR hu

q (t; τ) can
be described by [2], [9]

hu
q (t; τ) =

Lu
q∑

l=1

αu
q,l(t)δ(τ − τl) (2)

where Lu
q is the number of taps of the channel link between the

uth transmit user’s antenna and the qth BS receive antenna at
the BS, whereas τl = lts is the delay of the lth path, and αu

q,l(t)
is a zero-mean complex Gaussian random variable having a
power-delay profile θ(τl), with l being the propagation path
index between the uth user’s antenna and the qth antenna of
the BS at time t.

C. BS Receiver of the Multiuser MIMO
SDMA/OFDM UL System

The optimized hierarchy reduced search algorithm (OHRSA)
[17] is a sphere-decoder-like multiuser detector (MUD) that is
used at the BS, as shown in the right part of Fig. 1. The received
signals are, again, conventional OFDM signals [5]. The CP is
discarded from every OFDM symbol, and the resultant signal
is fed into the corresponding FFT-based receiver. Let Yq[s, n]
denote the signal received by the qth receiver antenna element
in the nth subcarrier of the sth OFDM symbol, which is given
as the superposition of the different users’ channel-impaired re-
ceived signal contributions plus the AWGN, which is expressed
as [2]

Yq[s, n] =
U∑

u=1

Hu
q [s, n]Xu[s, n] + Wq[s, n] (3)

where Hu
q [s, n] denotes the FD-CHTF of the channel link

between the uth user and the qth receiver antenna in the nth
subcarrier of the sth OFDM symbol, which can be expressed as

Hu
q [s, n] =

Lu
q∑

l=1

hu
q [s, l]Fnl

N (4)

where hu
q [s, l] = hu

q (Tf , n(Ts/N)), and FN = exp(−j(2π/
N)). In the foregoing expression, Tf is the block length given
by Tf = Ts + Tg , with Tg being the duration of the CP.

Upon invoking vector notations, the set of equations consti-
tuted by (3) for n = 1, 2, . . . , N can be rewritten as

Yq[s] = XT [s]Hq[s] + Wq[s] (5)

where the superscript T of [·]T denotes the transpose, whereas
Yq[s] ∈ CN×1 and Wq[s] ∈ CN×1 are column vectors hosting
the subcarrier-related variables Yq[s, n] and Wq[s, n], respec-
tively. Furthermore, for the inner-product-based representation
of (5), we have defined X[s] ∈ CUN×N and Hq[s] ∈ CUN×1,
which are given by

X[s] =
[
X1[s],X2[s], . . . ,XU [s]

]T
(6)

Hq[s] =
[
H1T

q [s],H2T
q [s], . . . ,HUT

q [s]
]T

. (7)

In (6), Xu[s] ∈ CN×N is a diagonal matrix with elements
given by Xu[s, n], n = 1, 2, . . . , N .

To simplify our notation without any loss of generality, we
will omit the receiver antenna’s index q from now on, and the
discrete model of the received signal associated with one of the
BS antennas can be rewritten as

Y[s] = XT [s]H[s] + W[s]. (8)

III. EXPECTATION CONDITIONAL MAXIMIZATION-BASED

CHANNEL ESTIMATION FOR MULTIUSER

MULTIPLE-INPUT–MULTIPLE-OUTPUT ORTHOGONAL

FREQUENCY-DIVISION MULTIPLEXING/SPACE-DIVISION

MULTIPLE ACCESS SYSTEMS

A. ECM Algorithm

The EM algorithm [12] constitutes an iterative technique of
finding the maximum-likelihood (ML) estimates of parameters
that is particularly attractive when direct access to the data
necessary to make an estimate is unavailable or when some
of the data are missing. However, if ML estimation of the
complete data is rather complicated, then the EM algorithm
becomes less attractive because the maximization step (M-Step)
is computationally unattractive. The ECM algorithm [18] is
an extension of the EM algorithm, which simplifies the ML
estimation of the complete data by replacing the complex
M-Step of the EM algorithm by several computationally sim-
pler conditional M-Steps (CM-Steps).

To elaborate a little further, we let B = [B1,B2, . . . ,BM ]T

denote a possibly vector-valued parameter to be estimated from
the observation vector Y , which has the pdf of f(Y|B). Let
X denote the “complete” data set, which can be separated
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into two components as X = (Y,Z), where the observation
vector Y is referred to as the “incomplete” data set within the
ECM framework, and Z is called the “missing” data set. The
expectation step (E-Step) of the ECM algorithm is the same as
the EM algorithm, which is given as follows:
E-Step: Determine the conditional expectation of the log-

likelihood function (LLF) of the complete data as follows:

Q
(
B|B(p)

)
= E

{
log f(X|B)|Y,B(p)

}
(9)

where E{·} represents the expectation operation, the su-
perscript (p) denotes the iteration index, and B(p) is the
estimate of B at the pth iteration.The CM-Steps are carried
out over reduced-dimensional spaces since the maximiza-
tion is conditioned on specific parameter values.

CM-Step: Conditionally maximize the average LLF of the com-
plete data over all possible values of Bm, m = 1, 2, . . . ,M ,
whereas Bv , v �= m, are fixed at their most recently up-
dated values, which are formulated as

B̂(p+1)
m = arg max

Bm

Q
(
B|B(p)

)∣∣∣
Bv=B̂(p)

v ,v �=m
. (10)

B. ECM-Based Channel Estimation Scheme Proposed for
Multiuser MIMO OFDM/SDMA UL Systems

We assume that the channels of the user set Q = {qc|qc =
q1, q2, . . . , qC} are time invariant over the duration of S con-
secutive OFDM symbols, whereas the channels of the users
set R = {rd|rd = r1, r2, . . . , rD} are time variant with a max-
imum Doppler frequency fd, where C and D are the number
of time-invariant and -variant channel links, respectively. The
classification of these channels is based on their rough estimate,
which was acquired, for example, with the aid of the simplified
LS channel estimator of [6]. Upon invoking (4), H[s] in (8) may
be expressed in a vectorial form as

H[s] = Fh[s] (11)

where h[s] ∈ CL×1, L is the total number of the CIR taps in
h[s], which is given by L =

∑U
u=1 Lu, and Lu represents the

number of CIR taps in hu[s]. The elements hu[s] ∈ CLu×1,
u = 1, 2, . . . , U , are defined as

h[s] =
[
h1T [s],h2T [s], . . . ,hUT [s]

]T
(12)

hu[s] = [hu[s, 1], hu[s, 2], . . . , hu[s, Lu]]T (13)

while the block diagonal matrix F ∈ CUN×L of (11) is defined
as F = diag(F1,F2, . . . ,FU ), where Fu is an (N × Lu)-

element matrix with Fu[n, l] = e−j2π(n−1)(l−1)/N , 1 ≤ n ≤
N , 1 ≤ l ≤ Lu.

Considering that there are two types of channels, we can
rewrite (8) using (11) as

Y[s]=
qC∑

qc=q1

Xqc [s]Fqchqc [s]+
rD∑

rd=r1

Xrd [s]Frdhrd [s]+W[s].

(14)

In (14), we can treat hqc [s] as a (L0 × 1)-element vector of
fixed elements to be estimated over the period of S consecutive
OFDM symbols, where L0 is the assumed numbers of CIR taps.
The number of CIR taps L0 is assumed to be larger than the
actual number of CIR taps, regardless of the user index. Again,
hqc [s] = hqc for s = 1, 2, . . . , S. hrd [s] is treated as a (L0 ×
1)-element vector having random Gaussian elements, whose
distribution obeys N(0,Ωrd). We emphasize that hrd [s] is
independent of the noise vector W[s], which has a distribution
of N(0, σ2

nIP ). Here, σ2
n is the noise variance to be estimated,

and IP is the (P × P )-element identity matrix having values of
unity on the main diagonal and zeros elsewhere.

Following the terminology of the ECM algorithm, which
has been briefly introduced in Section III-A, we view Y =
[YT [1],YT [2], . . . ,YT [S]]T as the “incomplete” data, X =
[X T [1],X T [2], . . . ,X T [S]]T as the “complete” data, whereas
Z = [hrdT [1],hrdT [2], . . . ,hrdT [S]]T is the “missing” data
vector, respectively. More explicitly, the “complete” data
element X [s] is defined as (15), shown at the bottom
of the page, where Aqc [s] = Xqc [s]Fqc , qc = q1, q2, . . . , qC ,
Ard [s] = Xrd [s]Frd , rd = r1, r2, . . . , rD, and ĥrv [s] repre-
sents the most recent estimates from the previous iteration of
the ECM algorithm. We can see from this equation that the
“complete” data element X [s] is the linear transformation of
the mutually independent Gaussian random vectors hrd [s] and
W[s]. Hence, X [s] is also a Gaussian random vector, which has
a multivariate normal distribution with a mean of

μX [s] =

⎡⎣ qC∑
qc=q1

Aqc [s]hqc +
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv [s]

0

⎤⎦
s = 1, 2, . . . , S (16)

and a covariance matrix of

Σs =
[

ΣY[s] ΣY[s]hrd [s]

Σhrd [s]Y[s] Σhrd [s]

]
, s = 1, 2, . . . , S (17)

X [s] =
[

Y[s]
hrd [s]

]
=

⎡⎣ qC∑
qc=q1

Aqc [s]hqc +
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv [s] + Ard [s]hrd [s] + W[s]

hrd [s]

⎤⎦

=
[
Ard [s] IP

IL0 0

]⎡⎣ hrd [s]
qC∑

qc=q1

Aqc [s]hqc +
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv [s] + Ard [s]hrd [s] + W[s]

⎤⎦ (15)
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where we have

ΣY[s] =
rD∑

rd=r1

Ard [s]ΩrdArdH [s] + σ2
nIP (18)

ΣY[s]hrd [s] =Ard [s]Ωrd (19)

Σhrd [s]Y[s] =ΣH
Y[s]hrd [s] = ΩrdArdH [s] (20)

Σhrd [s] =Ωrd . (21)

The vector B consists of hqc , σ2
n, and Ωrd . Hence, the

logarithmic conditional pdf of the “complete” data is given by

log f(X|B) =
S∑

s=1

log f (X [s]|B)

= − (P + L0)S
2

log(2π)

− 1
2

S∑
s=1

[
log |Σs| +

(
X [s] − μX [s]

)H

× Σ−1
s

(
X [s] − μX [s]

) ]
. (22)

To compute the E-Step of the ECM algorithm that determines
the expectation of log f(X|B) with respect to hrd conditioned
on Y and the latest estimate of B, B(p), it can be seen from
(16)–(22) that we require the following conditional moments of
the missing data hrd :

E
{
hrd [s]|Y[s],B(p)

}
(23)

E
{
hrd [s]hrdH [s]|Y[s],B(p)

}
(24)

which may be directly obtained from the classic results of
multivariate theory [19].

According to the Bayesian Gauss–Markov theorem [19],
the linear minimum MSE (LMMSE) estimator of the variance
matrix Ωrd , the noise variance σ2

n, and the CIR hrd [s] are
given by

Ω̂
rd(p)

=
1
S

S∑
s=1

E
{
hrd [s]hrdH [s]|Y[s],B(p−1)

}
(25)

σ̂2(p)
n =

1
SP

S∑
s=1

E
{
WH [s]W[s]|Y[s],B(p−1)

}
(26)

ĥrd(p)[s] = E
{
hrd [s]|Y[s],B(p)

}
. (27)

After further manipulations (see Appendix A), we have the
following more concrete expressions derived from (25)–(27):

Ω̂
rd(p)

=
1
S

S∑
s=1

(
Ψrd(p−1)−1[s]+ĥrd(p−1)[s]ĥrd(p−1)H [s]

)
(28)

σ̂2(p)
n

=
1

SP

S∑
s=1

(
rD∑

rd=r1

tr
{
ArdH [s]Ψrd(p−1)−1[s] · Ard [s]

}
+ Ŵ(p−1)H [s]Ŵ(p−1)[s]

)
(29)

ĥrd(p)[s]

= σ̂−2(p)
n Ψrd(p)−1[s]ArdH [s]

×

⎛⎜⎝Y[s]−
qC∑

qc=q1

Aqc [s]ĥqc(p)−
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv(p−1)[s]

⎞⎟⎠
(30)

where we have

Ψrd(p)[s] = σ̂(p)−2
n ArdH [s]Ard [s] + Ω̂

rd(p)−1
(31)

Ŵ(p−1)[s] =

(
Y[s] −

qC∑
qc=q1

Aqc [s]ĥqc(p−1)

−
rD∑

rd=r1

Ard [s]ĥrd(p−1)[s]

)
. (32)

Having obtained Ω̂
rd(p)

, σ̂
2(p)
n , and ĥrd(p)[s], we can expand

the E-Step of (9) as

Q
(
B|B(p)

)
= −1

2

S∑
s=1

[
log

∣∣∣Σ̂(p)

s

∣∣∣ +
(
X [s] − μ̂

(p)
X [s]

)H

×Σ̂
(p)−1

s

(
X [s] − μ̂

(p)
X [s]

)]
(33)

where we can omit the expected value of the constant −((P +
L0)S/2) log(2π) because it does not depend on hqc . In (33),

μ̂
(p)
X [s] and Σ̂

(p)

s are given by

μ̂
(p)
X [s] =

⎡⎣ qC∑
qc=q1

Aqc [s]ĥqc(p) +
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv(p)[s]

0

⎤⎦
s = 1, 2, . . . , S (34)

Σ̂
(p)

s =

[
Ard [s]Ω̂

rd(p)
ArdH [s] + σ̂

2(p)
n IP Ard [s]Ω̂

rd(p)

Ω̂
rd(p)

ArdH [s] Ω̂
rd(p)

]
.

(35)

The M-Step of (10) aims at calculating the new estimates
for the channel taps ĥqc(p+1) of the (p + 1)st iteration that
maximizes Q(B|B(p)) given B(p). The (p + 1)st iteration es-
timates for ĥqc(p+1) can be obtained by direct differentiation of
Q(B|B(p)), which may be expressed as

ĥqc(p+1) =

(
S∑

s=1

AqcH [s]Aqc [s]

)−1 S∑
s=1

AqcH [s]

×

⎛⎜⎝Y[s] −
qC∑

qv=q1
qv �=qc

Aqv [s]ĥqv(p) −
rD∑

rv=r1

Arv [s]ĥrv(p)[s]

⎞⎟⎠ .

(36)

C. FEC-A-DD Estimation Based on the ECM Algorithm

The structure of the proposed FEC-A-DD estimation scheme,
which is based on the ECM algorithm’s philosophy, is illus-
trated in Fig. 2. We refer to this scheme as the FEC-A-DD +
ECM arrangement. The proposed channel estimation scheme
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Fig. 2. Structure of the proposed FEC-A-DD FD-CHTF estimator scheme based on the ECM algorithm.

exploits the error correction capability of an arbitrary FEC
decoder to mitigate the effects of noise and residual errors. It
should be noted that our proposed solution is different from
the conventional DD technique [20], which uses the current
OFDM symbol’s FD-CHTF estimate as the initial FD-CHTF
estimate for the next OFDM symbol and then exploits the error
correction capability of a FEC decoder to generate a more ac-
curate FD-CHTF.1 By contrast, the proposed scheme employs
the FEC-A-DD technique for updating the channel estimates
during the consecutive iterations of the ECM algorithm, as seen
in Fig. 2. More specifically, the operation of the FEC-A-DD
estimation scheme is detailed as follows.

Step 1) Activate the OHRSA-based MUD using the initial FD-
CHTFs Ĥ(1).

Step 2) Reliable estimation of the transmitted signal is achieved
by exploiting the error correction capability of the FEC de-
coder in Fig. 2. The bit stream output by the FEC decoder is
not delivered to the user before the ECM-based estimator’s
convergence; instead, it is reencoded and remodulated to
generate X̃(p) of Fig. 2.

1We also note that other DD alternatives are also attractive, where the
initial FD-CHTF estimate is derived using a low pilot-overhead, which is then
exploited within the same OFDM symbol for an improved second detection.
In the absence of decision errors during the first tentative detection. We may
assume the presence of 100% pilots [21].

Step 3) The reencoded and remodulated signal X̃(p) is then used
in the “feedback loop” of Fig. 2 to perform joint CIR and
noise-variance estimation based on the ECM algorithm.

Step 4) The CIR estimate ĥ(p+1) is then transformed to the
FD by the FFT, as shown in Fig. 2. The resultant FD-CHTF
H̃(p+1) is then fed to the OHRSA MUD, according to Step 1,
so that the process may continue iteration by iteration.

IV. DISCUSSIONS ON COMPUTATIONAL COMPLEXITY,
CRAMER–RAO LOWER BOUND, AND CONVERGENCE

A. Analysis of the Computational Complexity

Throughout this section, the complexity is quantified in terms
of the number of operations within S consecutive OFDM sym-
bols for each iteration. More specifically, the implementational
complexity is evaluated by counting the required number of
complex multiplications and additions. It is noted that divisions
are treated as multiplications. This may underestimate the com-
plexity of divisions, but it has modest impact on the overall
complexity estimates. Subtractions are treated as additions.
Table I summarizes the number of complex multiplications and
additions needed for S consecutive OFDM symbols.

Specifically, we consider a four-user four-antenna scenario,
where the channels of two users’ are time invariant, whereas
the other two users’ channels are time variant, that is, we
have C = D = 8. The time-invariant channels have a constant
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TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

fading envelope for S = 72 consecutive OFDM symbols,
and the number of subcarriers is N = 64. The number of
CIR taps is assumed to be L0 = 6. For this special case, the
numbers of multiplications and additions of the proposed
scheme are 17 764 992 and 67 503 456, respectively, whereas
the number of multiplications and additions are 2 359 296 and
1 320 192 for the EM-based method of [13] AND 634 355 712
and 623 437 056 for the EM-MAP based method of [15],
respectively.

B. CRLB Analysis

The CRLB [19] characterizes the best achievable perfor-
mance of an unbiased estimator. Since the ML estimator is
an unbiased estimator and the proposed ECM-based channel
estimation scheme constitutes an iterative method of finding the
ML estimate of parameters, we may characterize the proposed
scheme by comparing the average MSE to the average CRLB.
In the following, we derive the CRLB for the CIR of a multi-
user MIMO OFDM/SDMA system to evaluate the achievable
performance of the proposed ECM-based channel estimation
scheme.

Upon recalling (8) and that we have Au[s] = Xu[s]Fu, u =
1, 2, . . . , U , right below (15), we can write the received signal
model of the multiuser MIMO OFDM/SDMA system for a
single receive antenna at the BS, which supports U users as

Y[s] = A[s]h[s] + W[s] (37)

where A[s] ∈ CN×L, h[s] ∈ CL×1, h[s] is defined by (12), and
A[s] = XT [s]F.

Then, the estimated parameter vector is the CIR h[s] =
[h1T [s],h2T [s], . . . ,hUT [s]]T . The lower bound of the vari-
ance for the unbiased estimate of the CIR h[s] is given by the
CRLB as follows:

CRLB(hi) = I−1(h)ii, i = 1, 2, . . . , L (38)

where L is the total number of U users’ channel taps, and
I(h) is the Fisher information matrix, which may be formulated
as [19]

I(h)
def
= − E

{
∂2 log f(Y|h)

∂ h∂ hH

}

= − E

{
∂

∂ hH

(
∂ log f(Y|h)

∂ hH

)H
}

(39)

where log f(Y|h) is defined as

log f(Y|h)
def
=

S∑
s=1

log f (Y[s]|h)

=
1

(2πσ2
n)N

exp
(
− 1

2σ2
n

‖Y − A[s]h[s]‖2

)
.

(40)

Here, we assumed that the channels of the users in the
set Q = {qc|qc = q1, q2, . . . , qC} are time invariant over S
consecutive OFDM symbols and the channels of the users in
R = {rd|rd = r1, r2, . . . , rD} are time variant over the same
duration. Then, upon recalling (39) and (40), we arrive at

I(hqc) =
1

2σ2
n

S∑
s=1

AqcH [s]Aqc [s], c = 1, 2, . . . , C (41)

I (hrd [s]) =
1

2σ2
n

ArdH [s]Ard [s], d = 1, 2, . . . ,D
s = 1, 2, . . . , S

(42)

where we have Aqc [s] = Xqc [s]Fqc , and Ard [s] = Xrd [s]Frd .
Then, we arrive at the CRLB of the estimated CIR in the
form of

CRLB(hqc) = trace
{
I−1(hqc)

}
(43)

CRLB (hrd [s]) = trace
{
I−1 (hrd [s])

}
. (44)

C. Characterizing the Convergence of the ECM Algorithm

In general, neither EM-type nor any other optimization al-
gorithms are guaranteed to converge to a global or local max-
imum. The ECM algorithm, which is an extension of the EM
algorithm, also fails to eliminate this deficiency. Nonetheless,
Meng and Rubin [18] had discussed conditions under which
the ECM algorithm will converge to a local maximum. In the
following, we will characterize the convergence behavior of the
ECM algorithm developed in this paper. Here, we only consider
the convergence speed of ĥqc(p), but these discussions are also
applicable to ĥrd(p)[s] and σ̂

2(p)
n .

We may establish the relationship between ĥqc(p) and
ĥqc(p−1) with the aid of the following equation:

ĥqc(p) = g
(
ĥqc(p−1)

)
(45)
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TABLE II
DETAILED CHARACTERISTICS OF THE FADING CHANNELS

where g(·) is an appropriate mapping function. Using the first
term of the Taylor series expansion of g(·), we have

ĥqc(p+1) − ĥqc(p) =g
(
ĥqc(p)

)
− g

(
ĥqc(p−1)

)
=J(p−1)

(
ĥqc(p) − ĥqc(p−1)

)
(46)

where J(p−1) is the matrix of partial derivatives J =
∂g(hqc)/∂hqc evaluated at hqc = ĥqc(p−1), which is formu-
lated as J = ∂g(hqc)/∂hqc |hqc=ĥqc(p−1) . It is challenging to
provide an explicit formula for J since we do not have a
universal expression for the appropriate mapping function g(·).
However, at the end of the iterations, (46) may be approximated
as follows [13]:

ĥqc(p+1) − ĥqc

ML = J̃
(
ĥqc(p) − ĥqc

ML

)
(47)

where ĥqc

ML is the optimal ML estimate of hqc , and the largest
eigenvalue magnitude of the matrix J̃ predetermines the rate of
convergence.

Similar to the derivation of the EM algorithm’s rate of
convergence provided in [13], after some further manipulations,
we have the following streamlined expression for J̃:

J̃ =

(
S∑

s=1

AqcH [s]Aqc [s]

)−1 S∑
s=1

(
AqcH [s]

·
rD∑
rv

(
Arv [s]σ̂−2(p)

n Ψrd(p)−1[s]ArvH [s]
)
Aqc [s]

)
. (48)

V. SIMULATION RESULTS AND DISCUSSIONS

We constructed a multiuser MIMO OFDM/SDMA UL sys-
tem to demonstrate the efficiency of the our proposed schemes.
At the BS, we employ the OHRSA-MUD of [17] to separate
the signals of the simultaneous users. The parameters of each
UL transmitter are set to values similar to those of the IEEE

802.11n WLAN using N = 64 subcarriers and a single sample
per subcarrier. To avoid the dispersion-induced interference of
consecutive OFDM symbols, a CP of 16 samples is employed
as the guard interval for each OFDM symbol. Different users
may employ different modulation schemes, but for simplic-
ity, in this paper, we assume that all users employ 16-QAM
modulation. Moreover, all of the users’ data were protected by
a 2/3-rate convolutional FEC encoder. More specifically, the
constraint length was [4, 3], whereas the octally represented
generator polynomials were [4, 5, 17; 7, 4, 2].

Both Rayleigh and Rician fading channels having different
Doppler frequencies of FD = fdTf normalized to the OFDM
symbol duration were considered in our simulations, where fd

and Tf are the maximum Doppler frequency and the OFDM
symbol duration including the CP, respectively. The detailed
characteristics of the fading channels used in our simulations
were outlined in Table II. The K-factor seen in Table II denotes
the ratio of the specular power to the diffuse power of Rician
fading channels. The stopping criterion of the iterations is that
both |hqc(p+1) − hqc(p)|2 ≤ 10−4 and |hrd(p+1) − hrd(p)|2 ≤
10−4 were met.

Fig. 3 shows the attainable MSE performance for a time-
invariant slow-fading channel having a constant fading enve-
lope for 72 consecutive OFDM symbols versus the SNR for
different channel estimation schemes. The average MSE of the
time-invariant channel’s estimated CIRs is defined as

MSETI =
1

CLTI

C∑
c=1

E
{
‖ĥqc − hqc‖2

}
(49)

where C is the number of users, whose channel is time invariant
within S = 72 consecutive OFDM symbols. As expected, the
proposed ECM-based joint channel estimation scheme per-
forms close to the CRLB, which is significantly better than
that of the existing EM channel estimation methods. There
is an error floor for Eb/N0 > 21 dB, which may be attribut-
able to the residual error induced by the Doppler shift of the
time-variant channel links, since the signals received via the
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Fig. 3. MSE performance for time-invariant channels, which have a constant
envelope for 72 consecutive OFDM symbols, whereas the time-variant channels
have a normalized Doppler frequency of FD = 0.03. The fading characteristics
are outlined in Table II.

Fig. 4. MSE performance for time-variant channels, which has a normalized
Doppler frequency of FD = 0.03. The fading characteristics are outlined
in Table II.

time-invariant and -variant channels are superimposed on each
other at the receiver antennas, hence inflicting interference.

By contrast, in Fig. 4, we characterize the average MSE
performance for the time-variant channel of the four-user four-
antenna MIMO OFDM/SDMA UL system. The MSE of the
time-variant channel is defined as

MSETV =
1

SDLTV

D∑
d=1

S∑
s=1

E

{∥∥∥ĥrd [s] − hrd [s]
∥∥∥2
}

(50)

where D is the number of users, whose channel is time variant.
Observe from Fig. 4 that the proposed ECM-based joint channel
estimation scheme obtains a slim improvement compared with
the algorithms in [13] and [15]; however, similar to the time-
invariant scenario in Fig. 3, the proposed FEC-A-DD + ECM
scheme is capable of approaching the ideal case associated
with 100% pilots by exploiting the error capability of the FEC
decoder.

Fig. 5. MSE performance for time-invariant channels. The values of the
Doppler frequency FD marked in the figure refer to the time-variant channels.
The fading characteristics are outlined in Table II.

Fig. 6. MSE performance for time-variant channels at the values of the
Doppler frequency FD = 0.01, 0.03, and 0.05. The fading characteristics are
outlined in Table II.

In Figs. 5 and 6, we portrayed the average MSE perfor-
mance of the time-invariant and -variant channels, respectively,
recorded for several different values of FD. We can see from
these two figures that the average MSE performance was de-
graded upon increasing the Doppler frequency FD. Observe
from Fig. 5 that the average MSE performance recorded for
time-invariant channels was also affected by the associated
Doppler shift. The reason for this detrimental influence may
be that the signals received via both time-invariant and time-
variant channels are superimposed on each other at the receiver
antennas, which results in interference between them.

To give an overall impression, we evaluated the attainable bit
error ratio (BER) in Fig. 7 both with and without convolutional
FEC coding, which are shown using solid and dashed lines,
respectively. Observe in Fig. 7 that although there is still a
5-dB gap to the ideal case associated with perfect channel, the
BER performance of our ECM-based joint estimation scheme
has a significant improvement compared with the algorithms in
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Fig. 7. BER performance for various channel estimation algorithms when two
of the user’s channels are assumed to be time invariant over a frame duration
of 72 consecutive OFDM symbols, whereas the other two user’s channels
are assumed to be time variant with a Doppler frequency of FD = 0.03.
The system’s BER performance recorded both with and without convolutional
FEC coding, namely, at the output of the demodulation and FEC decoder,
respectively, when using the schematic in Fig. 1.

Fig. 8. BER performance at different values of Doppler frequency FD . The
system’s BER performance recorded was with convolutional FEC coding,
namely, at the output of FEC decoder, respectively, when using the schematic
in Fig. 1.

[13] and [15] and the initial LS channel estimation. As seen
in Fig. 7, the BER performance of our FEC-A-DD + ECM
scheme only had a 1.5-dB gap between the ideal case associated
with perfect channel information recorded at the output of the
FEC decoder. Furthermore, the BER performance of our FEC-
A-DD + ECM scheme may even become better than that of the
ideal case associated with perfect channel information but using
independent FEC decoding, since the FEC decoder was invoked
within the iterative loop. Naturally, this beneficial effect was
achieved by activating the decoder more than once.

The BER performances of the proposed ECM-based joint es-
timation scheme and the FEC-A-DD + ECM scheme recorded
at different Doppler frequencies FD were portrayed in Fig. 8,
which demonstrated that the BER performance improved upon
reducing the Doppler frequency.

Fig. 9. BER performance versus Eb/N0 curves for four to five simultaneous
users while the BS employs an array of Q = 4 antennas. For the five transmitter
user scenario, three of the user’s channels are assumed to be time invariant
over a frame duration of 72 consecutive OFDM symbols, whereas the other
two user’s channels are assumed to be time variant with a normalized Doppler
frequency of FD = 0.03. The fading characteristics are outlined in Table II.
The system’s BER performance was recorded at the output of the FEC decoder
when using the schematic in Fig. 1.

It is also important to consider the challenging rank-deficient
scenario, when we have U > Q, because more users would
like to access the system than the number of UL BS receiver
antennas Q. To demonstrate the robustness of the proposed
scheme for the rank-deficient scenario, in Fig. 9, we show the
resultant BER versus SNR curves for u = 4 and 5 simultaneous
users, whereas the BS employs an array of Q = 4 antennas.
Observe from this figure that the proposed FEC-A-DD + ECM
scheme consistently approaches the ideal case associated with
a perfect CIR, regardless of the number of users supported,
which demonstrates the robustness of the proposed schemes.
An important additional observation is that the system employ-
ing Q = 4 antennas achieved a substantial performance gain
as a benefit of its increased spatial diversity when comparing
the BER performance of the systems supporting four and five
UL users.

The relationship between the number of EM iterations re-
quired for reliable convergence at different SNRs is shown in
Fig. 10. The number of iterations required for the EM-based
and EM-MAP channel estimator of [13] and [15] obeys an ap-
proximately linear reduction upon increasing the SNR, whereas
the number of iterations required for the proposed ECM-based
joint estimation schemes is lower for these benchmarks at both
low and high SNRs. The maximum number of iterations was
set to 10 in our simulations for the FEC-A-DD + ECM scheme
to avoid perpetual iterations in the range of low SNRs, since the
error correction capability of the FEC decoder became limited
at low SNRs. Observe from Fig. 4 that the proposed FEC-A-DD
+ ECM scheme needs less iterations in the SNR range above
SNR = 9 dB, where the FEC decoder’s feedback provided a
more accurate estimate of the transmitted signal. Recall from
the computational complexity analysis in Section IV-A that
again the proposed scheme had a nonnegligible computational
complexity for each iteration; it had the lowest overall complex-
ity since it required a reduced number of iterations.
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Fig. 10. Number of iterations versus Eb/N0 for the considered channel
estimation schemes.

Fig. 11. Iterative convergence for the estimated σ2
n versus iteration index.

In Fig. 11, we characterize the estimated σ̂2
n versus the

number of iterations at Eb/N0 values of 9, 12, and 15 dB. In our
investigations, the initial value of σ2

n is set higher than the actual
σ2

n value. We observe that the estimated σ̂2
n rapidly converges

to the true value of σ2
n, which is indicated by the dashed line

in Fig. 11.

VI. CONCLUSION

In this paper, we have considered a realistic scenario, where
some users are stationary and hence their channels are time
invariant, whereas the CIRs of the other users are time variant.
To cope with this scenario, we proposed a joint CIR and
noise-variance estimation scheme based on the ECM algorithm
designed for multiuser MIMO OFDM/SDMA UL systems. The
proposed FEC-A-DD + ECM channel estimation technique is
capable of approaching the CRLB, for SNR > 9 dB, especially
for time-invariant channels. Our simulations demonstrated that
the proposed ECM-based channel estimation scheme is capable
of narrowing the SNR gap with respect to the ideal scenario
associated with perfect channel information by about 5 dB

compared with the algorithms in [13] and [15], both with
and without FEC coding. Furthermore, the BER performance
curve of our FEC-A-DD + ECM scheme exhibited a 1.5-dB
gap with respect to the ideal case. Our simulation results
also demonstrated that the estimated noise variance σ̂2

n rapidly
converges to the true value of σ2

n.

APPENDIX A
DETAILED DERIVATION OF Ω̂

(p)
, σ̂

2(p)
n , AND ĥrd(p)[s]

Since X [s] =
[

Y[s]
hrd [s]

]
are jointly complex Gaussian distrib-

uted, then the conditional pdf f(hrd [s]|Y[s],B(p)) is also
complex Gaussian type with mean vector and variance matrix
following

E
{
hrd [s]|Y[s],B(p)

}
=μhrd [s] + ΩrdArdH [s]

(
Ard [s]ΩrdArdH [s] + σ2

nIL0

)−1

·

⎛⎜⎝Y[s]−
qC∑

qc=q1

Aqc [s]ĥqc(p)−
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv(p)[s]

⎞⎟⎠
(51)

Cov
{
hrd [s]|Y[s],B(p)

}
=Ωrd − ΩrdArdH [s]

(
Ard [s]ΩrdArdH [s] + σ2

nIL0

)−1

× Ard [s]Ωrd . (52)

According to the Bayesian Gauss–Markov theorem [19], the
LMMSE estimator of the self-variance matrix Ωrd and the CIR
hrd [s] is given by

Ωrd(p) =
1
S

S∑
s=1

E
{
hrd [s]hrdH [s]|Y[s],B(p−1)

}
=

1
S

S∑
s=1

[
Cov

{
hrd [s]|Y[s],B(p−1)

}
+ ĥrd(p−1)[s]ĥrd(p−1)H [s]

]
(53)

ĥrd(p)[s] = E
{
hrd [s]|Y[s],B(p)

}
. (54)

It is easy to obtain that

Cov
{
hrd [s]|Y[s],B(p−1)

}
= Ω̂

(p−1) − Ω̂
rd(p−1)

ArdH [s]

×
(
Ard [s]Ω̂

rd(p−1)
ArdH [s] + σ̂2(p−1)

n IL0

)−1

× Ard [s]Ω̂
rd(p−1)

(55)

E
{
hrd [s]|Y[s],B(p)

}
= Ω̂

rd(p)
ArdH [s]

(
Ard [s]Ω̂

rd(p)
ArdH [s] + σ̂2(p)

n IL0

)−1

·
(

Y[s] −
qC∑

qc=q1

Aqc [s]ĥqc(p−1)[s]

−
rD∑

rv=r1
rv �=rd

Arv [s]ĥrv(p−1)[s]

)
. (56)
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Recalling the matrix inversion lemma, we can obtain that

Ω̂
rd(p−1) − Ω̂

rd(p−1)
ArdH [s]

×
(
Ard [s]Ω̂

rd(p−1)
ArdH [s] + σ̂2(p−1)

n IL0

)−1

× Ard [s]Ω̂
rd(p−1)

=
(
σ̂(p−1)−2

n ArdH [s]Ard [s] + Ω̂
rd(p−1)−1

)−1

= Ψrd(p−1)−1[s]. (57)

Substituting (53), (55), and (57) into (25), it is easy to
obtain (28).

E{W[s]WH [s]|Y[s],B(p−1)} in (26) can be rewritten as

E
{
WH [s]W[s]|Y[s],B(p−1)

}
= tr

{
E
{
W[s]WH [s]|Y[s],B(p−1)

}}
= tr

{
Cov

{
W[s]|Y[s],B(p−1)

}}
+ Ŵ(p−1)H [s]Ŵ(p−1)[s]. (58)

Upon invoking the definition of Ŵ(p−1)[s] in (32),
Cov{W[s]|Y[s],B(p−1)} can be rewritten as

Cov
{
W[s]|Y[s],B(p−1)

}
=

rD∑
rd=r1

Cov
{
Ard [s]hrd [s]|Y[s],B(p−1)

}

=
rD∑

rd=r1

Ard [s]Cov
{
hrd [s]|Y[s],B(p−1)

}
ArdH [s]. (59)

Substituting (57)–(59) into (26), we can obtain (29). To
obtain (30), we make use of the identity [19]

Ω̂
rd(p)

ArdH [s]
(
Ard [s]Ω̂

rd(p)
ArdH [s] + σ̂2(p)

n IL0

)−1

= σ̂(p)−2
n

(
σ̂(p)−2

n ArdH [s]Ard [s] + Ω̂
rd(p)−1

)−1

ArdH [s].

(60)

Substituting (56), (57), and (60) into (27), we can obtain (30).
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