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This paper considers discrete linear time-invariant systems that can be decomposed into subsystems whose
states are synchronized by a common clock whose signal reaches them with delays. In particular, stability for
the case where all subsystems have the same sampling frequency, but different switching times, is investigated.
In contrast to previous work, the approach taken here models the set of system matrices that arise using a
polytopic uncertainty approach, which has seen extensive application in robust control theory for linear systems.
Stabilization is then achieved by state feedback and a method to handle the combinatorial explosion of the
number of polytope vertices is developed and illustrated using an example from swarm system navigation.
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1 Introduction

Classical digital signal processing and control system analysis techniques are based on the fun-
damental fact that all components of the overall system switch at exactly the same time instant.
In particular, it is assumed that the system is driven by a single clock and that the differences
in clock propagation time between the different system components are negligible. Over the last
decade, many applications have emerged that routinely violate this basic assumption. Typical
examples include wireless sensor networks, vehicle networks and swarms, tele-operation-systems,
and distributed actuator systems.

Synchronization of different system components to a degree that would allow them to be
treated as a synchronous system is either impossible or very expensive. Consequently research
on the modeling, analysis and design of asynchronous systems is of critical importance with
many applications awaiting applicable results and algorithms.

The problems arising from the introduction of non-ideal characteristics into applications such
as those mentioned above can be grouped, at a general level, into time-variant communication
delays caused by, for example, packet drop, queuing, access delay, and synchronization errors re-
spectively. Moreover, the vast majority of the research has been in the former area and in Lorand
and Bauer (2005) it is suggested that this is due to a focus on applications supported by wide
area networks, where communication delays are commonly expected to be more critical than
synchronization errors. In a local area network, however, the average communication delays can
be made small enough and then synchronization errors become the critical issue.

This paper exclusively deals with synchronization errors, building on previous work Lorand
and Bauer (2005, 2006a,b), Kleptzyn et al. (1984), Su et al. (1997), Lorand (2004) on modeling

∗Corresponding author. Email: k.galkowski@issi.uz.zgora.pl

ISSN: 0020-7179 print/ISSN 1366-5820 online
c© 200x Taylor & Francis
DOI: 10.1080/0020717YYxxxxxxxx
http://www.informaworld.com



April 2, 2011 14:32 International Journal of Control ˙temp

2 Marek Przedwojski Krzysztof Galkowski Peter H. Bauer and Eric Rogers

and stability analysis. In particular, Lorand and Bauer (2005) showed that linear synchronous
systems are subject to errors that result in asynchronous operation and moreover that this
can be caused by even small errors. This previous work also demonstrated that classical design
techniques cannot be directly applied to systems that operate asynchronously.

It would clearly be very beneficial to have a characterization of stability for these systems
that leads on to control law design, where in the general subject area there is a very extensive
literature on stability see, for example, Gazi (2008), Li (2008) but less on stability plus control law
design. This paper considers the case when the overall system is composed of subsystems driven
by the same clock but the switching times are different between them. This scenario describes,
for example, high-speed circuits and low-speed networks that periodically re-synchronize. Even
though high speed circuits have been designed to function as a synchronous system Thierrauf
(2004), extremely high clock speed could result in propagation delay differences of the order of
a period of the system clock.

The results in this paper can be grouped into two main areas, the first of which is stabilization
of an asynchronous network of systems through state feedback. Here we model the set of system
matrices that arise using a polytope approach where each vertex corresponds to a possible state
matrix of the overall system. This model enables the design of stabilizing control laws using
Linear Matrix Inequalities (LMIs), which is illustrated by an example from swarm navigation.
The major point to note here that the novel contribution lies in the application of a standard
tool in robust control theory to the problem of systems with synchronization errors rather than
in robust control theory itself. A method is also developed for dealing with the computational
load which arises.

The notation of this paper uses Γ � 0 and Γ ≺ 0 to denote symmetric matrices that are positive
and negative definite respectively.

2 Background

The starting point for the work reported here is the discrete linear time-invariant state-space
model with, in particular, state vector x and control input vector u. Asynchronous switching in
linear time-invariant systems is discussed in, for example, Lorand and Bauer (2006b), Kleptzyn
et al. (1984) and this paper begins from the problem setup considered in this previous work. We
consider the case where every state vector entry xi is fed by a clock with rate Ti, i = 1, 2, . . . , n.
The clock rates are equal, that is, Ti = T , i = 1, 2, . . . , n, but the associated signals are out
of phase, and these effects are termed synchronization errors. In order to capture effects of
asynchronous switching, an event driven time index k is introduced which following Lorand
and Bauer (2006b), is increased by an integer equal to the number of variables that switch
simultaneously. Consequently over a full clock period the time index is incremented by n, but
there is no information about the order in which these variables have been updated. Also the
system output samples can only be read periodically at the sampling times. We also assume that
the input is updated periodically in similar way as the subsystems, but without increasing the
time index.

Suppose that there are d switching events in one full clock period, where these are described
by the sequence s of mutually disjoint subsets of indices

s = (i1, i2, . . . , id), ij ⊆ {1, . . . , n}, j = 1, . . . , d. (1)

These subsets satisfy

p 6= r ⇒ ip ∩ ir = ∅ p, r = 1, . . . , d, (2)
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and

d⋃
j=1

ij = {1, . . . , n}. (3)

The number of elements in each subset ij

hj = card(ij), (4)

is the number of entries that switch simultaneously during the event j and it is straightforward
to see that

h1 + · · ·+ hd = n. (5)

We use S to denote the set of all possible switching events
The state equation for a single event numbered j can now be written as

x(ld+ h1 + · · ·+ hj) = Aijx(ld+ h1 + · · ·+ hj−1)
+ Biju(ld+ h1 + · · ·+ hj−1),

(6)

where l = 0, 1, 2, . . . , the model matrix Aij ∈ Rn×n given, for example, ij = {. . . , p, . . . , q, . . .},
is

Aij =



1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
ap1 ap2 . . . ap(n−1) apn
. . . . . . . . . . . . . . .
aq1 aq2 . . . aq(n−1) aqn
. . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1


, (7)

and the corresponding input matrix Bij ∈ Rn×l is

Bij =



0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
bp1 bp2 . . . bp(l−1) bpl
. . . . . . . . . . . . . . .
bq1 bq2 . . . bq(l−1) bql
. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 0 0


. (8)

Here Aij contains only those rows from the state matrix A that are relevant to simultaneously
switched variables (at least one), and all remaining rows are taken from the identity matrix.
The matrix B is constructed in a similar way where all rows except p and q have only zero
entries. In general, after a clock period, all d entries have switched and consequently the index
l is incremented by n over a full clock period.
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Example 2.1 Consider the case of zero inputs, n = 2, and state matrix

A =

[
a11 a12

a21 a22

]
, (9)

with an event pattern which can be represented as in Fig. 1, where � and •, respectively, are
used to denote that the first and second entries in the state vector have switched.

Figure 1. T1 = T2 with clock signals out of phase.

The sequence s that describes event pattern for this example is

s = ({1}, {2}) (10)

Event 1 �: i1 = {1} h1 = 1 [
x1(1)
x2(1)

]
=

[
a11 a12

0 1

] [
x1(0)
x2(0)

]
,

Event 2 •: i2 = {2} h2 = 1 [
x1(2)
x2(2)

]
=

[
1 0
a21 a22

] [
x1(1)
x2(1)

]
,

and a full new state vector has been created as the switching event pattern is periodic. Also by
back-substitution we have[

x1(2l + 2)
x2(2l + 2)

]
=

[
1 0
a21 a22

]
·
[
a11 a12

0 1

] [
x1(2l)
x2(2l)

]
,

for l = 0, 1, . . . . In general, after a clock period all d entries have switched and consequently
index l is incremented by d over a full clock period.

Consider now systems with n state variables and event pattern described by the sequence
s = (i1, . . . , id). Then

x(ld+ h1) = Ai1x(ld) +Bi1u(ld),
x(ld+ h1 + h2) = Ai2x(ld+ h1) +Bi2u(ld+ h1),

. . . . . . . . . ,
x(ld+ h1 + · · ·+ hd−1) = Aid−1

x(ld+ h1 + · · ·+ hd−2),
+Bid−1

u(ld+ h1 + · · ·+ hd−2),
x(ld+ n) = Aidx(ld+ h1 + · · ·+ hd−1),

+Bidu(ld+ h1 + · · ·+ hd−1),

for l = 0, 1, . . . Suppose also that the inputs are updated just after the new full state vector has
been created, and hence

u(ld+ h1 + · · ·+ hd−1) = · · · = u(ld+ h1) = u(ld), (11)
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and by back-substitution we obtain

x(ld+ d) = Aid · · ·Ai1x(ld)+
(Bid +AidBid−1

+ · · ·+Aid · · ·Ai2Bi1)u(ld).
(12)

For a given sequence s = (i1, . . . , id) define

As = Aid · · ·Ai1 (13)

and

Bs = Bid +AidBid−1
+ · · ·+Aid · · ·Ai2Bi1 (14)

Then we can write (12) as

x(ld+ d) = Asx(ld) +Bsu(ld) (15)

and, returning to the full period counter, (15) can be written in the form of a state updating
equation for a discrete linear system as

x(k + 1) = Asx(k) +Bsu(k). (16)

3 Stability and Robustness

It is known Lorand and Bauer (2006b), Kleptzyn et al. (1984) that the presence of synchroniza-
tion errors can effect the stability of the overall system. In particular, consider a system with
state dynamics described by

x(k + 1) = Ax(k) +Bu(k) (17)

where at instant k x(k) is the n × 1 state vector, and u(k) is the l × 1 control input vector.
Suppose that in operation synchronization errors occur resulting in state dynamics that can be
written in the form (16). Then it is possible that (17) is stable, that is, all eigenvalues of A have
modulus strictly less than unity, but some of the state matrices in (16) resulting from the presence
of synchronization errors do not have this essential property. Also the exact time sequence of
arriving signals to subsequent sub-systems is not known, which makes stability analysis in the
presence of these errors very difficult. In this section, we develop methods for this task by treating
the complete set of possible systems as the effects of uncertainty on some nominal model. This
releases Lyapunov-type methods from robust control of linear time-invariant systems for use in
this problem area where, as a starting point, we use a polytopic robustness characterization.
Next we introduce this characterization in terms of a system described by (17).

The assumption made at this stage is that in the presence of uncertainty in the system model,
the system matrix A of (17) takes values in a fixed polytope, see, for example, Boyd et al. (1994),

A ∈ Co{A1, A2, . . . , Ah}, (18)

where matrices A1, A2, . . . , Ah are given vertices and

Co{A1, A2, . . . , Ah} =

{
h∑

k=1

αkA
k : αk ≥ 0,

h∑
k=1

αk = 1

}
, (19)
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denotes the convex hull of A1, . . . , Ah, that is, the polytope of matrices with given vertices
A1, . . . , Ah. Moreover, stability in the presence of such uncertainty can be determined by checking
if this property holds for each of the polytope vertices as this guarantees that every system matrix
formed as a convex combination of them is also stable Boyd et al. (1994). One method of doing
this is to use Linear Matrix Inequalities (LMI’s) and hence this property holds when

AiTPAi − P ≺ 0 (20)

for i = 1, 2, . . . , h where P � 0.
Returning to the linear systems of the previous section which have clock synchronization errors

characterized by the d-element sequence of events s = {i1, . . . , id} with state-space model (16),
suppose that the system matrices As and Bs take values in the polytope

[As Bs] ∈ Co{[Ai Bi] : i = 1, . . . , h}, (21)

and apply the state feedback control law

u(ln) = Kx(ln). (22)

Then

x(ln+ n) = (As +BsK)x(ln), (23)

where

As +BsK ∈ Co{Ai +BiK : i = 1, . . . , h}. (24)

Hence (23) is stable if there exists a P � 0 such that the following system of inequalities is
satisfied

(Ai +BiK)TP (Ai +BiK)− P ≺ 0 i = 1, . . . , h. (25)

The difficulty now is that this last system is not linear with respect to the matrix K and
therefore cannot be easily solved numerically. Direct application of the result in Crusius and
Trofino (1999) now gives the following result.

Lemma 3.1: The condition of (25) holds if there exist compatibly dimensioned matrices Q � 0
and R such that the following system of LMIs[

−Q AiQ+BiR

QAiT +RTBiT −Q

]
≺ 0, i = 1, . . . , h. (26)

are feasible, and then

K = RQ−1, (27)

is a stabilizing control law matrix.

The solution of (26) can be conservative since the system of LMIs are solved with a common
decision matrix Q and hence a common Lyapunov function. This problem is well known in the
robust control literature and many ways of reducing the levels of conservativeness have been
developed, and these can be applied to the current application. One difficulty for the systems
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considered in this paper is a very large number of sequences s in a given application, which is
addressed next.

Consider a sequence of length d that represents one event-switching pattern for a system with
n state variables s = {i1, . . . , id}, and suppose we want to add another variable to the system.
Then this could be positioned in the sequence s either as an element of ij , j = 1, . . . , d, or before
each ij , or at the end. Thus, from one sequence of length d, which represents one switching
pattern for the system with n state variables, we obtain d sequences of length d, and d + 1
sequences of length d+1. Starting from the sequence of length 1 for system with 1 state variable
(s = ({1}), we obtain 1 sequence of length 1 and two sequences of length 2, that is, ({1, 2}) and
({2}, {1}), ({1}, {2}). Hence the system with 2 state variables has 1 + 2 = 3 different sequences.

If we add a new state variable the sequence ({1, 2}) generates 1 sequence of length
1 - ({1, 2, 3}) and 2 sequences of length 2 - ({3}, {1, 2}),({1, 2}, {3}). Similarly, ({2}, {1})
generates 2 sequences of length 2, that is, ({2, 3}, {1}),({2}, {1, 3}) and 3 of length
3, that is. ({3}, {2}, {1}),({2}, {3}, {1}),({2}, {1}, {3}). Also the sequence ({1}, {2}) gives
({1, 3}, {2}),({1}, {2, 3}) and ({3}, {1}, {2}),({1}, {3}, {2}),({1}, {2}, {3}). Hence a system with
3 state variables has 1 ∗ (1 + 2) + 2 ∗ (2 + 3) = 13 different sequences that can be represented by
the tree shown in Fig. (2).

Figure 2. The tree representation detailed to a depth of three.

The number of sequences for given n, corresponding to a tree of depth +1, equals the sum of
all products of values at nodes from the root to the leaves. For example, in the case when n = 3
the number of sequences, denoted n.o.s, is

n.o.s = 1 · 1 · 1 + 1 · 1 · 2 + 1 · 2 · 2 + 1 · 2 · 3 = 1 + 2 + 4 + 6 = 13 (28)

For large n we can estimate this number where for a lower bound we assume that there is only
one leaf with value of n (and one path). Moreover, for the upper limit we assume that all leaves
have the value n and the nodes have a depth of +1. Hence for given n the n.o.s is estimated as

n! ≤ n.o.s ≤ 2n−1n!. (29)

Consider direct computation, where we treat all the product matrices As and Bs as vertices
of the polytope, that is, the system of LMI’s is solved directly for the product matrices. Then
this method requires that all these matrices are stored in memory and hence there are serious
capacity limits. One alternative is to attempt to find a polytope that contains all these product
matrices and is characterized by a lower number of vertices. There are, however, many reasons
why this route is also not feasible except for very low values of n. One of these is the computer
memory requirements. Consequently we next describe a new method based on computing a
bounding polytope with lower number of vertices that allows a solution to be computed in much
shorter time.
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4 A fast algorithm for polytope computation

The basic idea is to treat all the product matrices as vectors and, by linear operations, enclose
them in a simple structure for which it is easy to obtain their convex hull. Here this is taken as
the unit ball and we now develop the algorithm.

Let Mm×n(R) be the space of m × n matrices with real entries and consider the map φ :
Mm×n(R)→ Rmn defined for a given matrix

M = [mij ], 1 ≤ i ≤ n, 1 ≤ j ≤ m,

as

φ(M) = [m11,m21, . . . ,mm1,m12,m22, . . . ,mm,n−1,
m1n,m2n, . . . mmn].

(30)

Then φ has an inverse and for x = [x1, x2, . . . , xn·m ]T, this is given by

M = φ−1(x) =


x1 xm+1 . . . x(n−1)·m+1

x2 xm+2 . . . x(n−1)·m+2

. . . . . . . . . . . .
xm x2m . . . xn·m

 , (31)

and it is easy to show that this map is linear and continuous.
Assume that

Mp = {[Asi, Bsi] : 1 ≤ i ≤ np}, (32)

and

xi = φ([Asi, Bsi]) 1 ≤ i ≤ np}. (33)

Then the image of Mp in the vector space is

P = φ(Mp). (34)

Introduce now its center of the mass

c = − 1

np

np∑
i=1

xi, (35)

and also

P(c) = τc(P) = {x ∈ Rn2+n·l : x− c ∈ P}, (36)

that is, the translation of the set P by the vector c, which is denoted by τc.
Denote the subspace spanned by P(c) as

Vc = linP(c), d = dimVc (37)

and in the case when l = n we have that

d ≤ n2 − n, (38)
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that is, the resulting space is of lower dimension. However, this may not be true if P(c) is of lower
dimension than the space itself. In order to prevent such a case from arising, and to simplify
calculations, we need to obtain the co-ordinates of x ∈ P in the basis of Vc.

Let

B1 = {b1,b2, . . . ,bd}, (39)

be the orthonormal basis of Vc and

B2 = {bd+1, . . . ,bn2+n·l}, (40)

the orthonormal basis of the orthogonal complement V ⊥c . Then

Vc ⊕ V ⊥c = Rn2+n·l, (41)

and if we define the matrix

B = [b1,b2, . . . ,bn2+n·l], (42)

we have BT ·B = I, and also

x′ = xBT, x′d+1 = · · · = x′n2+n·l = 0. (43)

Introduce x = B ·x′, where x′ denotes the coordinates of vector x in the orthonormal basis of
Vc. Also define the injection ω : Vc → Rd as

y = ω(Bx) = [x′1, x
′
2, . . . , x

′
d ]T, (44)

such that y contains the coordinates of x in B1. Finally, introduce

R = ω(P(c)), (45)

and the map

λ = φ ◦ τc ◦ ω, (46)

such that

R = λ(Mp). (47)

Figure 3 gives a graphical illustration of the transformations just defined.
Computations can now be performed in a lower dimension space, that is Rd, where d has

been defined in the previous section (the clock synchronization errors are characterized by the
d-element sequence of events s = {i1, . . . , id}. In particular, consider the set R. Then using any
of the well known methods we can compute the minimal volume ellipsoids, that is the matrix E
and the point e such that the set

E? = {y ∈ Rd : (y − e)T}E(y − e) ≤ 1}, (48)

is of minimal volume. In this case E � 0, and by Cholesky factorization we can obtain the matrix
H such that E = HTH. Let z = Hy, f = Hc, then the set H(E?) can be written as

H(E?) = {z ∈ Rd : (z− f)T(z− f) ≤ 1} = B(f , 1), (49)
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Figure 3. Diagram of transformation for matrices Zs = [As,Bs ]

and the entire ellipsoid has been transformed into the ball of unit radius, as illustrated in Fig. 4.

Figure 4. Illustrating the transformation of the ellipsoid into unit ball.

In the case of the polytope, let k > 0 be fixed and also let D be the set of vectors dij ,
1 ≤ i ≤ d, j ∈ {1, 2}, such that

d11 = [−k, 0, 0, . . . , 0]T + f ,

d21 = [ 0,−k, 0, . . . , 0]T + f ,

. . . . . . . . . ,

d21 = [ k, 0, 0, . . . , 0 ]T + f ,

d21 = [ 0, k, 0, . . . , 0 ]T + f ,

. . . . . . . . . ,

dij = −(1)j · [ 0, ..., k, 0, . . . , 0 ]T + f ,

. . . . . . . . . ,

dd1 = [ 0, 0, 0, . . . ,−k ]T + f ,

dd2 = [ 0, 0, 0, . . . , k ]T + f ,

that is,

D = {dij ∈ Rd : 1 ≤ i ≤ d, j ∈ {1, 2} } (50)

Now consider the points di2, i = 1, . . . , d, with positive entries. Then these span the (d − 1)-
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dimensional hyperplane in RdZ . Also the point

p = (p1, p2, . . . , pd) ∈ Rd, (51)

belongs to this plane if

(p1 − f1) + (p2 − f2) + · · ·+ (pd − fd) = k. (52)

Also, by symmetry, the closest point to the center of the ball in this plane, denoted by f , is

d? = (
k

d
, . . . ,

k

d
), (53)

and hence

‖d? − f‖2 = k ·
√
d. (54)

If we choose k = 1√
d

then the distance between plane and the point f is 1. Also, by symmetry,

if we take as vertices

V = {vij ∈ Rd : vij = (−1)j · 1√
d
· dij i = 1, .., d, j = 1, 2} (55)

then the ball B(f , 1) belongs to the convex hull with vertices V . Moreover, the transformation
γ−1
Z : Rd → Mn×(n+l)(R) is linear and hence under its action the convex hull remains convex

and the resulting vertices are simply γ−1(V )

γ−1(Co (V )) = Co (γ−1(V )). (56)

Figure 5 illustrates this polytope construction method. The polytope obtained is now used to

Figure 5. Visualization of the polytope formation in R3

produce the set of LMI’s. If these are feasible then we accept them as a solution. If these LMIs
have no solution then the method fails.

The main advantage of the algorithm developed above is that is fast and requires the solution
of a much lower number of LMI’s. If n is the state dimension of the system, the number of
vertices of the polytope is 2(n2 − n). Table 1 below gives a comparison of the time needed to
compute the solution by both methods, where the entry − − − is used to denote the fact that
no solution could be computed by the direct method. Table 2 gives comparative figures on the
numbers of product matrices and polytope vertices.
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direct computation
n computation with new algorithm

avg time (sec) avg time(sec)
1 - -
2 0.187 0.3
3 0.829 0.7
4 10.109 2.8
5 148.14 11.2
6 12000 101.8
7 — 6000

Table 1. Time needed to solve the whole problem in the case when l = n.

number number of vertices
n of product (1.41)nn! of the polytope

matrices 2(n2 − n)
1 1 1.41 0
2 3 3.98 4
3 13 16.82 12
4 75 94.86 24
5 541 668.77 40
6 4683 5657.79 60
7 47293 55842.43 84
8 545835 629902.6 112
9 7087261 7993464 144
10 102247563 11270780 180

Table 2. Number of product matrices and vertices in the case when l = n.

Note that for n = 6 the method is over 100 times faster than direct computation and this
advantage should increase for n > 6. An interior point algorithm, which is a polynomial algo-
rithm, is used to solve the set of LMI’s for both (direct and the one developed here) methods,
but here the number of input matrices is reduced to polynomial of order n using a fast polytope
computation algorithm (which is also polynomial) and then solves the LMI’s. The other new
step is a polynomial algorithm of the number of input matrices but of lower dimension than
the interior point method. Note also that the number of input matrices can be approximated as√

2
n · n!.

5 An Example

Consider a swarm system consisting of M agents each of which is modeled as[
x1
x2

]
i

(n+ 1) =

[
δi −ωi

ωi δi

]
·
([

x1
x2

]
i

(n)−
[
u1
u2

]
i

(n)

)
, (57)

where i = 1, 2, . . .M, and

δ2
i + ω2

i = 1− ε. (58)

The agents work together and aim to meet at the rendezvous point. The input [u1 u2]Ti is

[
u1

u2

]
(n) =

1

M

(
M∑
i=1

[
x1

x2

]
i

(n)

)
+

[
e1

e2

]
i

(n), (59)
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where [ e1, e2 ]Ti , i = 1, . . . ,M denotes an independent agent input vector.
Introducing the variables x′ ∈ R2M and u′ ∈ R2M as

x′j =

{
(x1) j+1

2
if j is odd

(x2) j

2
if j is even

j = 1, 2, . . . 2M, (60)

u′j =

{
(e1) j+1

2
if j is odd

(e2) j

2
if j is even

j = 1, 2, . . . , 2M, (61)

enables the system model to be rewritten as

x′(n) = A1x
′(n)−A1 ·

(
A2x

′(n) + u
)
, (62)

or

x′(n) = A1 (I −A2)x′(n)−A1u
′, (63)

where

A1 =



δ1 −ω1 0 . . . . . . 0
ω1 δ1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . δi −ωi . . . 0
0 . . . ωi δi . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 δM −ωM

0 . . . . . . 0 ωM δM


, (64)

and

A2 =



1
M 0 . . . . . . 1

M 0
0 1

M . . . . . . 0 1
M

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
1
M 0 . . . . . . 1

M 0
0 1

M . . . . . . 0 1
M

 . (65)

Introducing

A′ = A1 · (I −A2) B′ = −A1, (66)

yields the state-space model

x′(n+ 1) = A′x′(n) +B′u′. (67)

In order to deal with synchronization errors we assume that agents’ clocks are out of phase but
they have the same time period T . Then we can use the model of the synchronization errors
with only minor modifications. We consider only those product matrices that are relevant to the
agent’s work, that is, we assume that pairs xi, xi+1, i = 1, 3, 5, . . . , 2M − 1. work synchronously.
Then we apply the algorithm to find an admissible control law.
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Suppose that the parameters in the model here vary as follows

ε ∈ [0, 1] ωi ∈ [0,
√

1− ε] δ2
i + ω2

i = 1− ε, (68)

Then in Fig. 6 synchronization errors occur in the dark grey region, that is, some product
matrices are unstable. The stable region is marked in light grey.

Figure 6. Unstable region; dark grey, stable region: light grey.

Consider now the above system for M = 6 with

δi = δj ωi = ωj i, j = 1, 2, . . . , 6, (69)

where ε = 0.1819, ω1 = 0.9 → δ1 = 0.09 and the system is controllable. If we as-
sume that each agent works synchronously and that synchronization errors only arise when
agents are performing common tasks, we have only 4683 product matrices. As the sequence
{{9, 10, 11, 12}, {7, 8}, {5, 6}, {3, 4}, {1, 2}} illustrates, some of these product matrices are un-
stable. Using the algorithm developed here we can find a control law to guarantee that the
closed-loop system is stable independent of the synchronization errors. The computation time
was 500 sec as compared to 640 sec for direct computation and this advantage should increase
with the number of agents present.

6 Conclusions

This paper has considered synchronization errors that can arise when the switching of all com-
ponents of a system driven by a single clock do not switch at exactly the same time instant,
that is, they operate in an asynchronous mode. The underlying assumption made for subsystems
driven by a single clock is that the differences in clock propagation time between the different
system components are negligible. Currently, there are many applications that routinely violate
this basic assumption and it is known that system stability can be lost that if the mode of
operation switches from synchronous to asynchronous.

Previous work had addressed the stability question and the first contribution of this paper
is state feedback based stabilization of an asynchronous network. The method developed here
treats the complete set of possible systems as the effects of uncertainty on some nominal model.
As a result, Lyapunov type methods from robust control of linear time-invariant systems for
use in this problem area which results in LMI based computations for determining stability and
control law design. The novelty here lies in the application of tools from the robust control theory
for standard linear systems in a different problem area. Future research topics include the use of
alternatives to polytopic robustness that may give improved results in at least some examples.
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The problem of the number of computations involved has also been considered resulting in the
development of a computationally less intense approach. Again there is much further work here
to enable efficient handling of large scale problems.
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